JP6475440B2 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
JP6475440B2
JP6475440B2 JP2014171131A JP2014171131A JP6475440B2 JP 6475440 B2 JP6475440 B2 JP 6475440B2 JP 2014171131 A JP2014171131 A JP 2014171131A JP 2014171131 A JP2014171131 A JP 2014171131A JP 6475440 B2 JP6475440 B2 JP 6475440B2
Authority
JP
Japan
Prior art keywords
vehicle
collision
gas
rotational behavior
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014171131A
Other languages
English (en)
Other versions
JP2016046963A (ja
Inventor
晴彦 長橋
晴彦 長橋
清一 石関
清一 石関
秀喜 榎本
秀喜 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2014171131A priority Critical patent/JP6475440B2/ja
Publication of JP2016046963A publication Critical patent/JP2016046963A/ja
Application granted granted Critical
Publication of JP6475440B2 publication Critical patent/JP6475440B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、燃料ガスが充填される燃料タンクと、燃料タンクに接続されるガス消費機器と、を備える車両用制御装置に関する。
天然ガス自動車や燃料電池車等の車両は、燃料として天然ガスや水素ガス等の燃料ガスを利用している。これらの車両においては、燃料タンクから燃料電池等のガス消費機器に対し、ガス配管を介して燃料ガスが供給されている(特許文献1参照)。
特開2014−92213号公報
ところで、燃料ガスを利用する車両においては、車両が衝突する場合であっても、ガス配管等からのガス漏れを防止することが重要である。特に、車両がオフセット衝突した場合には、衝突に伴って車両がスピンすることから、車両前部や車両後部だけでなく車両側部から障害物に衝突してしまう虞がある。したがって、車両衝突時の安全性を向上させるためには、衝突状況を考慮した上でガス漏れ等に対する安全対策を施すことが重要となっている。
本発明の目的は、車両衝突時の安全性を向上させることにある。
本発明の車両用制御装置は、燃料ガスが充填される燃料タンクと、前記燃料タンクに接続されるガス消費機器と、を備える車両用制御装置であって、車体中心線から右側の第1車体側部に設けられ、前記燃料タンクと前記ガス消費機器とを互いに接続する第1ガス経路と、前記燃料タンクと前記ガス消費機器との間の前記第1ガス経路に設けられ、連通状態と遮断状態とに切り替えられる第1バルブと、車体中心線から左側の第2車体側部に設けられ、前記燃料タンクと前記ガス消費機器とを互いに接続する第2ガス経路と、前記燃料タンクと前記ガス消費機器との間の前記第2ガス経路に設けられ、連通状態と遮断状態とに切り替えられる第2バルブと、車両の周囲に存在する衝突対象物を検出し、前記車両と前記衝突対象物との相対的な位置情報を算出する位置算出部と、前記位置情報の推移に基づいて、前記車両と前記衝突対象物との移動速度差を算出する速度差算出部と、前記位置情報の推移に基づいて、前記衝突対象物に対する前記車両の接触部位を予測する接触部位予測部と、前記移動速度差と前記接触部位とに基づいて、衝突による前記車両の回転挙動を予測する回転挙動予測部と、前記回転挙動が閾値を上回る場合に、前記第1バルブと前記第2バルブとの少なくともいずれか一方を遮断状態に制御するバルブ制御部と、を有する。
本発明によれば、予測された衝突時の回転挙動に基づいて、第1ガス経路の第1バルブを連通状態または遮断状態に制御し、第2ガス経路の第2バルブを連通状態または遮断状態に制御している。これにより、車両衝突時の安全性を向上させることが可能となる。
本発明の一実施の形態である車両用制御装置を備えた車両を示す概略図である。 制御ユニットが有する機能の一部を示すブロック図である。 (a)〜(c)は、車両と衝突対象物との接近状況の例を示すイメージ図である。 (a)および(b)は、車両と衝突対象物との衝突状況を示すイメージ図である。 (a)および(b)は、車両と衝突対象物との衝突状況を示すイメージ図である。 (a)〜(c)は、見かけの慣性モーメントが回転挙動に与える影響を示すイメージ図である。 バルブ制御の実行手順の一例を示すフローチャートである。 車両衝突時における第1および第2カットバルブの作動状態を示す図である。 車両衝突時における第1および第2カットバルブの作動状態を示す図である。 車両が左方向に大きく回転する衝突状況の一例を示す図である。 車両衝突時における第1および第2カットバルブの作動状態を示す図である。 車両が右方向に大きく回転する衝突状況の一例を示す図である。 (a)〜(c)は、見かけの慣性モーメントが回転挙動に与える影響を示すイメージ図である。 本発明の他の実施の形態である車両用制御装置を備えた車両を示す概略図である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は本発明の一実施の形態である車両用制御装置10を備えた車両11を示す概略図である。図1に示すように、車両11には、エンジン12および変速機13からなるパワートレイン14が搭載されている。パワートレイン14の変速機13には、駆動軸15を介して駆動輪16が連結されている。また、天然ガス自動車としての車両11には、天然ガス(燃料ガス)が充填される燃料タンク17が搭載されている。この燃料タンク17には、並列に接続された2つのガス配管であるガス経路20,30を介して、レギュレータやフィルタ等からなるガス調整機器18が接続されている。また、ガス調整機器18には、供給配管19を介してエンジン(ガス消費機器)12のインジェクタ12aが接続されている。
前述したように、燃料タンク17とエンジン12とは、2つのガス経路20,30を介して接続されている。第1ガス経路20は、車体中心線CLよりも右側(一方側)の車体を構成する車体右側部(第1車体側部)21に配設されている。一方、第2ガス経路30は、車体中心線CLよりも左側(他方側)の車体を構成する車体左側部(第2車体側部)31に配設されている。車体右側部21に配設される第1ガス経路20には、連通状態と遮断状態とに切り替えられる第1カットバルブ(第1バルブ)22が設けられている。同様に、車体左側部31に配設される第2ガス経路30には、連通状態と遮断状態とに切り替えられる第2カットバルブ(第2バルブ)32が設けられている。
図1に示すように、車両用制御装置10は、第1および第2カットバルブ22,32を制御するため、CPUやメモリ等によって構成される制御ユニット40を有している。この制御ユニット40には、車両前方を撮像するカメラユニットC1、車両右方を撮像するカメラユニットC2、車両左方を撮像するカメラユニットC3、車両後方を撮像するカメラユニットC4が接続されている。また、制御ユニット40には、各車輪の回転速度を検出する車輪速センサ41、ステアリングホイールの操舵角を検出する操舵角センサ42、車両11の鉛直軸まわりの回転角速度つまりヨーレートを検出するヨーレートセンサ43等が接続されている。
続いて、制御ユニット40の機能について詳細に説明する。図2は制御ユニット40が有する機能の一部を示すブロック図である。図2に示すように、制御ユニット40は、衝突時における車両11の回転挙動を予測する車両挙動予測部50と、予測された回転挙動に基づきカットバルブ22,32を制御するバルブ制御部51と、を有している。車両挙動予測部50は、画像処理部52、衝突予測部53、ヨーモーメント算出部54、慣性モーメント算出部55および回転予測部56を備えている。このような構成の制御ユニット40は、後述するように、位置算出部、速度差算出部、接触部位予測部、回転挙動予測部およびバルブ制御部として機能している。
カメラユニットC1〜C4は、CCDやCMOS等のイメージセンサを内蔵しており、所定周期で撮像した画像データを画像処理部52に送信する。画像処理部52は、カメラユニットC1〜C4から取得した車両周囲の画像データを処理し、車両11の周囲に存在する衝突対象物Xつまり他の車両や障害物等を検出する。また、画像処理部52は、位置算出部として機能する機能部52aと、速度差算出部として機能する機能部52bとを有している。機能部52a,52bを備える画像処理部52は、所定周期毎に画像データから車両11と衝突対象物Xとの相対的な座標等の位置情報を算出し、位置情報の推移に基づいて車両11と衝突対象物Xとの移動速度差を算出する。さらに、画像処理部52は、車両11と衝突対象物Xとの相対的な位置情報の推移に基づいて、衝突対象物Xに対する車両11の相対的な移動方向を算出する。そして、衝突予測部53は、画像処理部52から取得した位置情報、移動速度差、移動方向等に基づいて、所定時間内に車両11と衝突対象物Xとが衝突するか否かを判定する。なお、図3に示すように、衝突予測部53には操舵角センサ42から操舵角が送信されており、衝突予測部53は車両11の移動方向を予測した上で、車両11と衝突対象物Xとが衝突するか否かを判定している。
ここで、図3(a)〜(c)は車両11と衝突対象物Xとの接近状況の例を示すイメージ図である。図3(a)〜(c)においては、矢印の長さによって車両11と衝突対象物Xとの移動速度差の大きさを表し、矢印の向きによって衝突対象物Xに対する車両11の相対的な移動方向を表している。なお、図3(a)〜(c)に破線で示した車両11は、所定時間後における車両11の到達位置を示している。例えば、図3(a)に示すように、車両11の移動方向に衝突対象物Xが存在するものの、車両11と衝突対象物Xとの距離に比べて移動速度差が小さい場合には、所定時間後に車両11が衝突対象物Xまで到達しないことから、衝突予測部53によって衝突の可能性が無いと判定される。また、図3(b)に示すように、車両11の移動方向に衝突対象物Xが存在しており、車両11と衝突対象物Xとの距離に比べて移動速度差が大きい場合には、所定時間後に車両11が衝突対象物Xまで到達することから、衝突予測部53によって衝突の可能性が有ると判定される。また、図3(c)に示すように、車両11と衝突対象物Xとの距離に比べて移動速度差が大きいものの、ステアリング操作に伴って車両11の移動方向から衝突対象物Xが外れる場合には、衝突予測部53によって衝突の可能性が無いと判定される。
前述のように、衝突予測部53によって衝突の可能性が有ると判定されると、図2に示すように、その判定結果が衝突予測部53からヨーモーメント算出部54に送信される。ヨーモーメント算出部54は、衝突時に車両11に作用するヨーモーメントYm、つまり衝突時に車両11に作用する鉛直軸まわりのモーメントを算出する。続いて、回転予測部56は、ヨーモーメント算出部54から送信されるヨーモーメントYmに基づいて、衝突時における車両11の回転挙動を予測する。ここで、車両11の回転挙動の予測精度を高めるため、車両挙動予測部50には慣性モーメント算出部55が設けられており、慣性モーメント算出部55によって車両11の見かけの慣性モーメントImが算出される。この車両11の見かけの慣性モーメントImとは、車両11の回転し易さを示す指標であり、走行路面の摩擦抵抗や車両11の旋回状況等に応じて変化する指標である。このような慣性モーメントImと前述したヨーモーメントYmとに基づいて、回転予測部56は衝突時における車両11の回転挙動を予測する。なお、車両11の回転挙動とは、車両11が車両重心Cの鉛直軸まわりに回転する際の、回転角、回転角速度、回転角加速度、回転方向等を意味している。
以下、ヨーモーメント算出部54によるヨーモーメントYmの算出手順について詳細に説明し、回転予測部56による回転挙動の予測状況について説明する。まず、接触部位予測部として機能するヨーモーメント算出部54は、車両11と衝突対象物Xとの接触位置、つまり衝突対象物Xに対する車両11の接触部位αを予測する。ここで、図4および図5は車両11と衝突対象物Xとの衝突状況を示すイメージ図である。図4(a)に示すように、車両11の進行方向に衝突対象物Xが存在しており、衝突対象物Xに対して衝突の可能性が有ると判定された場合には、ヨーモーメント算出部54によって、衝突対象物Xに対する車両11の接触部位αが予測される。図4(a)に示すように、ヨーモーメント算出部54は、接触部位αの位置を予測する際に、画像データから衝突対象物Xの外形形状を解析し、車両11に対して最初に接触する衝突対象物Xの凸部Xaを特定する。そして、ヨーモーメント算出部54は、衝突対象物Xの凸部Xaに対向する車両11の外縁位置を、車両11の接触部位αとして予測する。なお、凸部Xaと車両11とが対向する方向とは、位置情報の推移に基づき算出される車両11と衝突対象物Xとの相対的な移動方向である。このように、衝突対象物Xに対する車両11の接触部位αは、車両11と衝突対象物Xとの相対的な位置情報の推移に基づき予測される。なお、車両11に対する衝突対象物Xの対向範囲Xb内であれば、車両11の他の外縁位置を接触部位αとして予測しても良い。
このように車両11の接触部位αが予測されると、続いて車両11の車両重心Cと接触部位αとのオフセット量βが算出される。つまり、衝突対象物Xの相対的な移動方向に伸びる基準線L1が算出され、車両重心Cを通過して基準線L1に平行となる基準線L2が算出され、これら基準線L1と基準線L2とのオフセット量βが算出される。次いで、車両11と衝突対象物Xとの移動速度差に基づいて、衝突時に車両11に作用する推力Fが算出される。なお、衝突時に作用する推力Fの大きさは、車両11の質量、衝突対象物Xの質量、衝突対象物Xが固定物である場合、衝突対象物Xが可動物である場合等によって変化するため、これらの情報に基づいて推力Fを補正しても良い。また、衝突時に作用する推力Fの大きさは、衝突時点の移動速度差によって決定されるため、衝突前に算出された移動速度差から衝突時点の移動速度差を予測し、予測された移動速度差を用いて推力Fを算出しても良い。
前述したように、オフセット量βおよび推力Fが算出されると、以下の式(1)に基づいて、衝突時に車両11に作用するヨーモーメントYmが算出される。すなわち、図4(a)に示すように、車両11の左前部に対して衝突対象物Xの衝突が予測される場合には、図4(b)に示すように、衝突時に車両11に作用するヨーモーメントとして、車両11を左方向に回転させるヨーモーメントYmが算出される。一方、図5(a)に示すように、車両11の右前部に対して衝突対象物Xの衝突が予測される場合には、図5(b)に示すように、衝突時に車両11に作用するヨーモーメントとして、車両11を右方向に回転させるヨーモーメントYmが算出される。
Ym=F×β ・・・(1)
このようにヨーモーメントYmが算出されると、回転挙動予測部として機能する回転予測部56により、ヨーモーメントYmの大きさから車両11の回転挙動が予測される。ところで、車両衝突に伴う車両11の回転挙動は、ヨーモーメントYmの大きさによって予測可能であるものの、前述したように、回転挙動の予測精度を高めるためには、車両11の見かけの慣性モーメントImによって回転挙動を補正することが望ましい。ここで、図6(a)〜(c)は、見かけの慣性モーメントImが回転挙動に与える影響を示すイメージ図である。図6(a)には摩擦抵抗の大きな走行路面での衝突状況が示され、図6(b)には摩擦抵抗が中程度の走行路面における衝突状況が示され、図6(c)には摩擦抵抗の小さな走行路面での衝突状況が示されている。なお、図6(a)〜(c)においては、車両11に対して同じ大きさのヨーモーメントYmが作用している。
図6(a)〜(c)に示すように、衝突時に同じ大きさのヨーモーメントYmが作用する場合であっても、走行路面の摩擦抵抗に応じて、車両11の回転角や回転角速度等の回転挙動は変化することになる。すなわち、図6(a)に示すように、走行路面の摩擦抵抗が大きい場合には、衝突時に車両11が回転し難い状況、つまり慣性モーメントImが大きい状況であることから、車両11の回転挙動が小さく現れることになる。一方、図6(c)に示すように、走行路面の摩擦抵抗が小さい場合には、衝突時に車両11が回転し易い状況、つまり慣性モーメントImが小さい状況であることから、車両11の回転挙動が大きく現れることになる。このため、回転挙動の大きさを示す指標Mは、慣性モーメントImが大きい程に小さくなり、慣性モーメントImが小さい程に大きくなるように、以下の式(2)に基づき算出される。すなわち、走行路面の摩擦抵抗が大きいほど、車両11の回転挙動を表す指標Mは小さな値に補正され、走行路面の摩擦抵抗が小さいほど、車両11の回転挙動を表す指標Mは大きな値に補正される。なお、走行路面の摩擦抵抗は、例えば、各車輪に伝達される駆動トルクと各車輪のスリップ状況との関係に基づいて推定される。
M=Ym/Im ・・・(2)
続いて、予測された回転挙動に応じて第1および第2カットバルブ22,32を切替制御するバルブ制御について説明する。図7はバルブ制御の実行手順の一例を示すフローチャートである。なお、バルブ制御が実行される走行時において、第1カットバルブ22と第2カットバルブ32とは、共に連通状態に制御されている。図7に示すように、ステップS1では、カメラユニットC1〜C4から送信される画像データが処理され、ステップS2では、車両11の周囲に存在する衝突対象物Xつまり他の車両等が解析される。次いで、ステップS3では、車両11と衝突対象物Xとの相対的な位置情報や移動速度差等に基づき、車両11に対する衝突対象物Xの衝突の可能性について判定される。ステップS3において、衝突の可能性が有ると判定された場合には、ステップS4に進み、衝突時のヨーモーメントYmや車両11の慣性モーメントImが算出され、モーメントYm,Imに基づき衝突時の回転挙動を示す指標Mが算出される。
続いて、ステップS5では、衝突時の回転挙動を示す指標Mが、閾値Mo以上であるか否かが判定される。ステップS5において、衝突時の回転挙動を示す指標Mが閾値Mo未満であると判定された場合、つまり衝突時の回転挙動が小さいと判定された場合には、ステップS6に進み、第1および第2カットバルブ22,32が連通状態に制御される。一方、ステップS5において、指標Mが閾値Mo以上であると判定された場合、つまり衝突時の回転挙動が大きいと判定された場合には、ステップS7に進み、衝突による回転挙動が左回りであるか否かが判定される。ステップS7において、回転挙動が左回り、つまり車両前部を左方向に移動させる左回りであると判定された場合には、ステップS8に進み、第1カットバルブ22が遮断状態に制御され、第2カットバルブ32が連通状態に制御される。一方、ステップS7において、回転挙動が右回り、つまり車両前部を右方向に移動させる右回りであると判定された場合には、ステップS9に進み、第1カットバルブ22が連通状態に制御され、第2カットバルブ32が遮断状態に制御される。
ここで、図8および図9は車両衝突時における第1および第2カットバルブ22,32の作動状態を示す図である。また、図10は車両11が左方向に大きく回転する衝突状況の一例を示す図である。図8に示すように、直進する車両11の左前部に衝突対象物Xが衝突し、車両11が左方向に小さく回転する場合には、回転挙動を示す指標Mが閾値Moを下回る衝突状況となる。このような衝突時には、前述のステップS6に進むことから、第1カットバルブ22と第2カットバルブ32との双方が連通状態に制御される。一方、図9に示すように、直進する車両11の左前部に衝突対象物Xが衝突し、車両11が左方向に大きく回転する場合においては、回転挙動を示す指標Mが閾値Moを上回る衝突状況となる。このような衝突時には、前述のステップS8に進むことから、第1カットバルブ22が遮断状態に制御され、第2カットバルブ32が連通状態に制御される。このように、車両11が左方向に大きく回転する場合には、図10に示すように、車体右側部21から他の先行車両V1等に衝突する状況が考えられる。このため、第1カットバルブ22を遮断することにより、想定された衝突箇所側に配設される第1ガス経路20のガス供給を停止することができ、車両衝突時の安全性を向上させることが可能となる。しかも、第2カットバルブ32は連通状態に保持されることから、第2ガス経路30を介してエンジン12に燃料ガスを供給することができ、衝突後における最低限の走行性能を確保することが可能となる。
図11は車両衝突時における第1および第2カットバルブ22,32の作動状態を示す図である。また、図12は車両11が右方向に大きく回転する衝突状況の一例を示す図である。図11に示すように、直進する車両11の右前部に衝突対象物Xが衝突し、車両11が右方向に大きく回転する場合においては、回転挙動を示す指標Mが閾値Moを上回る衝突状況となる。このような衝突時には、前述のステップS9に進むことから、第2カットバルブ32が遮断状態に制御され、第1カットバルブ22が連通状態に制御される。このように、車両11が右方向に大きく回転する場合には、図12に示すように、車体左側部31から他の先行車両V1等に衝突する状況が考えられる。このため、第2カットバルブ32を遮断することにより、想定された衝突箇所側に配設される第2ガス経路30のガス供給を停止することができ、車両衝突時の安全性を向上させることが可能となる。しかも、第1カットバルブ22は連通状態に保持されることから、第1ガス経路20を介してエンジン12に燃料ガスを供給することができ、衝突後における最低限の走行性能を確保することが可能となる。
前述の説明では、回転挙動を示す指標Mが閾値Moを上回る場合に、回転方向に応じて第1カットバルブ22と第2カットバルブ32との一方を遮断状態に制御しているが、これに限られることはない。例えば、回転挙動を示す指標Mが閾値Moを上回る場合に、第1カットバルブ22と第2カットバルブ32との双方を遮断状態に制御しても良い。この場合には、車体各部に設置される加速度センサの検出信号等に基づき、車体右側部21と車体左側部31との衝突状況が判定され、再走行に備えて未衝突側のカットバルブ22,32が連通状態に切り替えられる。また、前述の説明では、衝突による回転挙動が予測された時点で、第1カットバルブ22と第2カットバルブ32とを制御しているが、これに限られることはなく、車体各部に設置される加速度センサの検出信号等に基づき、衝突発生時点で第1カットバルブ22と第2カットバルブ32とを制御しても良い。また、衝突発生までの時間であるTTC(Time To Collision)に基づいて、第1カットバルブ22と第2カットバルブ32との制御を開始しても良い。なお、TTCとは、車両11と衝突対象物Xとの距離を、車両11と衝突対象物Xとの移動速度差で除した値である。
前述の説明では、走行路面の摩擦抵抗によって衝突時の回転挙動が変化することを説明したが、これに限られることはなく、衝突時の旋回状況つまりヨーレートによっても衝突時の回転挙動は変化することになる。ここで、図13(a)〜(c)は、見かけの慣性モーメントImが回転挙動に与える影響を示すイメージ図である。図13(a)には右旋回時に衝突した状況が示され、図13(b)には直進時に衝突した状況が示され、図13(c)には左旋回時に衝突した状況が示されている。なお、図13(a)〜(c)においては、車両11に対して同じ大きさのヨーモーメントYmが作用しており、走行路面の摩擦抵抗についても同じ値となっている。
図13(a)〜(c)に示すように、衝突時に同じ大きさのヨーモーメントYmが作用する場合であっても、車両11の旋回状況に応じて慣性モーメントImが変化し、車両11の回転挙動が変化することになる。例えば、図13(a)に示すように、車両11の左前部に対して衝突対象物Xが衝突する場合には、車両11を左方向に回転させるヨーモーメントYmが衝突時に発生する。このような衝突時において、車両11が右方向に旋回していた場合には、旋回走行時に発生するヨーモーメントYm1によって、衝突時に発生するヨーモーメントYmが打ち消されることから、車両11の回転挙動が小さく現れる。一方、図13(c)に示すように、車両11が左方向に旋回していた場合には、旋回走行時に発生するヨーモーメントYm1によって、衝突時に発生するヨーモーメントYmが助長されることから、車両11の回転挙動が大きく現れる。このように、回転挙動を示す指標Mの算出に用いられる慣性モーメントImは、走行路面の摩擦抵抗によって変化するだけでなく、車両11の旋回状況によっても変化している。このため、操舵角やヨーレート等に基づいて車両11の旋回状況を判定し、回転挙動を示す指標Mを旋回状況によって補正しても良い。
また、前述の説明では、天然ガス自動車である車両11に対して本発明を適用しているが、これに限られることはなく、燃料電池車である車両に対して本発明を適用しても良い。ここで、図14は本発明の他の実施の形態である車両用制御装置60を備えた車両61を示す概略図である。なお、図14において、図1に示した部品と同様の部品については、同一の符号を付してその説明を省略する。
図14に示すように、燃料電池車としての車両61には、動力源としてモータジェネレータ62を備えたパワートレイン63が搭載されている。パワートレイン63のモータジェネレータ62には、インバータ64を介してバッテリ65および燃料電池(ガス消費機器)66が接続されている。また、車両61には、水素ガス(燃料ガス)が充填される燃料タンク17が搭載されている。この燃料タンク17には、車体右側部21に配設された第1ガス経路20、および車体左側部31に配設された第2ガス経路30を介して燃料電池66が接続されている。また、第1ガス経路20には第1カットバルブ22が設けられており、第2ガス経路30には第2カットバルブ32が設けられている。このように、燃料電池車として構成される車両61においても、衝突時の回転挙動に基づきカットバルブ22,32を制御することにより、前述した車両11と同様に、衝突時の安全性を向上させることが可能となる。
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、前述の説明では、衝突対象物Xが車両11の前方から衝突する衝突パターンを例示しているが、これに限られることはない。例えば、衝突対象物Xが車両11の側方から衝突する衝突パターンや、衝突対象物Xが車両11の後方から衝突する衝突パターンであっても、本発明を有効に適用することが可能である。また、前述の説明では、単眼カメラやステレオカメラ等のカメラユニットC1〜C4を使用することで車両周囲の衝突対象物Xを検出しているが、これに限られることはない。例えば、ミリ波レーダや赤外線レーザ等を使用することで車両周囲の衝突対象物Xを検出しても良い。さらに、カメラユニット、ミリ波レーダ、赤外線レーザ等を、組み合わせて使用することで車両周囲の衝突対象物Xを検出しても良い。なお、前述の説明では、車両周囲の衝突対象物Xを検出するため、車両11に対して4つのカメラユニットC1〜C4を搭載しているが、これに限られることはなく、例えば、車両11に対して1つのカメラユニットを搭載しても良い。
図示する場合には、第1ガス経路20および第2ガス経路30を車幅方向に離して設置しているが、これに限られることはなく、第1ガス経路20と第2ガス経路30とを車体中心線CLに近づけて設置しても良い。また、前述の説明では、2つのガス経路20,30を設けているが、これに限られることはなく、3つ以上のガス経路を設けても良い。なお、前述の説明では、位置算出部、速度差算出部、接触部位予測部、回転挙動予測部およびバルブ制御部を、1つの制御ユニット40に組み込んでいるが、これに限られることはない。例えば、位置算出部、速度差算出部、接触部位予測部、回転挙動予測部およびバルブ制御部を、複数の制御ユニットに分けて組み込んでも良い。
10 車両用制御装置
11 車両
12 エンジン(ガス消費機器)
17 燃料タンク
20 第1ガス経路
21 車体右側部(第1車体側部)
22 第1カットバルブ(第1バルブ)
30 第2ガス経路
31 車体左側部(第2車体側部)
32 第2カットバルブ(第2バルブ)
40 制御ユニット(位置算出部,速度差算出部,接触部位予測部,回転挙動予測部,バルブ制御部)
60 車両用制御装置
61 車両
66 燃料電池(ガス消費機器)
CL 車体中心線

Claims (3)

  1. 燃料ガスが充填される燃料タンクと、前記燃料タンクに接続されるガス消費機器と、を備える車両用制御装置であって、
    車体中心線から右側の第1車体側部に設けられ、前記燃料タンクと前記ガス消費機器とを互いに接続する第1ガス経路と、
    前記燃料タンクと前記ガス消費機器との間の前記第1ガス経路に設けられ、連通状態と遮断状態とに切り替えられる第1バルブと、
    車体中心線から左側の第2車体側部に設けられ、前記燃料タンクと前記ガス消費機器とを互いに接続する第2ガス経路と、
    前記燃料タンクと前記ガス消費機器との間の前記第2ガス経路に設けられ、連通状態と遮断状態とに切り替えられる第2バルブと、
    車両の周囲に存在する衝突対象物を検出し、前記車両と前記衝突対象物との相対的な位置情報を算出する位置算出部と、
    前記位置情報の推移に基づいて、前記車両と前記衝突対象物との移動速度差を算出する速度差算出部と、
    前記位置情報の推移に基づいて、前記衝突対象物に対する前記車両の接触部位を予測する接触部位予測部と、
    前記移動速度差と前記接触部位とに基づいて、衝突による前記車両の回転挙動を予測する回転挙動予測部と、
    前記回転挙動が閾値を上回る場合に、前記第1バルブと前記第2バルブとの少なくともいずれか一方を遮断状態に制御するバルブ制御部と、
    を有する、車両用制御装置。
  2. 請求項1に記載の車両用制御装置において、
    前記回転挙動予測部は、走行路面の摩擦抵抗に基づき前記回転挙動を補正する、
    車両用制御装置。
  3. 請求項2に記載の車両用制御装置において、
    前記回転挙動予測部は、前記摩擦抵抗が大きいほど、前記回転挙動を小さな値に補正し、前記摩擦抵抗が小さいほど、前記回転挙動を大きな値に補正する、
    車両用制御装置。
JP2014171131A 2014-08-26 2014-08-26 車両用制御装置 Active JP6475440B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014171131A JP6475440B2 (ja) 2014-08-26 2014-08-26 車両用制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014171131A JP6475440B2 (ja) 2014-08-26 2014-08-26 車両用制御装置

Publications (2)

Publication Number Publication Date
JP2016046963A JP2016046963A (ja) 2016-04-04
JP6475440B2 true JP6475440B2 (ja) 2019-02-27

Family

ID=55637034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014171131A Active JP6475440B2 (ja) 2014-08-26 2014-08-26 車両用制御装置

Country Status (1)

Country Link
JP (1) JP6475440B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977127B (zh) * 2021-02-08 2022-07-29 南京交通职业技术学院 一种新能源汽车充电桩的防撞击保护装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960524B2 (ja) * 2002-03-13 2007-08-15 本田技研工業株式会社 車両用ガス燃料供給装置
JP4066882B2 (ja) * 2003-05-22 2008-03-26 トヨタ自動車株式会社 車載燃料電池発電システムの制御装置および制御方法
JP5092678B2 (ja) * 2007-10-18 2012-12-05 日産自動車株式会社 車両用乗員保護装置
JP2009238634A (ja) * 2008-03-27 2009-10-15 Fujitsu Ten Ltd 制御装置
JP5534192B2 (ja) * 2010-04-09 2014-06-25 トヨタ自動車株式会社 ガスタンクシステム及び車両
JP5919103B2 (ja) * 2012-06-08 2016-05-18 本田技研工業株式会社 高圧ガスシステム
JP2014060031A (ja) * 2012-09-18 2014-04-03 Honda Motor Co Ltd 燃料電池システム
JP5939131B2 (ja) * 2012-11-02 2016-06-22 トヨタ自動車株式会社 燃料ガス供給装置と車両

Also Published As

Publication number Publication date
JP2016046963A (ja) 2016-04-04

Similar Documents

Publication Publication Date Title
JP6329463B2 (ja) 車両用制御装置
KR20210134530A (ko) 자율주행차량의 장애물 회피 시스템 및 방법
US20140074388A1 (en) Method and Device for the Prediction and Adaptation of Movement Trajectories of Motor Vehicles
KR101351919B1 (ko) 차선 유지 보조 시스템 및 방법
US8983765B2 (en) Method and system for lane centering control
CN103802829B (zh) 车辆的避免碰撞控制方法及实现其的避免碰撞装置
JP6067623B2 (ja) 走行制御装置
US20170001637A1 (en) Vehicle surrounding situation estimation device
US10755573B2 (en) Collision avoidance device
JP6203949B2 (ja) 自動車のための回避・ブレーキアシスト
RU2012101284A (ru) Помощник при вождении транспортного средства и способ помощи при вождении транспортного средства
JP6631289B2 (ja) 車両制御システム
JP6384416B2 (ja) 車両制御装置
Eidehall Multi-target threat assessment for automotive applications
JP2017081382A (ja) 自動運転装置
JP2010076488A (ja) 車両
JP4430000B2 (ja) 車両制御装置
JP6475440B2 (ja) 車両用制御装置
JP6481627B2 (ja) 車両用走行制御装置
JP2009252032A (ja) 車両の接触回避支援装置
JP5783788B2 (ja) 事故回避支援装置
JP6549940B2 (ja) 車両の挙動制御装置及び車両の挙動制御方法
JP6442192B2 (ja) 乗員保護装置
JP4527039B2 (ja) 運転支援装置
JP5483194B2 (ja) スライディングモード制御装置及び車両の自動操舵制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250