JP6439545B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP6439545B2
JP6439545B2 JP2015072146A JP2015072146A JP6439545B2 JP 6439545 B2 JP6439545 B2 JP 6439545B2 JP 2015072146 A JP2015072146 A JP 2015072146A JP 2015072146 A JP2015072146 A JP 2015072146A JP 6439545 B2 JP6439545 B2 JP 6439545B2
Authority
JP
Japan
Prior art keywords
reformer
gas
flow rate
air
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015072146A
Other languages
English (en)
Other versions
JP2016192334A (ja
Inventor
康弘 長田
康弘 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015072146A priority Critical patent/JP6439545B2/ja
Publication of JP2016192334A publication Critical patent/JP2016192334A/ja
Application granted granted Critical
Publication of JP6439545B2 publication Critical patent/JP6439545B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料ガスと酸化剤ガスとを用いて電力を発生させる燃料電池システムに関する。
電力を発生させる燃料電池システムの研究開発が進められている。このような燃料電池システムでは、燃料電池セルに供給する水素を生成するために、メタン等の炭化水素を含む原料ガスを改質器によって改質することが一般的に行われている。
改質器における改質方法として、原料ガスとともに水蒸気を改質器に供給して反応させる水蒸気改質が知られている。水蒸気改質は、原料ガスとともに酸素を改質器に供給して反応させる部分酸化改質と比べて水素の収率が高い改質方法であるため、燃料電池システムの発電効率の向上に大きく寄与し得る改質方法である。
水蒸気改質に要する水蒸気は、水道から供給される水道水を加熱し、蒸発させて生成することも検討されている。しかしながら、水道水はカルシウム成分等の不純物を含有しており、当該不純物が燃料電池システム内で析出するなどして故障の原因となるおそれがある。このような不具合を解消するために、ろ過装置等の、水道水から不純物を除去する装置を設けることも検討されているが、それに伴って製造コストが増大するという新たな課題を招いてしまう。
これに対し、下記特許文献1には、燃料電池セルのアノードから排出されたオフガスを再利用する燃料電池システムが記載されている。詳細には、当該燃料電池システムは、アノードから排出されたオフガスの一部を改質器に供給する。また、当該燃料電池システムは、改質器に原料ガスを供給する流路にエジェクタが設けられており、原料ガスが当該エジェクタを通過することで発生する負圧によってオフガスを吸引し、そのオフガスを改質器に供給するように構成されている。オフガスは、燃料電池セルにおける電気化学反応に伴って生成された水蒸気を含有している。したがって、下記特許文献1に記載の燃料電池システムによれば、オフガスが含有する水蒸気を改質器における水蒸気改質に利用することが可能になるため、外部から水蒸気の供給を受けることなく、継続的に電力を発生できる。
また、当該燃料電池システムは、アノードから排出されたオフガスの他部は、燃焼器に供給されて燃焼する。この燃焼に伴って発生する燃焼熱を利用して改質器を加熱することによって、吸熱反応である水蒸気改質を継続的に行うことが可能となる。
特開2007−128680号公報
しかしながら、特許文献1に記載の燃料電池システムでは、エジェクタを通過する原料ガスの流量が小さくなると、エジェクタにおいて十分な負圧を発生させることができなくなる。このため、燃料電池セルに対する要求電力が小さくなったことに基づいて、改質器に供給する原料ガスの流量を小さくする場合に、オフガスを適切に吸引できなくなるおそれがある。その結果、改質器に供給できる水蒸気量が不足し、水蒸気改質を安定的に行うことができなくなるという課題があった。
例えば、エジェクタに代えてポンプを用いてオフガスを吸引する場合でも、このような課題は同様に生じ得る。一般的に、ポンプは、吐出流量が小さい駆動領域ではその流量が安定しないため、改質器に供給する原料ガスの流量を小さくする場合に、やはり改質器に供給できる水蒸気量が不足する懸念があるからである。一方、ポンプを過度に駆動させてオフガスを吸引し、改質器に供給する水蒸気量を増加させると、それに伴って燃焼器に供給できるオフガスの流量が低下してしまう。このため、燃焼熱を利用した改質器の加熱を十分に行えなくなり、やはり水蒸気改質を安定的に行うことができなくなる。
このようにして改質器に供給できる水蒸気量が減少し、改質器における炭化水素量に対する水蒸気量の比であるスチームカーボン比が小さくなると、改質触媒において炭素析出が生じるおそれがある。炭素析出が生じると、改質触媒における改質が妨げ、燃料電池システムの発電効率を低下させる原因となる。
本発明はこのような課題に鑑みてなされたものであり、その目的は、燃料電池セルのアノードから排出された水蒸気を改質器における水蒸気改質に利用しながらも、炭素析出を抑制することが可能な燃料電池装置を提供することにある。
上記課題を解決するために、本発明に係る燃料電池システムは、燃料ガスと酸化剤ガスとを用いて電力を発生させる燃料電池システム(10)であって、水蒸気改質及び部分酸化改質が可能な改質触媒(251)を有し、炭化水素を含有する原料ガス、水蒸気及び空気の供給を受け、水素を含有する燃料ガスを生成する改質器(25)と、前記改質器から供給される燃料ガスと酸化剤ガスとを反応させる燃料電池セル(FC)と、可燃ガスを燃焼させて前記改質器を加熱する燃焼器(55)と、前記燃料電池セルのアノード(AN)から排出されたオフガスを流し、該オフガスの一部を前記改質器に導く循環側流路(51B)と、該オフガスの他部を前記燃焼器に導く燃焼側流路(51C)と、を有するアノードオフガス流路(51)と、を備え、前記循環側流路を燃料ガスとともに流れる水蒸気の流量が小さいほど、前記改質器に供給する空気の流量が大きくなるようにし、改質器におけるスチームカーボン比が所定値未満である場合は改質器に空気を供給する一方で、改質器におけるスチームカーボン比が所定値以上である場合は改質器に空気を供給しない。
本発明によれば、燃料電池セルのアノードから排出されたオフガスの一部を、アノードオフガス流路の循環側流路によって改質器に導く。これにより、オフガスが含有している水蒸気が改質器に供給されるため、当該水蒸気を水蒸気改質に利用することが可能となる。
さらに、本発明では、オフガスとともに循環側流路を流れる水蒸気の流量が小さい場合は、該流量が大きい場合と比べて改質器に供給する空気の流量を大きくする。改質器に空気を供給することで、改質器では当該空気が含有している酸素と炭化水素とによる部分酸化改質が行われる。これにより、改質器に存在する炭化水素を減少させ、その結果、改質器におけるスチームカーボン比を高めて炭素析出を抑制することが可能となる。
本発明によれば、燃料電池セルのアノードから排出された水蒸気を改質器における水蒸気改質に利用しながらも、炭素析出を抑制することが可能な燃料電池装置を提供することができる。
本発明の実施形態に係る燃料電池システムにおけるガスの流れを説明する説明図である。 燃料循環率、スチームカーボン比及び炭素析出限界の関係を示す説明図である。 図1に示された制御装置の処理の流れを示すフローチャートである。 図1に示された制御装置の処理の流れを示すフローチャートである。 図1に示された制御装置の処理の流れを示すフローチャートである。 図1に示された改質器の詳細を示す説明図である。
以下、添付図面を参照しながら本発明の実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
まず、図1を参照しながら、本発明の実施形態に係る燃料電池システム10の構成について説明する。燃料電池システム10は、燃料電池セルFCと、燃料ガス供給部20と、第1空気供給部30と、第2空気供給部40と、オフガス導出部50と、を備えている。また、燃料電池システム10は、これらを統合制御する制御装置100を備えている。
燃料電池セルFCは、固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)であり、正極であるアノードANと、負極であるカソードCAと、を有している。燃料電池システム10では、複数の燃料電池セルFCを電気的に直列に接続することで、集合体であるセルスタックを構成しているが、説明の簡便のため、図1では1つの燃料電池セルFCのみを図示している。燃料電池セルFCのアノードAN及びカソードCAは、いずれも導電性セラミックスで形成されている。アノードANとカソードCAとの間には、イオン伝導性を有する固体電解質(不図示)が設けられている。燃料電池セルFCは、供給される燃料ガスと酸化剤ガスとによる電気化学反応を生じさせ、要求電力に対応する電力を発生させる。
燃料電池セルFCが燃料電池システム10の外部の負荷に供給する電力の電流値Ifcは、所定のサンプリング周期で電流センサ69によって検出される。電流センサ69は、制御装置100と電気的に接続されており、検出した電流値Ifcに対応する信号を制御装置100に送信する。
燃料ガス供給部20は、燃料電池セルFCのアノードANに燃料ガスを供給する機能部である。燃料ガス供給部20は、ブロワ21と、原料ガス供給路23と、エジェクタ24と、改質器25と、燃料ガス供給路26と、流量センサ28と、温度センサ29と、を有している。
ブロワ21は、電力の供給を受けて駆動する電動送風機である。ブロワ21は、制御装置100と電気的に接続されており、制御装置100から受信する制御信号に基づいて駆動する。ブロワ21の上流側は都市ガスの供給管(不図示)に接続されている。ブロワ21が駆動すると、メタンを主成分とする都市ガスが上流側から吸引され、下流側の原料ガス供給路23に吹き出される。本明細書では、この都市ガスのことを「原料ガス」とも称する。
原料ガス供給路23は、原料ガスを流す流路である。原料ガス供給路23は、上流側のブロワ21から下流側の改質器25まで延びるように形成されている。
エジェクタ24は、原料ガス供給路23の途中に設けられている。エジェクタ24の内部には流路が形成されており、当該流路の一部は、その上流側から下流側にかけて、流路断面積が漸次減少する絞り部(不図示)となっている。ブロワ21から原料ガス供給路23を介してエジェクタ24に供給される原料ガスは、この絞り部を通過することで流速が増加する。この絞り部を通過する原料ガスの流れは、負圧を発生させる。当該負圧は、後述するようにオフガスの吸引に利用される。
流量センサ28は、ブロワ21とエジェクタ24との間の原料ガス供給路23に設けられている。流量センサ28は、所定のサンプリング周期で、原料ガス供給路23を流れる原料ガスの流量Ffuelを検出する。流量センサ28は、制御装置100と電気的に接続されており、検出した流量Ffuelに対応する信号を制御装置100に送信する。
改質器25は、原料ガス供給路23の下流端に接続されている。改質器25は、金属製の容器252によってその外形が形成されており、その容器252の内部に多数の改質触媒251が配置されている(図6参照)。改質器25は、原料ガス供給路23を介して供給される原料ガスを、この改質触媒251によって改質し、下流側の燃料ガス供給路26に排出する。本明細書では、改質器25によって改質された原料ガスのことを「燃料ガス」とも称する。
改質触媒251は、次式f1で示されるように、炭化水素及び酸素から水素を生成する部分酸化改質を行うことができる。部分酸化改質は発熱反応であるため、部分酸化改質を行う際は改質触媒251及び改質器25が昇温して高温となる。
Figure 0006439545
また、改質触媒251は、次式f2で示されるように、炭化水素及び水蒸気から水素を生成する水蒸気改質を行うことができる。水蒸気改質は、部分酸化改質と比べて水素の収率が高い改質方法である。すなわち、水蒸気改質によれば、部分酸化改質と同量の炭化水素の供給を受けた場合に、部分酸化改質よりも多くの水素を生成することができる。水蒸気改質は吸熱反応であるため、その改質を安定的に行うためには、外部から改質触媒251に熱を供給し、改質触媒251を活性温度の600℃以上に保持することが必要となる。
Figure 0006439545
温度センサ29は、改質器25に設けられている。温度センサ29は、所定のサンプリング周期で、改質器25の温度Trefを検出する。温度センサ29は、制御装置100と電気的に接続されており、検出した温度Trefに対応する信号を制御装置100に送信する。
燃料ガス供給路26は、上流側の改質器25から下流側の燃料電池セルFCまで延びるように形成された流路である。燃料ガス供給路26は、改質器25から排出された燃料ガスを流し、燃料電池セルFCのアノードANに導く。
第1空気供給部30は、燃料電池セルFCのカソードに酸化剤ガスを供給する機能部である。第1空気供給部30は、ブロワ31と、空気供給路32と、空気予熱器33と、予熱空気供給路35と、流量センサ39と、を有している。
ブロワ31は、電力の供給を受けて駆動する電動送風機である。ブロワ31は、制御装置100と電気的に接続されており、制御装置100から受信する制御信号に基づいて駆動する。ブロワ31が駆動すると、燃料電池システム10の外部から空気が吸引され、下流側の空気供給路32に吹き出される。本明細書では、この空気のことを「発電用空気」とも称する。
空気供給路32は、その上流端がブロワ31に接続され、下流端が空気予熱器33に接続された流路である。空気供給路32は、ブロワ31によって吹き出された発電用空気を流し、空気予熱器33に導く。
空気予熱器33は、発電用空気と他の流体とで熱交換を行わせる熱交換器である。空気予熱器33は、空気供給路32を介して供給される発電用空気を流す流路が内部に形成されている。また、空気予熱器33は、後述する燃焼ガス流路56を介して供給される燃焼ガスを流す流路が内部に形成されている。
予熱空気供給路35は、発電用空気を流す流路である。予熱空気供給路35は、上流側の空気予熱器33から下流側の燃料電池セルFCまで延びるように形成されている。予熱空気供給路35は、空気予熱器33から排出された発電用空気を流し、燃料電池セルFCのカソードCAに導く。
第2空気供給部40は、改質器25に空気を供給する機能部である。第2空気供給部40は、ブロワ41と、空気供給路42と、流量センサ49と、を有している。
ブロワ41は、電力の供給を受けて駆動する電動送風機である。ブロワ41は、制御装置100と電気的に接続されており、制御装置100から受信する制御信号に基づいて駆動する。ブロワ41が駆動すると、燃料電池システム10の外部から空気が吸引され、空気供給路42に吹き出される。本明細書では、この空気のことを「改質用空気」とも称する。
空気供給路42は、その上流端がブロワ41に接続され、下流端がエジェクタ24よりも上流側で原料ガス供給路23に接続された流路である。空気供給路42は、ブロワ41によって吹き出された改質用空気を流し、原料ガス供給路23に導く。
流量センサ49は、空気供給路42に設けられている。流量センサ49は、空気供給路42を流れる改質用空気の流量Fair2を検出する。流量センサ28は、制御装置100と電気的に接続されており、検出した流量Fair2に対応する信号を制御装置100に送信する。
オフガス導出部50は、アノードオフガス流路51と、カソードオフガス流路53と、燃焼器55と、燃焼ガス流路56と、上流側流量センサ58と、循環側流量センサ59と、を有している。
アノードオフガス流路51は、燃料電池セルFCのアノードANから排出されたオフガス(以下、これを「アノードオフガス」ともいう)を流す流路である。アノードオフガス流路51は、上流側流路51Aと、上流側流路51Aから分岐部511において分岐する循環側流路51B及び燃焼側流路51Cと、を有している。
燃料電池セルFCのアノードANから排出されたアノードオフガスは、アノードオフガス流路51の上流側流路51Aに流入する。このアノードオフガスは、上流側流路51Aを下流側に流れると、分岐部511において分流し、その一部が循環側流路51Bに流入し、他部が燃焼側流路51Cに流入する。
循環側流路51Bは、分岐部511からエジェクタ24まで延びている。したがって、燃料電池セルFCのアノードANから排出されたアノードオフガスの一部は、エジェクタ24が発生させる負圧によって吸引され、循環側流路51Bを流れてエジェクタ24に導かれる。
燃焼側流路51Cは、分岐部511から燃焼器55まで延びている。したがって、燃料電池セルFCのアノードANから排出されたアノードオフガスの他部は、燃焼側流路51Cを流れて燃焼器55に導かれる。
カソードオフガス流路53は、上流側の燃料電池セルFCから下流側の燃焼器55まで延びるように形成された流路である。カソードオフガス流路53は、燃料電池セルFCのカソードCAから排出されたオフガス(以下、これを「カソードオフガス」ともいう)を燃焼器55に導く。
燃焼器55は、供給される可燃ガスに着火し、当該可燃ガスを燃焼させる機器である。燃焼器55は、改質器25に近接して設けられ、改質器25との熱交換が可能となるように構成されている。これにより、改質器25は、燃焼器55が可燃ガスを燃焼させた際に発生する燃焼熱によって加熱される。
燃焼ガス流路56は、上流側の燃焼器55から下流側の空気予熱器43まで延びるように形成された流路である。燃焼ガス流路56は、燃焼器55における可燃ガスの燃焼に伴って発生した燃焼ガスを流し、空気予熱器43に導く。
上流側流量センサ58は、アノードオフガス流路51の上流側流路51Aに設けられている。上流側流量センサ58は、所定のサンプリング周期で、上流側流路51Aを流れるアノードオフガスの流量Foffを検出する。上流側流量センサ58は、制御装置100と電気的に接続されており、検出した流量Foffに対応する信号を制御装置100に送信する。
循環側流量センサ59は、アノードオフガス流路51の循環側流路51Bに設けられている。循環側流量センサ59は、所定のサンプリング周期で、循環側流路51Bを流れるアノードオフガスの流量Fcycを検出する。循環側流量センサ59は、制御装置100と電気的に接続されており、検出した流量Fcycに対応する信号を制御装置100に送信する。
次に、以上のように構成された燃料電池システム10が電力を発生させる際の基本的な動作について説明する。
燃料ガス供給部20のブロワ21によって吹き出された原料ガスは、前述したように原料ガス供給路23を流れる。原料ガスは、エジェクタ24においてアノードオフガスと合流し、改質器25に供給される。
ここで、アノードオフガスは、燃料電池セルFCにおける電気化学反応に用いられなかった燃料ガスと、電気化学反応に伴って生成された水蒸気とを含有している。したがって、原料ガスとアノードオフガスとが合流して改質器25に供給されることで、改質触媒251では、原料ガスを水蒸気によって改質する水蒸気改質が行われる。これにより、原料ガスは水素リッチな燃料ガスとなる。この燃料ガスは、燃料ガス供給路26によって燃料電池セルFCのアノードANに導かれる。
一方、第1空気供給部30のブロワ31によって吹き出された発電用空気は、前述したように空気供給路32を流れ、空気予熱器33に供給される。空気予熱器33には、燃焼器55から燃焼ガス流路56を介して供給される高温の燃焼ガスが流れている。したがって、空気予熱器33に供給された発電用空気は、高温の燃焼ガスと熱交換を行うことで加熱され、昇温する。空気予熱器33から排出された発電用空気は、予熱空気供給路35によって燃料電池セルFCのカソードCAに導かれる。
燃料電池セルFCは、このようにして供給される燃料ガスと空気とを用いて電力を発生させる。詳細には、燃料電池セルFCは、アノードANに供給された燃料ガスが含有している水素と、カソードCAに供給された空気が含有している酸素とを用いて電気化学反応を生じさせることで、電気エネルギーを発生させている。
アノードANから排出されるアノードオフガスは、燃料電池セルFCにおける電気化学反応に用いられなかった水素を含有している。このため、アノードオフガスの一部を、循環側流路51Bによって改質器25に戻し、再度アノードANに導くことで、発電効率を高めることが可能となる。アノードオフガスの他部は、燃焼側流路51Cによって燃焼器55に供給される。
また、アノードANから排出されるアノードオフガスは、燃料電池セルFCにおける電気化学反応に伴って生成された水蒸気を含有している。このため、アノードオフガスの一部を、循環側流路51Bによって改質器25に戻すことで、この水蒸気を利用した水蒸気改質を行うことが可能となる。すなわち、燃料電池システム10の外部から水の供給を受けることなく、改質器25において水蒸気改質を行うことができる。このため、燃料電池システム10に、外部から水を取り込む機構や、その水を加熱して水蒸気を生成する機構を搭載する必要が無く、低コストながらも信頼性の高いシステムを構築することが可能となる。
また、カソードCAから排出されるカソードオフガスは、燃料電池セルFCにおける電気化学反応に用いられなかった酸素を含有している。このカソードオフガスは、カソードオフガス流路53によって燃焼器55に供給される。
燃焼器55では、以上のようにして供給される水素と酸素を用いて燃焼を行う。これにより、発生する燃焼熱を利用した改質器25及び改質触媒251の加熱を行うことが可能となり、吸熱反応である水蒸気改質を改質器25において安定的に行うことができる。
ところで、本燃料電池システム10では、エジェクタ24を通過する原料ガスの流量が小さくなると、エジェクタ24において十分な負圧が発生させることができなくなる。このため、燃料電池セルFCに対する要求電力が小さくなったことに基づいて、改質器25に供給する原料ガスの流量を小さくする場合に、アノードオフガスを適切に吸引できなくなるおそれがある。その結果、改質器25に供給できる水蒸気量が不足し、水蒸気改質を安定的に行うことができなくなるおそれがある。
このようにして改質器25に供給できる水蒸気量が減少し、改質器25における炭化水素量に対する水蒸気量の比であるスチームカーボン比が小さくなると、改質触媒251において炭素析出が生じるおそれがある。炭素析出が生じると、改質触媒251における改質が妨げ、燃料電池システム10の発電効率を低下させる原因となる。
そこで、燃料電池システム10は、改質器25において水蒸気改質を行う際に、第2空気供給部40によって改質器25に空気を適宜供給することで、改質触媒251において部分酸化改質反応を生じさせることで炭素析出を抑制している。この部分酸化改質は発熱反応であることから、改質器25内部で同時に生じる吸熱反応である水蒸気改質に熱供給することが可能である。以下、図2乃至図6を参照しながら、燃料電池システム10による改質器25の炭素析出の抑制及び反応温度の制御方法について説明する。
燃料循環率ηcycと、改質器25におけるスチームカーボン比S/Cとの関係を図2に示す。燃料循環率ηcycは、上流側流路51Aを流れるアノードオフガスの流量Foffに対する、循環側流路51Bを流れるアノードオフガスの流量Fcycの比を百分率で示すものであり、次式f3で表される。また、改質器25におけるスチームカーボン比S/Cは、改質器25に供給される原料ガスの流量Ffuelと、循環側流路51Bを介して改質器25に供給される水蒸気の流量FH2Oとに基づいて、次式f4で表される。
Figure 0006439545
Figure 0006439545
図2に示されるように、燃料循環率ηcycが増加するほど、改質器25におけるスチームカーボン比S/Cも増加する関係がある。これは、燃料循環率ηcycが大きいほど、水蒸気を含有しているアノードオフガスが改質器25に多量に供給されるからである。一般的に、炭素析出を抑制するためには、スチームカーボン比S/Cが3.0程度であることが好ましく、この場合の燃料循環率ηcycは70%程度となる。スチームカーボン比S/Cが2.0を下回ると、炭素析出の懸念が高まる。スチームカーボン比S/Cが2.0となる炭素析出限界における燃料循環率ηcycは、60%程度となる。すなわち、燃料循環率ηcycを60%よりも大きくし、スチームカーボン比S/Cを2.0よりも大きい値に維持することで、炭素析出の抑制を図ることが可能となる。また、改質触媒251における水蒸気改質を安定的に行うために、改質触媒251の温度を600℃以上に維持することで改質性能を確保することが可能となる。
次に、以上のような考えに基づいた制御装置100による処理について説明する。制御装置100は、まず、炭素析出抑制の観点から改質器25に供給する必要がある空気の流量Fair2SV1と、改質器25の加熱の観点から改質器25に供給する必要がある空気の流量Fair2SV2と、を算出する。さらに、制御装置100は、この流量Fair2SV1及び流量Fair2SV2に基づいて、第2空気供給部40によって改質器25に供給する必要がある空気の流量Fair2SVを決定する。
まず、図3を参照しながら、炭素析出抑制の観点から改質器25に供給する必要がある空気の流量Fair2SV1を算出する際に、制御装置100が実行する処理について説明する。図3は、改質器25において水蒸気改質を行っている際に、流量Fair2SV1を算出する場合の制御装置100の処理の流れを示している。
まず、制御装置100は、ステップS11で、循環側流路51Bを介して改質器25に供給される水蒸気の流量FH2Oを算出する。この流量FH2Oは、原料ガス供給路23を介して改質器25に供給される原料ガスの流量Ffuelと、燃料電池セルFCが負荷に供給する電力の電流値Ifcと、燃料循環率ηcycに基づいて、公知の方法によって算出することができる。
次に、制御装置100は、ステップS12で、改質器25におけるスチームカーボン比S/Cを算出する。当該スチームカーボン比S/Cは、ステップS11で算出した流量FH2Oと、原料ガス供給路23を介して改質器25に供給される原料ガスの流量Ffuelを基づいて、前述した式f4によって算出される。
次に、制御装置100は、ステップS13で、スチームカーボン比S/Cが2.0以上であるか否かを判定する。スチームカーボン比S/Cが2.0以上ではないと判定した場合(S13:NO)、すなわち、炭素析出の懸念が高まっている場合、制御装置100は、ステップS14の処理に進む。
次に、制御装置100は、ステップS14で、ステップS11で算出した流量FH2Oと、原料ガス供給路23を介して改質器25に供給される原料ガスの流量Ffuelに基づいて、炭素析出抑制の観点から改質器25に供給する必要がある空気の流量Fair2SV1を算出する。
流量Fair2SV1の算出方法について詳述する。まず、循環側流路51Bを介して改質器25に供給される水蒸気の流量FH2Oに基づいて、改質器25におけるスチームカーボン比が2.0である場合に、改質器25に供給される原料ガスの流量FfuelALを、次式f5で算出する。
Figure 0006439545
この流量FfuelALを超過して改質器25に供給される原料ガスが含有している炭化水素が、水蒸気改質が行われずに炭素析出を生じさせることになる。したがって、この超過した分の原料ガスが含有している炭化水素を、改質器25に供給する空気が含有している酸素と反応させ、炭化水素量を減少させることで、改質器25におけるスチームカーボン比S/Cを2.0以上とし、炭素析出を抑制することができる。このような炭素析出抑制の観点より、改質器25に供給する必要がある空気の流量Fair2SV1は、次式f6で算出される。
Figure 0006439545
ここで、式f6のαは、空気中の酸素量に基づいて、決定される補正係数である。すなわち、空気中の酸素と窒素との組成比が概ね21:79であることから、補正係数αは次式f7のように決定される。
Figure 0006439545
一方、ステップS13で、スチームカーボン比S/Cが2.0以上であると判定した場合(S13:YES)、すなわち、炭素析出の懸念がない場合、制御装置100は、ステップS15の処理に進む。
次に、制御装置100は、ステップS15で、炭素析出抑制の観点から改質器25に供給する必要がある空気の流量Fair2SV1をゼロとする。すなわち、炭素析出の懸念がないため、炭素析出抑制の観点からは、改質器25への空気の供給は不要とする。
続いて、図4を参照しながら、改質器25の加熱の観点から改質器25に供給する必要がある空気の流量Fair2SV2を算出する際に、制御装置100が実行する処理について説明する。図4は、改質器25において水蒸気改質を行っている際に、流量Fair2SV2を算出する場合の制御装置100の処理の流れを示している。
まず、制御装置100は、ステップS21で、改質器25の温度Trefが600℃以上であるか否かを判定する。温度Trefが600℃以上ではないと判定した場合(S21:NO)、すなわち、改質器25の温度Trefが低く、水蒸気改質を適切に行うことができない場合、制御装置100は、ステップS22の処理に進む。
次に、制御装置100は、ステップS22で、改質器25の温度Trefに基づいて、燃焼器55による加熱での不足分を、部分酸化改質の反応熱によって付与するという観点から、改質器25に供給する必要がある空気の流量Fair2SV2を算出する。
流量Fair2SV2の算出方法について詳述する。まず、改質器25の温度Trefに基づいて、改質器の温度を600℃まで上昇させるために必要となる熱量Qを次式f8によって算出する。
Figure 0006439545
この熱量Qを、改質器25における部分酸化改質に伴う発熱によって賄うことで、改質器25の温度を600℃まで上昇させ、水蒸気改質を行うことができる。このような改質器25の加熱の観点より、改質器25に供給する必要がある空気の流量Fair2SV1は、次式f9で算出される。
Figure 0006439545
一方、ステップS21で、改質器25の温度Trefが600℃以上であると判定した場合(S21:YES)、すなわち、改質器25の温度Trefが十分に高く、水蒸気改質を適切に行うことができる場合、制御装置100は、ステップS23の処理に進む。
次に、制御装置100は、ステップS23で、改質器25の加熱の観点から改質器25に供給する必要がある空気の流量Fair2SV2をゼロとする。すなわち、改質器25の温度Trefが十分に高く、部分酸化改質によって加熱する必要がないため、改質器25の加熱の観点からは、改質器25への空気の供給は不要とする。
続いて、図5を参照しながら、以上のように算出した流量Fair2SV1及び流量Fair2SV2に基づいて、第2空気供給部40によって改質器25に供給する必要がある空気の流量Fair2SVを決定する際に、制御装置100が実行する処理について説明する。図5は、流量Fair2SV1及び流量Fair2SV2を算出した後に、流量Fair2SVを決定する場合の制御装置100の処理の流れを示している。
まず、制御装置100は、ステップS31で、炭素析出抑制の観点から改質器25に供給する必要がある空気の流量Fair2SV1が、改質器25の加熱の観点から改質器25に供給する必要がある空気の流量Fair2SV2以上であるか否かを判定する。流量Fair2SV1が流量Fair2SV2以上であると判定した場合(S31:YES)、制御装置100は、ステップS32の処理に進む。
次に、制御装置100は、ステップS32で、第2空気供給部40によって改質器25に供給する必要がある空気の流量Fair2SVを流量Fair2SV1に設定する。すなわち、炭素析出抑制を担保できるように、第2空気供給部40によって改質器25に供給する必要がある空気の流量Fair2SVを、流量Fair2SV1及び流量Fair2SV2のうち大きい方の流量Fair2SV1に設定する。
一方、ステップS31で、流量Fair2SV1が流量Fair2SV2以上ではないと判定した場合(S31:NO)、制御装置100は、ステップS33の処理に進む。
次に、制御装置100は、ステップS33で、第2空気供給部40によって改質器25に供給する必要がある空気の流量Fair2SVを流量Fair2SV2に設定する。すなわち、改質器25を加熱して、その温度Trefを600℃まで上昇させるために、第2空気供給部40によって改質器25に供給する必要がある空気の流量Fair2SVを、流量Fair2SV1及び流量Fair2SV2のうち大きい方のFair2SV2に設定する。
流量Fair2SVにゼロ以外の値が設定された場合、制御装置100は、第2空気供給部40のブロワ41を、流量Fair2SVの空気を吹き出すように駆動させる。これにより、原料ガス供給路23に空気が供給され、当該空気は、燃料ガス供給部20のブロワ21から吹き出される原料ガスとともにエジェクタ24を通過して改質器25に供給される。
図6に示されるように、改質器25の内部では、その上流部25Uに配置された改質触媒251によって、主に原料ガスの部分酸化改質が行われる。この部分酸化改質に伴う発熱により、改質器25を昇温させ、改質器25の温度を600℃以上に維持することが可能となる。
改質器25の上流部25Uにおいて部分酸化改質が行われることで、上流部25Uを通過する原料ガスは、含有している炭化水素が減少する。したがって、改質器25の下流部25Dにおけるスチームカーボン比が高まる。これにより、改質触媒251における炭素析出を抑制することが可能となる。
以上のように、燃料電池システム10によれば、燃料電池セルFCのアノードANから排出されたアノードオフガスの一部を、アノードオフガス流路51の循環側流路51Bによって改質器25に導く。これにより、アノードオフガスが含有している水蒸気が改質器25に供給されるため、当該水蒸気を水蒸気改質に利用することが可能となる。
さらに、燃料電池システム10では、アノードオフガスとともに循環側流路51Bを流れる水蒸気の流量が小さい場合は、この流量が大きい場合と比べて改質器25に供給する空気の流量を大きくする。改質器25に空気を供給することで、改質器25では当該空気が含有している酸素と炭化水素とによる部分酸化改質が行われる。これにより、改質器25に存在する炭化水素を減少させ、その結果、改質器25におけるスチームカーボン比S/Cを高めて炭素析出を抑制することが可能となる。
ここで、「水蒸気の流量が小さい場合」及び「水蒸気の流量が大きい場合」とは、いずれも水蒸気の流量の閾値等を基準にして決定されるものではなく、相対的な関係に基づいて決定されるものであり。
また、燃料電池システム10によれば、改質器25におけるスチームカーボン比S/Cが2.0未満である場合は改質器25に空気を供給する一方で、改質器25におけるスチームカーボン比S/Cが2.0以上である場合は改質器25に空気を供給しない。
これにより、炭素析出が懸念されない場合は、水蒸気改質によって高い収率で水素を生成し、発電効率を高める一方で、炭素析出が懸念される場合は、部分酸化改質によって炭素析出を抑制することが可能となる。
さらに、燃料電池システム10によれば、改質器25の炭化水素を部分酸化改質することで減少させ、改質器25におけるスチームカーボン比S/Cを2.0以上とするために、改質器25に供給する必要がある空気の流量Fair2SV1と、部分酸化改質に伴う発熱によって改質器25を600℃まで昇温させるために、改質器25に供給する必要がある空気の流量Fair2SV2と、を算出し、流量Fair2SV1及び流量Fair2SV2のうち大きい方の流量で改質器25に空気を供給する。
これにより、改質触媒251における炭素析出の抑制と、水蒸気改質を適切に行うための改質器25の温度の維持と、を両立させることが可能となる。
さらに、燃料電池システム10によれば、改質器25に原料ガスを供給する原料ガス供給路23にエジェクタ24が配設され、原料ガスが該エジェクタ24を通過することで発生する負圧によって循環側流路51Bからアノードオフガスを吸引する。
これにより、電力を消費するポンプ等を用いることなく、循環側流路51Bからアノードオフガスを吸引するとともに、エジェクタ24において十分な負圧が発生しなかった場合でも、改質触媒251における炭素析出を抑制することが可能となる。
さらに、燃料電池システム10によれば、エジェクタ24よりも上流側の原料ガス供給路23に空気を供給する。
これにより、原料ガスとともに空気もエジェクタ24を通過するため、エジェクタ24において十分な負圧を発生させることができる。その結果、循環側流路51Bからアノードオフガスを吸引し、アノードオフガスが含有している水蒸気を改質器25に確実に供給することで、改質触媒251における炭素析出を抑制することが可能となる。
以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
10:燃料電池システム
23:原料ガス供給路
24:エジェクタ
25:改質器
251:改質触媒
51:アノードオフガス流路
51B:循環側流路
51C:燃焼側流路
55:燃焼器
FC:燃料電池セル
AN:アノード

Claims (4)

  1. 燃料ガスと酸化剤ガスとを用いて電力を発生させる燃料電池システム(10)であって、
    水蒸気改質及び部分酸化改質が可能な改質触媒(251)を有し、炭化水素を含有する原料ガス、水蒸気及び空気の供給を受け、水素を含有する燃料ガスを生成する改質器(25)と、
    前記改質器から供給される燃料ガスと酸化剤ガスとを反応させる燃料電池セル(FC)と、
    可燃ガスを燃焼させて前記改質器を加熱する燃焼器(55)と、
    前記燃料電池セルのアノード(AN)から排出されたオフガスを流し、該オフガスの一部を前記改質器に導く循環側流路(51B)と、該オフガスの他部を前記燃焼器に導く燃焼側流路(51C)と、を有するアノードオフガス流路(51)と、を備え、
    前記循環側流路を燃料ガスとともに流れる水蒸気の流量が小さいほど、前記改質器に供給する空気の流量が大きくなるようにし、
    前記改質器におけるスチームカーボン比が所定値未満である場合は前記改質器に空気を供給する一方で、前記改質器におけるスチームカーボン比が前記所定値以上である場合は前記改質器に空気を供給しないことを特徴とする燃料電池システム。
  2. 前記改質器の炭化水素を部分酸化改質することで減少させ、前記改質器におけるスチームカーボン比を前記所定値以上とするために、前記改質器に供給する必要がある空気の流量である第1流量と、
    部分酸化改質に伴う発熱によって前記改質器を予め定められた所定温度まで昇温させるために、前記改質器に供給する必要がある空気の流量である第2流量と、を算出し、
    前記第1流量及び前記第2流量のうち大きい方の流量で前記改質器に空気を供給することを特徴とする請求項に記載の燃料電池システム。
  3. 前記改質器に原料ガスを供給する原料ガス供給路(23)にエジェクタ(24)が配設され、原料ガスが該エジェクタを通過することで発生する負圧によって前記循環側流路から燃料ガスを吸引することを特徴とする請求項1又は2に記載の燃料電池システム。
  4. 前記エジェクタよりも上流側の前記原料ガス供給路に空気を供給することを特徴とする請求項に記載の燃料電池システム。
JP2015072146A 2015-03-31 2015-03-31 燃料電池システム Expired - Fee Related JP6439545B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072146A JP6439545B2 (ja) 2015-03-31 2015-03-31 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072146A JP6439545B2 (ja) 2015-03-31 2015-03-31 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2016192334A JP2016192334A (ja) 2016-11-10
JP6439545B2 true JP6439545B2 (ja) 2018-12-19

Family

ID=57246975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072146A Expired - Fee Related JP6439545B2 (ja) 2015-03-31 2015-03-31 燃料電池システム

Country Status (1)

Country Link
JP (1) JP6439545B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190350001A1 (en) 2016-09-29 2019-11-14 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
CN108091907B (zh) * 2016-11-22 2020-09-25 通用电气公司 燃料电池系统及其停机方法
WO2018212214A1 (ja) * 2017-05-18 2018-11-22 株式会社デンソー 燃料電池システム
JP6838577B2 (ja) * 2017-05-18 2021-03-03 株式会社デンソー 燃料電池システム
US10680261B2 (en) * 2017-10-26 2020-06-09 Lg Electronics, Inc. Fuel cell systems with in-block reforming
WO2020079833A1 (ja) * 2018-10-19 2020-04-23 日産自動車株式会社 燃料電池システムおよび燃料電池システムの運転方法
KR20200085971A (ko) * 2019-01-07 2020-07-16 주식회사 포스비 발전 및 합성가스 동시 생산에 의한 co2 발생 저감 고체산화물 연료전지, 그 제조 방법 및 운전 조건

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9403198D0 (en) * 1994-02-19 1994-04-13 Rolls Royce Plc A solid oxide fuel cell stack
JP4013847B2 (ja) * 2003-06-30 2007-11-28 トヨタ自動車株式会社 燃料改質装置
JP2010238589A (ja) * 2009-03-31 2010-10-21 Toto Ltd 燃料電池システム
JP2012160361A (ja) * 2011-02-01 2012-08-23 Nissan Motor Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
JP2016192334A (ja) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6439545B2 (ja) 燃料電池システム
JP5064014B2 (ja) 固体酸化物形燃料電池システム
JP6529752B2 (ja) 燃料電池システム
US10193170B2 (en) Fuel cell module
JP5081574B2 (ja) 燃料電池システムの負荷増加時の運転方法
WO2014132555A1 (ja) 燃料電池装置、および燃料電池システム
JP2007128680A (ja) 燃料電池システム
JP6291372B2 (ja) 燃料電池システム
JP6320204B2 (ja) 燃料電池加熱装置および加熱方法とこれを含む燃料電池装置
JP6621358B2 (ja) 燃料電池システム
JP5081573B2 (ja) 燃料電池システムの負荷減少時の運転方法
JP2017183033A (ja) 燃料電池システム
JP2007026998A (ja) 溶融炭酸塩型燃料電池発電装置の燃料電池温度制御方法及び装置
JP2007073302A (ja) 燃料改質システム
JP6582572B2 (ja) 燃料電池システム
JP6115310B2 (ja) 燃料電池システム
JP2020015932A (ja) 水素生成システム並びにその運転方法
KR20140081123A (ko) 고효율 연료전지 모듈
JP7422007B2 (ja) 固体酸化物形燃料電池システム
JP5818502B2 (ja) 燃料電池モジュール
JP5227100B2 (ja) 燃料電池発電システムおよび発電方法
JP2018181800A (ja) 燃料電池システム
JP2004192952A (ja) 燃料電池発電システム
KR101422612B1 (ko) 연료전지장치
CN114080474A (zh) 氢提纯系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R151 Written notification of patent or utility model registration

Ref document number: 6439545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees