JP6507975B2 - 半導体パッケージ回路基板、およびそれを用いた半導体パッケージ - Google Patents

半導体パッケージ回路基板、およびそれを用いた半導体パッケージ Download PDF

Info

Publication number
JP6507975B2
JP6507975B2 JP2015191810A JP2015191810A JP6507975B2 JP 6507975 B2 JP6507975 B2 JP 6507975B2 JP 2015191810 A JP2015191810 A JP 2015191810A JP 2015191810 A JP2015191810 A JP 2015191810A JP 6507975 B2 JP6507975 B2 JP 6507975B2
Authority
JP
Japan
Prior art keywords
circuit board
board portion
semiconductor package
dielectric layer
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015191810A
Other languages
English (en)
Other versions
JP2016076697A (ja
Inventor
植松 裕
裕 植松
浩之 長友
浩之 長友
純一 益川
純一 益川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2016076697A publication Critical patent/JP2016076697A/ja
Application granted granted Critical
Publication of JP6507975B2 publication Critical patent/JP6507975B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Geometry (AREA)

Description

本発明は、情報機器などに用いられる半導体パッケージに関し、例えばプロセッサや光/電気変換IC(Integrated Circuit)、および広帯域メモリを同一パッケージに実装した半導体パッケージに適用可能である。
背景技術として、DRAM(Dynamic Random Access Memory)標準化団体で規格化を進めているメモリの一つであるHBM(High Bandwidth Memory)がある。このメモリは、プロセッサ−メモリ間の伝送密度を上げるために、データ本数が一チップあたり1000本以上必要になるため、約2〜3μmの幅の微細配線を有する超高密度配線技術(例えばシリコンインターポーザを適用した2.5D実装と呼ばれるパッケージ実装等)が必須である。このような実装技術は、メモリの伝送密度向上以外にも、HPC(High Performance Computer)やサーバ、通信装置のような大容量スループットが必要な装置におけるプロセッサ−光IC間の接続にも応用できる。
特開平3−190298号公報 特開2007−318039号公報
背景技術に記載のHBMを実装する半導体パッケージ回路基板は、マザーボードとの電気的多点(1,000ピン以上)接続のための半田ボール(Ball Grid Array:BGA)実装領域確保や同一パッケージ内に光/電気変換ICなどを搭載したいという要求から、実装面積長辺一辺50mm〜60mm程度の大きさの大型パッケージが必要になる。約2〜3μmの幅の微細配線形成には、高解像度露光機(ステッパ)が使われるが、露光サイズの制約(長辺一辺20mm〜30mm程度の大きさ)があるため、高密度配線部を大型化(長辺一辺50mm〜60mm程度の大きさ)ができない課題がある。
これの解決手段として、特許文献1に記載のように、有機パッケージの高密度配線部を、それよりも配線密度の低い大型有機基板の上に凸状に形成させる方法があった。しかしながら、半導体パッケージ回路基板への応用には以下の課題があった。
(1)有機パッケージにおいて、導体層として約2〜3μmの幅の微細配線を形成するために使われる誘電材料は、微細配線加工性を考慮し厚さ数μm程度の薄い誘電体材料が使われる。この厚さ数μm程度の薄い誘電体材料のヤング率は一般に10GPa未満と小さい。そのため、特許文献1に記載されるように同じ誘電材料で導体層として高密度配線と低密度配線を段差型で構成してもパッケージ全体のヤング率が低く、長辺一辺50mm程度のサイズのパッケージを構成しようとしたときに強度が保てない。このため、マザーボードへの接続のためのBGA実装領域が確保できないなどの課題が生じる。
(2)有機パッケージにおいて、導体層として約2〜3μmの幅の微細配線を形成するために使われる厚さ数μm程度の薄い誘電体材料の熱膨張係数(CTE)は一般に20ppm/K超(通常30〜50程度)であり、半導体素子を構成するシリコンの2.3〜3ppm/Kと比べると極めて大きい。このため、特許文献1に記載のように同じ誘電材料でパッケージを構成すると、パッケージのCTEがシリコンよりかなり大きいため、CTE差による反り量の差が接続界面の距離を一様にすることができず、長辺一辺10mm以上の大きさの面において数十μmピッチの狭バンプピッチでの接続ができない。
従って、特許文献1の発明では、長辺一辺50mm強の大きさの大型半導体パッケージ回路基板における機械強度の確保や約数十μmの狭バンプピッチ接続ができず、約2〜3μmの幅の配線を有する所望の半導体パッケージ構造を実現することができない。
本発明は、高密度配線が可能で、大型の半導体パッケージを提供することを目的とする。
本発明は、上記課題を解決する手段を複数含んでいるが、本発明の半導体パッケージ回路基板の一例を挙げるならば、
複数の半導体素子を搭載するための半導体パッケージ回路基板であって、
誘電体層と導体層の積層構造を有する第一の回路基板部と、
前記第一の回路基板部上に形成され、誘電体層と導体層の積層構造を有する第二の回路基板部とを備え、
前記第一の回路基板部の誘電体層を構成する第一の誘電材料のヤング率は、前記第二の回路基板部の誘電体層を構成する第二の誘電材料のヤング率よりも大きく、
前記第一の回路基板部の誘電体層を構成する前記第一の誘電材料の熱膨張係数は、前記第二の回路基板部の誘電体層を構成する前記第二の誘電材料の熱膨張係数よりも小さく、
前記第一の回路基板部は前記第二の回路基板部よりも回路形成面の面積が大きく、
前記第二の回路基板部の表面には半導体素子を搭載するための電極を複数有し、
前記第二の回路基板部内の電気配線の最小配線幅は前記第一の回路基板部内の電気配線の最小配線幅より細いものである。
本発明のさらなる構成、効果は以下明細書全体の開示により明らかになるであろう。
本発明によれば、高ヤング率、低熱膨張係数の第一の回路基板部上に、約2〜3μmの幅の配線が可能な高密度微細配線用の第二の回路基板部を形成することで、強度を保ったまま高密度配線が可能で、大型の半導体パッケージを提供することができる。
本発明の第一の実施例の半導体パッケージ回路基板の断面図である。 第一の実施例の半導体パッケージ回路基板の上面図である。 第一の実施例における第一の回路基板部と第二の回路基板部の比較説明図である。 第二の実施例の半導体パッケージの断面図である。 第二の実施例の半導体パッケージの上面図である。 第三の実施例としての、第一の実施例の半導体パッケージ回路基板の作製工程のフローチャートである。 第四の実施例の半導体パッケージ回路基板の断面図である。 第四の実施例の半導体パッケージ回路基板の上面図である。 第四の実施例における第一の回路基板部と第二の回路基板部、及び第三の回路基板部の比較説明図である。 第五の実施例の半導体パッケージの断面図である。 第五の実施例の半導体パッケージの上面図である。 第六の実施例としての、第四の実施例の半導体パッケージ回路基板の作製工程のフローチャートである。 第七の実施例の半導体パッケージの断面図である。 FEMによる応力解析をしたときの構造の図面である。 応力解析による反りの比較結果を表す図である。 試作LTCC基板の挿入損失と反射損失の測定結果を表す図である。 試作LTCC基板の配線断面図である。
以下、本発明の実施の形態を図面を用いて説明する。なお、実施の形態を説明するための各図において、同一の構成要素には同一の名称、符号を付して、その繰り返しの説明を省略する。
本発明の第一の実施例の半導体パッケージ回路基板の断面図を図1に、上面図を図2に示す。
図1の構成では、最下層の第一の回路基板部5において、下面にマザーボードとの電気接続を形成するためのマザーボード接続用の端子として、はんだボール(BGAボール)7が多数配置され、第一の回路基板部5内には配線16が内蔵されており、前記のBGAボールと第二の回路基板の配線14とを電気的に接続している。さらに配線14に電気的に接続された第二の回路基板の表面の半導体素子実装電極12−1〜12−3に実装するLSI(Large Scale Integration)等の半導体素子とを電気的に繋いでいる。この回路基板部は、誘電材料を回路形成面となる平面を有する基板形状に形成した層として定義される誘電体層と、前記誘電体層の回路形成面に形成された電気配線で定義される導体層とを有し、前記誘電体層と導体層が積層構造を形成している。第一の回路基板部5においては、横に広がり図示されている複数の配線16の層間に誘電体層が形成されている様子を示している。前記誘電体層は積層構造を形成するために回路形成面と同じ形状で平行な面を有する基板形状であることが好ましい。また、積層構造を形成した際に回路形成面の導電体層を電気的に接続するために、誘電体層にビア電極などを有していても良い。第一の回路基板部としては、LTCC(Low Temperature Co−fired Ceramics)回路基板(例えば、特許文献2に記載の低温同時焼成セラミック、ヤング率:110GPa、CTE:3〜12程度)を用いることができる。或いは、コア材入りの有機パッケージでも良い。コア材入りの有機パッケージは、例えば、有機材料からなるコア材と、そのコア材を中心に上下に導体層としてビルドアップ配線を有している。また、BGAボールもLGA(Land Grid Array)のようなものでも良い。さらに、第一の回路基板部上には、BGAボールが配置された面と対面する側において、有機の薄膜誘電材と銅のような導電材料の積層により形成された第二の回路基板部3が形成される。この第二の回路基板部には、第一の回路基板部内の配線よりも最小配線幅が細く、例えば1/2以下となる高密度な配線14が布線されており、このような最小配線の階層化が1つの特徴となる。このように、第二の回路基板部の導体層の最小配線幅を第一の回路基板部の導体層の最小配線幅より細くすることで、例えば、半導体素子−第二の回路基板部−第一の回路基板部−マザーボードまでを、全体を一つの回路として考えた場合に、上記の順に配線幅を太くしていく構成と考えることができる。前者ほど、配線数が多く、高密度に配置するため配線幅が細くなり、抵抗を下げるため配線が短くなる。同様に、後者ほど、配線数が少なく、抵抗を下げるため配線幅を太く構成する。それにより、高密度配線と低抵抗という両方の効果を得られるため好ましい。ここで、前記導体層に形成された電気配線の電流方向に対して垂直かつ回路形成面に対して平行な方向の寸法が最も小さい箇所の寸法を最小配線幅と定義する。また、第二の回路基板部の回路形成面の面積は第一の回路基板部のそれより小さいことも構造上の特徴である。このように、第一の回路基板部を第二の回路基板部よりも回路形成面の面積を大きくすることで、例えば半導体素子を実装するための第二の回路基板部の面積を小さくでき、例えば有機パッケージ基板などへの接続のための第一の回路基板部は、電極として配置するバンプのピッチを大きく、回路形成面の面積も大きくできるため好ましい。第二の回路基板部3においては、横に広がり図示されている複数の配線14の層間に誘電体層が形成されている様子を示している。
なお、特許文献1との大きな違いは、第一の回路基板部を構成する第一の誘電材料と第二の回路基板部を構成する第二の誘電材料との誘電材料の材料定数が異なることであり、これら最小配線幅や誘電材料の違いとその効果について説明する。表1に、第一の実施例の各回路基板部における誘電体層のヤング率、熱膨張係数(CTE)、比誘電率の材料定数、最小配線幅、配線面積、用途の関係を示す。
Figure 0006507975
図3を用いて、前述の第一の回路基板部と第二の回路基板部の特徴を整理する。
半導体素子の微細化は年々進行し、それに伴い半導体素子の外部接続端子間の端子間隔の微細化も進行している。第二の回路基板部3の上部に数十μm間隔程度以下の多数の外部接続端子を持つ半導体素子を接続するには、シリコンとの熱膨張係数差を小さくし、反りの影響を小さくする必要がある。他方、第二の回路基板部3の熱膨張係数は、表1に記載の通り30〜50程度であり、シリコンとの差は大きく、これによる反りにより大面積での接続は困難となり、一半導体素子あたり長辺一辺10mm以下の大きさの接続面しか形成できないことが課題であった。これを解決するため、第一の回路基板部5の誘電材はヤング率を80〜200GPaと大きく、熱膨張係数は3〜10ppm/Kと小さいものを選択する。第一の回路基板部の誘電体層を構成する第一の誘電材料のヤング率を80GPa以上、200GPa以下とすることで、第二の回路基板部と、例えば、半導体素子やマザーボードなどとの、熱膨張係数のミスマッチを緩和できるため好ましい。また、第一の回路基板部の誘電体層を構成する第一の誘電材料の熱膨張係数を3ppm/K以上、10ppm/K以下とすることで、半導体素子と第二の回路基板部との熱膨張係数の差が大きくても、半導体素子と第一の回路基板部の反りを抑制できるため好ましい。一例として、第一の回路基板部としてAlとSiOとSrOを主成分とした材質のLTCCと、第二の回路基板部としてシクロオレフィンポリマーを主成分とした材質を用いた場合の数値を表1に記載する。この結果、長辺一辺50mm超の大きさの半導体パッケージ回路基板を実現すると共に、半導体素子との接続面積が、一半導体素子あたり約400mm 超を可能とする。なお、第一の回路基板部5の配線幅(図中W2)は第二の回路基板部3の約2〜3μmの配線幅W1より太く、15〜30μm程度が最小値となる。このような構成とすることで、例えば、半導体素子、第二の回路基板部、及びマザーボードの熱膨張係数のミスマッチをヤング率の高い第一の回路基板部により緩和し、半導体素子と第二の回路基板部の熱膨張係数の差が大きくても、半導体素子と第一の回路基板部の反りを抑制しているという結果が得られた。
なお、表1に記載の材料定数の測定方法は以下の通りである。
比誘電率:比誘電率特性は、ネットワークアナライザを用いて、円柱共振器を用いた方法(JIS R1627に準拠)で求める。
CTE :CTE(熱膨張係数)の評価は、JIS R1618に準ずる方法で行う。TMA(Thermomechanical Analysis 熱機械分析)装置を用いて、室温(RT)〜400°Cの平均熱膨張係数を評価する。
ヤング率:ヤング率評価は、JIS R1602記載の超音波パルスにより評価する。
例えば、AlとSiOとSrOを主成分とした材質のLTCCの場合では、室温から180度に温度を上昇させたときのCTEは6ppm/Kであり、その際のヤング率は110GPaである。また、数μm程度の薄い誘電層としてシクロオレフィンポリマーを主成分とした材質の材料を用いた場合の同じ条件におけるCTEは50ppm/Kであり、その際のヤング率は2.9GPaである。
本実施例と従来技術とを定量的に比較すると、以下のようになる。
特許文献1では、機械強度とシリコンとのCTEミスマッチによる反りからパッケージサイズは長辺一辺が10mm程度の大きさが限界である。また、半導体素子の接続端子間隔も数十μmは対応困難で実用上は100μm強となり、55μmの端子間隔での接続に対応することが求められるJEDECが規格化した次世代の高性能メモリであるHBM(High Bandwidth Memory)には利用不可である。
これに対して、本実施例では、高ヤング率と低熱膨張係数(CTE)の第一の回路基板部をベースとすることで、熱膨張による寸法差を小さくし、かつ剛性を大きくできる。それにより、半導体素子と第一の回路基板部の反りを抑制し、長辺一辺が50mm超のパッケージサイズが可能となる。また、第一の回路基板部の誘電体層を構成する第一の誘電材料と、第二の回路基板部の誘電体層を構成する第二の誘電材料との熱膨張係数をほぼ同じとすることで、55μmの端子間隔での接続に対応することも可能となり、HBMに適用可能となる。
本実施例によれば、全体構造の強度を保つためにヤング率が大きく、さらに半導体素子のシリコン材料と熱膨張係数(CTE)が近くなるようにCTEが低い誘電材料で構成された第一の回路基板部(例えば、ヤング率:80〜200GPa程度、CTE:3〜12ppm/K程度のLTCC材料)の上に、微細配線性を重視した第二の回路基板部(例えば、ヤング率:10GPa未満、CTE:20〜50ppm/K程度の有機材料)を積層した半導体パッケージ回路基板の構成とすることで、所望のパッケージ回路基板の接続面積、配線密度を実現することができる。第二の回路基板部の誘電体層を構成する第二の誘電材料のヤング率を10GPa未満、熱膨張係数を20ppm/K以上、50ppm/K以下であることで、現実的に入手しやすい樹脂材料から選定できるので好ましい。このような第一及び第二の回路基板部を積層した回路基板を用いることで、例えば、半導体素子、第二の回路基板部及びマザーボードの熱膨張係数のミスマッチをヤング率の高い第一の回路基板部により緩和し、半導体素子と第二の回路基板部との熱膨張係数の差が大きくても、半導体素子と第一の回路基板部の反りを抑制できるという効果が得られる。
なお、第二の回路基板部は矩形に限らず、円形や長円形状等の変形形状でもよい。
以上をまとめると、本実施例では、
複数の半導体素子を搭載するための半導体パッケージ回路基板であって、
誘電体層と導体層の積層構造を有する第一の回路基板部と、
前記第一の回路基板部上に形成され、誘電体層と導体層の積層構造を有する第二の回路基板部とを備え、
前記第一の回路基板部の誘電体層を構成する第一の誘電材料のヤング率は、前記第二の回路基板部の誘電体層を構成する第二の誘電材料のヤング率よりも大きく、
前記第一の回路基板部の誘電体層を構成する前記第一の誘電材料の熱膨張係数は、前記第二の回路基板部の誘電体層を構成する前記第二の誘電材料の熱膨張係数よりも小さく、
前記第一の回路基板部は前記第二の回路基板部よりも回路形成面の面積が大きく、
前記第二の回路基板部の表面には半導体素子を搭載するための電極を複数有し、
前記第二の回路基板部内の電気配線の最小配線幅は前記第一の回路基板部内の電気配線の最小配線幅より細いことを特徴とする半導体パッケージ回路基板を開示するものである。
本発明の第二の実施例の半導体パッケージの断面図を図4に、上面図を図5に示す。第二の実施例は、第一の実施例の半導体パッケージ回路基板に半導体素子を搭載したものである。
図に示すように、第二の回路基板部3の上に、高密度配線のデバイス2−1,2−2とASIC(Application Specific Integrated Circuit)1が実装されている。
なお、本説明ではASICとHBMのような、例えば約2〜3μmの幅などの、高密度配線が必要な広帯域メモリを同一パッケージに実装した例を示すが、高密度配線が必要な半導体素子であればその組合せは何でも良い。例えば、CPU(Central Processing Unit)とFPGA(Field Programmable GateArray)の混載品でも良い。
以下に、第2の実施例に相当する構造と、比較例としてSiインターポーザーを用いた構造のシミュレーション結果を示す。図4および図5に、50mm×50mmの基板に、35mm×35mmの微細配線層と、20mm×20mmのASICと、その周囲にHBMを4つ配置した基板の上面図と断面図を示す。
図14の(a)は、FEM解析モデルによるハーフモデルを示し、図14の(b)は、LTCC基板を用いた第2の実施例の断面図、図14の(c)はSiインターポーザーを用いた比較例の断面図である。それぞれの構成に用いられている物性値は表2に示した数値を用いた。なお、表2の中には、括弧書きで記した第二の回路基板部のCTEの箇所に17という数値が入っているが、これはCuの値である。第2の回路基板部はCuからなる微細配線とポリイミドが混在した状態となり、ポリイミドのCTEは30〜50の間であることから、実効的にはこれらの中間の値である20〜50となる。ここでの解析では、仮値としてCuの値を代表させている。
Figure 0006507975
図15に、FEMに基く反りのシミュレーション結果を示す。シミュレータはFEXという日立製作所製の解析ソフトである。
図15の(a)がLTCCを用いた第2の実施例であり、図15(b)がSiインターポーザーを用いた比較例である。25°Cから180°Cまで変化した場合の反りは、比較例に比べ1/5となった。これにより高密度微細配線を有しつつ、反りにくいパッケージ回路基板を得られることが分かった。
図16に、第2の実施例の損失の測定結果を示す。図16(a)は伝送損失であり、図16(b)は反射損失の特性を示す。これらデータはネットワークアナライザを用いて配線の両端に設けられた電極にプローブを当てて評価する。なお、この測定には高周波測定用のネットワークアナライザとしてKeysight社のE8362B.を用いた。また、第2の実施例のLTCCの物性値は表3とし、内部配線の構造は、図17のように158μmの距離の導体間に8μmの幅と、30μmの幅、15mmの長さ(図17では奥行き方向)として配置し、周波数特性を確認した。
図16(a))で分かるように、14GHzで−1.7dBという低い伝送損失を示しており、28Gbpsの信号を問題なく通過させることを示している。また図16(b)で示す反射損失では20GHzまで−10dB以下の反射損失であり、インピーダンス制御が高周波まで実現できていることを示している。
Figure 0006507975
これらから、LTCC基板を用いることで、高速伝送に適した低損失なパッケージ回路基板を得られることが分かった。
図6に、第三の実施例として、第一の実施例の半導体パッケージ回路基板の製造工程のフローチャートを示す。
まず、電極材料と同時焼成可能なセラミックスの粉末を成形し、電極材料で配線を形成し、それらを同時焼成してLSIパッケージ基板を製造する通常のLTCCパッケージ基板部作製工程100によりLTCCパッケージ基板部(第一の回路基板部)を作製する。その後、微細配線回路基板部(第二の回路基板部)形成のため、パッケージ製造工程で生じた凹凸や反りを平坦化するために研磨工程101を導入する。第一の回路基板部の誘電体層を構成する第一の誘電材料として、LTCCを用いることで、例えば、従来、半導体素子を搭載する第二の回路基板部の熱膨張係数が、半導体素子の熱膨張係数と乖離しているため反りやすかったのが、本発明の熱膨張係数及びヤング率の構成によれば、その反りを抑制する効果を得られるため好ましい。LTCCとして、例えばAlとSiOとSrOを主成分とした材質を選択した場合、ヤング率と熱膨張係数が第二の回路基板部、及びマザーボードとマッチングしているため好ましい。
次に、第二の回路基板部を形成するための以下の工程を実施する。すなわち、導体層を形成し終わるまで、誘電体塗布工程102、ステッパを用いたフォトリソグラフィによるパターニング工程107、メッキのための下地膜形成工程104、ステッパを用いたフォトリソグラフィによるパターニング工程107、銅電解メッキ工程105、メッキ及び下地膜の除去工程106を繰り返す。前記誘電体塗布工程102では上下の配線14を接続するために、パターニングなどによって孔を設けてもよい。また、パターニング工程107では、レジストの塗布、露光、及び現像する処理を含む。第二の回路基板部の誘電体層を構成する第二の誘電材料として、有機材料を用いることで、プロセスコストにメリットがある。無機膜をCVDなどの薄膜で形成すると、設備コスト、プロセスコストがかかるが、有機材料であればスピンコートなどの簡易な手段で膜を形成できる。また、薄膜の場合は下地の第一の回路基板部の段差を反映した形状になるため、表面に凹凸ができる、そのためその上に微細配線を形成しようとすると、追加のCMPなどの平坦化処理が必要となりコストがさらにかかる。この点、有機材料であれば、例えば、液体をスピンコートなどにより、下地の第一の回路基板部を平坦化する効果があり、追加の平坦化処理が無くても微細配線を形成できるのでコスト面で有利である。
なお、ここでは第一の回路基板部としてLTCC材料を用いたLTCCパッケージ基板部上に、微細配線を有する第二の回路基板部として有機材料を用いた誘電体層を有し、微細配線の導体層を有する微細配線回路基板部を形成するパッケージ形態の製造を例として挙げたが、パッケージ基板、すなわち第一の回路基板部を他の材料(例えばコア材入りの有機パッケージ)等で代替した場合でもほぼ同様である。
本発明の第四の実施例の半導体パッケージ回路基板の断面図を図7に、上面図を図8に示す。
図7の構成では、最下層の第一の回路基板部5において、下面にマザーボードとの電気接続を形成するためのはんだボール(BGAボール)7が多数配置され、第一の回路基板部5内には前記のBGAボールと半導体パッケージに実装するLSIとを電気的に繋ぐための配線16が内蔵されている。ここではこの第一の回路基板部としてLTCC回路基板を想定するが、コア材入りの有機パッケージでも良い。また、BGAボールもLGA(Land Grid Array)のようなものでも良い。
第一の回路基板部5のBGAボール7が配置された面と対向する面において、有機の薄膜誘電材と銅のような導電材料の積層により形成された第三の回路基板4が形成される。この第三の回路基板部4には、第一の回路基板部5の配線16よりも最小配線幅を1/2以下となした高密度な配線15が布線されている。
また、第三の回路基板部4の上面には、第三の回路基板部4よりもさらに最小配線幅が細い第二の回路基板部3が形成されている。なお、第三の回路基板部4の回路形成面は第一の回路基板部5と同面積あるいは、それより小さく、第二の回路基板部3の回路形成面は第三の回路基板部4よりもその面積が小さいことも構造上の特徴である(図7、図8参照)。導体層として微細配線を形成する際に使用されるステッパはショットサイズ(1ショットあたりの露光面積)に制約があり、大面積を露光することはできないが、この構成を取ることで、ステッパが必要な微細配線部とステッパが必要でない部分を分けて、ステッパの露光面積を小さくすることでステッパの使用を可能にしているという好ましい効果を得られる。
なお、この半導体パッケージ回路基板上に実装される半導体素子は、第二の回路基板部3の表面および第三の回路基板部4の上面外周の両方に実装されることもあり、この場合、第二の回路基板部の半導体素子実装電極12−1〜12−3および第三の回路基板部の半導体素子実装電極13−1〜13−2の接続端子間隔を比較すると、その最小接続端子間隔が第二の回路基板部3の方が第三の回路基板部4のものよりも小さいことも特徴となる(図8参照)。
特許文献1では、階層としては高密度配線領域が突起した構成をとっており、配線密度の変化は突起部とその下の支持部の2階層のみであるが、本実施例では配線密度の階層構造が3階層以上であることが特徴である。突起構造についても、1段階のみでなく、第三の回路基板部が第一の回路基板部よりも面積が小さいような場合における2階層以上の階段状構造が構成され得ることも特徴となる。
上述した本実施例の構造上の特徴に加えて、配線幅や誘電材料の違いとその効果について、第一から第三の回路基板部について整理して説明する。なお、表4に各導体層における誘電体層のヤング率、熱膨張係数(CTE)、比誘電率の材料定数、配線幅、配線面積、用途の関係を示す。
Figure 0006507975
図9を用いて導体層の配線幅や誘電体層の誘電材料の関係を説明する。
第二の回路基板部3はHBMのような高密度メモリ配線向けに用いることを想定しており、その配線幅は3μm未満が好ましいため、ステッパのような高解像度露光機で形成した配線となる。図9中W1で記載した最小配線幅は3μm未満となる。またこのような高解像度のパターン形成を実現するため、周辺絶縁体(図中108)には厚さ数μm程度の薄い誘電体材料が用いられる。この厚さ数μm程度の薄い誘電体材料のヤング率は、一般に10GPa未満と小さく剛性は弱い。また熱膨張係数は一般に30〜50ppm/K程度であり半導体素子のシリコンの2.3〜3ppm/Kに比べると1桁大きい。なお、比誘電率は3から5程度のものが使われる。配線エリアの面積はステッパの露光可能領域で制約を受け、およそ長辺一辺30mm以下の大きさとなる。
また、第三の回路基板部4は光IC等の、高速伝送の配線に用いることを想定しており、その配線幅は10μm以下が好ましい。この領域はアライナのような中解像度の露光機で形成した配線となる。図9中W2で記載した最小配線幅は10μm以下となる。また、このような解像度のパターン形成の場合も第二の回路基板部3と同様に周辺絶縁体(図中109)には厚さ数μm程度の薄い誘電体材料が用いられる。ヤング率や熱膨張係数は前述のものと同じとなる。比誘電率については、この導体層の配線には10Gbps超の高速信号を通すため、導体層に近接する誘電体層による誘電損失を減らすために、第二の回路基板部3より小さいもの(3程度)が望ましい(必須ではない)。なお、配線エリアの面積は露光可能領域の制約を受けないため(長辺一辺200mmのパターンも可能なため)、長辺一辺50mm以上の面積が可能となる。
このような構成をとることで、第二の回路基板部3は広帯域メモリ向けの配線用途として、第三の回路基板部4を光IC等の高速信号を通すための配線用途として使い分けることが可能になり、結果として半導体パッケージ基板の導体層の配線数を最小限にすることができることが特長となる。
さらに、第一の実施例でも述べたように、第二の回路基板部3と第三の回路基板部4のみではヤング率の低さから剛性が低く、長辺一辺50mm程度のサイズを有するパッケージ基板を構成できない。さらには第二の回路基板部3の上部に端子間距離が数十μm程度の微細な半導体素子を接続するには、シリコンとの熱膨張係数差に伴う反りの差により大面積での接続は困難となり、長辺一辺10mm以下の大きさの接続面しか形成できない。これら課題を解決するため、第一の回路基板部5の誘電材はヤング率が大きく、熱膨張係数が小さいものを選択する。一例として、LTCCを用いた場合の数値を表2に記載する。この結果、長辺一辺50mm超の大きさのパッケージサイズを実現すると共に、半導体素子との接続面積が一半導体素子あたり、長辺一辺20mm超の大きさを可能とする。なお、第一の回路基板部の配線幅(図中W3)はW2より太く15〜30μm程度が最小値となる。
本実施例によれば、第一の回路基板部と第二の回路基板部の間に、中解像度の露光機(例えばアライナ)を用いたフォトリソ工程で形成した導体層を有する第三の回路基板部を挿入し、配線密度を、第二の回路基板部が最も高く、ついで第三の回路基板部、次いで第一の回路基板部とすることにより、パッケージの配線密度を更に向上することができる。このような半導体パッケージ回路基板では、第二の回路基板部上にプロセッサとHBM、第三の回路基板部上に光ICなどを実装するような構成として、処理性能を大幅に向上させることもできる。なお、第三の回路基板部には、さらに配線密度の異なる階層を設けても良い。
本発明の第五の実施例の半導体パッケージの断面図を図10に、上面図を図11に示す。第五の実施例は、第四の実施例の半導体パッケージ回路基板に半導体素子を搭載したものである。このような構成で半導体素子を搭載することで、通常の半導体パッケージよりも高い配線密度で且つ低損失に半導体素子間を接続できるため、伝送性能の大幅な向上と伝送に必要な電力の大幅な削減が可能となる。
図に示すように、第二の回路基板部3の上に、高密度配線のデバイス2−1,2−2とASIC1が実装され、第三の回路基板部4上で、第二の回路基板部3の周囲に、高速かつ高密度な信号配線が実装されている。
なお、本説明ではASIC、HBMのような高密度配線の広帯域メモリ、小型光モジュールを同一パッケージに実装した例を示すが、HBMは高密度配線が必要な半導体素子であれば何でも良く、また小型光モジュールは5Gbps超の高速信号を高密度且つ低電力化のために短距離に接続したほうが好ましいデバイス(たとえばシグナルコンディショナ(電気信号中継用)LSIやHybrid Memory Cubeのような10Gbps超の信号伝送機能を有する積層メモリ)であれば何でも良い。または、それらに限らずASICやCPU、FPGAが複数混載されたものでも良い。
図12に、第六の実施例として、第四の実施例の半導体パッケージ回路基板の製造工程を示す。
まず、通常のLTCCパッケージ基板部作製工程100によりLTCCパッケージ基板
部(第一の回路基板部)を作製する。その後、微細配線形成のため、LTCCパッケージ基板部作製工程100で生じた凹凸や反りを平坦化するために研磨工程101を導入する。次に、第三の回路基板部を形成するために、導体層を形成し終わるまで、誘電体塗布工程102、アライナを用いたフォトリソグラフィによるパターニング工程103、メッキ用下地膜形成工程104、アライナを用いたフォトリソグラフィによるパターニング工程103、銅電解メッキ工程105、メッキ及び下地膜の除去工程106を繰り返す。前記誘電体塗布工程102では上下の配線14を接続するために、パターニングなどによってビアを設けてもよい。また、パターニング工程103では、レジストの塗布、露光、及び現像する処理を含む。
この第三の回路基板部の形成が終わった後、再度研磨工程101を導入し、約2〜3μmの幅の微細配線形成に十分な平坦性を表面に形成した後に、第二の回路基板部を形成するための以下の工程を実施する。すなわち、導体層を形成し終わるまで、誘電体塗布工程102、ステッパを用いたフォトリソグラフィによるパターニング工程107、メッキ用下地膜形成工程104、ステッパを用いたフォトリソグラフィによるパターニング工程107、銅電解メッキ工程105、メッキ及び下地膜の除去工程106を繰り返す。
なお、ここでは第一の回路基板部としてLTCCパッケージ基板部上に、第二及び第三の回路基板部として有機材料を用いた微細配線回路基板部を2段階で形成するパッケージ形態の製造を例として挙げるが、パッケージ基板を他の材料(例えばコア材入りの有機パッケージ)で代替した場合でも同様である。
図13に、第七の実施例として、第三の回路基板部を電源雑音低減用途に用いる実施例を示す。
第二の回路基板部3の周辺部の第三の回路基板部4の上面にバイパスコンデンサ10−1、10−2を実装し、LSIとこのコンデンサの間を第三の回路基板部4内の電源−グランドプレーン11を介して接続する。
電源ノイズ低減用のバイパスコンデンサの高周波性能はLSIとコンデンサ間を繋ぐ経路を低インダクタンスにすることが重要であるため、本実施例のような構成をとることで、短いビア接続、面間距離の狭い平行平板による接続を実現できるため、高周波帯のノイズ低減効果が期待できる。具体的には、一般にはLTCCパッケージ部における電源−グランドプレーン間距離は50μm程度であるのに対し、第三の回路基板部では1〜2μm程度の面間距離の電源−グランドプレーンを形成できるため、プレーンインダクタンスは1/10以下まで低減することが期待できる。なお、本構成では第三の回路基板部の上にはバイパスコンデンサしか搭載していないが、第五の実施例のような光デバイス等を混載させても良い。
1 ASIC
2−1〜2−4 広帯域メモリ(HBM等)
3 第二の回路基板部(超高密度配線基板)
4 第三の回路基板部(高密度配線基板)
5 第一の回路基板部(マザーボード接続用支持基板)
7 BGA ball
8 光/電気変換用IC
9 光ファイバ
10−1〜10−2 バイパスコンデンサ
11 電源−グランドプレーン
12−1〜12−3 第二の回路基板部の半導体素子実装電極
13−1〜13−2 第三の回路基板部の半導体素子実装電極
14 第二の回路基板部の超高密度信号配線
15 第三の回路基板部の高密度信号配線
16 第一の回路基板部の低密度信号配線
17 ファイバ用コネクタ
18 光モジュール
100 LTCCパッケージ基板部作製工程
101 研磨工程
102 誘電体塗布工程
103 アライナを用いたフォトリソグラフィによるパターニング工程
104 メッキ用の下地膜形成工程
105 銅電解メッキ工程
106 メッキ及び下地膜の除去工程
107 ステッパを用いたフォトリソグラフィによるパターニング工程
108 第二の回路基板部の誘電材部分
109 第三の回路基板部の誘電材部分
110 第一の回路基板部の誘電材部分

Claims (10)

  1. 複数の半導体素子を搭載するための半導体パッケージ回路基板であって、
    誘電体層と導体層の積層構造を有する第一の回路基板部と、
    前記第一の回路基板部上に形成され、誘電体層と導体層の積層構造を有する第二の回路基板部とを備え、
    前記第一の回路基板部の誘電体層を構成する第一の誘電材料のヤング率は、前記第二の回路基板部の誘電体層を構成する第二の誘電材料のヤング率よりも大きく、
    前記第一の回路基板部の誘電体層を構成する前記第一の誘電材料の熱膨張係数は、前記第二の回路基板部の誘電体層を構成する前記第二の誘電材料の熱膨張係数よりも小さく、
    前記第一の回路基板部は前記第二の回路基板部よりも回路形成面の面積が大きく、
    前記第二の回路基板部の表面には半導体素子を搭載するための電極を複数有し、
    前記第二の回路基板部内の電気配線の最小配線幅は前記第一の回路基板部内の電気配線の最小配線幅より細いものであり、
    前記第一の回路基板部の誘電体層を構成する前記第一の誘電材料が、有機材料からなるコア材であり、導体層がそのコア材を中心に上下にビルドアップ配線であることを特徴とする半導体パッケージ回路基板。
  2. 請求項1に記載の半導体パッケージ回路基板において、
    前記第一の回路基板部の誘電体層を構成する第一の誘電材料のヤング率は80〜200GPaであり、熱膨張係数は3〜10ppm/Kであり、
    前記第二の回路基板部の誘電体層を構成する第二の誘電材料のヤング率は10GPa未満であり、熱膨張係数は20〜50ppm/Kであることを特徴とする半導体パッケージ回路基板。
  3. 請求項1または2に記載の半導体パッケージ回路基板において、
    前記第二の回路基板部の誘電体層を構成する前記第二の誘電材料は、有機材料であることを特徴とする半導体パッケージ回路基板。
  4. 請求項1からのいずれか1項に記載の半導体パッケージ回路基板において、
    前記第一の回路基板部に、マザーボード接続用の端子を複数設けたことを特徴とする半導体パッケージ回路基板。
  5. 複数の半導体素子を搭載するための半導体パッケージ回路基板であって、
    誘電体層と導体層の積層構造を有する第一の回路基板部と、
    前記第一の回路基板部上に形成され、誘電体層と導体層の積層構造を有する第二の回路基板部とを備え、
    前記第一の回路基板部の誘電体層を構成する第一の誘電材料のヤング率は、前記第二の回路基板部の誘電体層を構成する第二の誘電材料のヤング率よりも大きく、
    前記第一の回路基板部の誘電体層を構成する前記第一の誘電材料の熱膨張係数は、前記第二の回路基板部の誘電体層を構成する前記第二の誘電材料の熱膨張係数よりも小さく、
    前記第一の回路基板部は前記第二の回路基板部よりも回路形成面の面積が大きく、
    前記第二の回路基板部の表面には半導体素子を搭載するための電極を複数有し、
    前記第二の回路基板部内の電気配線の最小配線幅は前記第一の回路基板部内の電気配線の最小配線幅より細いものであり、
    前記第一の回路基板部と前記第二の回路基板部との間に、前記第二の回路基板部よりも回路形成面の面積が大きく、前記第一の回路基板部の面積と同じかそれより小さい回路形成面を有し、誘電体層と導体層の積層構造を有する第三の回路基板部を備え、
    前記第三の回路基板部の最小配線幅は前記第二の回路基板部の最小配線幅より太く、前記第一の回路基板部の最小配線幅より細いことを特徴とする半導体パッケージ回路基板。
  6. 請求項に記載の半導体パッケージ回路基板において、
    前記第一の回路基板部の誘電体層を構成する第一の誘電材料のヤング率は80〜200GPaであり、熱膨張係数は3〜10ppm/Kであり、
    前記第二の回路基板部の誘電体層を構成する第二の誘電材料のヤング率は10GPa未満であり、熱膨張係数は30〜50ppm/Kであり、
    前記第三の回路基板部の誘電体層を構成する第三の誘電材料のヤング率は10GPa未満であり、熱膨張係数は30〜50ppm/Kであることを特徴とする半導体パッケージ回路基板。
  7. 請求項に記載の半導体パッケージ回路基板において、
    前記第三の回路基板部の誘電体層を構成する前記第三の誘電材料は、有機材料であることを特徴とする半導体パッケージ回路基板。
  8. 請求項1からのいずれか1項に記載の半導体パッケージ回路基板において、
    前記第二の回路基板部の表面に1つ以上の半導体素子を搭載した半導体パッケージ。
  9. 請求項からのいずれか1項に記載の半導体パッケージ回路基板において、
    前記第二の回路基板部の表面に1つ以上の半導体素子を搭載し、
    前記第三の回路基板部の上面外周に1つ以上の半導体素子を搭載した半導体パッケージ。
  10. 請求項からのいずれか1項に記載の半導体パッケージ回路基板において、
    前記第二の回路基板部の表面に1つ以上の半導体素子を搭載し、
    前記第三の回路基板部の上面外周に1つ以上のバイパスキャパシタを搭載した半導体パッケージ。
JP2015191810A 2014-10-02 2015-09-29 半導体パッケージ回路基板、およびそれを用いた半導体パッケージ Active JP6507975B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014204073 2014-10-02
JP2014204073 2014-10-02

Publications (2)

Publication Number Publication Date
JP2016076697A JP2016076697A (ja) 2016-05-12
JP6507975B2 true JP6507975B2 (ja) 2019-05-08

Family

ID=55633312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015191810A Active JP6507975B2 (ja) 2014-10-02 2015-09-29 半導体パッケージ回路基板、およびそれを用いた半導体パッケージ

Country Status (2)

Country Link
US (1) US9773738B2 (ja)
JP (1) JP6507975B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520356B1 (en) * 2015-09-09 2016-12-13 Analog Devices, Inc. Circuit with reduced noise and controlled frequency
US10784121B2 (en) * 2016-08-15 2020-09-22 Xilinx, Inc. Standalone interface for stacked silicon interconnect (SSI) technology integration
US20190051587A1 (en) * 2017-08-11 2019-02-14 Marvell Israel (M.I.S.L) Ltd. Ic package
TWI736695B (zh) * 2017-10-24 2021-08-21 啟耀光電股份有限公司 電子裝置與其製造方法
US11508663B2 (en) 2018-02-02 2022-11-22 Marvell Israel (M.I.S.L) Ltd. PCB module on package
US10998291B2 (en) 2018-05-07 2021-05-04 Micron Technology, Inc. Channel routing for memory devices
US11195789B2 (en) 2018-11-30 2021-12-07 International Business Machines Corporation Integrated circuit module with a structurally balanced package using a bottom side interposer
CN111599687B (zh) * 2019-02-21 2022-11-15 奥特斯科技(重庆)有限公司 具有高刚度的超薄部件承载件及其制造方法
CN111816645A (zh) * 2019-04-10 2020-10-23 力成科技股份有限公司 天线整合式封装结构及其制造方法
WO2020250162A1 (en) 2019-06-10 2020-12-17 Marvell Israel (M.I.S.L) Ltd. Ic package with top-side memory module
JP2021082786A (ja) * 2019-11-22 2021-05-27 ルネサスエレクトロニクス株式会社 半導体装置
US20220238449A1 (en) * 2021-01-25 2022-07-28 Infinera Corp. Hybrid integrated circuit package
US11855034B2 (en) * 2021-05-28 2023-12-26 Advanced Semiconductor Engineering, Inc. Electronic device package and method of manufacturing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2740028B2 (ja) 1989-12-20 1998-04-15 株式会社東芝 多層印刷配線基板
JP2996510B2 (ja) * 1990-11-30 2000-01-11 株式会社日立製作所 電子回路基板
JP3026465B2 (ja) * 1992-03-10 2000-03-27 株式会社日立製作所 セラミック薄膜混成配線基板および製造方法
JP4023285B2 (ja) * 2002-10-24 2007-12-19 ソニー株式会社 光・電気配線混載ハイブリッド回路基板及びその製造方法並びに光・電気配線混載ハイブリッド回路モジュール及びその製造方法
US7528473B2 (en) * 2004-03-19 2009-05-05 Renesas Technology Corp. Electronic circuit, a semiconductor device and a mounting substrate
US7694245B2 (en) * 2006-02-28 2010-04-06 Elpida Memory Method for designing semiconductor package, system for aiding to design semiconductor package, and computer program product therefor
JP4952893B2 (ja) 2006-05-29 2012-06-13 学校法人日本大学 セラミック電子部品及びその製造方法
US20080284037A1 (en) * 2007-05-15 2008-11-20 Andry Paul S Apparatus and Methods for Constructing Semiconductor Chip Packages with Silicon Space Transformer Carriers
TWI475663B (zh) * 2009-05-14 2015-03-01 Qualcomm Inc 系統級封裝
US9502360B2 (en) * 2012-01-11 2016-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Stress compensation layer for 3D packaging
US8922005B2 (en) * 2012-04-11 2014-12-30 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for package on package devices with reversed stud bump through via interconnections
US9153542B2 (en) * 2012-08-01 2015-10-06 Advanced Semiconductor Engineering, Inc. Semiconductor package having an antenna and manufacturing method thereof
US8896110B2 (en) * 2013-03-13 2014-11-25 Intel Corporation Paste thermal interface materials
KR102033789B1 (ko) * 2013-07-25 2019-10-17 에스케이하이닉스 주식회사 적층형 패키지 및 그 제조방법
US9978660B2 (en) * 2014-03-14 2018-05-22 Taiwan Semiconductor Manufacturing Company Package with embedded heat dissipation features
US9449914B2 (en) * 2014-07-17 2016-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Stacked integrated circuits with redistribution lines

Also Published As

Publication number Publication date
US20160099197A1 (en) 2016-04-07
JP2016076697A (ja) 2016-05-12
US9773738B2 (en) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6507975B2 (ja) 半導体パッケージ回路基板、およびそれを用いた半導体パッケージ
US11063017B2 (en) Embedded organic interposer for high bandwidth
JP3138383B2 (ja) マルチチップモジュール
US8368230B2 (en) Electronic part and method of manufacturing the same
US9646926B2 (en) Wiring substrate and method of manufacturing the same
US8138609B2 (en) Semiconductor device and method of manufacturing semiconductor device
US9622339B2 (en) Routing design for high speed input/output links
US10453795B2 (en) Microprocessor package with first level die bump ground webbing structure
US9899311B2 (en) Hybrid pitch package with ultra high density interconnect capability
TWI697084B (zh) R鏈結-用於封裝裝置的資料訊號接點之接地屏蔽附接結構及陰影孔洞;封裝裝置的垂直資料訊號互連件之垂直接地屏蔽結構及屏蔽柵欄;以及用於封裝裝置的光電模組連接器資料訊號接點及接點針腳之接地屏蔽技術
TWI705548B (zh) 路由穿過封裝裝置之水平資料信號傳輸線路的接地平面垂直隔離、接地線路同軸隔離、及阻抗調諧之技術
JP2007116179A (ja) 高速入出力回路の電力送達およびデカップリング用の埋込みコンデンサのアレイを有するパッケージおよびその形成方法
JP2001014956A (ja) 集積回路素子接続用ケーブルおよびその製造方法
TW200814277A (en) Shielded via
TWI721047B (zh) 路由穿過封裝裝置之水平資料信號傳輸線路的接地平面垂直隔離、接地線路同軸隔離、及阻抗調諧之技術
US20090133917A1 (en) Multilayered Circuit Board for Connection to Bumps
CN110531125B (zh) 空间转换器、探针卡及其制造方法
KR20100082551A (ko) 인터포저 및 집적회로 칩 내장 인쇄회로기판
US6992255B2 (en) Via and via landing structures for smoothing transitions in multi-layer substrates
JP5050655B2 (ja) ビルドアップ基板、それを有する電子部品及び電子機器
US20160071807A1 (en) Methodology to achieve zero warpage for ic package
CN216902914U (zh) 一种硅基基板及芯片
KR101829327B1 (ko) 테스트 보드와 반도체 칩 매개장치
TW202042362A (zh) 包含以一第一方向對齊之第一焊點互連件及以一第二方向對齊之第二焊點互連件之裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6507975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350