JP6501015B1 - 電源基板 - Google Patents

電源基板 Download PDF

Info

Publication number
JP6501015B1
JP6501015B1 JP2018045771A JP2018045771A JP6501015B1 JP 6501015 B1 JP6501015 B1 JP 6501015B1 JP 2018045771 A JP2018045771 A JP 2018045771A JP 2018045771 A JP2018045771 A JP 2018045771A JP 6501015 B1 JP6501015 B1 JP 6501015B1
Authority
JP
Japan
Prior art keywords
electrode
power supply
supply substrate
substrate
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018045771A
Other languages
English (en)
Other versions
JP2019161857A (ja
Inventor
西川 武男
武男 西川
亘 岡田
亘 岡田
郡 衞藤
郡 衞藤
正武 佐藤
正武 佐藤
隆圭 俵木
隆圭 俵木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2018045771A priority Critical patent/JP6501015B1/ja
Application granted granted Critical
Publication of JP6501015B1 publication Critical patent/JP6501015B1/ja
Publication of JP2019161857A publication Critical patent/JP2019161857A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】従来技術に比較して基板面積の増大を回避し、寄生容量を軽減することができる電源基板を提供する。【解決手段】本発明にかかる電源基板は、スイッチング素子を含む電源回路が形成された支持体を備えた電源基板であって、上記支持体の第1の面に形成され、上記スイッチング素子の動作によって時間的に電位が変化する第1の電極と、上記支持体の第2の面に形成され、スイッチング素子の動作によって時間的に電位が変化しない第2の電極とを備え、上記第2の電極は、上記第1の電極と対向する部分の少なくとも一部に形成された開口部を有する。ここで、上記第2の電極の開口部は、上記第1の電極と対向する部分に形成されてもよい。また、上記第2の電極の開口部は、上記第1の電極と対向する部分以外の部分にさらに形成されてもよい。【選択図】図1

Description

本発明は、例えばインバータ等の電力変換器のためのスイッチング素子を含むスイッチング電源基板などの電源基板に関する。
昨今、例えばインバータ等のためのスイッチング素子を含むスイッチング電源基板が、種々の装置において使用されているが、当該スイッチング電源基板から発生するノイズが発生し、これを抑制することが求められている。具体的には、電源基板において時間的に電位が変化する回路パターンと接地導体間の寄生容量により、伝導ノイズ(電気回路の経路上を伝搬するノイズ成分であって、雑端ノイズともいう)が増加し、そのため、ノイズ対策の手間や部材の追加等が必要になっていた。
以上の課題を解決するために、以下の特許文献において種々の解決法が提案されている。
特許文献1では、第1の電極と接地導体との間の寄生容量と、第2の電極と接地導体との間の寄生容量が等しくなるように上記第1及び第2の電極を構成することで、電位変動パターンで発生するノイズを抑制することが提案されている。
また、特許文献2では、高電圧スイッチング回路部と、低電圧スイッチング回路部との間にノイズフィルタを設け、基板とノイズフィルタとの間にノイズを遮蔽する金属板を形成することで、放射ノイズを遮蔽することが提案されている。
さらに、特許文献3では、以下の構成の配線基板が提案されている。
(1)5GHz以上の高周波信号を伝搬させる第1の配線導体を、その中央部から外周部に向けて互いの間隔が広がるように絶縁基板の一方の主面に形成する。
(2)絶縁基板の一方の主面の第1の配線導体との間において、外周部から中央部に向けて途中まで接地用又は電源用導体層を、下記の第2の配線導体と対向する部位に導体層が存在しないように形成する。
(3)絶縁基板の他方の主面に中央部から外周部にかけて第2の配線導体を形成する。
ここで、当該第2の配線導体にかかる配線のインピーダンスが途中で変わることを抑制することで高周波信号が反射て減衰することを回避することを特徴としている。
特開2009−261044号公報 特開2014−033531号公報 特開2005−191142号公報
しかしながら、上記の従来例では、以下の課題があった。
特許文献1では、第2の電極を形成することで、基板面積が大型化し、寄生容量自体を小さくすることができないという課題があった。
また、特許文献2では、金属板で放射ノイズを遮蔽して低減するが、構造が複雑になり、コストが増大するという課題があった。
さらに、特許文献3では、高周波信号が反射して減衰させることができるが、基板面積が大型化し、寄生容量自体を小さくすることができないという課題があった。
本発明の目的は以上の問題点を解決し、従来技術に比較して基板面積の増大を回避し、寄生容量を軽減することができる電源基板を提供することにある。
本発明の一態様にかかる電源基板は、
スイッチング素子を含む電源回路が形成された支持体を備えた電源基板であって、
上記支持体の第1の面に形成され、上記スイッチング素子の動作によって時間的に電位が変化する第1の電極と、
上記支持体の第2の面に形成され、スイッチング素子の動作によって時間的に電位が変化しない第2の電極とを備え、
上記第2の電極は、上記第1の電極と対向する部分の少なくとも一部に形成された開口部を有することを特徴とする。
上記電源基板において、上記第2の電極の開口部は、上記第1の電極と対向する部分に形成されたことを特徴とする。
また、上記電源基板において、上記第2の電極の開口部は、上記第1の電極と対向する部分以外の部分にさらに形成されたことを特徴とする。
さらに、上記電源基板において、上記電源基板はさらに、上記支持体の第1の面において、上記第1の電極を囲むように形成された第3の電極を備えたことを特徴とする。
またさらに、上記電源基板において、上記スイッチング素子は、上記第1の電極と、上記第3の電極とに接続されたことを特徴とする。
またさらに、上記電源基板において、
上記第2の電極は、上記支持体の内層に形成され、
上記第1の電極は、上記支持体に形成されたビア導体を介して第4の電極に接続されたことを特徴とする。
従って、本発明にかかる電源基板によれば、従来技術に比較して基板面積の増大を回避し、寄生容量を軽減することで、伝導ノイズを低減できる。
基本例にかかる電源基板の構成例を示し縦断面図である。 図1の電源基板で用いるスイッチング素子を含む回路例を示す回路図である。 従来例にかかる電源基板の構成例を示し縦断面図である。 図3の電源基板で用いるスイッチング素子を含む回路例を示す回路図である。 図4の回路における寄生容量Cpに対する伝導ノイズレベルの特性例を示すグラフである。 実施形態1にかかる電源基板の構成例であって、図6BのA−A’線についての縦断面図である。 図6Aの電源基板の平面図である。 実施形態1の変形例にかかる電源基板の構成例を示す縦断面図である。 図7の長さlaに対する寄生容量Cpの特性例を示すグラフである。 実施形態2にかかる電源基板の構成例であって、図9BのB−B’線についての縦断面図である。 図9Aの電源基板の上面図である。 図9Aの電源基板の下面図である。 実施形態2の変形例1にかかる電源基板の構成例であって、図10BのC−C’線についての縦断面図である。 図10Aの電源基板の上面図である。 図10Aの電源基板の下面図である。 実施形態2の変形例2にかかる電源基板の構成例を示す縦断面図である。 実施形態3にかかる電源基板の構成例を示す縦断面図である。 基本例、従来例、実施形態1及び2にかかる電源基板のシミュレーション結果であって、寄生容量Cpを示すグラフである。 基本例、従来例、実施形態1及び2にかかる電源基板のシミュレーション結果であって、電界強度Epを示すグラフである。 基本例、従来例、実施形態1及び2にかかる電源基板のシミュレーション結果であって、電界強度Epを示す写真画像である。
以下、比較例及び本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同一又は同様の構成要素については同一の符号を付している。
本発明者らは、例えばインバータ等の電力変換器のためのスイッチング素子を含むスイッチング電源基板などの電源基板において、伝導ノイズと放射ノイズの対策を検討の中で、電源基板の回路パターンからの伝導ノイズと放射ノイズに大きな課題があることが分かってきた。その対策として本実施形態にかかる解決手段を考えた。特に、本発明者らは、新材料(GaN)デバイスのスイッチング素子を用いた電力変換器で放射ノイズが増大しており、シミュレーションにより、電位変動が起こる回路パターンの特にエッジから電界放射が発生することを確認した。また、一方で電位変動の回路パターンと接地電位の寄生容量が大きいと伝導ノイズが増大することが判明し、これらを解決させる手法として以下の実施形態にかかる電源基板を考案した。本実施形態にかかる電源基板では、回路パターンからの伝導ノイズが低減するようにパターン形状を変更することで、ノイズ対策の軽減ができるようになった。以下、詳細について説明する。
図1は基本例にかかる電源基板の構成例を示し縦断面図である。また、図2は図1の電源基板で用いるスイッチング素子を含む回路例を示す回路図である。
図1において、支持体である誘電体基板(電源基板)10上に電極11が形成されている。図2の昇圧回路は、インダクタL1と、ダイオードD1と、例えばMOSFET等のスイッチング素子SW1を含む電源回路とを備えて構成される。図2の昇圧回路において、回路部分Aはスイッチング素子SW1のスイッチング動作によって電位が変動する。このような場合、誘電体基板10上に設けられた回路部分Aに相当する電極11と、当該昇圧回路を収容する筐体、又はヒートシンクといった周囲金属部との間で交流電界Eが発生し、結果として、筐体外部への放射ノイズの増大につながる。
図3は従来例にかかる電源基板の構成例を示し縦断面図である。また、図4は図3の電源基板で用いるスイッチング素子を含む回路例を示す回路図である。
電源基板からの放射電界を抑制する方法として、図3に示すように、電極11の近傍において、電位が安定な(例えば接地電位等)電極12を設けることが考えられる。この場合、電極11から発生する放射電界は近傍の電極12と結合することで広がりが抑制される。しかし、電極11と電極12の寄生容量Cpは大きくなるため、この寄生容量Cpを通って発生する伝導ノイズ成分は増大してしまうことが考えられる。
図5は図4の回路における寄生容量Cpに対する伝導ノイズレベルの特性例を示すグラフである。図5から明らかなように、電位が変動する電極11と接地された電極12との寄生容量Cpが大きい場合、電極11の電位が変動した場合に電極11,12に流れる電流成分が増大する。ここで、電位変動によって接地側の電極12へ流れた電流成分は電気回路の別の部分を通って還流するため、結果としてスイッチング素子のスイッチングによって経路に流れる伝導ノイズ成分の増加を招くという課題があった。
実施形態1.
図6Aは実施形態1にかかる電源基板の構成例であって、図6BのA−A’線についての縦断面図である。また、図6Bは図6Aの電源基板の平面図である。
図6A及び図6Bにおいて、誘電体基板10の上面に矩形形状の電極11を形成する一方、その下面に、電極11と対向する位置範囲に位置しかつ実質的に同一のサイズを有する矩形の開口部12Cを有する電極12を形成する。これにより、電極12は矩形リング形状を有する。すなわち、本実施形態では、スイッチング素子が接続されて時間的に電位が変動する電極11に対して対向する面内に、スイッチング素子が接続されず電位が変動しない接地電位を有する電極12を形成することを特徴とする。ここで、電極12の少なくとも一部は電極11よりも外側にはみ出した構造であり、かつ電極11の直接に上下方向で対向する部分の少なくとも一部に開口部12Cを形成する。
以上のように構成された電源基板においては、電極1の近傍にアース電位を有する電極12があることで、電極11から発生する放射電界は電極12に電磁的に結合し、誘電体基板10内に閉じ込められて抑制されることで、外部への放射電界成分が低減する。さらに、電極11からの放射電界はエッジ部で特に強いため、電極12の輪郭サイズを電極11よりも大きめの構造とすることで放射電界の拡散を効果的に低減できる。
なお、電極11と電極12の開口部12Cが互いに完全に対向する構造でないように構成してもよい。この場合において、開口部12Cを設けることで、電極11とアース電位の電極12との間の寄生容量Cpは、上記のように互いに完全に対向する構造に比べて低減できる。その結果、電位変動によって発生する電流変化はそれほど大きくならず、電極12を設けることによって増加する電源基板の回路における伝導ノイズ成分も抑制が可能である。
以上の実施形態1において、電極12の開口部12Cは、電極11と対向する部分の少なくとも一部に形成すればよい。
従来例の電源基板と、実施形態1の電源基板との寄生容量Cpの比較については、図12を参照して後述するが、従来例の寄生容量Cpが1.49pFに対して、実施形態の寄生容量Cpが1.18pFと約20%寄生容量が低減されている。
実施形態1の変形例.
図7は実施形態1の変形例にかかる電源基板の構成例を示す縦断面図である。また、図8は図7の長さlaに対する寄生容量Cpの特性例を示すグラフである。
図7の電源基板は、図6Aの電源基板に比較して、電極12の開口部12Cの矩形の一辺のサイズを長さ+2laだけ大きくしたことを特徴とする。すなわち、図7に示すように、開口部12Cは、電極11を電極12の形成面に投影したときの矩形部分から各辺で長さ+laだけ大きい矩形形状を有する。この長さ+laは、電極11を電極12の形成面に投影したときに、電極11と電極12との間の所定長のギャップとなる。
例えば本変形例では、図8から明らかなように、長さla=4mmとすることで寄生容量Cpを抑制しつつ、電界強度Epも一定以下に抑えることができることが分かる。
実施形態2.
図9Aは実施形態2にかかる電源基板の構成例であって、図9BのB−B’線についての縦断面図である。また、図9Bは図9Aの電源基板の上面図であり、図9Cは図9Aの電源基板の下面図である。
図9Aの電源基板は、図6Aの電源基板に比較して、誘電体基板10のおもて面において、電極11の外側に所定の開口部13C(矩形リング形状のギャップ)を有して矩形リング形状の電極13(浮遊電極)を、電極11を囲むように形成したことを特徴とする。ここで、電極13は、電極11と同一平面において電極11の周囲で一定の電位を有する。これにより、電極11から上側に発生する電界成分が電極13に結合することで、上側に放射される電界はさらに抑制される。ここで、電極13は電極11と絶縁距離を保つ必要があるため、電極12の開口部12Cの内側サイズよりも電極13の開口部13Cの内側サイズの方が大きいことを特徴とする。
本発明者らによる実施形態2のシミュレーション結果では、実施形態1の構造に更に、電極11と同一平面に電極11の端からlb=3mmの間隙を空けて、幅2mmの電極13を周囲に設けた場合は、実施形態1よりも更に、誘電体基板10の上面からの放射電界が抑制されていることが分かった。これは電極11のエッジからの放射がさらに近傍の接地面と結合しやすい構造であるためである。
以上のように構成された各例のシミュレーション結果による効果を次の表1に示す。
Figure 0006501015
ここで、×は伝導ノイズ又は放射ノイズの影響があり、評価が低い場合(低評価)を示す。○は伝導ノイズ又は放射ノイズの影響がほとんどなく、評価が比較的高い場合(高評価)を示す。◎は伝導ノイズ又は放射ノイズの影響がなく、評価が非常に高い場合を示す(高評価)。なお、△−○は、低評価と高評価との間の評価である中間評価と、高評価との間の評価を示し、○−◎は高評価と最高評価との間の評価を示す。
表1から明らかなように、実施形態1の電源基板によって寄生容量Cpを低減し、伝導ノイズが改善されることが期待される。さらに実施形態2の電源基板によって、放射ノイズも改善が期待される。また、一般的には、寄生容量Cpと電界強度Epはトレードオフの関係にある。
実施形態2の変形例1.
図10Aは実施形態2の変形例1にかかる電源基板の構成例であって、図10BのC−C’線についての縦断面図である。また、図10Bは図10Aの電源基板の上面図であり、図10Cは図10Aの電源基板の下面図である。
図10Aの電源基板は、図9Aの電源基板に比較して、電極11及び電極13に接続された2個の端子を有するスイッチング素子14を電極11,13上に装着したことを特徴としている。この例では、スイッチング素子14の電極で電極11を囲うためには、電極11から放射する電界に欠落部が発生するが、スイッチング素子14の電極を使うことで周囲を完全に囲うことができる。
実施形態2の変形例2.
図10Dは実施形態2の変形例2にかかる電源基板の構成例を示す縦断面図である。図10Dの電源基板は、図10Aの電源基板に比較して、矩形リング形状の電極13を削除したことを特徴としており、このように構成してもよい。言い換えれば、図10Dの電源基板は、図6Aの電源基板に比較してスイッチ素子14を設けたことを特徴としている。
図11は実施形態3にかかる電源基板の構成例を示す縦断面図である。
実施形態3にかかる図11の電源基板においては、電極11の近傍にスイッチング素子又はダイオードなどの能動素子の発熱体14Aが設けられる場合を想定する。図11において、電極12は誘電体基板10,10Aの内層面に設ける。なお、30は、電源基板から放射される放射電界を閉じ込めるための筐体板金である。また、誘電体基板10Aの下面に形成された電極15から、誘電体基板10、電極12の開口部12C及び誘電体基板10Aを介して厚さ方向に延在して電極11に接続される複数のビア導体16を設ける。これにより、当該ビア導体16は電極11を電極15に接続することができ、これにより、基板裏面からの放熱性を高めることができる。
実際には、電極15から、熱インターフェースマテリアル(以下、TIM(Thermal Interface Materialという)21を介して放熱部20に接続する。なお、誘電体基板10,10Aは放熱部20から垂直方向に延在する複数の支持部材22により支持される。
以上のように構成された実施形態3にかかる電源基板によれば、放射電界の抑制と基板の放熱性の両立が可能である。
以上の実施形態3において、ビア導体16はインレイなどで構成してもよい。また、TIMは熱伝導率が高く、厚さが比較的厚いことが望ましい(すなわち、放熱部との寄生容量は小さい)ので、例えば窒化ケイ素等のセラミックなどの材料にてなる。
以下、本発明者らのシミュレーション結果について説明する。
図12は基本例、従来例、実施形態1及び2にかかる電源基板のシミュレーション結果であって、寄生容量Cpを示すグラフである。図12から明らかなように、実施形態1及び2の寄生容量Cpは、従来例に比較して低減していることがわかる。
図13は基本例、従来例、実施形態1及び2にかかる電源基板のシミュレーション結果であって、電界強度Epを示すグラフである。図13から明らかなように、実施形態1及び2の電界強度Epは、従来例に比較して低減していることがわかる。
図14は基本例、従来例、実施形態1及び2にかかる電源基板のシミュレーション結果であって、電界強度Epを示す写真画像である。図14から明らかなように、従来例では、放射電界が、電極11の近傍で集中しているが、実施形態1及び2では、電極11近傍に集中せず分散して低減していることがわかる。
従って、本発明にかかる電源基板によれば、従来技術に比較して基板面積の増大を回避し、寄生容量を軽減することで、伝導ノイズを低減できる。本発明にかかる電源基板は、パワコントローラ、車載電源、汎用電源、UPS(Uninterruptible Power Supply)等の電力変換装置に適用することができる。
10,10A…誘電体基板、
11,12,13…電極、
12C,13C…開口部、
14…スイッチング素子、
14A…発熱体、
15…電極、
16…ビア導体、
20…放熱部、
21…熱インターフェースマテリアル(TIM)、
22…支持部材、
30…上部筐体板金、
A…電極部分、
Cp…寄生容量、
D1…ダイオード、
L1…インダクタ、
SW1…スイッチ素子。

Claims (5)

  1. スイッチング素子を含む電源回路が形成された支持体を備えた電源基板であって、
    上記支持体の第1の面に形成され、上記スイッチング素子の動作によって時間的に電位が変化する第1の電極と、
    上記支持体の第2の面に形成され、スイッチング素子の動作によって時間的に電位が変化しない第2の電極とを備え
    上記第2の電極は、上記第1の電極と対向する部分の少なくとも一部に形成された開口部を有し、
    上記第2の電極は、上記支持体の内層に形成され、
    上記第1の電極は、上記支持体において上記第1の電極が上記開口部を通過するように形成されたビア導体を介して第4の電極に接続されたことを特徴とする電源基板。
  2. 上記第2の電極の開口部は、上記第1の電極と対向する部分に形成されたことを特徴とする請求項1記載の電源基板。
  3. 上記第2の電極の開口部は、上記第1の電極と対向する部分以外の部分にさらに形成されたことを特徴とする請求項1記載の電源基板。
  4. 上記電源基板はさらに、
    上記支持体の第1の面において、上記第1の電極を囲むように形成された第3の電極を備えたことを特徴とする請求項1〜3のうちのいずれか1つに記載の電源基板。
  5. 上記スイッチング素子は、上記第1の電極と、上記第3の電極とに接続されたことを特徴とする請求項4記載の電源基板。
JP2018045771A 2018-03-13 2018-03-13 電源基板 Active JP6501015B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045771A JP6501015B1 (ja) 2018-03-13 2018-03-13 電源基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045771A JP6501015B1 (ja) 2018-03-13 2018-03-13 電源基板

Publications (2)

Publication Number Publication Date
JP6501015B1 true JP6501015B1 (ja) 2019-04-17
JP2019161857A JP2019161857A (ja) 2019-09-19

Family

ID=66166727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045771A Active JP6501015B1 (ja) 2018-03-13 2018-03-13 電源基板

Country Status (1)

Country Link
JP (1) JP6501015B1 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195921A (ja) * 1997-12-26 1999-07-21 Kokusai Electric Co Ltd カード状アンテナ
JP3864093B2 (ja) * 2002-01-10 2006-12-27 シャープ株式会社 プリント配線基板、電波受信用コンバータおよびアンテナ装置
JP2006093842A (ja) * 2004-09-21 2006-04-06 Alps Electric Co Ltd アンテナ装置の共振周波数調整方法
JP4715929B2 (ja) * 2009-01-29 2011-07-06 ブラザー工業株式会社 画像形成装置および用紙搬送装置
JP2012018782A (ja) * 2010-07-07 2012-01-26 Yasushi Sato イオン発生端子
TWI504055B (zh) * 2010-10-21 2015-10-11 Murata Manufacturing Co Laminated filter
JP5338875B2 (ja) * 2011-08-25 2013-11-13 株式会社村田製作所 Dc−dcコンバータ
JP5870827B2 (ja) * 2012-04-12 2016-03-01 株式会社デンソー 回路基板及び回路基板の製造方法

Also Published As

Publication number Publication date
JP2019161857A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
US6781233B2 (en) Semiconductor device and converter device with an integrated capacitor
JP7136553B2 (ja) 電子制御装置
JP6187606B2 (ja) プリント基板
JPWO2017022221A1 (ja) 放熱構造および電子機器
JP2004165664A (ja) ヒートシンクを有する電気回路用遮蔽ケーシング
JP2013094028A (ja) スイッチングレギュレータおよびそれを備える電源装置
JP6790902B2 (ja) 電子装置
CN106469695B (zh) 电子电气设备
JP6501015B1 (ja) 電源基板
JP2017191904A (ja) 半導体装置の放熱構造
JP2008016582A (ja) 電子機器用プリント基板
CN108235672B (zh) 屏蔽体、电子电路以及dc-dc转换器
JP6515678B2 (ja) コンバータ搭載基板
JP6202112B2 (ja) ノイズ低減用電子部品
JP6612008B1 (ja) 電子機器
JP2006060986A (ja) 電力変換装置の導体構造
US10510636B2 (en) Electronic module
JP2019062234A (ja) 電子電気機器
JP2017041494A (ja) 電子電気機器
JP2004014862A (ja) 配線構造
JP2016171157A (ja) 高周波半導体用パッケージ
JP7307844B2 (ja) 電子制御装置
JP2023141301A (ja) 高電圧印加回路
CN217387155U (zh) 功率模块
JP2002158317A (ja) 低ノイズ放熱icパッケージ及び回路基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6501015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150