JP6511318B2 - 車両用ブレーキ液圧制御装置 - Google Patents

車両用ブレーキ液圧制御装置 Download PDF

Info

Publication number
JP6511318B2
JP6511318B2 JP2015071556A JP2015071556A JP6511318B2 JP 6511318 B2 JP6511318 B2 JP 6511318B2 JP 2015071556 A JP2015071556 A JP 2015071556A JP 2015071556 A JP2015071556 A JP 2015071556A JP 6511318 B2 JP6511318 B2 JP 6511318B2
Authority
JP
Japan
Prior art keywords
control
pressure
fluid pressure
inlet valve
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015071556A
Other languages
English (en)
Other versions
JP2016190557A (ja
Inventor
智明 関谷
智明 関谷
小林 正史
正史 小林
俊之 半田
俊之 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VEONEER NISSIN BRAKE SYSTEMS JAPAN CO.LTD.
Original Assignee
VEONEER NISSIN BRAKE SYSTEMS JAPAN CO.LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VEONEER NISSIN BRAKE SYSTEMS JAPAN CO.LTD. filed Critical VEONEER NISSIN BRAKE SYSTEMS JAPAN CO.LTD.
Priority to JP2015071556A priority Critical patent/JP6511318B2/ja
Publication of JP2016190557A publication Critical patent/JP2016190557A/ja
Application granted granted Critical
Publication of JP6511318B2 publication Critical patent/JP6511318B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車両用ブレーキ液圧制御装置に関する。
従来、アンチロックブレーキ制御(以下、ABS制御ともいう。)を実行可能な車両用ブレーキ液圧制御装置において、各車輪の減速度に基づいてマスタシリンダ圧(入口弁の上流液圧)を推定するものが知られている(特許文献1参照)。具体的に、この技術では、ABS制御等の増減圧制御を行うブレーキ液圧制御が実行されている車輪から算出された仮マスタシリンダ圧を除外し、その他の車輪から算出された仮マスタシリンダ圧の中から今回のマスタシリンダ圧を推定している。
特許第4436287号公報
ところで、入口弁が常開型比例電磁弁である場合には、ブレーキ液圧制御の増圧制御において、マスタシリンダ圧と、ブレーキ液圧制御中に適宜設定される要求圧(ホイールシリンダ圧の目標値)との差圧に基づいて、入口弁の駆動電流の値を決めている。そのため、従来技術において入口弁を常開型比例電磁弁とした場合には、推定しているマスタシリンダ圧が、実際のマスタシリンダ圧よりも小さいと、差圧が小さく算出され、この小さな差圧に基づいて駆動電流値が小さくなるため、ホイールシリンダ圧の増圧勾配が大きくなって過剰増圧が発生するおそれがある。例えば、全輪についてブレーキ液圧制御が開始された後にドライバーがブレーキペダルを踏み込んだ場合には、増圧制御の開始時におけるマスタシリンダ圧が、ブレーキ液圧制御の開始時に推定したマスタシリンダ圧よりも大きくなってしまうので、ホイールシリンダ圧が過剰増圧となるおそれがある。
そこで、本発明は、入口弁が常開型比例電磁弁である車両用ブレーキ液圧制御装置において、ABS制御等のブレーキ液圧制御の開始後におけるブレーキペダルの踏み増しによるホイールシリンダ圧の過剰増圧を抑えることを目的とする。
前記課題を解決するため、本発明に係る車両用ブレーキ液圧制御装置は、液圧源から複数の車輪ブレーキへの液圧路に介装された常開型比例電磁弁である入口弁と、ブレーキ液圧制御を実行可能な制御部とを有する。
前記制御部は、前記ブレーキ液圧制御の開始直後の増圧制御において、前記入口弁の駆動電流を減少させていくことによる増圧と、前記入口弁の駆動電流を閉弁可能な値に設定することによる保持とを交互に行う断続増圧制御を実行し、ブレーキ操作が行われてからブレーキ液圧制御が開始されるまでの時間が短いほど、1回の断続増圧制御における保持の時間的割合が大きくなるように前記入口弁の駆動電流を制御する。
この構成によれば、ブレーキ液圧制御の開始後にドライバーがブレーキペダルを踏み込んで入口弁の上流液圧が大きな値に変化した場合であっても、ブレーキ液圧制御の開始直後の増圧制御を断続増圧制御とすることで、増圧制御において過剰に増圧するのを抑えることができる。
また、ブレーキ操作が行われてからブレーキ液圧制御が開始されるまでの時間が短いほど、ドライバーがブレーキ液圧制御の開始後にブレーキペダルを踏み込む量が大きくなる可能性が高いため、この場合、保持の時間的割合を長くすることで、過剰な増圧をより効果的に抑えることができる。
また、前記した構成において、前記制御部は、緊急ブレーキ操作が行われたと判定されたことを条件として、前記断続増圧制御を実行するように構成することができる。
これによれば、緊急ブレーキ操作が行われた場合には、ドライバーはブレーキ液圧制御の開始後もブレーキペダルを踏み込む可能性が高いため、この場合に断続増圧制御を実行することで、過剰な増圧をより効果的に抑えることができる。
また、前記した構成において、前記制御部は、前記ブレーキ液圧制御における増圧制御から減圧制御の切り替え時のホイールシリンダ圧であるロック圧を、車体減速度から推定し、前記切り替え時の前記入口弁の駆動電流から、前記入口弁の上下流の差圧を推定し、前記ロック圧と前記差圧とから、前記入口弁の上流液圧を推定するように構成することができる。
これによれば、高価な圧力センサを用いることなく、入口弁の上流液圧を推定することができるので、コスト削減を図ることができる。
本発明によれば、入口弁が常開型比例電磁弁である車両用ブレーキ液圧制御装置において、ABS制御等のブレーキ液圧制御の開始後におけるブレーキペダルの踏み増しによるホイールシリンダ圧の過剰増圧を抑えることができる。
本発明の一実施形態に係る車両用ブレーキ液圧制御装置を備えた車両の構成図である。 液圧ユニットの構成を示す構成図である。 制御部の構成を示すブロック図である。 断続増圧制御を行うか否かを決める処理や微小保持制御の実行時間である第2時間を設定する処理を示すフローチャートである。 ABS制御の処理を示すタイムチャートである。 断続増圧制御の処理を示すフローチャートである。 ABS制御中においてABS制御開始時よりも上流液圧が大きくなった場合における各パラメータの変化を示すタイムチャートである。
次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
図1に示すように、車両用ブレーキ液圧制御装置1は、車両2の各車輪3に付与する制動力を適宜制御する装置である。車両用ブレーキ液圧制御装置1は、油路や各種部品が設けられる液圧ユニット10と、液圧ユニット10内の各種部品を適宜制御するための制御部100とを主に備えている。
各車輪3には、それぞれ車輪ブレーキFL,RR,RL,FRが備えられ、各車輪ブレーキFL,RR,RL,FRには、液圧源としてのマスタシリンダ5から供給される液圧により制動力を発生するホイールシリンダ4が備えられている。マスタシリンダ5とホイールシリンダ4とは、それぞれ液圧ユニット10に接続されている。そして、ブレーキペダル6の踏力(運転者の制動操作)に応じてマスタシリンダ5で発生したブレーキ液圧が、制御部100および液圧ユニット10で制御された上でホイールシリンダ4に供給される。
制御部100には、各車輪3の車輪速度を検出する車輪速センサ91と、ブレーキペダル6の踏み込みを検知するペダルセンサ92とが接続されている。そして、この制御部100は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)および入出力回路を備えており、車輪速センサ91などからの入力と、ROMに記憶されたプログラムやデータに基づいて各種演算処理を行うことによって、制御を実行する。なお、制御部100の詳細は、後述することとする。
図2に示すように、液圧ユニット10は、運転者がブレーキペダル6に加える踏力に応じたブレーキ液圧を発生する液圧源であるマスタシリンダ5と、車輪ブレーキFR,FL,RR,RLとの間に配置されている。
液圧ユニット10は、ブレーキ液が流通する油路(液圧路)を有する基体であるポンプボディ11に油路と各種の電磁バルブが配置されることで構成されている。マスタシリンダ5の出力ポート5a,5bは、ポンプボディ11の入力ポート11aに接続され、ポンプボディ11の出力ポート11bは、各車輪ブレーキFL,RR,RL,FRに接続されている。そして、通常時はポンプボディ11内の入力ポート11aから出力ポート11bまでが連通した油路となっていることで、ブレーキペダル6の踏力が各車輪ブレーキFL,RR,RL,FRに伝達されるようになっている。なお、マスタシリンダ5の出力ポート5aに接続された液圧系統は、車輪ブレーキFL,RRに接続され、マスタシリンダ5の出力ポート5bに接続された液圧系統は、車輪ブレーキRL,FRに接続され、これらの各系統は、略同様の構成を有している。
各液圧系統には、入力ポート11aと出力ポート11bを繋ぐ液圧路上に、供給する電流に応じてその上下流の液圧の差を調整可能な常開型比例電磁弁である調圧弁12が設けられている。調圧弁12には、並列して、出力ポート11b側へのみの流れを許容するチェック弁12aが設けられている。
調圧弁12よりも車輪ブレーキRL,FR,RL,FR側の液圧路は途中で分岐して、それぞれが出力ポート11bに接続されている。そして、各出力ポート11bに対応する各液圧路上には、それぞれ常開型比例電磁弁である入口弁13が配設されている。各入口弁13には、並列して、調圧弁12側へのみの流れを許容するチェック弁13aが設けられている。
各出力ポート11bとこれに対応する入口弁13との間の液圧路からは、それぞれ、常閉型電磁弁からなる出口弁14を介して調圧弁12と入口弁13の間に繋がる還流液圧路19Bが設けられている。
この還流液圧路19B上には、出口弁14側から順に、過剰なブレーキ液を一時的に吸収するリザーバ16、チェック弁16a、ポンプ17およびオリフィス17aが配設されている。チェック弁16aは、調圧弁12と入口弁13の間へ向けての流れのみを許容するように配置されている。ポンプ17は、モータ21により駆動され、調圧弁12と入口弁13の間へ向けての圧力を発生するように設けられている。オリフィス17aは、ポンプ17から吐出されたブレーキ液の圧力の脈動および調圧弁12が作動することにより発生する脈動を減衰させている。
入力ポート11aと調圧弁12を繋ぐ導入液圧路19Aと、還流液圧路19Bにおけるチェック弁16aとポンプ17の間の部分とは、吸入液圧路19Cにより接続されている。そして、吸入液圧路19Cには、常閉型電磁弁である吸入弁15が配設されている。
以上のような構成の液圧ユニット10は、通常時には、各電磁弁に通電がなされず、入力ポート11aから導入されたブレーキ液圧は、調圧弁12、入口弁13を通って出力ポート11bに出力され、各ホイールシリンダ4にそのまま付与される。そして、アンチロックブレーキ制御を行う場合など、ホイールシリンダ4の過剰なブレーキ液圧を減圧する場合には、対応する入口弁13を閉じ、出口弁14を開くことで還流液圧路19Bを通してブレーキ液をリザーバ16へと流し、ホイールシリンダ4のブレーキ液を抜くことができる。また、運転者のブレーキペダル6の操作が無い場合にホイールシリンダ4の加圧を行う場合には、吸入弁15を開き、モータ21を駆動することで、ポンプ17の加圧力により積極的にホイールシリンダ4へブレーキ液を供給することができる。さらに、ホイールシリンダ4の加圧の程度を調整したい場合には、調圧弁12に流す電流を調整することで調整することができる。
次に、制御部100の詳細について説明する。
図3に示すように、制御部100は、車輪速度取得手段110と、車体減速度算出手段120と、上流液圧推定手段140と、アンチロックブレーキ制御手段150と、制御実行手段170と、記憶手段190とを備えている。
車輪速度取得手段110は、各車輪速センサ91から各車輪3の車輪速度を取得する手段である。車輪速度取得手段110は、各車輪3の車輪速度を取得すると、取得した各車輪速度を車体減速度算出手段120に出力する。
車体減速度算出手段120は、ABS制御が実行されていない場合に、各車輪3の車輪速度に基づいて、各車輪3の車体減速度を算出する機能を有している。詳しくは、車体減速度算出手段120は、車輪速度の前回値と今回値との差を、車体減速度として算出する。そして、車体減速度算出手段120は、車体減速度を算出した場合には、算出した車体減速度を上流液圧推定手段140に出力する。
上流液圧推定手段140は、ABS制御が実行されていない場合に、車体減速度算出手段120から出力されてくる車体減速度に基づいて、入口弁13の上流液圧を推定する機能を有している。具体的には、上流液圧推定手段140は、例えば、車体減速度と上流液圧とを対応づけたマップに基づいて、上流液圧を推定する。ここで、上流液圧は、ポンプ17や調圧弁12が作動していない状態においては、マスタシリンダ圧と同じ値となっている。なお、マップは、実験やシミュレーション等によって予め作成しておけばよい。
また、上流液圧推定手段140は、ABS制御が実行されている場合にも上流液圧を推定する機能を有している。ABS制御中の上流液圧の推定方法としては、どのような方法であってもよい。一例として、本実施形態における推定方法は、車体減速度(例えばABS制御中において増圧制御が2回以上行われることによって取得される2つの増圧制御開始時の車輪速度から算出される車体減速度)に基づいて推定されるロック圧と、減圧制御開始時における入口弁13の駆動電流から推定される入口弁13の上下流の差圧とから、上流液圧を推定する方法とする。
そして、上流液圧推定手段140は、ABS制御中において上流液圧を推定すると、推定したことを示す推定信号と、推定した上流液圧とを、アンチロックブレーキ制御手段150および制御実行手段170に出力する。なお、上流液圧推定手段140は、上流液圧の推定を行っていない場合には、上流液圧を前回値に保持する。
アンチロックブレーキ制御手段150は、ABS制御時の液圧制御の指示を制御実行手段170に出力することで、減圧制御、保持制御および増圧制御からなる制御サイクルを繰り返し行うABS制御を、制御実行手段170を介して実行する手段である。アンチロックブレーキ制御手段150は、車輪速センサ91で検出される車輪速度と、各車輪速度に基づいて推定される車体速度とに基づいて、ABS制御を実行するか否かを車輪3ごとに判定し、実行すると判定した場合には、ABS制御時の液圧制御の指示(減圧制御、保持制御および増圧制御のいずれにするかの指示)を車輪3ごとに決定する機能を有している。具体的には、例えば、アンチロックブレーキ制御手段150は、車輪速度と車体速度とに基づいて定まるスリップ率が、所定値以上になり、かつ、車輪加速度が0以下であるとき(車輪3の減速中)に車輪3がロックしそうになったと判定して、液圧制御の指示を減圧制御に決定する。ここで、車輪加速度は、例えば車輪速度から算出される。
アンチロックブレーキ制御手段150は、車輪加速度が0よりも大きいときに、液圧制御の指示を保持制御に決定する。アンチロックブレーキ制御手段150は、スリップ率が所定値未満となり、かつ、車輪加速度が0以下であるといった増圧条件が満たされたときに、液圧制御の指示を増圧制御に決定する。
詳しくは、アンチロックブレーキ制御手段150は、増圧制御において、入口弁13に流す駆動電流を徐々に下げていくことによる増圧と、駆動電流を閉弁可能な電流値に設定することによる保持とを交互に行う断続増圧制御と、入口弁13に流す駆動電流を徐々に下げていくことでホイールシリンダ圧をリニアに増圧させるリニア増圧制御とのいずれかを行うように構成されている。より詳しくは、アンチロックブレーキ制御手段150は、緊急ブレーキ操作が行われた場合に断続増圧制御を実行し、緊急ブレーキ操作が行われなかった場合にリニア増圧制御を実行する。
ここで、緊急ブレーキ操作が行われたことを示す条件は、ABS制御の開始後に上流液圧が上昇すると予測される条件、つまりブレーキペダル6がある程度強く踏み込まれたことを示す条件であればどのような条件でもよい。なお、本実施形態では、スリップ量SLがABS制御の減圧制御を開始するための第1閾値TH1よりも僅かに小さな第2閾値TH2以上になったという第1条件と、ブレーキペダル6が操作されてから第1条件が満たされるまでの時間が規定時間以下であるという第2条件とが満たされたときに、緊急ブレーキ操作が行われたと判断することとする。
また、アンチロックブレーキ制御手段150は、断続増圧制御を実行する場合には、上流液圧推定手段140からABS制御中に上流液圧を推定したことを示す推定信号を受けるまでの間、断続増圧制御を行い、推定信号を受けた後は、リニア増圧制御を実行するように構成されている。詳しくは、アンチロックブレーキ制御手段150は、緊急ブレーキ操作の条件が満たされ、かつ、推定信号を受けたという推定条件が満たされていない状態で、増圧条件が満たされた場合には、液圧制御の指示を断続増圧制御に決定する。また、アンチロックブレーキ制御手段150は、緊急ブレーキ操作の条件が満たされていない状態、または、推定条件が満たされた状態で、増圧条件が満たされた場合には、液圧制御の指示をリニア増圧制御に決定する。なお、本実施形態では、ABS制御中の上流液圧の推定を、前述したように1回目の制御サイクルの終了時(2回目の減圧開始時)に行うので、アンチロックブレーキ制御手段150は、緊急ブレーキ操作の条件が満たされている場合には、ABS制御の最初の1回目の増圧制御を断続増圧制御とし、2回目以降の増圧制御をリニア増圧制御としている。
そして、アンチロックブレーキ制御手段150は、液圧制御の指示を決定すると、その指示を制御実行手段170に出力する。また、アンチロックブレーキ制御手段150は、リニア増圧制御の指示を制御実行手段170に出力する場合には、入口弁13の駆動電流の値を決めるための要求圧も制御実行手段170に出力するようになっている。この要求圧を算出するために、アンチロックブレーキ制御手段150は、下流液圧算出部151と、制御量算出部152と、要求圧算出部153とを備えている。
下流液圧算出部151は、上流液圧推定手段140から出力されてくる上流液圧と、入口弁13および出口弁14の制御の履歴とに基づいて、入口弁13の下流液圧、つまりホイールシリンダ圧を算出する機能を有している。下流液圧算出部151は、下流液圧を算出すると、算出した下流液圧を要求圧算出部153に出力する。
制御量算出部152は、ABS制御の状態に基づいて、下流液圧の増減量を制御量として算出する機能を有している。制御量算出部152は、制御量を算出すると、算出した制御量を要求圧算出部153に出力する。
要求圧算出部153は、下流液圧算出部151から出力されてくる下流液圧と、制御量算出部152から出力されてくる制御量とに基づいて、下流液圧の目標値である要求圧を算出する機能を有している。具体的に、要求圧算出部153は、下流液圧に制御量を加算することで要求圧を算出する。要求圧算出部153は、要求圧を算出すると、算出した要求圧を制御実行手段170に出力する。
制御実行手段170は、アンチロックブレーキ制御手段150から出力されてくる液圧制御の指示や要求圧に基づいて、入口弁13および出口弁14等を制御することで、下流液圧を制御する機能を有している。具体的に、制御実行手段170は、液圧制御の指示が減圧制御である場合には、入口弁13および出口弁14に電流を流すことで、入口弁13を閉じ、出口弁14を開けるように制御する。また、制御実行手段170は、液圧制御の指示が保持制御である場合には、入口弁13に電流を流し、出口弁14に電流を流さないことで、入口弁13および出口弁14を両方とも閉じるように制御する。
そして、制御実行手段170は、液圧制御の指示が断続増圧制御である場合には、出口弁14に電流を流さないことで出口弁14を閉じた状態にしている。また、制御実行手段170は、断続増圧制御における増圧を行う場合には、入口弁13の駆動電流を、入口弁13が開き始めることが可能となる電流値に設定した後、徐々に下げることで微小増圧制御を実行し、断続増圧制御における保持を行う場合には、入口弁13の駆動電流を、下流液圧を保持可能な値に設定することで微小保持制御を実行する。なお、微小増圧制御における、入口弁13が開き始めることが可能となる電流値は、例えば、1回の断続増圧制御における最初の微小増圧制御の開始時においては、後述するリニア増圧制御の開始時と同様に、推定した上流液圧と、ABS制御の要求圧とに基づいて算出される目標差圧から設定することができ、また、1回の断続増圧制御における2回目以降の微小増圧制御開始時においては、直前の微小増圧制御終了時の電流値にすることができる。また、制御実行手段170は、微小増圧制御を第1時間の間行った後、微小保持制御を開始し、微小保持制御を第2時間の間行った後、微小増圧制御を開始する。
また、制御実行手段170は、ペダルセンサ92とアンチロックブレーキ制御手段からの信号に基づいて、ブレーキペダル6が操作されてからABS制御の開始までの液圧勾配予測時間を算出し、この液圧勾配予測時間に基づいて第2時間(微小保持制御の実行時間)を補正する機能を有している。詳しくは、制御実行手段170は、液圧勾配予測時間が短いほど、第2時間を大きな値に設定している。言い換えると、制御実行手段170は、液圧勾配予測時間が短いほど、1回の断続増圧制御における保持の時間的割合が大きくなるように入口弁13の駆動電流を制御している。なお、第2時間の設定は、例えば、液圧勾配予測時間と第2時間との関係を示すマップや計算式などに基づいて行うことができる。
また、制御実行手段170は、液圧制御の指示がリニア増圧制御である場合には、出口弁14に電流を流さないことで出口弁14を閉じ、入口弁13に要求圧に対応した駆動電流を流すことで、入口弁13の上下流の差圧をコントロールして、下流液圧を意図した増圧レートで増圧するようになっている。このような増圧制御を実現すべく、制御実行手段170は、主に、目標差圧設定手段171と、駆動電流設定手段172とを備えている。
目標差圧設定手段171は、アンチロックブレーキ制御手段150から出力されてくる要求圧と、上流液圧推定手段140から出力されてくる上流液圧とに基づいて、入口弁13の上下流の差圧の目標値である目標差圧を算出して設定する機能を有している。具体的に、目標差圧設定手段171は、上流液圧から要求圧を減算することで、目標差圧を算出する。目標差圧設定手段171は、目標差圧を算出すると、算出した目標差圧を駆動電流設定手段172に出力する。
駆動電流設定手段172は、目標差圧設定手段171から出力されてくる目標差圧に基づいて入口弁13を駆動するための駆動電流の値を設定する機能を有している。具体的に、駆動電流設定手段172は、目標差圧と駆動電流とを対応づけたマップに基づいて、駆動電流を設定する。なお、マップは、実験やシミュレーション等によって予め作成しておけばよい。
詳しくは、駆動電流設定手段172は、入口弁13が現在の上下流の差圧に対して開き始めることが可能な駆動電流の初期値(目標値)を目標差圧に基づいて設定している。なお、駆動電流の初期値を設定した後は、制御実行手段170は、駆動電流を、初期値から徐々に下げていくように制御する。また、駆動電流設定手段172は、目標値の算出を行わないときには、目標値を前回値に保持する。
記憶手段190は、前述したマップや、車輪速度、車体減速度、上流液圧、第1時間、第2時間などの各パラメータなどを記憶している。
次に、制御部100の動作について図4〜図6に示すフローチャートを参照して詳細に説明する。
図4に示すように、制御部100は、緊急ブレーキ操作が行われたか否か、つまりスリップ量SLが第2閾値TH2以上で、かつ、ブレーキペダル6のONからスリップ量SLが第2閾値TH2以上になるまでの時間が規定時間以下であるか否かを判断する(S1)。ステップS1において緊急ブレーキ操作が行われたと判断した場合には(Yes)、制御部100は、フラグF1を1にする(S2)。
ステップS2の後、制御部100は、ABS制御が開始されたか否かを判断する(S3)。ステップS3においてABS制御が開始されたと判断した場合には(Yes)、制御部100は、ブレーキペダル6がONされてからABS制御の開始までの液圧勾配予測時間を算出する(S4)。ステップS4の後、制御部100は、液圧勾配予測時間に基づいて、微小保持制御を行う時間である第2時間を設定する(S5)。
次に、ABS制御の処理について図5を参照して説明する。
図5に示すように、制御部100は、ABS制御を開始すると(START)、まず、車輪速度を取得し(S21)、当該車輪速度からスリップ量SLを演算するとともに(S22)、車輪加速度WAを演算する(S23)。
ステップS23の後、制御部100は、車輪加速度WAが0以下であるか否かを判断し(S24)、0以下であると判断した場合には(Yes)、スリップ量SLが第1閾値TH1よりも大きいか否かを判断する(S25)。ステップS25においてスリップ量SLが第1閾値TH1よりも大きいと判断した場合には(Yes)、制御部100は、減圧制御を実行する(S26)。なお、この減圧制御において、制御部100は、減圧制御を行っている時間をカウントする。
ステップS24において車輪加速度WAが0よりも大きいと判断した場合には(No)、制御部100は、保持制御を実行する(S30)。ステップS25においてスリップ量SLが第1閾値TH1以下であると判断した場合には(No)、制御部100は、フラグF1が0であるか否かを判断することで、緊急ブレーキ操作が行われていないか否か、または、ABS制御中に上流液圧が推定されたか否かを判断する(S27)。
ステップS27においてフラグF1が1であると判断した場合、つまり緊急ブレーキ操作が行われており、かつ、ABS制御中において上流液圧が1回も推定されていない場合には(No)、制御部100は、断続増圧制御を実行する(S28)。ステップS27においてフラグF1が0であると判断した場合、つまり緊急ブレーキ操作が行われていない場合、または、ABS制御中に上流液圧が推定された場合には(Yes)、制御部100は、リニア増圧制御を実行する(S29)。
次に、断続増圧制御の処理について図6を参照して説明する。
図6に示すように、制御部100は、まず、フラグF2が0であるか否かを判断することで、微小増圧制御を実行するか否かを判断する(S41)。ステップS41においてフラグF2が0であると判断した場合には(Yes)、制御部100は、駆動電流を開弁可能な電流値まで下げた後、徐々に下げることで微小増圧制御を実行する(S42)。
ステップS42の後、制御部100は、微小増圧制御を開始してから第1時間が経過したか否かを判断する(S43)。ステップS43において第1時間が経過していないと判断した場合には(No)、制御部100は、減圧条件が満たされたか否か、つまり車輪加速度WAが0以下で、かつ、スリップ量SLが第1閾値TH1よりも大きいか否かを判断する(S44)。
ステップS44において減圧条件が満たされていないと判断した場合には(No)、制御部100は、ステップS41の処理に戻る。ステップS43において第1時間が経過したと判断した場合には(Yes)、制御部100は、フラグF2を1にして(S45)、ステップS41の処理に戻る。
ステップS41においてフラグF2が0でないと判断した場合には(No)、制御部100は、駆動電流を、ホイールシリンダ圧を保持可能な電流値まで上げることで微小保持制御を実行する(S46)。ステップS46の後、制御部100は、微小保持制御を開始してから第2時間が経過したか否かを判断する(S47)。
ステップS47において、制御部100は、第2時間が経過していないと判断した場合には(No)、ステップS44の処理に移行し、第2時間が経過したと判断した場合には(Yes)、フラグF2を0にして(S48)、ステップS41の処理に戻る。
ステップS44において減圧条件が満たされたと判断した場合には(Yes)、制御部100は、ABS制御中において上流液圧が推定されたか否かを判断する(S49)。ステップS49において、制御部100は、上流液圧が推定されていないと判断した場合には(No)、そのまま断続増圧制御を終了し、上流液圧が推定されたと判断した場合には(Yes)、フラグF1を0にして(S50)、断続増圧制御を終了する。なお、各フラグF1,F2は、ABS制御の終了後にリセットされる、つまり0に戻される。
次に、制御部100による駆動電流の設定方法の一例について、図7を参照して詳細に説明する。
図7に示すように、ドライバーがブレーキペダル6を踏むと(時刻t0)、所定の車輪3が徐々に減速していく。この間、制御部100は、車輪速度Vから算出した車体減速度に基づいて上流液圧PMを推定する。
所定の車輪3についてスリップ量SLが第2閾値TH2以上になると(時刻t1)、制御部100は、時刻t0〜t1間の時間T01が規定時間以下であるか否かを判断する。時刻t1において、制御部100は、時間T01が規定時間以下であると判断すると、緊急ブレーキ操作が行われたと判断して、フラグF1を1にする(S1,S2)。
その後、スリップ量SLが第1閾値TH1以上になると(時刻t2)、制御部100は、所定の車輪3についてABS制御を開始する。これにより、所定の車輪3において、入口弁13に駆動電流Aが供給されて入口弁13が閉じるとともに、出口弁14に電流が供給されて出口弁が開放されることで、所定の車輪3に対応した下流液圧PHが減圧されていく。なお、この際、入口弁13に供給する駆動電流Aは、入口弁13を閉弁可能な電流値であり、例えば最大値に設定される。
このようにABS制御が開始されると、制御部100は、ABSの非制御中において行っていた上流液圧PMの推定を止めて、上流液圧PMを、ABS制御開始時の上流液圧PM1に保持する。また、この際、制御部100は、ステップS3においてYesと判定するので、液圧勾配予測時間T02を算出した後、第2時間T2を設定する(S4,S5)。
所定の車輪3について保持条件が揃うと(時刻t3)、制御部100は、駆動電流Aを減圧制御時と同じ値に保ったまま、出口弁14への電流供給を停止して出口弁14を閉じることで、保持制御を開始する。所定の車輪3について増圧条件が揃うと(時刻t4)、制御部100は、断続増圧制御を実行する。この際、制御部100は、断続増圧制御(増圧制御)の開始時の車輪速度V1を取得する。その後、制御部100は、第1時間T1の間継続される微小増圧制御と、第2時間T2の間継続される微小保持制御とを繰り返し実行する。
詳しくは、制御部100は、1回目の微小増圧制御の開始時(時刻t4)においては、ABS制御開始時の上流液圧PM1と、ABS制御の要求圧とに基づいて、駆動電流Aの目標値A2を設定し、その目標値A2まで駆動電流Aを一気に下げた後、第1時間T1の間において、駆動電流Aを所定の勾配で徐々にさげていく。また、制御部100は、2回目の微小増圧制御の開始時(時刻t42)においては、直前である1回目の微小増圧制御の終了時(時刻t41)の電流値A3を駆動電流Aの目標値に設定し、それ以後は、1回目の微小増圧制御と同様の制御を行う。また、制御部100は、3回目の微小増圧制御の開始時(時刻t44)においても、同様に、直前である2回目の微小増圧制御の終了時(時刻t43)の電流値A7を駆動電流Aの目標値に設定し、それ以後は、1回目の微小増圧制御と同様の制御を行う。なお、図の例は、3回しか微小増圧制御を実行しない場合を示しているが、4回以上微小増圧制御を行う場合にも同様に、4回目以降の微小増圧制御の開始時の駆動電流の目標値は、直前の微小増圧制御の終了時の電流値に設定される。
ここで、本実施形態のような断続増圧制御を行わない場合には、ABS制御開始時においてドライバーがブレーキペダル6を踏み増すことで上流液圧PMが上昇すると、図に2点鎖線で示すように、ABS制御の最初の増圧制御において下流液圧Phが急激に上昇し、所定のロック圧(上流液圧PM1付近)をオーバーシュートしてしまう、過剰増圧が発生するおそれがある。これに対し、本実施形態では、ABS制御開始時においてドライバーがブレーキペダル6を踏み増すおそれのある緊急ブレーキ操作の際には、断続増圧制御を実行するので、このような過剰増圧を抑えることができる。
その後、減圧条件が揃うと(時刻t5)、制御部100は、減圧制御を開始する。この際、制御部100は、増圧制御から減圧制御の切り替え時の駆動電流A4を取得し、当該駆動電流A4に基づいて入口弁13の上下流の差圧を推定する。また、この際、制御部100は、例えばABS制御を開始する前の車輪速度の前回値と今回値とから車体減速度を算出し、当該車体減速度からロック圧を推定する。そして、制御部100は、差圧にロック圧を加算することで、時刻t5における上流液圧PM2を推定する。
このように上流液圧PM2を推定すると、制御部100は、ステップS49,S50の処理を行うことで、フラグF1を0に設定する。制御部100は、1回目の制御サイクルが終了した後(時刻t5)、推定した上流液圧PM2とABS制御の要求圧とに基づいて駆動電流Aの目標値A1を設定する。
その後、増圧条件が揃うと(時刻t6)、制御部100は、目標値A1に基づいたリニア増圧制御を実行する。また、この際、制御部100は、増圧開始時の車輪速度V2を取得する。制御部100は、1回目の増圧開始時に取得した車輪速度V1と2回目の増圧開始時に取得した車輪速度V2とから車体減速度を算出し、当該車体減速度からロック圧を推定する。つまり、制御部100は、直近の2つの増圧開始時の車輪速度V1,V2に基づいて車体減速度を算出し、当該車体減速度からロック圧を推定する。
その後、減圧条件が揃うと(時刻t7)、制御部100は、減圧制御を実行するとともに、増圧制御から減圧制御の切り替え時の駆動電流A5を取得し、当該駆動電流A5に基づいて入口弁13の上下流の差圧を推定する。そして、制御部100は、推定した差圧と、時刻t6において推定したロック圧とに基づいて、時刻t7における上流液圧PM3を推定する。そして、制御部100は、次の増圧制御の開始時において(時刻t8)、上流液圧PM3とABS制御の要求圧とに基づいて駆動電流Aの目標値A6を設定する。なお、この際、制御部100は、次の増圧制御の目標値の設定に必要なロック圧を推定するための車輪速度V3を取得する。
以上によれば、本実施形態において以下のような効果を得ることができる。
ABS制御の開始後にドライバーがブレーキペダル6を踏み込んで上流液圧PMが大きな値に変化した場合であっても、ABS制御の開始直後の増圧制御が断続増圧制御となるので、下流液圧PHが過剰に増圧するのを抑えることができる。
緊急ブレーキ操作が行われた場合には、ドライバーはABS制御の開始後もブレーキペダル6を踏み込む可能性が高いため、この場合に断続増圧制御を実行することで、過剰な増圧をより効果的に抑えることができる。
液圧勾配予測時間T02が短いほど、ドライバーがABS制御の開始後にブレーキペダル6を踏み込む量が大きくなる可能性が高いため、この場合に、微小保持制御を行う時間である第2時間T2を大きくすることで、過剰な増圧をより効果的に抑えることができる。
なお、本発明は前記実施形態に限定されることなく、以下に例示するように様々な形態で利用できる。
前記実施形態では、緊急ブレーキ操作が行われたか否かの判断に応じて、断続増圧制御を行うか否かを決定したが、本発明はこれに限定されず、例えば、ABS制御の開始直後の増圧制御を、常に断続増圧制御としてもよい。また、断続増圧制御を行う回数は、任意に設定することができる。
緊急ブレーキ操作が行われたことを示す条件は、前記実施形態の条件に限らず、様々な条件とすることができる。例えば、前記実施形態における第1条件のみを条件としてもよいし、ブレーキペダルのONからABS制御の開始までの時間が所定閾値以下であるという条件としてもよい。
前記実施形態では、ブレーキ液圧制御の一つであるABS制御を実行可能な車両用ブレーキ液圧制御装置に本発明を適用したが、本発明はこれに限定されず、例えば、車両の挙動安定化制御等を実行可能な車両用ブレーキ液圧制御装置に本発明を適用してもよい。
1 車両用ブレーキ液圧制御装置
5 マスタシリンダ
13 入口弁
100 制御部
FL,FR,RL,RR 車輪ブレーキ

Claims (3)

  1. 液圧源から複数の車輪ブレーキへの液圧路に介装された常開型比例電磁弁である入口弁と、ブレーキ液圧制御を実行可能な制御部とを有する車両用ブレーキ液圧制御装置であって、
    前記制御部は
    記ブレーキ液圧制御の開始直後の増圧制御において、前記入口弁の駆動電流を減少させていくことによる増圧と、前記入口弁の駆動電流を閉弁可能な値に設定することによる保持とを交互に行う断続増圧制御を実行し、
    ブレーキ操作が行われてからブレーキ液圧制御が開始されるまでの時間が短いほど、1回の断続増圧制御における保持の時間的割合が大きくなるように前記入口弁の駆動電流を制御することを特徴とする車両用ブレーキ液圧制御装置。
  2. 前記制御部は、緊急ブレーキ操作が行われたことを条件として、前記断続増圧制御を実行することを特徴とする請求項1に記載の車両用ブレーキ液圧制御装置。
  3. 前記制御部は、
    前記ブレーキ液圧制御における増圧制御から減圧制御の切り替え時のホイールシリンダ圧であるロック圧を、車体減速度から推定し、
    前記切り替え時の前記入口弁の駆動電流から、前記入口弁の上下流の差圧を推定し、
    前記ロック圧と前記差圧とから、前記入口弁の上流液圧を推定することを特徴とする請求項1または請求項2に記載の車両用ブレーキ液圧制御装置。
JP2015071556A 2015-03-31 2015-03-31 車両用ブレーキ液圧制御装置 Active JP6511318B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015071556A JP6511318B2 (ja) 2015-03-31 2015-03-31 車両用ブレーキ液圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015071556A JP6511318B2 (ja) 2015-03-31 2015-03-31 車両用ブレーキ液圧制御装置

Publications (2)

Publication Number Publication Date
JP2016190557A JP2016190557A (ja) 2016-11-10
JP6511318B2 true JP6511318B2 (ja) 2019-05-15

Family

ID=57246288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015071556A Active JP6511318B2 (ja) 2015-03-31 2015-03-31 車両用ブレーキ液圧制御装置

Country Status (1)

Country Link
JP (1) JP6511318B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3828609B2 (ja) * 1996-04-03 2006-10-04 本田技研工業株式会社 アンチロックブレーキ装置
JP4293036B2 (ja) * 2004-04-13 2009-07-08 株式会社アドヴィックス 車両のブレーキ液圧制御装置
JP4747959B2 (ja) * 2006-06-20 2011-08-17 株式会社アドヴィックス 車両のブレーキ液圧制御装置

Also Published As

Publication number Publication date
JP2016190557A (ja) 2016-11-10

Similar Documents

Publication Publication Date Title
JP4462153B2 (ja) 制動力配分制御装置
US9346448B2 (en) Vehicle brake hydraulic pressure control apparatus with pump motor malfunction detection
JP2008110716A (ja) アンチスキッド制御装置
JP6511318B2 (ja) 車両用ブレーキ液圧制御装置
JP2008179191A (ja) 車両用ブレーキ制御装置
JP6525672B2 (ja) 車両用ブレーキ液圧制御装置
JP4802878B2 (ja) アンチスキッド制御装置
JP6449071B2 (ja) 車両用ブレーキ液圧制御装置
JP6525670B2 (ja) 車両用ブレーキ液圧制御装置
CN108883750B (zh) 车辆的制动控制装置
JP6460709B2 (ja) 車両用制御装置
US20160009262A1 (en) Vehicle brake hydraulic pressure control apparatus
JP6656042B2 (ja) 車両用ブレーキ液圧制御装置
JP6511312B2 (ja) 車両用ブレーキ液圧制御装置
JP6502714B2 (ja) 車両用ブレーキ液圧制御装置
JP6449072B2 (ja) 車両用ブレーキ液圧制御装置
JP4897598B2 (ja) 車両用ブレーキ液圧制御装置
JP6656049B2 (ja) 車両用ブレーキ制御装置
JP6613188B2 (ja) 車両用ブレーキ液圧制御装置
JP6694740B2 (ja) 車両用ブレーキ液圧制御装置
JP2012236464A (ja) 車両用ブレーキ液圧制御装置
JP2009023463A (ja) 車両用ブレーキ液圧制御装置
JP6613038B2 (ja) 車両用ブレーキ液圧制御装置
JP6012412B2 (ja) 車両用ブレーキ液圧制御装置
JP2015168411A (ja) 車両用ブレーキ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6511318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250