JP6456085B2 - 形状可変鏡システム、その制御方法および眼科装置 - Google Patents

形状可変鏡システム、その制御方法および眼科装置 Download PDF

Info

Publication number
JP6456085B2
JP6456085B2 JP2014194829A JP2014194829A JP6456085B2 JP 6456085 B2 JP6456085 B2 JP 6456085B2 JP 2014194829 A JP2014194829 A JP 2014194829A JP 2014194829 A JP2014194829 A JP 2014194829A JP 6456085 B2 JP6456085 B2 JP 6456085B2
Authority
JP
Japan
Prior art keywords
deformable mirror
shape
light
input signal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014194829A
Other languages
English (en)
Other versions
JP2016064012A5 (ja
JP2016064012A (ja
Inventor
耕平 竹野
耕平 竹野
海史 大橋
海史 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014194829A priority Critical patent/JP6456085B2/ja
Priority to US14/842,996 priority patent/US10925485B2/en
Publication of JP2016064012A publication Critical patent/JP2016064012A/ja
Publication of JP2016064012A5 publication Critical patent/JP2016064012A5/ja
Application granted granted Critical
Publication of JP6456085B2 publication Critical patent/JP6456085B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light

Description

本発明は、天体望遠鏡や眼底観察装置等に用いられる補償光学系を構成する形状可変鏡システム、及びこれを用いた眼科装置に関するものである。
現在、眼科用機器として、様々な光学機器が使用されている。中でも、眼を観察する光学機器として、前眼部撮影機、眼底カメラ、共焦点レーザー走査検眼鏡(Scanning Laser Ophthalmoscope:SLO)、光干渉断層撮像装置(Optical Coherence Tomography:OCT)等、様々な機器が使用されている。
観察対象である眼球は、角膜・房水・水晶体・硝子体・網膜からなり、4枚貼り合わせレンズと見ることもできる。しかし、角膜や水晶体の屈折率が一様でない等の理由から、眼球を経た測定光等は収差を有しており、また、その収差が眼球の観察の妨げになることがある。この収差の影響を取り除くため、眼科用光学機器において、補償光学技術(Adaptive Optics Technology:AO技術)が利用されている。AO技術とはリアルタイムに収差を計測、補正する技術である。具体的には、シャック・ハルトマンセンサーなどの波面センサーで被検眼を経た光波面の収差を計測する。そして当該光が通過する光路上に形状可変鏡を配置し、この波面の収差を打ち消すように形状可変鏡の反射面の形状を変化させることで、眼の収差に起因する光波面の収差を補正する。
上述のAO技術を眼底観察に利用した例として、特許文献1に開示される発明がある。この文献では、形状可変鏡を用いたAO部を作成する際、製造・組立やミラー材料の応力によって表面形状及び変形特性に個体差が生じてしまうため、キャリブレーションを行って理想となる電圧テンプレートを作成することを特徴としている。
特開2007−25503号公報
最近のAO技術を用いた眼底観察装置等の眼科装置においては、患者の近視や遠視など様々な視度の補正を形状可変鏡で行うことが要求されているが、実現に向けて課題は多い。その中で、大きな視度の補正をする場合、形状可変鏡の非線形性が問題となることがある。例えば、−10ディオプターにおよぶ強い近視を形状可変鏡で視度補正するためには、P−V値で50μm程度の大変形が必要となる。このため、患者負担を考えて撮影時間を縮める場合、この大変形に伴う非線形性を効率的に補正することが求められている。
しかしながら、上記特許文献1に記載の従来例では、電圧テンプレートを随時更新するため多数回の演算が必要となり、所望の形状可変鏡の形状を得るのに長い時間を要する。
本発明はこのような状況に鑑みて為されたものであって、AO部に利用される形状可変鏡システムからの反射光が所望の光波面形状に到達するまでにかかる時間を短縮することを目的とする。
上記目的を達成するために本発明の一態様に係る形状可変鏡システムは、
入力信号に応じた変形量で反射面の形状を変化させることができる形状可変鏡と、
前記形状可変鏡からの反射光の光波面形状を計測する光波面計測手段と、
前記入力信号の変化に対する前記反射光の光波面形状の変化量から前記入力信号を得る際に用いる換算係数を演算する換算係数演算手段と、
前記光波面計測手段計測された光波面形状と前記入力信号に基づく光波面形状との形状差を演算する形状差演算手段と、
前記演算された形状差に応じて前記換算係数を更新する換算係数更新手段と、を有し、
前記換算係数更新手段は、前記形状差としきい値との比較結果に基づき、前記換算係数を更新することを特徴とする。
本発明によれば、AO部に利用される形状可変鏡システムが、所望の光波面形状に到達するまでにかかる時間を短縮することが可能となり、眼科装置等による測定時間を短縮することが可能となる。
本発明の第1の実施形態に係る眼底撮像装置の構造を示す模式図である。 形状可変鏡の構造例を示す模式図である。 シャック・ハルトマンセンサーの構造を示す模式図である。 本発明の第1の実施形態における初期化プロセスのフローチャートである。 本発明の第1の実施形態における視度補正のプロセスフローチャートである。 形状可変鏡の入力値に対する光波面のデフォーカスの補正量の関係を示すグラフである。 本発明の第1の実施形態における眼底撮影のプロセスのフローチャートである。 AO制御ループ回数とAO処理の残留収差との関係を示すグラフである。 本発明の第2の実施形態における視度補正のプロセスのフローチャートである。 本発明の第3の実施形態における視度補正のプロセスのフローチャートである。
以下に、本発明を実施するための最良の形態について図面を参照して説明する。
[第1の実施形態]
<眼底撮像装置>
本発明の形状可変鏡システムを適用した眼底撮像装置の構成について図1を用いて説明する。なお、本実施形態においては、測定対象である被検査物を眼とし、該被検眼により生じる光波面の収差をAO部で補正し、眼底を撮像する。
また、図1において、本発明の形状可変鏡システムは、形状可変鏡108、波面センサー115、及びAO制御部116を有する。形状可変鏡108は、後述する入力信号に応じた変形量で反射面の形状を変化させる。波面センサー115は、形状可変鏡108からの反射光の光波面形状を計測する光波面計測手段として機能する。AO制御部116は、後述する換算係数を演算する換算係数演算手段、該換算係数を記憶する記憶装置、及び形状可変鏡を駆動する駆動制御装置を兼ねる。
該眼底撮影装置では、光源101として、波長840nmの光を発するSLD光源(Super Luminescent Diode)を用いた。光源101からの光の波長は特に制限されるものではないが、眼底撮像用としては被検者の眩しさの軽減と分解能維持のために、800〜1500nm程度の波長帯の光が好適に用いられる。なお、本実施形態においてはSLD光源を用いたが、その他にレーザー等も光源として用いられる。また、本実施形態では眼底撮像と波面測定のための測定光を得る際に光源を共用しているが、それぞれを別光源から得ることとし、これら測定光を光路の途中で合波する構成としても良い。
光源101から照射された光は、単一モード光ファイバー102を通って、コリメーター103により、平行光(測定光105)として照射される。照射された測定光105はビームスプリッターからなる光分割部104を透過し、AO部に導光される。
AO部は、第二の光分割部106、波面センサー115、形状可変鏡108および、それらに導光するための反射ミラー107−1〜4を有する。
なお、本実施形態では、形状可変鏡108として電磁型の形状可変鏡を用いた。図2(a)に電磁型の形状可変鏡の構造の模式図を示す。該形状可変鏡では、基板201上に複数のコイル204を並べ、該コイル204に印加する電圧205を制御することで発生する電磁力を制御する。なお、例示する形状可変鏡では、このコイル204に対して直列に抵抗206を挿入してある。また、メンブレン203上のコイル204に対向する位置に磁石202が取り付けられており、コイル204で発生する電磁力の大きさに応じてメンブレン203が変形する仕組みになっている。
なお、本実施形態では電磁型の形状可変鏡を用いたが、図2(b)に示す静電型や図2(c)に示す圧電型の形状可変鏡を用いてもよい。静電型の形状可変鏡では、電極206に電圧205を印加することで発生する力を利用してメンブレン203を変形させる。また、圧電型の形状可変鏡では、PZTなどの圧電材料207に電圧205を印加し、メンブレン203を変形させる。これら形状可変鏡においても、図2(a)に示す電磁型形状可変鏡と同様に抵抗206が回路において直列に挿入されている、
反射ミラー107−1〜4は、少なくとも眼111の瞳と波面センサー115、及び形状可変鏡108とが光学的に共役関係になるように設置されている。また、光分割部106として、本実施形態ではビームスプリッターを用いた。
光分割部106を透過した測定光105は、反射ミラー107−1と107−2で反射されて形状可変鏡108に入射する。形状可変鏡108で反射された測定光105は、反射ミラー107−3に出射される。
図1において、反射ミラー107−3、4で反射された光は、走査光学系109によって、1次元もしくは2次元に走査される。本実施例では走査光学系109に主走査用(眼底水平方向)と副走査用(眼底垂直方向)として2つのガルバノスキャナーを用いた。なお、走査光学系109として、より高速な撮像を行おうとする場合には、走査光学系109の主走査用に共振スキャナーを用いることもある。また、走査光学系109内の各スキャナーを光学的に共役な位置に配置するために、各スキャナーの間にミラーやレンズといった光学素子を用いる装置構成とする場合もある。
走査光学系109で走査された測定光105は、接眼レンズ110−1および110−2を通して眼111に照射される。眼111に照射された測定光は眼底で反射もしくは散乱される。接眼レンズ110−1および110−2の位置を調整することによって、眼111の視度にあわせて測定光105の最適な照射を行うことが可能となる。ここでは、接眼部にレンズを用いたが、球面ミラー等でこれを構成しても良い。
眼111の網膜から反射もしくは散乱された反射光は、入射した時の経路を逆向きに進行し、光分割部106によって一部が反射され、波面センサー115に入射する。
本実施形態では、波面センサー115としてシャック・ハルトマンセンサーを用いた。図3にシャック・ハルトマンセンサーの構造の模式図を示す。該シャック・ハルトマンセンサーでは、波面が測定される光線131は、マイクロレンズアレイ132を通して、CCDセンサー133上の焦点面134に集光される。図3(a)の切断面A-A‘で示す位置から見た様子を示す図が図3(b)であり、マイクロレンズアレイ132は、複数のマイクロレンズ135から構成されている。光線131は各マイクロレンズ135を通してCCDセンサー133上に集光されるため、光線131はマイクロレンズ135の個数分のスポットに分割されて集光される。
なお本実施形態では波面センサーにシャック・ハルトマンセンサーを用いたが、用いる波面センサーはそれに限定されるものではない。例えば、曲率センサーのような他の波面測定手段や、結像させた点像から逆計算で波面を求めるような方法を用いても良い。
図1において、光分割部106を透過した網膜からの反射光は光分割部104によって一部が反射される。反射された一部の光は、コリメーター112および光ファイバー113を通して光強度センサー114に導光される。導光された一部の光は光強度センサー114で電気信号に変換され、制御部117によって眼底画像として画像に構成される。構築された眼底画像は、ディスプレイ118に表示される。また、得られた画像に基づいて、制御部117は眼111の網膜に対するデフォーカス量を求める。なお、デフォーカス量の検出方法については、公知の方法を用いていることからここでの詳述は省略する。該デフォーカス量の検出は、ここで述べた制御部117等より構成される、反射光が反射された被検査物に対するデフォーカス量を検出するデフォーカス量検出手段により実行される。
波面センサー115はAO制御部116に接続され、受光した光の波面をAO制御部116に伝える。形状可変鏡108はAO制御部116に接続されており、AO制御部116から指示された変調、即ち反射面の形状変形を行う。AO制御部116は波面センサー115で測定された光波面形状を基に、収差のない波面へと光の波面を補正するような変形量(補正量)を計算し、波面補正デバイス108にそのように変調するように指令する。波面の測定と波面補正デバイスへの指示は繰り返し実行され、常に最適な波面となるようにフィードバック制御が行われる。本実施形態では、光波面形状をゼルニケ多項式の重ね合わせで近似し、各項の係数を求めた。
ここで、形状可変鏡108を駆動するため、AO制御部116で換算係数を計算する。換算係数とは、光波面形状を基準量だけ変化させるために必要な形状可変鏡への入力信号を算出する際に用いる信号の補正値である。ここで、AO制御部116は、入力信号の変化に対する反射光の波面形状の変化量から新たな入力信号を得る際に用いる換算係数を演算する換算係数演算手段として機能する。
該換算係数は、形状可変鏡への単位入力信号あたりの光波面形状の変化量である影響関数fnmから求める。例えば、形状可変鏡のn番目のアクチュエータに電圧vボルトを印加した場合に、波面センサー115で測定されたゼルニケ多項式のm項の係数がzマイクロメートル変化したとすると、影響関数fnmは以下で表される:
nm=z/v μm/V ・・・式1
ここで、nはアクチュエータの数でありn=1〜97の範囲の値をとる。また、mはゼルニケ多項式の次数で決まる範囲の値をとり、7次のゼルニケ多項式に対してm=3〜36である。ここで、m=0はピストン、m=1、2はチルトであるため、影響関数の計算から除外している。影響関数fnmは97×34個の値の組である。
すべてのアクチュエータに対して影響関数fnmの測定を行い、fnmをn行m列の値としてもつ2次元行列Fを作成し、Fの擬似逆行列を演算することで換算係数amnを求めることができる。
また、vをn番目の値としてもつ1次元ベクトルV、zをm番目の値として持つ1次元ベクトルZとすると、これらV、ZおよびFには、以下の関係がある
Z=FV ・・・式2
式2をベクトルVについて解くためには、2次元行列Fに対し、左から作用させることで単位行列Iになる行列をかければよい。このような行列は逆行列と呼ばれる。しかし、本実施形態における2次元行列Fは、行数N、列数Mとすると、N>Mであり、正方行列(M=N)を前提とした逆行列は存在しない。そこで、非正方行列である2次元行列Aに対し、左から作用させることで単位行列となる一般化された逆行列である擬似逆行列Fを計算する。疑似逆行列の計算には、特異値分解が用いられる。式2に対し、擬似逆行列Fを左から作用させ、擬似逆行列の性質FF=Iを用いることで、Vは次のように求められる。
V=FZ ・・・式3
ここで、式3は所望のゼルニケ係数を得るために必要な入力信号をあらわしており、Fのm行n列の要素が換算係数amnである。
次に、本発明を適用しつつ、AOを用いて眼底を撮影するフローを図4、図5および図7に従って説明する。
図4は、換算係数の初期値を求め、形状可変鏡の初期歪みの影響を取り除く初期化プロセスを示すフローである。初期化プロセスでは、図1の眼111として模型眼を用いる。まず、S101で初期化プロセスを開始する。初期化プロセスでは、形状可変鏡108により光が反射された場合であって当該反射光の波面が平坦となる駆動量を求める。S102で形状可変鏡108を経た模型眼111からの反射光等の光波面形状を波面センサー115で計測し、AO制御部116において計測結果よりゼルニケ多項式の係数を求める。次に、S103で同様にAO制御部116において上述した式1を用いて影響関数を求め、更にS104で式3を用いて換算係数を求める。次に得られた換算係数に基づき、S105で波面センサー115に至る光の波面を平坦にするための形状可変鏡108への入力信号を計算し、S106で当該信号を形状可変鏡108に入力してこれを駆動する。
S107では、形状変更後の形状可変鏡108を経た反射光等の光波面形状を再び測定する。S108では、形状可変鏡108の初期歪みに起因する光波面の収差量と、予め定められている収差量基準値とを比較する。収差量が収差量基準値よりも大きい場合は、駆動後も初期化が行われていないとしてフローはS103に戻り、再度S107までの工程を繰り返す。S108において収差量が収差量基準値よりも小さいと判断された場合には初期化が終了したとしてフローはS109に進む。眼底を撮影する際、形状可変鏡の反射面がフラットとなるようにするため、S109で形状可変鏡の駆動量を記憶し、S110で初期化プロセスを終了する。
次に、図5のフローに従って、実際に被験者の眼111の視度の補正を行う。S201で視度補正を開始する。S202で、前述した初期化のプロセスにおけるS109で記憶した形状可変鏡108の駆動量に基づき、形状可変鏡108の初期歪みの影響を除去する。次に、S203で、S208およびS212での判断に使用するデフォーカス基準値の設定を行う。デフォーカス基準値として、眼底撮影で得られる画像への影響が十分に小さくなるとみなせる収差量であるrms値0.03μmに対し、デフォーカス以外の収差量も含まれることを考慮し、例えば、0.01μmに設定することができる。あるいは、デフォーカス基準値は、被検眼111の固視の安定性が悪い場合には0.01μmよりも大きくしたり、デフォーカス以外の収差量が多い場合には0.01μmよりも小さくしたりすることができる。これら値は順次入力しても良く、或いは制御部117に付随するメモリ等に記憶されるテーブルより選択しても良い。或いは、被験者のID情報等に含めることとし、適宜これを用いることも可能である。S204では、被検眼111を経た反射光等の光波面形状の計測を行い、被検眼111により生じる収差の量を求める。S205では、初期化のプロセスで得られている換算係数等を再び用い、測定された収差量を補正するための形状可変鏡108への入力信号を計算する。
S206では、制御部117により得られていたデフォーカスを補正するように形状可変鏡108を駆動し、S207で駆動後における反射光の光波面形状の計測を行う。計測後、S208において、光波面形状の差と形状差基準値とを比較する。ここで、光波面形状の差とは、換算係数amnと形状可変鏡108への入力信号とから計算される光波面形状の変形量と、元の光波面形状と実際にS207で測定された光波面形状との比較より得られる実際の光波面形状の変化量との差の絶対量を指す。当該形状差の演算は、制御部117において光波面計測手段で測定された光波面形状と、入力信号に基づく光波面形状との形状差を演算する形状差演算手段として機能するモジュール領域によって実行される。
光波面形状の差が形状差基準値を上回る場合、形状可変鏡の非線形性が生じていると判断される。このため、S209で影響関数を再び測定し、S210で換算係数の計算も行う。即ち、換算係数更新手段として機能する制御部117内のモジュール領域によって、演算された形状差に基づいて、より詳細には形状差と形状差基準値との比較結果に基づいて、換算係数が更新される。S211では、形状可変鏡の非線形性に応じて、即ち換算係数の更新に応じてS208で判断する形状差基準値の再設定を行う。該形状差基準値は形状差のしきい値として用いられ、当該しきい値の更新は制御部117におけるしきい値更新手段として機能するモジュール領域により実行される。影響関数の測定と換算係数の計算が発生する頻度を下げる場合、この形状差基準値を大きくすると良い。
S208で、光波面形状の差が形状差基準値を上回らないと判断された場合、収差は十分に補正されていると判断してフローはS212に進む。S212では、この状態で再度フォーカスを算出し、算出されたデフォーカスの値とデフォーカス基準値との比較を行う。ここで、デフォーカスがデフォーカス基準値を下回る場合にはフローはS213に進み、視度補正のプロセスを終了する。S212の判定で、デフォーカスがデフォーカス基準値を下回らないと判定された場合には、フローはS205に戻り、形状可変鏡108への入力信号を再計算する。以上の工程を行うことによって、被検眼の視度の影響を十分に抑制した眼底画像が得られる。即ち、検出されたデフォーカス量とデフォーカス基準値との比較結果に応じて、反射光に基づく被検眼眼底の画像の撮影が許可されることとなる。この撮影許可は、制御部117に配される撮影許可手段により発せられる。
図5のフローに示される視度補正を行うことによる効果を、図6を用いて説明する。
図6は、形状可変鏡の変形によりデフォーカスが補正される状況を表すグラフで、横軸は形状可変鏡への入力値、縦軸は形状可変鏡の変形でデフォーカスが補正される量を表したものである。入力値と補正量の関係は曲線にて示している。なお、同図中では、非線形性による曲線の折れ曲がりは誇張して描いてある。また、同じグラフ上に人眼のデフォーカス量を点線で示す。図7(a)は換算係数の初期値を使用し、デフォーカスを補正した状況を表すグラフである。形状可変鏡の変形が大きくなるにしたがって、形状可変鏡への入力値に対して、得られる光波面のデフォーカスの補正量が少なくなるため、前述した光波面形状の差が発生する。
図7(b)は光波面の差が基準値を上回る場合に換算係数を更新する場合を表すグラフである。形状可変鏡への入力値が大きくなり、光波面形状の差がデフォーカス基準値1より大きくなったら、影響関数の測定と換算係数の計算を行う。得られた換算係数を用いることにより、入力値の単位増加量に応じる補正量は小さくなり、図中の曲線の傾きはなだらかとなる。また、この換算係数を用いることに伴い、新たなデフォーカス基準値2を設定する。この段階ではまだデフォーカス量が人眼のデフォーカスに達していないため、さらに形状可変鏡への入力値を大きくして補正量を増加させていく。その後、光波面形状の差がデフォーカス基準値2より大きくなったら、再度影響関数の測定と換算係数の計算を行い、換算係数の更新と新たなデフォーカス基準値3を設定する。
即ち、検出されたデフォーカス量と前記入力信号から算出された前記デフォーカス量とより残留デフォーカス量が演算される。また、演算された残留デフォーカス量と残留デフォーカス基準値とが比較されることに応じて、残留デフォーカス基準値が更新される。本実施形態では、制御部117は、この残留デフォーカス量の演算を行う残留デフォーカス量演算手段と、デフォーカス基準値を更新する残留デフォーカス基準値更新手段と、を有する。
図7は、以上に述べた発明を眼科装置に適用しつつ、AO部を用いて眼底を撮影するフローである。
S301で撮影フローを開始する。S302にて、波面センサー115により眼111からの反射光等の光波面形状を計測する。S303では、計測された光波面形状に応じで、これを補正するための形状可変鏡108への入力信号の計算を行う。S304では与えられた入力信号に応じて形状可変鏡108を駆動する。駆動終了後、S305において波面センサー115による光波面形状の計測を再び実施する。S306で再測定された収差量が収差量基準値を下回っているか判断する。ここで下回っていると判断された場合には、眼底の撮影が可能な収差量であると考えてフローはS311に移り、S311で眼底の撮影を実行する。また、下回っていないと判断された場合にはフローはS307に移る。
該S307でさらに光波面形状の差が前述した形状差基準値を上回っているかどうかを判断する。上回っていると判断された場合、フローはS308に移行し、S308からS310のプロセスを行い、S303に戻る。即ち、入力信号と形状可変鏡108の変形量との関係に非線形性が生じていると判断して、影響関数の測定及び換算係数の計算を再度実行し、新たな形状差基準値を設定する。そしてS303では再計算された新たな換算係数に応じた入力信号を計算する。形状可変鏡108はこの入力信号によって駆動され、再び、S305以降の工程が実行される。なお、その際、再びS307の工程が実行される際には、形状差基準値としては新たに設定されたものが用いられる。
S307で上回っていないと判断された場合には、問題となる非線形性は現段階では生じていないが収差量自体は大きいとして、フローはS303に戻る。この場合、S303では換算係数はそのまま用い、入力信号のみを大きくして形状可変鏡108の変形量を増加させる。変形量の増加後、収差の測定を行ってS306にて光波面形状における収差が十分に補正されているか否かを判定する。
S306で収差量が基準値を下回っていると判断された場合、S311の眼底撮影ののち、S312で撮影を終了するかどうかを判断する。ここで、継続する場合にはフローはS305に戻り、更なる撮影を実行するために新たな光波面形状の測定を行う。撮影を終了する場合にはフローはS313に移り、このプロセスは終了する。
図7のフローに示される眼底撮影工程を実行することによる効果を図8で説明する。
図7はAO部の制御ループの実行回数に対して、形状可変鏡を介した反射光等に残留する収差の量の変化の関係を示している。S401は従来のAO部の制御を行った場合について、S402は本実施形態に係るAO部の制御を行った場合について示している。また、撮影上問題とならない残留収差の量をしきい値として点線で示す。
形状可変鏡108の非線形性が生じた場合、形状可変鏡108への入力値に対する光波面形状の変形量が変化する。このため、S401で示すようにAO制御ループ1回あたりの収差の補正量が所望の量にならず、残留収差が残る。従来の場合、実際には入力信号により求められている形状可変鏡108の変形量が得られていない。このため。残留収差の測定と線形性が得られた場合に残留収差を補正すると考えられる入力信号の設定および入力が繰り返されることとなる。本発明を適用して換算係数を更新することで、S402に示すようにAO制御ループ1回あたりの収差の補正がより効果的に行われるようになり、少ないAO制御ループで残留収差がしきい値以下に収束するようになる。
このように本実施形態によれば、AOに利用される形状可変鏡システムの非線形性を補正しつつも演算回数を減らし、所望の光波面形状に到達するまでにかかる時間を短縮することができる。
[第2の実施形態]
<眼底撮像装置>
本発明の第2の実施形態について、図9のフローチャートを用いて、本発明を適用した第1の実施形態とは異なる形態の眼底撮像装置の制御方法の例について説明する。本実施形態において、基本的な装置構成は第1の実施形態と同様であることから、装置構成についての説明は省略し、本形態において特徴的な視度補正のプロセスについて詳述する。
図9は本実施形態に係る視度補正のプロセスを行うためのフローチャートをあらわし、基本的なフローは図5と同様である。従って、ここでは先のプロセスと異なる工程について述べる。S207で眼111からの反射光等の光波面形状を測定したのち、光強度センサー114および制御部117によって得られた画像よりデフォーカス量をえて、S501で残留デフォーカス量が残留デフォーカス基準値を下回るかどうかを判断する。ここで、残留デフォーカス量とは、形状可変鏡の変形でデフォーカスを補正したのち、まだ補正されずに残っているデフォーカス量を指す。
S501で残留デフォーカス量が残留デフォーカス基準値を下回っていないと判断された場合、フローはS212に移り、S212にてデフォーカス量自体がデフォーカス基準値より大きいか否かの判定を実行する。残留デフォーカス量によらず、デフォーカスの量自体が十分に小さければ撮影は可能であるとしてフローはS213に進み、プロセスを終了する。また、S501にて残留デフォーカスが残留デフォーカス基準値を下回っている場合、動作点の近傍であると判断し、フローはS208に移る。
ここで、動作点とは形状可変鏡が目標となる形状に変形する状態を表し、本実施例では残留デフォーカスがゼロとなるように形状可変鏡が変形する状態のことである。残留デフォーカスの基準値としては、例えば±1ディオプターを設定し、動作点の±1ディオプター以内になった場合にS208に移るように制御することができる。S208以降の操作については、図5に示して実施形態の操作と同様であるためにここでの説明は省略する。
即ち、前述した制御部117は、換算係数更新手段として、形状可変鏡108からの反射光が入力信号から算出された光波面形状を有するようになる形状可変鏡の動作点に対して、所定の値の範囲である例えば、±1ディオプター以内において換算係数を更新する。
図9のフローによる効果について、図6(c)を用いて説明する。
残留デフォーカスは、図6(c)の両矢印で表される量である。残留デフォーカスが残留デフォーカス基準値3で表される量を下回った時に、S208の光波面形状の差と形状差基準値との比較が行われる。図6(c)で示される例では、光波面形状の差は形状差基準値を上回っているため、S209からS211の処理が行われる。即ち、S209での影響関数の再測定、S210での換算係数の再計算、及びS211での形状可変鏡の非線形性に応じた形状差基準値の再設定を行う。
本実施形態によれば、残留デフォーカスの量に応じた判断を入れることで、視度補正の際にさらに演算回数を減らすことができ、眼底撮影にかかる時間を短縮する効果がある。
[第3の実施形態]
<眼底撮像装置>
本発明の第3の実施形態について、図10のフローチャートを用いて、本発明を適用した第1の実施形態とは異なる形態の眼底撮像装置の制御方法の例について説明する。本実施形態において、基本的な装置構成は第1の実施形態と同様であることから、装置構成についての説明は省略し、本形態において特徴的な視度補正のプロセスについて詳述する。
図10は本実施形態に係る視度補正のプロセスを行うためのフローチャートをあらわし、基本的なフローは図5と同様である。従って、ここでは先のプロセスと異なる工程について述べる。S207で眼111からの反射光等の光波面形状を測定したのち、S601で光波面形状の測定時に得られる混入高次モードの2乗平均平方根(root mean square:rms)の値がrms基準値よりも大きいかどうかを判断する。
ここで、混入高次モードとは、形状可変鏡108の変形により光波面形状のデフォーカスを補正した際、本来は変化しないはずの光波面形状の高次モードが変化したものを表す。この現象は、メンブレンの変形が大きい場合、形状可変鏡の個々のアクチュエータの入力信号に対する駆動量が変化するために生じる。
S601で混入高次モードのrms値がrms基準値よりも大きいと判断された場合、フローはS208に移る。S208以降の操作は第1の実施形態の場合と同じであることから、ここでの説明は省略する。また、混入高次モードのrms値がrms基準値よりも大きくは無いと判断された場合、フローはS602に移る。高次モードの混入量がrms基準値よりも小さい場合、現状の形状可変鏡108の変形に関して、その変形量のみを調節することで対応可能と考えられる。このため、換算係数に定数を掛け合わせ、定数倍とすることで換算係数を補正することが可能である。この場合、定数倍は、換算係数更新手段によって実行される。
具体的には、S602で換算係数と形状可変鏡への入力信号から計算される所望の光波面形状の変化分に対する実測された光波面形状の変化分の比を計算する。そして、S603で換算係数にS602で計算された比を掛け合わせる。比例換算して得られた換算係数に基づいて、その後のS211において形状差基準値の再設定を行い、以降の工程を実行する。
本実施形態によれば、混入高次モードのrms値と基準値の判断を入れることにより、影響関数の測定と換算係数の計算を回避することができ、眼底撮影にかかる時間を短縮する効果がある。
以上述べた第1〜第3の実施形態によれば、AOに利用される形状可変鏡システムの非線形性を補正しつつも演算回数を減らし、所望の光波面形状に到達するまでにかかる時間を短縮することが可能となる。即ち、上記実施形態によれば、実測された光波面形状と所望の光波面形状の差に応じて換算係数を演算するかどうかを判断する。このため、形状可変鏡の線形性が保たれる変形量の範囲であれば換算係数を更新せず、所望の光波面形状に到達するまでにかかる時間を短縮することができるという効果が得られる。また、線形性が保たれない変化量の範囲であれば換算係数を適宜更新している。よって単純に変形量と入力信号の値との間でフィードバック制御を行う場合と比較して、より少ない補正操作によって適切に形状可変鏡を変形をさせられるという効果が得られる。
[更なる実施形態]
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理についても本発明の一形態を構成する。
また、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において、種々の変形、変更して実施することができる。例えば、上記の実施例では、収差を有する被測定物として眼を対象とした場合について述べているが、眼以外の光学的な収差を有する被測定物に本発明を適用することも可能である。この場合、本発明は眼科装置以外の、例えば形状可変鏡システムとしての態様を有する。従って、本発明は眼科装置に例示される検査装置として把握され、被検眼は被検査物の一態様として把握されることが望ましい。
(その他の実施例)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
101:光源
102:光ファイバー
103:コリメーター
104:光分割部
105:測定光
106:光分割部
107:反射ミラー
108:形状可変鏡
109:走査光学系
110:接眼レンズ
111:眼または模型眼
112:コリメーター
113:光ファイバー
114:光強度センサー
115:シャック・ハルトマンセンサー
116:AO制御部
117:制御部
118:ディスプレイ

Claims (9)

  1. 入力信号に応じた変形量で反射面の形状を変化させることができる形状可変鏡と、
    前記形状可変鏡からの反射光の光波面形状を計測する光波面計測手段と、
    前記入力信号の変化に対する前記反射光の光波面形状の変化量から前記入力信号を得る際に用いる換算係数を演算する換算係数演算手段と、
    前記光波面計測手段で計測された光波面形状と、前記入力信号に基づく光波面形状との形状差を演算する形状差演算手段と、
    前記演算された形状差に応じて前記換算係数を更新する換算係数更新手段と、を有し、
    前記換算係数更新手段は、前記形状差としきい値との比較結果に基づき、前記換算係数を更新することを特徴とする形状可変鏡システム。
  2. 前記換算係数更新手段による前記換算係数の更新に応じて前記しきい値を変更するしきい値の変更手段を有することを特徴とする請求項に記載の形状可変鏡システム。
  3. 前記換算係数更新手段は、前記形状可変鏡からの前記反射光が前記入力信号から算出された光波面形状を有するようになる前記形状可変鏡の動作点に対して所定の値の範囲で前記換算係数を更新することを特徴とする請求項1又は2に記載の形状可変鏡システム。
  4. 前記換算係数更新手段は前記換算係数を定数倍することを特徴とする請求項1乃至の何れか一項に記載の形状可変鏡システム。
  5. 前記反射光が反射された被検査物に対するデフォーカス量を検出するデフォーカス量検出手段と、
    前記検出されたデフォーカス量とデフォーカス基準値と比較結果に応じて、前記反射光に基づく前記被検査物の画像の撮影を許可する撮影許可手段と、を有することを特徴とする請求項1乃至の何れか一項に記載の形状可変鏡システム。
  6. 前記検出されたデフォーカス量と前記入力信号から算出されたデフォーカス量とより残留デフォーカス量を演算する残留デフォーカス量演算手段と、
    前記演算された残留デフォーカス量と残留デフォーカス基準値とを比較して前記残留デフォーカス基準値を更新する残留デフォーカス基準値更新手段と、を有することを特徴とする請求項に記載の形状可変鏡システム。
  7. 前記被検査物が眼であり、前記画像が前記眼の眼底の画像であることを特徴とする請求項又はに記載の形状可変鏡システムを有する眼科装置。
  8. 入力信号に応じた変形量で形状可変鏡の反射面の形状を変化させる工程と、
    前記形状可変鏡からの反射光の光波面形状を計測する光波面計測工程と、
    前記入力信号の変化に対する前記反射光の光波面形状の変化量から前記入力信号を得る際に用いる換算係数を演算する換算係数演算工程と、
    前記計測された光波面形状と前記入力信号から算出された光波面形状との形状差を演算する形状差演算工程と、
    前記演算された形状差に応じて前記換算係数を更新する換算係数更新工程と、を有し、
    前記換算係数更新工程において、前記形状差としきい値との比較結果に基づき、前記換算係数を更新することを特徴とする形状可変鏡システムの制御方法。
  9. 請求項に記載の形状可変鏡システムの制御方法の各工程をコンピュータに実行させることを特徴とするプログラム。
JP2014194829A 2014-09-25 2014-09-25 形状可変鏡システム、その制御方法および眼科装置 Active JP6456085B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014194829A JP6456085B2 (ja) 2014-09-25 2014-09-25 形状可変鏡システム、その制御方法および眼科装置
US14/842,996 US10925485B2 (en) 2014-09-25 2015-09-02 Deformable mirror system, control method therefor, and ophthalmic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194829A JP6456085B2 (ja) 2014-09-25 2014-09-25 形状可変鏡システム、その制御方法および眼科装置

Publications (3)

Publication Number Publication Date
JP2016064012A JP2016064012A (ja) 2016-04-28
JP2016064012A5 JP2016064012A5 (ja) 2017-11-02
JP6456085B2 true JP6456085B2 (ja) 2019-01-23

Family

ID=55583228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194829A Active JP6456085B2 (ja) 2014-09-25 2014-09-25 形状可変鏡システム、その制御方法および眼科装置

Country Status (2)

Country Link
US (1) US10925485B2 (ja)
JP (1) JP6456085B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113397472A (zh) 2015-03-16 2021-09-17 奇跃公司 穿戴式增强现实装置和穿戴式虚拟现实装置
NZ747005A (en) 2016-04-08 2020-04-24 Magic Leap Inc Augmented reality systems and methods with variable focus lens elements
IL307602A (en) 2017-02-23 2023-12-01 Magic Leap Inc Variable focus virtual imagers based on polarization conversion
JP6831910B2 (ja) * 2017-05-19 2021-02-17 川崎重工業株式会社 補償光学装置、光学システム及び光波面補償方法
JP2021165936A (ja) * 2020-04-07 2021-10-14 キヤノン株式会社 光学機器の評価方法および評価装置
CN114545621B (zh) * 2022-03-15 2023-09-22 中国科学院光电技术研究所 一种基于遗传算法的变形反射镜结构优化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509591B2 (ja) * 2004-02-10 2010-07-21 株式会社トプコン 収差補正機能付き画像形成装置
JP2007025503A (ja) 2005-07-20 2007-02-01 Topcon Corp 可変形状ミラーの変形方法、その方法を用いた光学装置、及び眼底観察装置
JP5835938B2 (ja) * 2011-05-10 2015-12-24 キヤノン株式会社 収差補正方法、および該方法を用いた眼底撮像方法、および眼底撮像装置
JP5997450B2 (ja) * 2012-02-08 2016-09-28 キヤノン株式会社 収差補正方法、および収差補正装置
JP5919100B2 (ja) * 2012-06-04 2016-05-18 浜松ホトニクス株式会社 補償光学システムの調整方法および補償光学システム
EP2727516B1 (en) * 2012-10-30 2020-01-01 Canon Kabushiki Kaisha Ophthalmologic apparatus
CN103211575B (zh) * 2013-03-06 2014-11-05 南京航空航天大学 一种人眼像差校正控制方法
JP6203008B2 (ja) 2013-11-14 2017-09-27 キヤノン株式会社 補償光学系及び撮像装置

Also Published As

Publication number Publication date
US20160089023A1 (en) 2016-03-31
US10925485B2 (en) 2021-02-23
JP2016064012A (ja) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6456085B2 (ja) 形状可変鏡システム、その制御方法および眼科装置
JP5835938B2 (ja) 収差補正方法、および該方法を用いた眼底撮像方法、および眼底撮像装置
KR101453327B1 (ko) 안저 촬상방법, 안저 촬상장치, 및 기억매체
JP5539089B2 (ja) 眼科装置、眼科装置の制御方法及びプログラム
JP5511324B2 (ja) 補償光学装置、補償光学方法、撮像装置、撮像方法
JP6494198B2 (ja) 眼底撮像装置、収差補正方法及びプログラム
JP5744450B2 (ja) 撮像装置及びその制御方法
JP2006006362A (ja) 光学特性測定装置及び眼底像観察装置
JP5567847B2 (ja) 補償光学装置、補償光学方法、撮像装置
JP6021394B2 (ja) 撮像方法および撮像装置
JP2016036588A (ja) 撮像装置および撮像方法
JP6572560B2 (ja) 波面補償付眼底撮影装置
JP5943953B2 (ja) 撮像装置及びその制御方法
JP7158827B2 (ja) 眼科撮影装置およびその制御方法
Bille et al. The development of wavefront technology and its application to ophthalmology
JP6116227B2 (ja) 収差測定装置およびその方法
JP2006081841A (ja) 画像形成装置、波面補正光学装置
JP2014119313A (ja) 収差測定装置およびその方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181218

R151 Written notification of patent or utility model registration

Ref document number: 6456085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151