JP6515389B2 - 摺動部材及びその製造方法 - Google Patents

摺動部材及びその製造方法 Download PDF

Info

Publication number
JP6515389B2
JP6515389B2 JP2015201413A JP2015201413A JP6515389B2 JP 6515389 B2 JP6515389 B2 JP 6515389B2 JP 2015201413 A JP2015201413 A JP 2015201413A JP 2015201413 A JP2015201413 A JP 2015201413A JP 6515389 B2 JP6515389 B2 JP 6515389B2
Authority
JP
Japan
Prior art keywords
zinc phosphate
coating
zirconium
film
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015201413A
Other languages
English (en)
Other versions
JP2017071844A (ja
Inventor
幸司 秋岡
幸司 秋岡
崇夫 倉西
崇夫 倉西
康平 水本
康平 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015201413A priority Critical patent/JP6515389B2/ja
Publication of JP2017071844A publication Critical patent/JP2017071844A/ja
Application granted granted Critical
Publication of JP6515389B2 publication Critical patent/JP6515389B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Description

本発明は、摺動部材及びその製造方法に関する。
摺動部材は、他の部材とこすれながら滑る部分(摺動部分)を有する部材の総称である。摺動部材はたとえば、列車及びレール、エンジンシリンダ及びピストン、及び、ドリル加工における被加工材及び工具等である。摺動部材には、潤滑性が要求される。摺動部材の潤滑性が低ければ、摺動部分に焼付きが生じたり、摺動部分の摩耗により摺動部材の機能が低下したりする。
上述の摺動部材は、油井管用ねじ継手を含む。油井管は、油田や天然ガス田の採掘のために使用される管である。油井管は、井戸の深さに応じて、複数の鋼管を連結して形成される。鋼管の連結は、鋼管の端部に形成されたねじ継手同士をねじ締めすることによって行われる。油井管は、検査等のために引き上げられ、ねじ戻しされ、検査された後、再びねじ締めされて、再度使用される。油井管用ねじ継手の摺動部分は、鋼管のねじ締め及びねじ戻し時に強い摩擦を繰り返し受ける。したがって、油井管用ねじ継手の摺動部分は特に高い潤滑性が要求される。
従来、油井管用ねじ継手の潤滑性を向上するために、ドープと呼ばれる重金属入りのコンパウンドグリースが使用されてきた。油井管用ねじ継手の表面にコンパウンドグリースを塗布することで、油井管用ねじ継手の潤滑性を改善できる。しかしながら、コンパウンドグリースに含まれるPb、Zn及びCu等の重金属は環境に影響を与える可能性がある。このため、コンパウンドグリースを使用しない管用ねじ継手の開発が望まれている。
特開2013−108556号公報(特許文献1)及び特表2008−537062号公報(特許文献2)は、コンパウンドグリースを使用しなくても、優れた潤滑性を有する油井管用ねじ継手を提案する。特許文献1及び特許文献2では、有機物を含有する潤滑被膜を摺動部分に形成することにより、油井管用ねじ継手の潤滑性が向上する。
特許文献1に記載されている管状ねじ継手は、ピンとボックスとから構成される管状ねじ継手である。ピンとボックスとは、ねじ部とシール部及びショルダー部を含むねじ無し金属接触部とからなる接触表面をそれぞれ備える。管状ねじ継手は、ピンとボックスの少なくとも一方の部材の接触表面のショルダー部を含む一部に第1の固体潤滑被膜を有する。少なくとも一方の部材の接触表面のうちの少なくとも第1の固体潤滑被膜を有していない部分は、粘稠液体潤滑被膜及び第2の固体潤滑被膜から選ばれた別の潤滑被膜を有する。第1の固体潤滑被膜の摩擦係数は別の潤滑被膜の摩擦係数より高い。第1の潤滑被膜と別の潤滑被膜の両方が存在する部分では、別の潤滑被膜が上に位置することを特徴とする。
特許文献2に記載されている鋼管用ねじ継手は、ピンとボックスとから構成される鋼管用ねじ継手である。ピンとボックスとは、ねじ部とねじ無し金属接触部とを有する接触表面をそれぞれ備える。ピンとボックスの少なくとも一方の部材の接触表面が、粘稠液体または半固体の潤滑被膜と、その上に形成された乾燥固体被膜とを有することを特徴とする。
特表2008−540961号公報(特許文献3)は、上述の特許文献とは異なる技術を提案する。特許文献3では、燐酸亜鉛結晶の種類を調整することで、油井管用ねじ継手の耐摩耗性を向上する。特許文献3に記載されている油井管用ねじ接続部は、金属と金属のシール、及び、燐酸亜鉛被膜を含有する。燐酸亜鉛被膜は、少なくとも約50ミクロンの平均粒径を有する粒子を含有する。
ところで、摺動部材には高い潤滑性だけでなく、高い耐食性も求められる場合がある。たとえば、油井管は、製造された後、船舶等により輸送され、使用されるまで一定期間保管される。油井管の輸送及び保管は、長期間に渡る場合がある。さらに、油井管の保管は屋外で行われる場合がある。屋外で長期に保管されれば、油井管用ねじ継手に錆が発生する場合がある。この場合、油井管用ねじ継手の気密性や潤滑性が低下する。
金属材料の耐食性を高める方法がたとえば、特開平5−195246号公報(特許文献4)、特表平9−501202号公報(特許文献5)、特開平4−276087号公報(特許文献6)、特表2004−533542号公報(特許文献7)、特表2003−505590号公報(特許文献8)及び特表2011−517727号公報(特許文献9)に記載されている。
金属材料の耐食性を高めるには、金属材料の表面に被膜を形成することが有効である。被膜はたとえば、化成処理被膜及び有機物を含有する被膜である。化成処理被膜はたとえば、燐酸塩被膜である。燐酸塩被膜を効率的に形成できる処理液の組成が、特許文献4及び特許文献5に記載されている。さらには、燐酸塩被膜を形成した後に金属表面を洗うことによって耐食性を高める方法が、特許文献6に記載されている。
燐酸塩被膜と異なる他の化成処理被膜はたとえば、フッ化ジルコニウム酸塩被膜である。フッ化ジルコニウム酸塩被膜の形成方法が、特許文献7及び特許文献8に記載されている。
特許文献7に記載されている金属表面処理剤は、a)0.02〜20g/リットルのりん酸及び/又はZr,Ti,Hf及びSiから選ばれた1種以上の元素の少なくとも1種のふっ素酸、或はそれらの各々のアニオン、並びに、b)10〜49.9mg/リットルの、ビニルピロリドンの単一重合体又は共重合体を含み、かつ即時使用可能な溶液の状態にあることを特徴とする。
特許文献8に記載されている方法では、光沢仕上げのあるいはりん酸塩処理した、鋼、亜鉛めっき鋼、合金亜鉛めっき鋼、アルミニウム、アルミニウム合金の表面に下記の成分を含有する水溶液を接触させる。水溶液は、(a)硼素、珪素、チタニウム、ジルコニウムの1または2以上の錯ふっ化物を0.05〜10g/L、および下記(b)から選ばれる1または2以上のりん酸塩形成促進剤を含有する。(b)には、0.05〜2g/Lのm−ニトロベンゼンスルホネイトイオン、0.1〜10g/Lのフリーの又は結合したヒドロキシルアミン、0.05〜2g/Lのm−ニトロベンゾエートイオン、0.05〜2g/Lのp−ニトロフェノール、1〜70mg/Lのフリーの又は結合した過酸化水素、0.05〜10g/Lの有機N−酸化物、0.1〜3g/Lのニトログアニディン、1〜500mg/Lの亜硝酸イオン、及び、0.5〜5g/Lの塩素酸イオンが含まれる。
燐酸塩被膜と異なるさらに他の化成処理被膜はたとえば、不動態被膜である。不動態被膜を形成するための方法が、特許文献9に記載されている。
金属材料の耐食性を高めるには、上述の化成処理被膜の他に、有機物を含有する被膜の形成が有効である。たとえば、油井管用ねじ継手に対しては、耐食性を改善するために、樹脂被膜が用いられる。油井管用ねじ継手の摺動部分に、樹脂被膜を形成する。これにより、油井管用ねじ継手の摺動部分への、酸素等の腐食因子の侵入を抑制する。その結果、油井管用ねじ継手の耐食性が向上する。油井管用ねじ継手において、樹脂被膜の密着性が高ければ、耐食性が高まる。
特開2013−108556号公報 特表2008−537062号公報 特表2008−540961号公報 特開平5−195246号公報 特表平9−501202号公報 特開平4−276087号公報 特表2004−533542号公報 特表2003−505590号公報 特表2011−517727号公報
しかしながら、上述の特許文献に開示された技術を用いても、優れた潤滑性及び優れた耐食性を有し、表面に形成した被膜の密着性が優れる摺動部材が得られない場合がある。
本発明の目的は、優れた潤滑性及び優れた耐食性を有し、表面に形成された被膜の密着性に優れる摺動部材を提供することである。
本実施形態による摺動部材は、摺動基材と、燐酸亜鉛被膜と、ジルコニウム被膜と、樹脂被膜とを備える。燐酸亜鉛被膜は、摺動基材の表面に配置される。燐酸亜鉛被膜は、最大粒径が20〜350μmの燐酸亜鉛結晶を含有する。燐酸亜鉛被膜の付着量は0.2g/m2以上である。ジルコニウム被膜は、摺動基材上及び燐酸亜鉛被膜上に配置される。樹脂被膜は、ジルコニウム被膜上に配置される。
本実施形態による摺動部材の製造方法は、燐酸亜鉛処理工程と、ジルコニウム化成処理工程と、被膜形成工程とを備える。燐酸亜鉛処理工程では、摺動基材の表面に、50℃以上の処理温度、120〜600秒の処理時間、及び、35〜70pt未満の燐酸亜鉛処理液の全酸度で、燐酸亜鉛処理を実施する。燐酸亜鉛処理後、ジルコニウム化成処理を実施する。ジルコニウム化成処理後、被膜形成工程を実施する。被膜形成工程では、樹脂被膜を形成する。
本実施形態による摺動部材は、優れた潤滑性及び優れた耐食性を有し、表面に形成された被膜の密着性に優れる。
図1は、油井管用ねじ継手の構成を示す図である。 図2は、油井管用ねじ継手の断面図である。 図3は、本実施形態による摺動部材の断面図である。
本発明者らは、摺動部材の潤滑性、耐食性、及び摺動部材表面の被膜の密着性について種々検討を行った。その結果、以下の知見を得た。
摺動部材の耐食性を高めるために、摺動部材の表面に燐酸亜鉛被膜を形成する。燐酸亜鉛被膜は、水に不溶である。燐酸亜鉛被膜により、摺動部材の表面と、水や酸素などの腐食因子との接触を抑制できる。これにより、摺動部材の耐食性が高まる。
燐酸亜鉛被膜は、燐酸亜鉛結晶を含有する。燐酸亜鉛結晶は、結晶格子間の結合力が弱い。そのため、劈開性を有する。劈開性とは、結晶が特定の方向に沿って割れたり、はがれたりして平滑な面を現す性質をいう。燐酸亜鉛結晶は摺動部材が摺動する際に、せん断応力を受けて劈開する。燐酸亜鉛結晶が劈開することにより、摺動部分の摩擦が低減される。つまり、摺動部分の潤滑性が高まる。燐酸亜鉛結晶が大きければ、劈開量が増加し、摩擦がさらに低減される。したがって、燐酸亜鉛結晶が大きければ、摺動部材の潤滑性がさらに高まる。
摺動部材表面に燐酸亜鉛処理をした後さらに、ジルコニウム化成処理を実施する。これにより、摺動部材の耐食性がさらに高まる。燐酸亜鉛被膜は多孔質であり、摺動部材表面まで貫通した孔を有する。しかしながら、燐酸亜鉛処理をした後さらに、ジルコニウム化成処理を実施することにより、孔にジルコニウム化成処理液が浸透する。孔に浸透したジルコニウム化成処理液は、摺動部材表面でジルコニウム被膜を形成する。つまり、ジルコニウム被膜は、燐酸亜鉛被膜上に加え燐酸亜鉛被膜が未形成の摺動部材上にも配置される。これにより、摺動部材表面と、腐食因子との接触をさらに抑制できる。その結果、摺動部材の耐食性がさらに高まる。
本実施形態では、大きい燐酸亜鉛結晶を含有する燐酸塩被膜を形成する。そのため、本実施形態の燐酸亜鉛被膜の表面粗さは顕著に大きい。一方で、ジルコニウム被膜は薄く、均質な被膜である。したがって、燐酸亜鉛被膜上にジルコニウム被膜を形成した場合でも、表面粗さは大きいまま維持される。下地の表面粗さが大きい場合、その上に形成する被膜の密着性が高まる。そのため、ジルコニウム被膜の上に形成する樹脂被膜の密着性が高まる。
以上の知見に基づいて完成した本実施形態による摺動部材は、摺動基材と、燐酸亜鉛被膜と、ジルコニウム被膜と、樹脂被膜とを備える。燐酸亜鉛被膜は、摺動基材の表面に配置される。燐酸亜鉛被膜は、最大粒径が20〜350μmの燐酸亜鉛結晶を含有する。燐酸亜鉛被膜の付着量は0.2g/m2以上である。ジルコニウム被膜は、摺動基材上及び燐酸亜鉛被膜上に配置される。樹脂被膜は、ジルコニウム被膜上に配置される。
摺動部材は、粒径の大きい燐酸亜鉛結晶を含有する燐酸亜鉛被膜を備える。そのため、摺動部材は優れた潤滑性を有する。さらに、摺動部材は、燐酸亜鉛被膜と、ジルコニウム被膜と、樹脂被膜とを備える。そのため、摺動部材は優れた耐食性を有する。さらに、ジルコニウム被膜の表面粗さは粗い。そのため、樹脂被膜の密着性は高い。
本実施形態による摺動部材の製造方法は、燐酸亜鉛処理工程と、ジルコニウム化成処理工程と、被膜形成工程とを備える。燐酸亜鉛処理工程では、摺動基材の表面に、50℃以上の処理温度、120〜600秒の処理時間、及び、35〜70pt未満の燐酸亜鉛処理液の全酸度で、燐酸亜鉛処理を実施する。燐酸亜鉛処理後、ジルコニウム化成処理を実施する。ジルコニウム化成処理後、被膜形成工程を実施する。被膜形成工程では、樹脂被膜を形成する。
上述の温度、処理時間及び全酸度で燐酸亜鉛処理を実施することにより、適切な粒径を有する燐酸亜鉛結晶を含有する燐酸亜鉛被膜が形成できる。さらに、適切な付着量の燐酸亜鉛被膜が得られる。これにより、摺動部材の潤滑性及び耐食性が高まり、表面に形成された被膜の密着性が高まる。
以下、図面を参照して、本実施形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
[摺動部材]
摺動部材は上述のとおり、他の部材とこすれながら滑る部分(摺動部分)を有する部材の総称である。摺動部材はたとえば、油井管用ねじ継手である。本明細書では、油井管用ねじ継手を例に実施の形態を説明する。図1は、油井管用ねじ継手の構成を示す図である。油井管用ねじ継手1は、鋼管2とカップリング3とを備える。鋼管2の両端には、ピン5が形成されている。ピン5は、外面に雄ねじ部4を有する。カップリング3の両側には、ボックス8が形成されている。ボックス8は、内面に雌ねじ部7を有する。ピン5とボックス8とをねじ締めすることによって、鋼管2の端に、カップリング3が取り付けられる。
典型的な管用ねじ継手は、図1に示すとおり、鋼管2とカップリング3とを備える、カップリング方式である。一方、カップリングを使用せず、鋼管の一端をピン形状とし、他端をボックス形状としたインテグラル方式の管用ねじ継手もある。本実施形態の摺動部材は、カップリング方式及びインテグラル方式のいずれの油井管用ねじ継手にも適用可能である。
摺動部材は、他の部材とこすれながら滑る部分(摺動部分)を有する。油井管用ねじ継手において、摺動部分とは、接触表面をいう。ピン5及びボックス8は、ねじ部及びねじ無し金属接触部を有する接触表面を有する。図2は、油井管用ねじ継手の断面図である。ピン5は、雄ねじ部4とねじ無し金属接触部14とを備える。ねじ無し金属接触部14は、ピン5の先端に形成され、金属シール部10及びショルダー部11とを備える。ボックス8は、雌ねじ部7とねじ無し金属接触部15とを備える。ねじ無し金属接触部15は、ボックス8の先端に形成され、金属シール部13及びショルダー部12とを備える。ピン5とボックス8とをねじ締めしたときに接触する部分を、接触表面という。具体的には、ピン5とボックス8とをねじ締めすると、ショルダー部同士(ショルダー部11及び12)、金属シール部同士(金属シール部10及び13)、及び、ねじ部同士(雄ねじ部4及び雌ねじ部7)が互いに接触する。つまり、接触表面は、ショルダー部、金属シール部、及び、ねじ部を含む。
図3は、摺動部材30の断面図である。摺動部材30は、摺動基材20と、燐酸亜鉛被膜21と、ジルコニウム被膜22と、樹脂被膜23とを備える。燐酸亜鉛被膜21は、摺動基材20の表面に配置される。ジルコニウム被膜22は、摺動基材20上及び燐酸亜鉛被膜21上に配置される。より具体的には、ジルコニウム被膜22は、燐酸亜鉛被膜21上に加え、燐酸亜鉛被膜21が形成されていない摺動基材20の表面にも配置される。樹脂被膜23は、ジルコニウム被膜22上に配置される。
[燐酸亜鉛被膜21]
燐酸亜鉛被膜21は、燐酸亜鉛結晶を含有する被膜である。燐酸亜鉛結晶は、ホパイト及びホスフォフィライトを含有する。ホパイトの化学式は、Zn3(PO42・4H2Oである。ホスフォフィライトの化学式はZn2Fe(PO42・4H2Oである。ホパイト及びホスフォフィライトは、被膜中に混晶として存在する。ホパイトの結晶は、葉状や針状であることが多い。ホスフォフィライトの結晶は、粒状であることが多い。
燐酸亜鉛被膜21は、最大粒径が20〜350μmの燐酸亜鉛結晶を含有する。ホパイト及びホスフォフィライトのいずれの場合であっても、燐酸亜鉛結晶の最大粒径は20〜350μmである。燐酸亜鉛結晶の最大粒径が20μmより小さければ、摺動部材30の潤滑性及び樹脂被膜の密着性が低下する。一方、燐酸亜鉛結晶の最大粒径が350μmより大きければ、燐酸亜鉛結晶内部で層間剥離が生じる。このため、樹脂被膜23の密着性が低下する。燐酸亜鉛結晶の最大粒径が350μmより大きい場合、外観上は粉をふいた状態になる。したがって、燐酸亜鉛結晶の最大粒径は20〜350μmである。燐酸亜鉛結晶の最大粒径の下限は好ましくは30μmであり、より好ましくは50μmである。燐酸亜鉛結晶の最大粒径の上限は好ましくは300μmであり、より好ましくは250μmである。
燐酸亜鉛結晶の最大粒径は、特定観察視野の結晶サイズを観察することで測定する。具体的には、燐酸亜鉛被膜21を形成したサンプルを準備する。燐酸亜鉛被膜21表面を、走査型電子顕微鏡(SEM)により観察する。無作為に3つの視野を選択し観察する。この時の観察倍率は200倍である。各視野において、長径の大きい順に、燐酸亜鉛結晶を3つ選択し、長径を測定する。ここで、長径とは、燐酸亜鉛結晶の外周2点を通る直線のうち、最大の長さをいう。測定した9つの長径の算術平均を求める。その算術平均を、燐酸亜鉛結晶の最大粒径とする。
燐酸亜鉛被膜21の付着量は、0.2g/m2以上である。燐酸亜鉛被膜21の付着量が0.2g/m2未満であれば、摺動部材30の潤滑性及び耐食性が低下する。一方、燐酸亜鉛被膜21の付着量の上限は、生産効率を考慮して適宜設定される。燐酸亜鉛被膜21の付着量の上限は、たとえば10.0g/m2である。燐酸亜鉛被膜21の付着量の下限は好ましくは、0.5g/m2であり、より好ましくは1.0g/m2である。燐酸亜鉛被膜21の付着量の上限は好ましくは、9.0g/m2であり、より好ましくは8.0g/m2である。
燐酸亜鉛被膜21の付着量は、次の方法で測定する。燐酸亜鉛被膜21を有する鋼材を、5%のクロム酸を含有するクロム酸溶液で溶解させる。クロム酸溶液の温度は常温でもよいが、溶解時間を速くするために加温してもよい。溶解時間は、燐酸亜鉛被膜21の付着量およびクロム酸溶液の温度によって調整可能であるが、燐酸亜鉛被膜21が完全に溶解するまで行う。燐酸亜鉛被膜21を溶解させる前後の鋼材の重量差を求める。重量差を、燐酸亜鉛被膜21を有する鋼材の表面積で割って、燐酸亜鉛被膜21の単位面積当たりの付着量とする。
[ジルコニウム被膜22]
ジルコニウム被膜22は、非晶質の酸化ジルコニウム(ZrO2)を含有する被膜である。ジルコニウム被膜は緻密で薄く、均一な被膜である。図3に示すとおり、ジルコニウム被膜22は、燐酸亜鉛被膜21上に配置される。ジルコニウム被膜22はさらに、燐酸亜鉛被膜21が形成されない摺動基材20上に配置される。摺動部材30は、摺動基材20上及び燐酸亜鉛被膜21上にジルコニウム被膜22を備える。そのため、摺動部材30は耐食性に優れる。
ジルコニウム被膜22の付着量は2〜30mg/m2であることが好ましい。ジルコニウム被膜22の付着量とは、金属ジルコニウム換算での付着量をいう。ジルコニウム被膜22の付着量が2mg/m2以上であれば、摺動部材30の耐食性がさらに安定的に高まる。一方、ジルコニウム被膜21の付着量が30mg/m2以下であれば、樹脂被膜23の密着性を安定的に高めることができる。
ジルコニウム被膜22の付着量は、次の方法で測定できる。はじめに、ジルコニウム被膜を有する鋼材をクロム酸溶液等に浸漬し、ジルコニウム被膜22を燐酸亜鉛被膜21とともに溶解させる。次に、ジルコニウム被膜22が溶解したクロム酸溶液を分析してZr量を定量する。定量には、誘導結合高周波プラズマ発光分光分析(Inductively Coupled Plasma−Atomic Emission Spectro−metry:ICP−AES)及び誘導結合高周波プラズマ質量分析(Inductively Coupled Plasma−Mass Spectro−metry:ICP−MS)を用いる。ジルコニウム被膜22中の金属Zr量を定量し、ジルコニウム被膜22の付着量とする。
検量線を作製することで、X線分析によっても、ジルコニウム被膜22の付着量を測定できる。具体的には、ジルコニウム被膜22の付着量を変化させた鋼材を複数作成する。続いて、各鋼材のジルコニウム被膜22の表面を、波長分散型蛍光X線分析装置を用いて分析し、Zr−kα線のX線強度を測定する。さらに、各鋼材に対して、上述のクロム酸溶液を用いた方法によって、ジルコニウム被膜22の付着量を測定する。各鋼材の、Zr−kα線のX線強度と、ジルコニウム被膜22の付着量とから、検量線を作製する。これにより、以降の試験では、Zr−kα線のX線強度を測定することによって、ジルコニウム被膜22の付着量を測定できる。より正確に検量線を作製するには、ジルコニウム被膜22表面の任意の数か所を分析し、平均値を測定値とする。
[樹脂被膜23]
摺動部材30は、ジルコニウム被膜22上にさらに、樹脂被膜23を備える。これにより、摺動部材30の耐食性はさらに高まる。樹脂被膜23は熱可塑性樹脂や熱硬化性樹脂、および紫外線硬化樹脂からなる群から選択される1種を含有する。樹脂被膜23が熱可塑性樹脂を含有する場合、熱可塑性樹脂の組成は、塗膜中の溶剤が蒸発することにより硬化する樹脂組成であれば、特に限定されない。熱可塑性樹脂としてはたとえば、揮発乾燥型のアクリルラッカーや融合乾燥型のエマルション塗料等が例示される。熱可塑性樹脂は、市販の熱可塑性樹脂を使用できる。
樹脂被膜23が熱硬化性樹脂を含有する場合、熱硬化性樹脂の組成は、反応により硬化する樹脂組成であれば、特に限定されない。熱硬化性樹脂はたとえば、常温反応硬化型のアクリルシリコン樹脂、2液型ポリウレタン樹脂、2液型エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル及びシリコン樹脂からなる群から選択される1種又は2種以上を含有する。熱硬化性樹脂は、市販の熱硬化性樹脂を使用できる。
被膜23が紫外線硬化型樹脂を含有する場合、紫外線硬化型樹脂の組成は、紫外線を照射することにより硬化する樹脂組成であれば、特に限定されない。紫外線硬化型樹脂はたとえば、モノマー、オリゴマー及び光重合開始剤を含有する。モノマーはたとえば、アクリレートモノマー、ジアクリレートモノマー、トリアクリレートモノマー及びメタクリレートモノマーからなる群から選択される1種又は2種以上である。オリゴマーはたとえば、エステル系オリゴマー、アクリレート系オリゴマー及びウレタン系オリゴマーからなる群から選択される1種又は2種以上である。光重合開始剤はたとえば、光ラジカル重合開始剤、光カチオン重合開始剤及び光アニオン重合開始剤からなる群から選択される1種又は2種以上である。紫外線硬化型樹脂はさらに、光増感剤及び添加剤を含有してもよい。紫外線硬化型樹脂は、市販の紫外線硬化型樹脂を使用できる。
樹脂被膜23の膜厚は特に限定されないが、たとえば10〜100μmである。樹脂被膜23の膜厚が10μm以上であれば、摺動部材30の耐食性を安定的に高めることができる。一方、樹脂被膜23の膜厚が100μm以下であれば、生産効率が高まる。
上述の複合被膜(燐酸亜鉛被膜21、ジルコニウム被膜22及び樹脂被膜23)は、摺動部材30の全体に配置されてもよいし、摺動部材30の一部に配置されてもよい。摺動部材30の一部にのみ複合被膜が配置される場合は、少なくとも摺動部分に複合被膜が配置される。たとえば、油井管用ねじ継手は、少なくとも接触表面上に複合被膜(燐酸亜鉛被膜21、ジルコニウム被膜22及び樹脂被膜23)を備える。
[製造方法]
本実施形態の摺動部材30の製造方法は、燐酸亜鉛処理工程と、ジルコニウム化成処理工程と、被膜形成工程とを備える。
[燐酸亜鉛処理工程]
燐酸亜鉛処理工程では、摺動基材20の表面に燐酸亜鉛処理を実施する。燐酸亜鉛処理液は市販の燐酸亜鉛処理液を使用できる。燐酸亜鉛処理液はたとえば、日本パーカライジング株式会社製、商品名PB−181X及び商品名PB3650Xが使用できる。
市販の燐酸亜鉛処理液を水に溶解し、本実施形態の燐酸亜鉛処理液を作製する。本実施形態では、処理液の全酸度は35〜70pt未満である。全酸度とは、処理浴10mLを0.1N苛性ソーダ溶液で、フェノールフタレインを指示薬として赤色に着色するまで中和滴定した際、必要とする0.1N苛性ソーダ溶液のmL数である。0.1N苛性ソーダ溶液のmL数は、そのままptとして表記される。全酸度が35pt以上であれば、最大粒径20μm以上の燐酸亜鉛結晶を含有する燐酸亜鉛被膜21が得られる。一方、全酸度が70pt未満であれば、最大粒径350μm以下の燐酸亜鉛結晶を含有する燐酸亜鉛被膜21が得られる。全酸度の下限は好ましくは、40ptであり、より好ましくは45ptである。全酸度の上限は好ましくは、65ptであり、より好ましくは60ptである。
処理液を加熱することで、処理温度を調整する。処理温度は50℃以上である。処理温度が50℃以上であれば、燐酸亜鉛被膜21が0.2g/m2以上付着する。一方、処理温度の上限は特に限定されないが、たとえば95℃である。処理温度が95℃以下であれば、蒸発による処理液の消耗が抑制できる。処理温度の下限は好ましくは、55℃であり、より好ましくは60℃である。処理温度の上限は好ましくは、90℃であり、より好ましくは85℃である。
燐酸亜鉛処理工程における処理時間は120〜600秒である。処理時間が600秒以上であれば、生産効率が悪くなる。一方、処理時間が120秒未満であれば燐酸亜鉛皮膜21の形成反応が進まない。この場合、十分な燐酸亜鉛被膜21の付着量が得られない。処理温度が低い場合は、燐酸亜鉛被膜21を形成する反応速度が遅い。その場合、処理時間を長くすることが好ましい。
上述の全酸度、処理温度及び処理時間で、摺動基材20の表面に燐酸亜鉛処理を実施する。処理の方法は浸漬でもよいし、シャワーでもよい。たとえば、油井管用ねじ継手1に処理する場合、カップリング方式の油井管用ねじ継手1では、カップリング3全体を燐酸亜鉛処理液に浸漬してもよい。一方、鋼管2を傾けて、ピン5のみを燐酸亜鉛処理液の入った槽に浸漬させてもよい。インテグラル方式の油井管用ねじ継手1では、初めに、鋼管2を一方に傾けて、ピン5又はボックス8のみを燐酸亜鉛処理液の入った槽に浸漬させてもよい。続いて、鋼管2を他方に傾けて残りの端部を燐酸亜鉛処理液の入った槽に浸漬させてもよい。シャワーを用いる場合は、鋼管2のピン5のみに燐酸亜鉛処理液をシャワー塗布してもよい。燐酸亜鉛被膜21を形成した後、水洗を行ってもよい。水洗の方法は、浸漬でもよいし、シャワーでもよい。
[ジルコニウム化成処理工程]
燐酸亜鉛処理工程の後に、ジルコニウム化成処理工程を実施する。ジルコニウム化成処理工程では、上記工程で形成された燐酸亜鉛被膜21上及び燐酸亜鉛被膜21が形成されていない摺動基材20上にジルコニウム被膜22を形成する。ジルコニウム処理液は、市販のジルコニウム処理液を使用できる。ジルコニウム処理液はたとえば、日本ペイント株式会社製、商品名サーフライト70AN−1を使用できる。ジルコニウム化成処理工程における処理条件は適宜設定できる。たとえば、処理液濃度:6〜20mL/L、処理液温度:20〜95℃、及び、処理時間:30〜240秒としてもよい。
ジルコニウム化成処理工程における処理方法は、上述の燐酸亜鉛処理工程と同様に、浸漬でもよいし、シャワーでもよい。油井管用ねじ継手1にジルコニウム被膜22を形成する場合は、上述の燐酸亜鉛処理工程と同様に形成してもよい。
[被膜形成工程]
被膜形成工程では、ジルコニウム被膜22上に樹脂被膜23を形成する。具体的には、燐酸亜鉛被膜21上のジルコニウム被膜22に、上述の化学組成を有する熱可塑性樹脂を含有する組成物、又は、熱硬化性樹脂を含有する組成物、又は、紫外線硬化型樹脂を含有する組成物を塗布する。組成物の塗布方法はたとえば、スプレー塗布、刷毛塗り及び浸漬である。熱可塑性樹脂を含有する組成物の場合、その後常温で養生することにより樹脂被膜23を形成できる。熱硬化性樹脂を含有する組成物の場合、常温反応硬化型樹脂の場合は、その後常温で養生することにより、また高温反応型樹脂の場合は、加熱(いわゆる焼付け)を実施することにより、被膜23が形成できる。焼付けを行うときの加熱温度及び加熱時間は、適宜設定できる。紫外線硬化型樹脂を含有する組成物の場合、その後、紫外線硬化型樹脂を含有する組成物に紫外線を照射する。紫外線は、市販の紫外線照射装置を用いることにより、照射できる。紫外線の照射源はたとえば、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、カーボンアークランプ、メタルハライドランプ及び太陽光である。照射時間及び照射強度は、適宜設定できる。以上の工程により、被膜23を形成することにより、本実施形態の摺動部材30を製造できる。
[実施例1]
[板状試験片の製造]
試験片を製造した。試験片(試験番号1〜試験番号15)として、板厚0.8mm、サイズ70mm×150mmの冷延鋼板を用いた。表面は研削仕上げとした。各試験片に対して、燐酸亜鉛処理工程、ジルコニウム化成処理工程及び被膜形成工程を実施した。製造条件を表1に示す。
燐酸亜鉛処理工程において、燐酸亜鉛処理液は、日本パーカライジング株式会社製、商品名PB−181X又は商品名PB3650Xを使用した。ジルコニウム化成処理工程において、ジルコニウム処理液は日本ペイント株式会社製、商品名サーフライト70AN−1を使用した。ジルコニウム化成処理工程は、2種の処理方法で実施した。1種は、燐酸亜鉛処理工程後の水洗槽にジルコニウム処理液を添加してジルコニウム化成処理工程を実施する手法であった。他の1種は、燐酸亜鉛処理工程後、さらに水洗をした後に、ジルコニウム化成処理工程を実施する手法であった。被膜形成工程において、中国塗料株式会社製、商品名オーレックスを使用した。各板状試験片に、バーコーターを用いて、紫外線硬化型樹脂を含有する組成物を塗布した。その後、紫外線硬化型樹脂を含有する組成物に対して紫外線を照射した。紫外線硬化型樹脂を含有する被膜の膜厚は、全ての板状試験片で20μmであった。
Figure 0006515389
[燐酸亜鉛結晶の最大粒径測定試験]
燐酸亜鉛処理工程後の各試験片の燐酸亜鉛結晶の最大粒径を上述の方法で測定した。結果を表2に示す。
[燐酸亜鉛被膜付着量測定試験]
燐酸亜鉛処理工程後、各試験片の燐酸亜鉛被膜の付着量を上述の方法で測定した。具体的には、各試験片を25mm角に切断した。試験片上の燐酸亜鉛被膜を、5%のクロム酸溶液を用いて溶解させた。燐酸亜鉛被膜を溶解させる前後の試験片の重量差を燐酸亜鉛被膜の付着量とした。結果を表2に示す。
[ジルコニウム被膜付着量測定試験]
ジルコニウム化成処理工程後、各試験片のジルコニウム被膜の付着量を上述の方法で測定した。測定には、波長分散型蛍光X線分析装置を用いた。定量にあたっては上述の方歩であらかじめ準備した検量線を用いた。結果を表2に示す。
[耐食性評価試験]
ジルコニウム化成処理工程後、各試験片の耐食性を評価した。具体的には、自然乾燥後の耐食性を評価した。ジルコニウム化成処理工程終了後の各試験片を自然乾燥させた。乾燥後の各試験片において、黄錆の発生有無を評価した。黄錆の発生有無は試験片の色差から判定した。具体的には分光測色計(ミノルタ社製CM−3600)を用いて色相の評価を行った。色相の評価は、b*値を測定することで実施した。b*値が4未満の場合、耐食性に優れる(表2中、「○」と表記)、b*値が4〜6の場合、耐食性が低い(表2中、「△」と表記)、及び、b*値が6を超える場合、耐食性は非常に低い(表2中、「×」と表記)と評価した。結果を表2に示す。
[樹脂被膜密着性評価試験]
樹脂被膜の密着性を評価した。具体的には、紫外線硬化型樹脂を含有する被膜を形成した各試験片を、湿潤環境(50℃、相対湿度95%)に960時間放置した。その後、紫外線硬化型樹脂を含有する被膜上に1mm間隔の碁盤目状に切込を入れた。切込を入れた被膜に対しテープ(JIS Z1522(2009))を貼付した後、剥離させた。テープと共に剥離しなかった被膜のマス目の数を計数した。剥離しなかったマス目の数が99個以上の場合、密着力に優れる(表2中、「○」と表記)と評価した。
Figure 0006515389
[評価結果]
試験番号1〜試験番号5の試験片の製造条件は適切であった。そのため、試験番号1〜試験番号5の試験片は、燐酸亜鉛被膜、ジルコニウム被膜及び樹脂被膜を備えた。さらに試験番号1〜試験番号5の試験片の燐酸亜鉛被膜は、20〜350μmの最大粒径を有する燐酸亜鉛結晶を含有し、燐酸亜鉛被膜の付着量が0.2g/m2以上であった。その結果、試験番号1〜試験番号5の試験片は、優れた耐食性を示した。さらに、試験番号1〜試験番号5の試験片上に形成された樹脂被膜は、優れた密着性を示した。さらに、試験番号1〜試験番号5の試験片のジルコニウム付着量は、好ましい値であった。
一方、試験番号6の試験片は燐酸亜鉛処理時間が短かった。そのため、燐酸亜鉛被膜の付着量が0.15g/m2であった。その結果、試験番号6の試験片は耐食性が低かった。
試験番号7〜試験番号10の試験片では、ジルコニウム化成処理工程を実施しなかった。そのため、試験番号7〜試験番号10の試験片は、ジルコニウム被膜を備えなかった。その結果、試験番号7〜試験番号10の試験片は、耐食性が低かった。
試験番号11の試験片は、燐酸亜鉛処理工程における処理温度が40℃であった。そのため、試験番号11の試験片の燐酸亜鉛被膜の付着量は0.18g/m2であった。その結果、試験番号11の試験片はジルコニウム被膜を備えていたものの、耐食性が低かった。
試験番号12の試験片では、燐酸亜鉛処理工程における処理温度が40℃であった。さらに、試験番号12の試験片では、ジルコニウム化成処理工程を実施しなかった。そのため、試験番号12の試験片の燐酸亜鉛被膜の付着量は0.18g/m2であった。さらに、試験番号12の試験片はジルコニウム被膜を備えなかった。その結果、試験番号12の試験片は、耐食性が低かった。
試験番号13の試験片では、燐酸亜鉛処理工程における全酸度が30ptであった。そのため、試験番号13の試験片の燐酸亜鉛被膜に含有される燐酸亜鉛結晶の最大粒径は10μmとなった。その結果、試験番号13の試験片は、樹脂被膜の密着性が低かった。
試験番号14の試験片では、燐酸亜鉛処理工程における全酸度が70ptであった。そのため、試験番号14の試験片の燐酸亜鉛被膜に含有される、燐酸亜鉛結晶の最大粒径は400μmとなった。その結果、試験番号14の試験片は、樹脂被膜の密着性が低かった。
試験番号15の試験片では、燐酸亜鉛処理工程における全酸度が70ptであった。さらに、試験番号15の試験片では、ジルコニウム化成処理工程を実施しなかった。そのため、試験番号15の試験片の燐酸亜鉛被膜に含有される、燐酸亜鉛結晶の最大粒径は400μmとなった。さらに、試験番号14の試験片はジルコニウム被膜を備えなかった。その結果、試験番号14の試験片は、耐食性及び樹脂被膜の密着性が低かった。
[実施例2]
[サンプルの製造]
サンプル(試験番号16〜試験番号19)は外径10−3/4インチ(27.31cm)、肉厚0.545インチ(1.384cm)及び長さ1mの鋼管であった。鋼管の両端部には、外面に雄ねじを有するピンを形成した。各サンプルに対して、燐酸亜鉛処理工程、ジルコニウム化成処理工程及び被膜形成工程を実施した。製造条件を表3に示す。
Figure 0006515389
燐酸亜鉛処理工程は実施例1と同様に行った。燐酸亜鉛処理工程において、処理液は、日本パーカライジング株式会社製、商品名PB−181X又は商品名PB3650Xを使用した。処理方法はそれぞれ浸漬及びシャワー形式とした。ジルコニウム化成処理工程において、処理液は日本ペイント株式会社製、商品名サーフライト70AN−1を使用した。ジルコニウム化成処理工程は、燐酸亜鉛処理工程後の水洗槽に、ジルコニウム被膜を形成するための処理液を添加して実施した。被膜形成工程は実施例1と同様に、中国塗料株式会社製、商品名オーレックスを使用した。ピン表面にのみ、スプレー塗布で紫外線硬化型樹脂を含有する組成物を塗布した。その後、紫外線硬化型樹脂を含有する組成物に対して紫外線を照射した。紫外線硬化型樹脂を含有する被膜の膜厚は、全てのサンプルで20μmであった。
[燐酸亜鉛結晶の最大粒径測定試験]
燐酸亜鉛結晶の最大粒径を測定した。測定は、実施例1と同様に行った。結果を表4に示す。
[燐酸亜鉛被膜付着量測定試験]
燐酸亜鉛被膜の付着量を測定した。測定は、実施例1と同様に行った。結果を表4に示す。
[ジルコニウム被膜付着量測定試験]
ジルコニウム被膜の付着量を測定した。測定は、実施例1と同様に行った。結果を表4に示す。
Figure 0006515389
[潤滑性評価試験]
各サンプル(試験番号16〜試験番号19)に対して、ねじ締め及びねじ戻し試験を実施した。具体的には、燐酸亜鉛被膜、ジルコニウム被膜及び樹脂被膜を形成した、各試験番号の鋼管を用いた。固体潤滑被膜を表層に備えたカップリングを用いて、各鋼管とねじ締め及びねじ戻しを実施した。固体潤滑被膜は、次に示す成分を含有する組成物を用いて形成された。各成分において、%とは、質量%を意味する。
・ポリエチレン(CLARIANT社製、商品名PE520) 19%
・カルナウバワックス 15%
・ステアリン酸亜鉛 20%
・ポリアルキルメタクリレート(ROHMAX社製、商品名VISCOPLEX6−950) 5%
・スルホン酸カルシウム誘導体(LUBRIZOL社製、商品名ALOX 2211Y) 30%
・フッ化黒鉛 7%
・ポリテトラフルオロエチレン 2%
・窒化ホウ素 1%
・染料(キニザリングリーン、C282222) 0.5%
・酸化防止剤(チバガイキ社製):
登録商標IRGANOX L150 0.3%
登録商標IRGAFOS 168 0.2%
各成分を混合し、組成物とした。組成物を、150℃に加熱して流動状態とした。組成物をスプレー塗布によりカップリング表面に塗布した。
ねじ締め及びねじ戻しを最大3回繰り返した。ねじ締め及びねじ戻しの締付け速度は2rpm、締付けトルクは30750ft-lbs(41.7kN・m)であった。ねじ締め及びねじ戻しを1回行うごとに、ピン表面及びボックス表面を目視観察した。目視観察により、焼付きの発生状況を確認した。焼付きが軽微であり、回復可能な場合には、焼付き疵を補修して試験を続行した。回復不能な焼き付きを生ずることなく、ねじ締め及びねじ戻しができた回数を測定した。ねじ締め及びねじ戻しができた回数が3回以上の場合、潤滑性に優れる(表4中、「○」と表記)と評価した。
[耐食性評価試験]
鋼管試験片(試験番号16〜試験番号19)に対しては、屋内暴露により、耐食性を評価した。具体的には、被膜形成工程終了後の各鋼管を、屋内に2週間放置した。その後、目視により、発錆の有無を評価した。錆の面積率が5%未満の場合、耐食性に優れる(表4中、「○」と表記)、及び、錆の面積率が5%以上の場合、耐食性は低い(表4中、「△」と表記)と評価した。結果を表4に示す。
[樹脂被膜密着性評価試験]
樹脂被膜の密着性を評価した。密着性の評価は、実施例1と同様に実施した。結果を表4に示す。
[評価結果]
試験番号16及び試験番号17のサンプルの製造条件は適切であった。そのため、試験番号16及び試験番号17のサンプルは、燐酸亜鉛被膜、ジルコニウム被膜及び樹脂被膜を備えた。さらに試験番号16及び試験番号17のサンプルの燐酸亜鉛被膜は、20〜350μmの最大粒径を有する燐酸亜鉛結晶を含有し、燐酸亜鉛被膜の付着量は0.2g/m2以上であった。さらに、試験番号16及び試験番号17のサンプルのジルコニウム付着量は、好ましい値であった。その結果、試験番号16及び試験番号17のサンプルは、優れた潤滑性及び優れた耐食性を示した。さらに、試験番号16及び試験番号17のサンプル上に形成された樹脂被膜は、優れた密着性を示した。
一方、試験番号18の鋼管、及び、試験番号19の鋼管では、ジルコニウム化成処理工程を実施しなかった。そのため、試験番号18の鋼管、及び、試験番号19の鋼管は、ジルコニウム被膜を備えなかった。その結果、試験番号18の鋼管、及び、試験番号19の鋼管は、耐食性が低かった。
以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
20 摺動基材
21 燐酸亜鉛被膜
22 ジルコニウム被膜
23 樹脂被膜
30 摺動部材

Claims (2)

  1. 摺動基材と、
    前記摺動基材の表面に配置され、最大粒径が20〜350μmの燐酸亜鉛結晶を含有し、付着量が0.2g/m2以上である燐酸亜鉛被膜と、
    前記摺動基材上及び前記燐酸亜鉛被膜上に配置されたジルコニウム被膜と、
    前記ジルコニウム被膜上に配置された樹脂被膜とを備える、摺動部材。
  2. 摺動部材の製造方法であって、
    摺動基材の表面に、50℃以上の処理温度、120〜600秒の処理時間、及び、35〜70pt未満の燐酸亜鉛処理液の全酸度で、燐酸亜鉛処理をする工程と、
    前記燐酸亜鉛処理後、ジルコニウム化成処理をする工程と、
    前記ジルコニウム化成処理後、樹脂被膜を形成する工程とを備える、摺動部材の製造方法。
JP2015201413A 2015-10-09 2015-10-09 摺動部材及びその製造方法 Active JP6515389B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201413A JP6515389B2 (ja) 2015-10-09 2015-10-09 摺動部材及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201413A JP6515389B2 (ja) 2015-10-09 2015-10-09 摺動部材及びその製造方法

Publications (2)

Publication Number Publication Date
JP2017071844A JP2017071844A (ja) 2017-04-13
JP6515389B2 true JP6515389B2 (ja) 2019-05-22

Family

ID=58538640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201413A Active JP6515389B2 (ja) 2015-10-09 2015-10-09 摺動部材及びその製造方法

Country Status (1)

Country Link
JP (1) JP6515389B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022232817A1 (en) * 2021-04-30 2022-11-03 Ppg Industries Ohio, Inc. Methods of making coating layers and substrates having same coating layers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023153274A1 (ja) * 2022-02-10 2023-08-17

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895970A (en) * 1973-06-11 1975-07-22 Pennwalt Corp Sealing rinse for phosphate coatings of metal
JPS5914112B2 (ja) * 1980-01-22 1984-04-03 日本ペイント株式会社 改良されたリン酸塩皮膜処理金属面の後処理洗浄法
JPS6017827B2 (ja) * 1981-03-26 1985-05-07 日本ペイント株式会社 カチオン型電着塗装のための金属表面の前処理方法
JP2660689B2 (ja) * 1986-09-06 1997-10-08 川崎製鉄株式会社 管端ねじ表面皮膜処理装置
JPS63105096A (ja) * 1986-10-20 1988-05-10 Sumitomo Metal Ind Ltd 冷間鍛造用棒鋼線材製造用潤滑剤
JPS63190180A (ja) * 1987-02-02 1988-08-05 Sumitomo Metal Ind Ltd ステンレス線材の連続伸線方法
US4865653A (en) * 1987-10-30 1989-09-12 Henkel Corporation Zinc phosphate coating process
JPH04128384A (ja) * 1990-09-17 1992-04-28 Nippon Paint Co Ltd 金属表面の処理方法、処理浴および処理剤
JP2713002B2 (ja) * 1991-11-25 1998-02-16 住友金属工業株式会社 亜鉛系めっき鋼板の製造方法
JPH05247665A (ja) * 1992-03-03 1993-09-24 Nippon Paint Co Ltd 燐酸塩処理された金属材表面の後処理洗浄方法
JP3022766B2 (ja) * 1996-04-02 2000-03-21 第一金属株式会社 金属材料の表面処理方法
JP4439093B2 (ja) * 2000-08-09 2010-03-24 関西ペイント株式会社 金属表面のリン酸塩処理皮膜の後処理剤、後処理剤を用いて得られる被覆鋼鈑及びその製造方法
JP3903900B2 (ja) * 2002-10-21 2007-04-11 Jfeスチール株式会社 耐食性、塗料密着性及び加工性に優れた非クロム系リン酸亜鉛処理鋼板
US20060060265A1 (en) * 2004-09-21 2006-03-23 Henkel Kommanditgesellschaft Auf Aktien Lubricant system for cold forming, process and composition therefor
JP4571868B2 (ja) * 2005-01-07 2010-10-27 新日本製鐵株式会社 伸線前鋼線及びその潤滑下地処理方法
US7770935B2 (en) * 2005-01-13 2010-08-10 Sumitomo Metal Industries, Ltd. Threaded joint for steel pipes
PL1864048T3 (pl) * 2005-03-29 2013-12-31 Nippon Steel & Sumitomo Metal Corp Gwintowane połączenie do rur stalowych
US7497481B2 (en) * 2005-05-13 2009-03-03 Hydril Llc Treating method and design method for tubular connections
EP2336391B1 (en) * 2008-10-08 2016-03-30 Nippon Steel & Sumitomo Metal Corporation Metal material having excellent corrosion resistance
JP5722752B2 (ja) * 2011-11-18 2015-05-27 新日鐵住金株式会社 高トルク締結性能に優れた管状ねじ継手

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022232817A1 (en) * 2021-04-30 2022-11-03 Ppg Industries Ohio, Inc. Methods of making coating layers and substrates having same coating layers

Also Published As

Publication number Publication date
JP2017071844A (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
US11396961B2 (en) Composition, threaded joint for pipes including solid lubricant coating formed from the composition, and method for producing the threaded joint for pipes
CA3009607C (en) Threaded connection for pipe or tube and method of producing the threaded connection for pipe or tube
JP5408391B2 (ja) 低温性能に優れた管ねじ継手
EA034055B1 (ru) Резьбовое соединение для трубы или патрубка и способ изготовления резьбового соединения для трубы или патрубка
EA017703B1 (ru) Резьбовое соединение для труб
US9568126B2 (en) Threaded joint for steel pipe
BRPI0708250A2 (pt) revestimentos antifricção, métodos de produção de tais revestimentos e produtos incluindo tais revestimentos
TW201100507A (en) Anti-corrosion and low friction coating
JP6424223B2 (ja) 油井管用ねじ継手及び光硬化被膜用組成物
WO2015141159A1 (ja) 固体潤滑被膜用組成物、その組成物から形成された固体潤滑被膜を備えた管用ねじ継手、及び、その管用ねじ継手の製造方法
JP6515389B2 (ja) 摺動部材及びその製造方法
JPWO2018216497A1 (ja) 管用ねじ継手及び管用ねじ継手の製造方法
EA020833B1 (ru) Устойчивый к образованию задиров резьбовой трубный компонент и способ нанесения покрытия на указанный компонент
CN111051757A (zh) 管用螺纹接头及管用螺纹接头的制造方法
US20200199757A1 (en) Anti-corrosion coating method
JP2010084203A (ja) マグネシウム合金用黒色化成処理液、化成処理方法及び化成処理部材
JP5046545B2 (ja) 鍛造用潤滑皮膜形成剤、鍛造用金属材料及びその検査方法
JP2018123349A (ja) 管用ねじ継手及び管用ねじ継手の製造方法
WO2020021691A1 (ja) 管用ねじ継手及び管用ねじ継手の製造方法
WO2024043132A1 (ja) 固体潤滑被膜を形成するためのコーティング用薬剤、そのコーティング用薬剤の製造方法、油井管補修方法、油井管の潤滑改善方法、及び油井管
WO2020021710A1 (ja) 管用ねじ継手及び管用ねじ継手の製造方法
EA040864B1 (ru) Резьбовое соединение для труб и способ изготовления резьбового соединения для труб
EA040030B1 (ru) Композиция, резьбовое соединение для труб, содержащее покрытие из твердой смазки, сформированное из этой композиции, и способ создания резьбового соединения для труб
OA18564A (en) Composition, pipe threaded joint provided with solid lubricating coating formed from composition, and method for manufacturing pipe threaded joint.
OA17226A (en) Threaded joint for steel pipe.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R151 Written notification of patent or utility model registration

Ref document number: 6515389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151