JP6378494B2 - 免震構造 - Google Patents

免震構造 Download PDF

Info

Publication number
JP6378494B2
JP6378494B2 JP2014021595A JP2014021595A JP6378494B2 JP 6378494 B2 JP6378494 B2 JP 6378494B2 JP 2014021595 A JP2014021595 A JP 2014021595A JP 2014021595 A JP2014021595 A JP 2014021595A JP 6378494 B2 JP6378494 B2 JP 6378494B2
Authority
JP
Japan
Prior art keywords
seismic isolation
mass body
vibration
laminated rubber
isolation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014021595A
Other languages
English (en)
Other versions
JP2015148095A (ja
Inventor
丹羽 直幹
直幹 丹羽
芳隆 鈴木
芳隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2014021595A priority Critical patent/JP6378494B2/ja
Publication of JP2015148095A publication Critical patent/JP2015148095A/ja
Application granted granted Critical
Publication of JP6378494B2 publication Critical patent/JP6378494B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、建物に伝達される揺れを抑える免震構造に関し、特に、地震発生時に建物に伝達される揺れを低減させる免震構造に関する。
地震発生時における建物の揺れを低減し、安全且つ安心な居住空間を提供する免震技術としては種々の構造が知られている。特開昭64−48979号公報には、中低層の建築物を対象とした免震構造物が記載されている。この免震構造物では、基礎部と上部構造体との間の免震層に積層ゴムが配置されており、積層ゴムの上方には振動エネルギーを吸収するための水を貯留する複数の水槽が配置されている。これらの水槽には、上部構造体の重量の1/50〜1/100程度の重量の水が貯留されている。
上記の免震構造物において、上部構造体の固有振動の周期は積層ゴムによって設定される。上部構造体が振動したときには、上部構造体の振動と同一の周期で水槽内の水が振動し(スロッシング)、この振動に伴って振動エネルギーが吸収され、上部構造体の振動を減衰させる。また、上記の公報に記載されている免震構造物は、上部構造物全体が剛体の如く並進運動を行って、上層階の振幅と下層階の振幅とがほぼ同等となった1次モードの振動を対象としている。
特開昭64−48979号公報
ところで、地震等の振動では、一般に固有周期が最も長い1次モードの成分が他のモードの成分よりも大きくなる。ところが、長周期化を図った免震構造では、1次モードの振動の加速度が小さくなるので、1次モードの振動に対して2次モードの振動が支配的になる。具体的には、例えば図4(b)に示されるように、周期が10秒以上である1次モードの振動の中に周期が1秒程度である2次モードの振動が重なっており、この1秒程度の周期である2次モードの振動が支配的となる。また、上記のように長周期化を図ると2次モードの水平方向への振動が支配的になり、この2次モードの振動が加速度の最大値に大きな影響を与える。よって、2次モードの水平方向への振動を抑えると、振動の加速度そのものを抑えることができるので、より高い免震効果を期待できる。
しかしながら、2次モードの振動における振幅は非常に小さいので、例えば建物の各部にダンパ等を挿入する手法では、2次モードの振動の低減が困難である。また、上述した免震構造物では、1次モードの振動のみを対象としているので、長周期化を図った場合に2次モードの水平方向への振動を抑えられないという問題がある。
また、上記のスロッシングを用いた免震構造物では、水槽に貯留する水の量を常に一定としておかなければならず水の管理が面倒である。更に、この水槽には上部構造体の重量の1/50〜1/100程度の水が貯留されるので、各水槽は非常に巨大となっており、これらの巨大な複数の水槽を積層ゴムの上方に配置しなければならない。よって、免震層に大きなスペースを確保する必要があり、免震構造をコンパクトにすることができないという問題もある。
本発明は、2次モードの水平方向への振動を抑えると共に、コンパクトにすることができる免震構造を提供することを目的とする。
本発明の免震構造では、免震層で上部構造物の鉛直荷重を支持する鉛直荷重支持手段と、バネ要素を介して上部構造物と接続された質量体と、上部構造物における揺れを減衰させる減衰手段とが設けられている。そして、バネ要素は、2次モードの水平方向への振動と同調可能であるため、当該バネ要素によって2次モードの水平方向への振動を優先的に抑えることができる。このように2次モードの水平方向への振動を優先的に抑えることによって振動の加速度そのものを低減させることができ、高い免震効果を発揮させることができる。更に、2次モードの振動の腹は免震層に位置しているので、鉛直荷重支持手段、質量体及び減衰手段を免震層に配置することによって、2次モードの振動をより効果的に抑えることが可能となっている。また、バネ要素の固有周期はバネ要素の長さの平方根に比例するので、固有周期が短い2次モードの振動と同調するバネ要素の長さは短くなる。よって、免震層に配置するバネ要素の長さを短くすることができ、免震層に大きなスペースを確保する必要がなくなるので、免震構造をコンパクトにすることができる。
また、質量体は吊材を介して上部構造物と接続されているので、地震等で揺れが生じたときに質量体は振り子運動をすることとなる。このように質量体は振り子運動を行って上記の揺れに同調するので、この質量体、吊材及び減衰手段はTMD(Tuned Mass Damper)として機能することとなる。このようにTMDを免震層に配置することによって、免震層における2次モードの振動を効果的に抑えることができると共に、TMDを上部構造物の上端に配置する場合と比較して、設置が簡単で実用性を高めることが可能となっている。また、減衰手段が上部構造体と質量体とに接続されているので、TMDの過剰な変位を抑えることもできる。
本発明の別の免震構造は、上部構造物と下部構造物との間に位置する免震層に配置される免震構造において、免震層で上部構造物の鉛直荷重を支持する鉛直荷重支持手段と、免震層に配置されて、1次モードの振動よりも固有周期が短い2次モードにおける水平方向への振動と同調可能なバネ要素と、バネ要素を介して免震層で上部構造物と接続された質量体と、免震層に配置されて上部構造物における揺れを減衰させる減衰手段と、を備え、減衰手段は、ゴムと鋼板とが交互に積層された積層ゴムであり、質量体は、下部構造物に対して水平方向に移動可能となっており、バネ要素は、積層ゴムの一部であ。このように積層ゴムをTMDのバネ要素として有効活用することができる。また、質量体は、上記の積層ゴムを介して上部構造物と接続されており、下部構造物に対しては水平方向に移動可能となっている。よって、質量体の水平方向への移動に対する抵抗が小さくなっており、質量体は、地震等で揺れが生じたときに振り子運動と同様の運動を行う。従って、TMDと同様の機能を有する質量体及び積層ゴムが免震層に配置されるので、免震層における2次モードの振動を効果的に抑えることができる。
また、積層ゴムと質量体とは、水平面上における免震層の中央部分で一体となるように配置されていてもよい。このように、水平面上において、積層ゴムと質量体とを免震層の中央部分で一体となるように配置することで、免震構造の構成を一層コンパクトにすることができる。また、免震層の中央部分に積層ゴムと質量体とをまとめて配置しているので、特に比較的小型の構造物に免震構造を配置する場合に、簡単に積層ゴムと質量体とを配置させることができるので有利である。
また、質量体は、水平面上において環状となっており、積層ゴムは、水平面上において質量体の内側に配置されていてもよい。このように環状となる質量体の内側に積層ゴムを配置する場合、鋼板で質量体及び積層ゴムが接続されているので免震構造をユニット化することができる。よって、免震構造を免震層に配置しやすくすることが可能となっており、特に比較的大型の構造物に免震構造を配置する場合に、複数のユニット化された免震構造をバランスよく且つ容易に配置することができるので有利である。
本発明によれば、2次モードの水平方向への振動を抑えると共に、コンパクトにすることが可能な免震構造を提供することができる。
(a)は、第1実施形態に係る免震構造を示す側面図である。(b)は、図1(a)の免震構造の振動モデルである。 階高と、1次及び2次モードの振幅との関係を示すグラフである。 シミュレーションの条件を示す振動モデルである。 (a)は、本実施形態における加速度の時系列データを示すグラフである。(b)は、比較例における加速度の時系列データを示すグラフである。 (a)は、第2実施形態に係る免震構造を示す側面図である。(b)は、図5(a)の免震構造の振動モデルである。 第3実施形態に係る免震構造を示す平面図である。 第4実施形態に係る免震構造を示す平面図である。 図7の免震構造のA−A線断面図である。 質量体と積層ゴムとの接続構造を示す側面図である。
以下、図面を参照しつつ、本発明に係る免震構造の実施形態について詳細に説明する。以下の説明において、同一又は相当の要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
図1に示されるように、免震構造1は、地盤上に構築された基礎(下部構造物)2と、基礎2の上方に位置する建物(上部構造物)3との間に位置する免震層Sに介在している。免震構造1は、免震層Sで建物3の鉛直荷重を支持する複数の積層ゴム(鉛直荷重支持手段)4と、複数本(図1では2本)の吊材5と、吊材5を介して建物3に接続された質量体6と、建物3における揺れを減衰させる減衰手段7と、を備えている。
複数の積層ゴム4は、基礎2上で建物3を支持している。例えば、複数の積層ゴム4は、水平面上においてマトリクス状に配置されており、建物3を構成する各柱の直下に配置されている。また、積層ゴム4は、例えば加硫接着によりゴムと鋼板とが交互に積層された構造となっており、建物3の振動を減衰させる減衰要素C1及び復元力を発揮するバネ要素K1として機能する。
吊材5は、免震層Sにおいて建物3から吊り下げられており、水平方向に復元力を発揮するバネ要素K2として機能する。吊材5は、1次モードの振動よりも固有周期が短い2次モードの水平方向への振動と同調可能となっている。よって、吊材5の固有周期は吊材5の長さの平方根に比例するので、吊材5の長さは、1次モードの振動と同調させる場合よりも短くなっている。なお、吊材5の長さは、同調させる振動の固有周期に応じて適宜調整することも可能である。また、例えば、1次モードの振動の固有周期は15.0(s)であり、2次モードの振動の固有周期は0.94(s)である。
質量体6は、免震層Sで複数の吊材5に吊り下げられており、建物3が揺れたときに振り子運動を行うマスM1として機能する。例えば地震によって建物3が揺れると、吊材5及び質量体6が揺動する。質量体6としては、種々のものを採用することができるが、例えば、鋼製の箱にコンクリート塊を入れてコンクリートで固めた箱体を利用することもできる。このような箱体を質量体6として用いた場合、コンクリート塊を有効利用することができるので、産業廃棄物対策として有効である。
また、質量体6の振動エネルギーは減衰手段7によって減衰されるので、これにより質量体6の過剰な振動を減衰させることができる。減衰手段7は、免震層Sにおいて質量体6の上端と建物3の下端とに接続されており、質量体6の過剰な振動を減衰させる減衰要素C2として機能する。このような減衰手段7としては、例えばオイルダンパを用いることができる。
このように、免震構造1は、吊材5と、吊材5に吊り下げられた質量体6と、建物3と質量体6とを接続する減衰手段7と、を備えており、吊材5、質量体6及び減衰手段7が振り子式のTMDとして機能する。すなわち、免震構造1は、免震層Sに、水平方向への2次モードの振動を低減するTMDを有している。
図2は、1次モード(1st)の振動と2次モード(2nd)の振動における、振幅と建物3の階高との関係を示すグラフである。図2の縦軸は階高であり、図2の横軸は振幅である。また、図2の横軸の値は、各振動の最大値を1に基準化したときの振幅の値を示している。図2に示されるように、1次モードの振幅の値は階高が高くなっても殆ど変化しないが、2次モードの振幅の値は階高に応じて変化している。2次モードの振幅の値は、最上階である15階から低くなるにつれて−1から徐々に0に近づき、7階と8階の間で0となり、更に低くなると徐々に0から大きくなる。そして、2次モードの振動の腹は、階高が0、すなわち免震層Sの高さ、及び最上階の15階に位置していることがわかる。
このように、2次モードの振動の腹の一つは免震層Sに位置するので、吊材5、質量体6及び減衰手段7を免震層Sに配置することによって、特に長周期化を図った場合に、2次モードの振動を効果的に抑えることができる。また、吊材5の固有周期は吊材5の長さの平方根に比例するので、固有周期が短い2次モードの振動と同調する吊材5の長さは短くなっている。このように、免震層Sに配置する吊材5の長さを短くすることができるので、免震層Sに大きなスペースを確保する必要がなくなると共に免震構造1をコンパクトにすることができる。
ここで、TMDは、一般的に建物の上端に配置されることが多い。しかし、TMDを建物の上端に配置すると、建物の柱や梁にかかる負担が大きくなり全体の重量が重くなるので、例えば地震時に建物が大きく揺れる等といった問題が生じる可能性がある。これに対し、免震構造1では、TMDとして機能する吊材5、質量体6及び減衰手段7を免震層Sに配置しているので、このTMDを建物3の上端に配置する場合と比較して、設置が簡単であり実用性が高いという利点がある。
また、免震構造1では、免震層Sで建物3の鉛直荷重を支持する積層ゴム4と、吊材5を介して建物3に接続された質量体6と、建物3における揺れを減衰させる減衰手段7と、が設けられる。そして、吊材5は、2次モードの水平方向への振動と同調可能である。従って、吊材5で2次モードの水平方向への振動を優先的に抑えることによって、2次モードの水平方向への振動をより確実に抑えることができる。このように2次モードの水平方向への振動をより確実に抑えることによって振動の加速度そのものを低減させることができ、高い免震効果を発揮することができる。
上述した効果について、図3及び図4を参照して説明する。図3は、シミュレーションの条件となる免震構造を示している。この免震構造は、図1(b)の免震構造1と同様の減衰要素C1,C2、バネ要素K1,K2及びマスM1と、減衰要素C1と直列に接続されたバネ要素K3とを備えている。すなわち、この免震構造は、減衰要素C1とバネ要素K3とが直列に接続されたマクスウェル機構を有する。
図3のm1〜m10は、建物3の高さ毎に設けた質点を示しており、例えばmn(nは整数)において、nが大きい程、建物3の位置が高いことを示す。また、例えば、建物3は地上9階の鉄骨造の建物であり、建物3の高さは36mであり、建物3の各階の床面積は1800mであり、免震層Sの周期は10(s)であり、等価周期は8.3(s)である。また、減衰手段7の剛性比は2.2であり、減衰係数は30(%)である。図4(a)は、図3の条件を備えた本実施形態の免震構造における加速度の時系列データを示しており、図4(b)は図3の条件からバネ要素K2、減衰要素C2及びマスM1を外した従来の免震構造における加速度の時系列データを示している。
図4(b)に示されるように、従来の免震構造では、免震層S上の振動の加速度、及び建物3の頂部における振動の加速度において、2次モードの振動を示す1秒程度の周期の波が抑えられていない。すなわち、従来の免震構造は、2次モードの振動を十分に抑えられていないという問題を抱えている。一方、図4(a)に示されるように、免震層SにTMDが配置された本実施形態の免震構造では、免震層S上の振動の加速度及び建物3の頂部における振動の加速度において、2次モードの振動を確実に低減させている。
具体的には、従来の免震構造では最大加速度が56.2Galとなっているのに対し、本実施形態の免震構造では最大加速度が39.9Galとなっており、振動の加速度を30%程度も抑えている。2次モード成分のみでは約半減されている。このように、免震層SにTMDを設置するだけで、免震層S上の振動の加速度及び建物3の頂部における振動の加速度のいずれにおいても、2次モードの振動を著しく低減させることができる。
(第2実施形態)
図5に示されるように、第2実施形態に係る免震構造11は、バネ要素K2として積層ゴム14を用いた点と、質量体16が転がり装置(鉛直荷重支持手段)17によって水平方向に移動可能となっている点と、積層ゴム14が減衰手段の機能を兼ねている点と、が第1実施形態に係る免震構造1と異なっている。
積層ゴム14は、水平方向に復元力を発揮するゴムであり、いわゆる水平バネとして機能する。よって、積層ゴム14は柔らかいゴムで構成されている。積層ゴム14の上端は建物3に固定されており、積層ゴム14の下端は基礎2に固定されている。積層ゴム14は、ゴムと鋼板とを交互に有し、減衰手段の機能も兼ねている。すなわち、積層ゴム14は、バネ要素K1及び減衰要素C1,C2として機能する。
積層ゴム14は、第1実施形態の積層ゴム4と同様、例えば加硫接着によりゴムと鋼板とが交互に積層された構造となっており、その一部の鋼板が鋼板15である。また、例えば、積層ゴム14の高さをLとすると、基礎2に対する鋼板15の高さ位置は9L/10となっている。鋼板15は、上記の高さ位置で積層ゴム14から質量体16に向かって水平方向に延在し、積層ゴム14の反対側で質量体16に固定されている。この鋼板15は、積層ゴム14と質量体16とを接続する接続要素として機能する。
質量体16は、免震層Sに配置されており、建物3が揺れたときに水平方向に移動するマスM2として機能する。質量体16の重量は、例えば1次モードの振動対策で用いられる質量体の重量の1/10である。また、地震等によって建物3が揺れると、積層ゴム14が水平方向に揺動すると共に、質量体16が水平方向に移動する。積層ゴム14と質量体16との間にはクリアランスA1が設けられているので、積層ゴム14が水平方向に揺動し質量体16が水平方向に移動しても、積層ゴム14と質量体16との衝突を回避することができる。質量体16としては、第1実施形態の質量体6と同様、例えば鋼製の箱にコンクリート塊を入れてコンクリートで固めた箱体を利用することができる。
質量体16は、質量体16の下部に設けられた転がり装置17によって、基礎2に対して水平方向に移動可能となっている。質量体16の下部には、複数の転がり装置17が配置されている。このように転がり装置17が配置されているので、質量体16は、水平方向における基礎2及び建物3の相対移動に対しては殆ど抵抗しない。また、転がり装置17は、質量体16の鉛直荷重を支持している。このような転がり装置17としては、例えばボールベアリングの転がり支承を用いることができる。また、転がり装置17に代えて、水平方向への振動に対する抵抗が少ない低摩擦滑り支承を採用することも可能である。
ここで、上記のように基礎2に対する鋼板15の高さ位置が9L/10となっており、質量体16は、鋼板15と積層ゴム14の上側1/10の部分とを介して建物3に接続されている。よって、積層ゴム14の上側1/10の部分、及び質量体16がTMDとして機能する。このTMDの剛性は、積層ゴム14そのものの剛性の1/10である。また、積層ゴム14の上側1/10の部分がバネ要素K2として機能し、積層ゴム14の下側9/10の部分がバネ要素K4として機能する。
以上のように、積層ゴム14の上側1/10の部分、及び質量体16をTMDとして用いると共に、上記のように質量体16の重量を1次モードの1/10としている。そして、水平方向における2次モードの振動の固有周期が、水平方向における1次モードの固有周期の1/10程度であるため、上記のTMDを2次モードの水平方向への振動に同調させることができる。
また、第2実施形態では、積層ゴム14の上部(上側1/10の部分)をバネ要素K2としているので、積層ゴム14の一部をバネ要素K2として有効活用することができる。このバネ要素K2は、2次モードの水平方向への振動と同調可能となっている。また、質量体16は、鋼板15及び積層ゴム14を介して建物3に接続されており、基礎2に対しては水平方向に移動可能となっている。よって、質量体16の水平方向への移動に対する抵抗が小さくなっており、質量体16は、地震等で揺れが生じたときに振り子運動と同様の運動を行う。従って、TMDと同様の機能を有する質量体16及び積層ゴム14が免震層Sに配置されるので、免震層Sにおける2次モードの振動を効果的に抑えることができる。
(第3実施形態)
図6は、第3実施形態に係る免震構造21の免震層Sにおける平面図である。図6に示されるように、免震構造21は、積層ゴム24、鋼板25、質量体26及び転がり装置27を備えている。積層ゴム24、鋼板25、質量体26及び転がり装置27の機能は、第2実施形態の積層ゴム14、鋼板15、質量体16及び転がり装置17のそれぞれの機能と同一である。
免震構造21は、滑り支承(鉛直荷重支持手段)28と、減衰手段29とを備えている。滑り支承28は基礎2上で建物3を支持しており、複数の滑り支承28は水平面上でマトリクス状に配置されている。滑り支承28は、建物3を構成する各柱の直下に配置されている。複数の減衰手段29は、建物3の揺れを減衰するために設けられ、例えば水平面上で互いに対称となるように配置される。水平面上において、複数の滑り支承28及び複数の減衰手段29は、四角形となった免震層Sの辺に沿うように一定間隔を空けて配置されている。また、水平面上において、減衰手段29は2つの滑り支承28の間に配置されているが、滑り支承28及び減衰手段29の配置態様は適宜変更可能である。
積層ゴム24、鋼板25、質量体26及び転がり装置27は、水平面上における構成が第2実施形態と異なっており、その他の構成は第2実施形態の積層ゴム14、鋼板15、質量体16及び転がり装置17と同一である。よって、以下では、水平面上における積層ゴム24、鋼板25、質量体26及び転がり装置27について重点的に説明する。
免震構造21において、複数(図6の場合は4個)の積層ゴム24と質量体26とは、水平面上における免震層Sの中央部分で一体となるように配置されている。積層ゴム24は、第2実施形態の積層ゴム14と同様の水平バネであり、鉛直方向における建物3の荷重を受けないように免震層Sに配置される。この積層ゴム24によって、1次モードの振動又は2次モードの振動に対応した固有周期の設定を自由に行えるようになっている。また、水平面上において、鋼板25は四角形の角を丸めた形となっている。そして、水平面上で円形となった4個の積層ゴム24は、鋼板25の上記丸めた角の内側で、それぞれの角に沿うように配置されている。
質量体26は、水平面上において、四角形の角を内側に円弧状に切り欠いた形状となっており、この円弧状に切り欠いた部分のそれぞれに積層ゴム24が配置されている。質量体26の上記切り欠いた部分の外周と積層ゴム24の外周との間にはクリアランスA2が形成されている。水平面上におけるクリアランスA2の幅は一定となっており、クリアランスA2の効率的な確保が実現されている。また、このようなクリアランスA2を形成することによって、第2実施形態のクリアランスA1と同様、積層ゴム24が水平方向に揺動し質量体26が水平方向に移動しても、積層ゴム24と質量体26との衝突を回避することができる。質量体26の下部には、複数の転がり装置27が第2実施形態の転がり装置17と同様に配置されており、各転がり装置27は、質量体26を水平方向に移動可能に支持している。
以上、第3実施形態では、積層ゴム24と質量体26とが水平面上における免震層Sの中央部分で一体となるように配置されているので、コンパクトな免震構造21が実現されている。この免震構造21では、免震層Sの中央部分に積層ゴム24と質量体26とをまとめて配置することができる。よって、特に建物3が比較的小型である場合に、簡単に積層ゴム24と質量体26とを配置することができるので有利である。
(第4実施形態)
図7は、第4実施形態に係る免震構造31の免震層Sにおける平面図であり、図8は、図7の免震構造31におけるA−A線断面図である。図7及び図8に示されるように、免震構造31は、積層ゴム34、鋼板35、質量体36及び転がり装置37を備えている。積層ゴム34、鋼板35、質量体36及び転がり装置37は、水平面上における構成が第2実施形態と異なっており、その他の構成及び機能は、第2実施形態の積層ゴム14、鋼板15、質量体16及び転がり装置17と同一である。よって、以下では、水平面上における積層ゴム34、鋼板35、質量体36及び転がり装置37について重点的に説明する。
免震構造31では、水平面上において、質量体36が環状となっており、積層ゴム34は質量体36の内側に配置されている。積層ゴム34及び鋼板35は、水平面上において円形となっており、鋼板35は、上から質量体36を覆った状態で質量体36の上面に固定されている。また、鋼板35は、質量体36と積層ゴム34とを接続している。なお、積層ゴム34及び鋼板35の形状は、円形でなくてもよく適宜変更可能である。
水平面上における質量体36の内周と積層ゴム34の外周との間にはクリアランスA3が形成されており、水平面上における質量体36の内周の形状と積層ゴム34の外周の形状とは同一となっている。また、水平面上において、クリアランスA3は環状となっており、クリアランスA3の幅は一定となっているので効率的なクリアランスA3の確保が実現されている。このようなクリアランスA3を形成することによって、第3実施形態のクリアランスA2と同様、積層ゴム34が水平方向に揺動し質量体36が水平方向に移動しても、積層ゴム34と質量体36との衝突を回避することができる。また、複数の転がり装置37は、第3実施形態の転がり装置27と同様、質量体36を水平方向に移動可能に支持している。
以上、第4実施形態において、質量体36は、水平面上で環状となっており、積層ゴム34は、質量体36の内側に配置されている。このように環状となる質量体36の内側に積層ゴム34を配置して、鋼板35で質量体36及び積層ゴム34を接続しているので、免震構造31をユニット化することができる。よって、免震構造31を、運搬しやすく且つ免震層Sに配置しやすいサイズ(例えば直径2〜3m程度)にすることが可能となっている。従って、特に比較的大型の建物3に免震構造31を配置する場合に、複数のユニット化された免震構造31をバランスよく且つ容易に配置することができるので有利である。
本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で、下記のような種々の変形が可能である。
例えば、上記実施形態では、図5に示されるように、積層ゴム14を構成する複数の鋼板の一部である鋼板15を質量体16の上面に固定させた。しかし、積層ゴムと質量体とを接続する方法は、上記に限られない。例えば図9に示されるように、積層ゴム14を構成する複数の鋼板の一部である鋼板55と、質量体16の上面で固定させた鋼板58と、を連結手段59によって連結させてもよい。連結手段59は、鋼板55及び鋼板58を上下から挟み込むプレート59b,59cと、プレート59b,59cに挿通される複数のボルト59aと、各ボルト59aをプレート59b,59cに固定させるナット(不図示)とを備えている。また、鋼板55と鋼板58とを連結する連結手段については、連結手段59に限られず、種々のものを採用することができる。
また、上記実施形態では、図5に示されるように、基礎2に対する鋼板15の高さ位置が9L/10となっている例について説明したが、鋼板の高さ位置は適宜変更可能である。更に、質量体の重量についても適宜変更可能である。
また、上記実施形態では、図6に示されるように、4個の積層ゴム24と1個の質量体26とが免震層Sの中央部分で一体となるように配置されたが、積層ゴムの個数及び質量体の個数は上記に限定されず適宜変更可能である。
また、上記実施形態では、複数の積層ゴムや滑り支承が水平面上でマトリクス状に配置されたが、本発明に係る免震構造において、積層ゴム又は滑り支承等の各構成要素の配置は適宜変更することが可能である。
また、上記実施形態では、免震構造が基礎2と建物3の間の免震層Sに配置されたが、建物3の途中階に免震構造を配置することも可能である。更に、本発明に係る免震構造は、橋梁構造物又は鉄道構造物で用いられる免震構造にも応用させることが可能である。
1,11,21,31…免震構造、2…基礎(下部構造物)、3…建物(上部構造物)、4…積層ゴム(鉛直荷重支持手段)、5…吊材(バネ要素)、6,16,26,36…質量体、7…減衰手段、14,24,34…積層ゴム、15,25,35,55,58…鋼板、17,27,37…転がり装置(鉛直荷重支持手段)、28…滑り支承(鉛直荷重支持手段)、29…減衰手段、K1,K2,K3,K4…バネ要素、S…免震層。

Claims (3)

  1. 上部構造物と下部構造物との間に位置する免震層に配置される免震構造において、
    前記免震層で前記上部構造物の鉛直荷重を支持する鉛直荷重支持手段と、
    前記免震層に配置されて、1次モードの振動よりも固有周期が短い2次モードにおける水平方向への振動と同調可能なバネ要素と、
    前記バネ要素を介して前記免震層で前記上部構造物と接続された質量体と、
    前記免震層に配置されて前記上部構造物における揺れを減衰させる減衰手段と、
    を備え、
    前記減衰手段は、ゴムと鋼板とが交互に積層された積層ゴムであり、
    前記質量体は、前記下部構造物に対して水平方向に移動可能となっており、
    前記バネ要素は、前記積層ゴムの一部であることを特徴とする免震構造。
  2. 前記積層ゴムと前記質量体とは、水平面上における前記免震層の中央部分で一体となるように配置されていることを特徴とする請求項に記載の免震構造。
  3. 前記質量体は、水平面上において環状となっており、前記積層ゴムは、水平面上において前記質量体の内側に配置されていることを特徴とする請求項に記載の免震構造。
JP2014021595A 2014-02-06 2014-02-06 免震構造 Expired - Fee Related JP6378494B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014021595A JP6378494B2 (ja) 2014-02-06 2014-02-06 免震構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014021595A JP6378494B2 (ja) 2014-02-06 2014-02-06 免震構造

Publications (2)

Publication Number Publication Date
JP2015148095A JP2015148095A (ja) 2015-08-20
JP6378494B2 true JP6378494B2 (ja) 2018-08-22

Family

ID=53891672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014021595A Expired - Fee Related JP6378494B2 (ja) 2014-02-06 2014-02-06 免震構造

Country Status (1)

Country Link
JP (1) JP6378494B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6636383B2 (ja) * 2016-05-11 2020-01-29 鹿島建設株式会社 免震構造及び免震構造を設計する方法
CN106988448B (zh) * 2017-03-27 2019-11-29 同济大学 一种减隔震混合控制结构
CN109555009B (zh) * 2019-01-24 2023-08-15 湖南中腾土木工程技术有限公司 一种支撑及梁体减隔震结构体系及其应用
JP7217200B2 (ja) * 2019-05-23 2023-02-02 住友理工株式会社 床用遮音構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3074572B2 (ja) * 1991-04-26 2000-08-07 オイレス工業株式会社 低荷重構造体の免震支持構造
JP5901348B2 (ja) * 2012-02-28 2016-04-06 大成建設株式会社 免震構造

Also Published As

Publication number Publication date
JP2015148095A (ja) 2015-08-20

Similar Documents

Publication Publication Date Title
JP6378494B2 (ja) 免震構造
JP2015055293A (ja) 制震装置
JP2016216906A (ja) 免震構造
JP2015168997A (ja) 建造物の防震基礎構造
WO2015098084A1 (ja) ボイラの支持構造体
JP6420012B1 (ja) 建物用受動型制振装置
JP2011163057A (ja) 免震構造の改修方法および免震装置
JP6383532B2 (ja) 既存構造物の免震化方法
JP2011169026A (ja) 床構造
JP2016199910A (ja) 免震構造および既存建物の免震改修方法
JP5108469B2 (ja) 制振装置及び制振建物
JP2009097301A (ja) 減衰機能を備えた転がり免震支承装置
JP2021014905A (ja) 制振装置、及び制振構造
JP2012202510A (ja) 免震構造物
JP2012219879A (ja) 上下免震装置
JP6384174B2 (ja) 制振構造
JP2010242450A (ja) 制振方法、制振構造、及び耐震補強方法
JP5852394B2 (ja) 免震装置
JP2017180842A (ja) 中間免震構造物
JP2018145626A (ja) 制振構造
JP6641761B2 (ja) 制振構造
JP5286432B2 (ja) 制振装置及び制振建物
JP5535151B2 (ja) 免震状態解除装置及びこの免震状態解除装置を用いた免震構造物
JP6379608B2 (ja) 制振建造物及び建造物の制振方法
JP2017187055A (ja) 同心円積層型減衰材を備えた免震装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180727

R150 Certificate of patent or registration of utility model

Ref document number: 6378494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees