JP6322066B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP6322066B2
JP6322066B2 JP2014130904A JP2014130904A JP6322066B2 JP 6322066 B2 JP6322066 B2 JP 6322066B2 JP 2014130904 A JP2014130904 A JP 2014130904A JP 2014130904 A JP2014130904 A JP 2014130904A JP 6322066 B2 JP6322066 B2 JP 6322066B2
Authority
JP
Japan
Prior art keywords
hole
base material
wiring board
laser
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014130904A
Other languages
Japanese (ja)
Other versions
JP2016009810A (en
Inventor
奈須 孝有
孝有 奈須
健悟 谷森
健悟 谷森
浩太 木全
浩太 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2014130904A priority Critical patent/JP6322066B2/en
Publication of JP2016009810A publication Critical patent/JP2016009810A/en
Application granted granted Critical
Publication of JP6322066B2 publication Critical patent/JP6322066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、樹脂絶縁層などの基材に、複数の貫通孔が形成される配線基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a wiring board in which a plurality of through holes are formed in a base material such as a resin insulating layer.

コンピュータのマイクロプロセッサ等として使用される半導体集積回路素子(ICチップ)は、近年ますます高速化、高機能化しており、これに付随して端子数が増え、端子間ピッチも狭くなる傾向にある。また、ICチップの底面には、一般的に、多数の端子が密集してアレイ状に配置されている。よって、このICチップを検査するためには、専用の検査装置、例えば、電子部品検査用配線基板を備えた検査装置等が必要である。   In recent years, semiconductor integrated circuit elements (IC chips) used as computer microprocessors and the like have become increasingly faster and more functional, with an accompanying increase in the number of terminals and a tendency to narrow the pitch between terminals. . In general, a large number of terminals are densely arranged in an array on the bottom surface of the IC chip. Therefore, in order to inspect this IC chip, a dedicated inspection device, for example, an inspection device provided with a wiring board for electronic component inspection is required.

なお、電子部品検査用配線基板としては、例えば、複数のセラミック絶縁層及び複数の導体層を積層してなるセラミック基板部の上層側に、複数の樹脂絶縁層及び複数の配線層を積層してなる樹脂絶縁部を形成した配線基板が実用化されている。セラミック絶縁層や樹脂絶縁層などの基材には複数の貫通孔が形成され、各貫通孔内には貫通導体(ビア導体)が形成されている。なお、貫通孔は、例えば、基材に対してレーザーを照射することにより形成される(例えば、特許文献1参照)。   As an electronic component inspection wiring board, for example, a plurality of resin insulating layers and a plurality of wiring layers are laminated on the upper layer side of a ceramic substrate portion formed by laminating a plurality of ceramic insulating layers and a plurality of conductor layers. A wiring board on which a resin insulating portion is formed has been put into practical use. A plurality of through holes are formed in a base material such as a ceramic insulating layer or a resin insulating layer, and a through conductor (via conductor) is formed in each through hole. In addition, a through-hole is formed by irradiating a laser with respect to a base material (for example, refer patent document 1).

以下、上記の樹脂絶縁層(基材)に貫通孔を形成する方法を説明する。まず、樹脂材料からなる基材103を準備する(図12参照)。なお、基材103の表面102には、配線層となる金属層101が形成されている。次に、アクリル樹脂からなる下治具104の支持面105に裏面106を向けた状態で、支持面105上に基材103を載置するとともに、難燃性の繊維からなる紙107を、基材103と下治具104との間に介在させる(図12参照)。そして、基材103に対してレーザー(一般的には炭酸ガスレーザー)を照射することにより、基材103に複数の貫通孔108が形成される(図12参照)。   Hereinafter, a method for forming a through hole in the resin insulating layer (base material) will be described. First, a base material 103 made of a resin material is prepared (see FIG. 12). Note that a metal layer 101 serving as a wiring layer is formed on the surface 102 of the base material 103. Next, the base material 103 is placed on the support surface 105 in a state where the back surface 106 faces the support surface 105 of the lower jig 104 made of acrylic resin, and the paper 107 made of flame-retardant fiber is used as a base. It is interposed between the material 103 and the lower jig 104 (see FIG. 12). A plurality of through holes 108 are formed in the base material 103 by irradiating the base material 103 with a laser (generally a carbon dioxide laser) (see FIG. 12).

特開2007−175721号公報(図2〜図4等)JP 2007-175721 A (FIGS. 2 to 4 etc.)

ところで、近年、ICチップの小型化の流れを受けて、電子部品検査用配線基板側の貫通孔108の内径も小さくなる傾向にある。しかしながら、炭酸ガスレーザーの出力は強すぎるため、貫通孔108の内径が例えば60μm以下になると、基材103または金属層101がレーザーの加工熱の影響を受けて溶け出してしまう。その結果、形成される貫通孔108の内径にバラツキが生じてしまい、貫通孔108を正確に形成できなくなるため、不良品発生率が高くなって歩留まりが低下するという問題がある。   Incidentally, in recent years, in response to the trend toward miniaturization of IC chips, the inner diameter of the through hole 108 on the electronic component inspection wiring board side also tends to be reduced. However, since the output of the carbon dioxide laser is too strong, if the inner diameter of the through-hole 108 is 60 μm or less, for example, the base material 103 or the metal layer 101 is melted under the influence of the processing heat of the laser. As a result, there is a variation in the inner diameter of the through-hole 108 to be formed, and the through-hole 108 cannot be formed accurately, resulting in a problem that the defective product generation rate increases and the yield decreases.

なお、炭酸ガスレーザーを用いる代わりに、比較的低出力のUVレーザーを用いて貫通孔108を形成することも提案されている。しかし、貫通孔108の内径が50μm以下になると、たとえUVレーザーであったとしても、基材103または金属層101がレーザーの加工熱の影響を受けて溶け出してしまい、貫通孔108の内径にバラツキが生じる可能性がある。よって、この場合も、貫通孔108を正確に形成できないため、不良品発生率が高くなって歩留まりが低下するという問題がある。   In addition, it has also been proposed to form the through-hole 108 using a relatively low-power UV laser instead of using a carbon dioxide laser. However, when the inner diameter of the through hole 108 is 50 μm or less, even if it is a UV laser, the base material 103 or the metal layer 101 is melted by the influence of the laser processing heat, and the inner diameter of the through hole 108 is reduced. Variations may occur. Therefore, also in this case, since the through-hole 108 cannot be formed accurately, there is a problem that the defective product generation rate is increased and the yield is lowered.

本発明は上記の課題に鑑みてなされたものであり、その目的は、貫通孔の内径が小さい場合であっても、貫通孔を正確に形成可能とすることにより、歩留まりを向上させることができる配線基板の製造方法を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to improve the yield by enabling the through-hole to be accurately formed even when the through-hole has a small inner diameter. The object is to provide a method of manufacturing a wiring board.

上記課題を解決するための手段(手段1)としては、第1面と前記第1面の反対側に位置する第2面とを有する板状に形成された基材に、前記基材を厚さ方向に貫通する複数の貫通孔が形成される配線基板の製造方法であって、前記基材を準備する基材準備工程と、金属材料からなる支持部材の支持面に前記第1面を向けた状態で、前記支持面上に前記基材を載置するとともに、光透過性を有する材料からなる保護層を前記基材と前記支持部材との間に介在させる基材載置工程と、前記基材において前記支持部材側とは反対側からレーザーを照射することにより、前記基材に前記複数の貫通孔を形成する貫通孔形成工程とを含み、前記基材載置工程に用いられる前記支持部材において、形成すべき前記複数の貫通孔と対応する位置に複数の孔部が設けられ、前記孔部の内径の大きさが、前記貫通孔の内径以上であって、隣接する前記貫通孔間のピッチ未満に設定されていることを特徴とする配線基板の製造方法がある。   As means (means 1) for solving the above-mentioned problems, the base material is thickened on a base material formed in a plate shape having a first surface and a second surface located on the opposite side of the first surface. A method of manufacturing a wiring board in which a plurality of through holes penetrating in a vertical direction is formed, the base material preparing step for preparing the base material, and the first surface facing a support surface of a support member made of a metal material In this state, the base material is placed on the support surface, and a base material placement step of interposing a protective layer made of a light-transmitting material between the base material and the support member; The support used in the substrate placing step, including a through hole forming step of forming the plurality of through holes in the substrate by irradiating a laser from the side opposite to the support member side in the substrate In the member, a plurality of holes at positions corresponding to the plurality of through holes to be formed There is provided a method of manufacturing a wiring board, wherein the size of the inner diameter of the hole is equal to or larger than the inner diameter of the through hole and less than the pitch between the adjacent through holes. .

従って、手段1に記載の発明では、基材載置工程において、複数の孔部が設けられた支持部材の支持面上に基材を載置している。その結果、貫通孔形成工程において基材にレーザーを照射したとしても、基材に加わるレーザーの加工熱が、金属材料からなる支持部材を介して拡散されるとともに、孔部を通過して外部に放出される。しかも、基材載置工程では、光透過性を有する材料からなる保護層を基材と支持部材との間に介在させている。その結果、基材に照射されたレーザーが保護層内を直進するため、基材内においてレーザーが散乱しにくくなる。以上のことから、貫通孔の内径が小さい場合であっても、レーザーの加工熱やレーザーの散乱に起因する貫通孔の内径のバラツキが生じにくくなり、貫通孔を正確に形成できるようになる。ゆえに、不良品発生率が低く抑えられ、製造される配線基板の歩留まりが高くなる。   Therefore, in the invention described in the means 1, the base material is placed on the support surface of the support member provided with the plurality of holes in the base material placing step. As a result, even if the substrate is irradiated with a laser in the through hole forming step, the laser processing heat applied to the substrate is diffused through the support member made of the metal material and passes through the hole to the outside. Released. In addition, in the substrate placing step, a protective layer made of a light transmissive material is interposed between the substrate and the support member. As a result, the laser irradiated to the base material travels straight through the protective layer, so that it is difficult for the laser to scatter within the base material. From the above, even when the inner diameter of the through hole is small, variations in the inner diameter of the through hole due to laser processing heat and laser scattering are less likely to occur, and the through hole can be formed accurately. Therefore, the defective product occurrence rate is kept low, and the yield of manufactured wiring boards is increased.

以下、上記手段1に係る配線基板の製造方法について説明する。   Hereinafter, a method of manufacturing the wiring board according to the means 1 will be described.

基材準備工程では、第1面と第1面の反対側に位置する第2面とを有する板状に形成された基材を準備する。基材の種類としては特に限定されず任意であるが、例えば、樹脂絶縁層となる樹脂絶縁材であることが好適である。基材が樹脂絶縁材である場合、レーザーの加工熱によって基材が溶け出すという本願特有の問題が起こりやすいため、上記手段1を採用する意義が大きくなる。なお、他の基材としては、例えば各種のセラミックからなる絶縁層を選択することもできる。   In the base material preparation step, a base material formed in a plate shape having a first surface and a second surface located on the opposite side of the first surface is prepared. Although it does not specifically limit as a kind of base material and is arbitrary, For example, it is suitable for it to be the resin insulating material used as a resin insulating layer. When the base material is a resin insulating material, a problem peculiar to the present application that the base material is melted by the processing heat of the laser tends to occur. In addition, as another base material, the insulating layer which consists of various ceramics, for example can also be selected.

また、樹脂絶縁材は、絶縁性、耐熱性、耐湿性等を考慮して適宜選択することができる。樹脂絶縁材を形成するための高分子材料の好適例としては、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ビスマレイミド−トリアジン樹脂、ポリフェニレンエーテル樹脂などが挙げられる。   The resin insulating material can be appropriately selected in consideration of insulation, heat resistance, moisture resistance, and the like. Preferable examples of the polymer material for forming the resin insulating material include epoxy resin, polyimide resin, phenol resin, urethane resin, silicone resin, bismaleimide-triazine resin, and polyphenylene ether resin.

なお、基材準備工程では、配線層となる金属層が第1面及び第2面の少なくとも一方に形成された基材を準備することがよい。このようにすれば、配線基板に配線層からなる電気回路を形成できるため、配線基板の高機能化を図ることができる。さらに、金属層は銅箔であることがよい。この場合、一般的に使用される汎用の材料である銅箔付きフィルムを用いることができるため、配線基板の製造コストを低く抑えることができる。   In the base material preparation step, it is preferable to prepare a base material in which a metal layer to be a wiring layer is formed on at least one of the first surface and the second surface. In this way, since an electric circuit composed of a wiring layer can be formed on the wiring board, the functionality of the wiring board can be enhanced. Furthermore, the metal layer is preferably a copper foil. In this case, since a film with copper foil, which is a general-purpose material that is generally used, can be used, the manufacturing cost of the wiring board can be kept low.

続く基材載置工程では、金属材料からなる支持部材の支持面に基材の第1面を向けた状態で、支持面上に基材を載置する。ここで使用する支持部材は、基材に形成すべき複数の貫通孔と対応する位置に複数の孔部が設けられた構造を有している。支持部材を構成する金属材料としては、例えば、ステンレス(SUS303、SUS304等)、銅、アルミニウム、ニッケルなどが挙げられる。   In the subsequent substrate placing step, the substrate is placed on the support surface with the first surface of the substrate facing the support surface of the support member made of a metal material. The support member used here has a structure in which a plurality of holes are provided at positions corresponding to the plurality of through holes to be formed in the base material. Examples of the metal material constituting the support member include stainless steel (SUS303, SUS304, etc.), copper, aluminum, nickel, and the like.

また、基材載置工程では、光透過性を有する材料からなる保護層を基材と支持部材との間に介在させる。保護層を形成する材料は、光透過性、耐熱性、耐圧性、離型性等に加えて、基材や支持部材へのダメージが少ないこと、安価であることなどを考慮して適宜選択される。よって、保護層としては、例えば、樹脂材料やガラスなどが好適に使用される。ここで、保護層に使用される樹脂材料としては、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂などがある。特に、保護層は、樹脂材料の中でも比較的離型性に優れたポリエチレンテレフタレート樹脂によって形成されていることがよい。   In the substrate placing step, a protective layer made of a light transmissive material is interposed between the substrate and the support member. The material for forming the protective layer is appropriately selected in consideration of light transmittance, heat resistance, pressure resistance, releasability, etc., as well as low damage to the base material and support member, and low cost. The Therefore, for example, a resin material or glass is preferably used as the protective layer. Here, examples of the resin material used for the protective layer include polyethylene terephthalate resin, polycarbonate resin, and acrylic resin. In particular, the protective layer is preferably formed of a polyethylene terephthalate resin that is relatively excellent in releasability among resin materials.

なお、保護層は、基材の第1面上に形成されていてもよいし、支持部材の支持面上に形成されていてもよい。また、保護層は、第1面上及び第2面上の両方に形成されていることがよい。このようにした場合、レーザーが、第2面上に形成された保護層(即ち、基材において支持部材側とは反対側に形成された保護層)の内部を直進した後、第2面上に形成された保護層(即ち、基材において支持部材側に形成された保護層)の内部を直進するため、基材内においてレーザーがよりいっそう散乱しにくくなる。その結果、レーザーの散乱に起因する貫通孔の内径のバラツキがよりいっそう生じにくくなり、貫通孔をより正確に形成できるようになるため、不良品発生率がより低く抑えられ、製造される配線基板の歩留まりがよりいっそう高くなる。   In addition, the protective layer may be formed on the 1st surface of a base material, and may be formed on the support surface of a support member. The protective layer is preferably formed on both the first surface and the second surface. In this case, after the laser goes straight through the inside of the protective layer formed on the second surface (that is, the protective layer formed on the side opposite to the support member side in the base material), Since the inside of the protective layer (that is, the protective layer formed on the support member side in the substrate) goes straight, the laser becomes more difficult to scatter in the substrate. As a result, variations in the inner diameter of the through-hole due to laser scattering are more unlikely to occur, and the through-hole can be formed more accurately. Yield is even higher.

続く貫通孔形成工程では、基材において支持部材側とは反対側からレーザーを照射することにより、基材に複数の貫通孔を形成する。ここで、レーザーとしては周知の技術を採用することができ、具体例としては、UVレーザー、炭酸ガスレーザー、YAGレーザーなどが挙げられる。なお、従来は、炭酸ガスレーザーが主流であるが、内径が例えば40μm以下の貫通孔を形成する場合には、出力が強すぎるために貫通孔の形成が困難である。よって、レーザーは例えばUVレーザーであり、貫通孔形成工程では、貫通孔の開口縁となる仮想円に沿ってレーザーを複数回に分けて照射することにより、貫通孔を形成することがよい。UVレーザーは比較的低出力であるため、複数回に分けてレーザーを照射すると、基材へのレーザーの加工熱によるダメージを回避しつつ貫通孔を確実に形成することができる。   In the subsequent through-hole forming step, a plurality of through-holes are formed in the base material by irradiating the base material with laser from the side opposite to the support member side. Here, a well-known technique can be adopted as the laser, and specific examples include a UV laser, a carbon dioxide gas laser, and a YAG laser. Conventionally, a carbon dioxide laser is the mainstream, but when a through hole having an inner diameter of, for example, 40 μm or less is formed, the output is too strong, making it difficult to form the through hole. Therefore, the laser is, for example, a UV laser, and in the through-hole forming step, it is preferable to form the through-hole by irradiating the laser several times along a virtual circle serving as an opening edge of the through-hole. Since the UV laser has a relatively low output, when the laser is irradiated in a plurality of times, the through-hole can be reliably formed while avoiding damage to the base material due to the processing heat of the laser.

なお、貫通孔の内径は40μm以下に設定され、隣接する貫通孔間のピッチは100μm以下に設定されていることがよい。このようにした場合、製造される配線基板において、配線の微細化や高密度化を図ることができる。また、レーザーの加工熱によって基材が溶け出すという本願特有の問題や、100μm以下のファインピッチの場合に隣接する貫通孔同士が繋がってしまうという本願特有の問題が起こりやすくなるため、上記手段1を採用する意義が大きくなる。   The inner diameter of the through holes is preferably set to 40 μm or less, and the pitch between adjacent through holes is preferably set to 100 μm or less. In such a case, it is possible to make the wiring finer and higher in density in the manufactured wiring board. Further, the above means 1 is more likely to cause a problem peculiar to the present application that the base material is melted by the processing heat of the laser and a problem peculiar to the present application that adjacent through holes are connected in the case of a fine pitch of 100 μm or less. Significance of adopting will increase.

また、貫通孔形成工程後、貫通孔内に導電性ペーストを充填して貫通導体を形成する貫通導体形成工程を行うことがよい。このようにすれば、複数の基材と複数の金属層(配線層)とを積層してなる絶縁部を形成する場合に、貫通導体を介して各基材に形成された金属層を確実に接続することができる。   Moreover, it is good to perform the through-conductor formation process which fills a conductive paste in a through-hole, and forms a through-conductor after a through-hole formation process. In this way, when forming an insulating portion formed by laminating a plurality of base materials and a plurality of metal layers (wiring layers), the metal layers formed on the base materials are surely formed through the through conductors. Can be connected.

以上のプロセスを経て、配線基板が製造される。なお、かかる配線基板の構造としては特に限定されないが、例えばコア基板の片面または両面にビルドアップ層を有するビルドアップ多層配線基板や、コア基板を有さないコアレス配線基板などを挙げることができる。また、配線基板は、基材からなる複数の樹脂絶縁層と複数の配線層とが積層された樹脂絶縁部と、樹脂絶縁部の下層側に設けられ、複数のセラミック絶縁層と複数の導体層とが積層されたセラミック基板部とを備える電子部品検査用配線基板であってもよい。   A wiring board is manufactured through the above processes. The structure of the wiring board is not particularly limited, and examples thereof include a build-up multilayer wiring board having a build-up layer on one side or both sides of the core board, and a coreless wiring board having no core board. The wiring board is provided with a resin insulating portion in which a plurality of resin insulating layers made of a base material and a plurality of wiring layers are laminated, a lower layer side of the resin insulating portion, and a plurality of ceramic insulating layers and a plurality of conductor layers May be a wiring board for inspection of electronic components.

本実施形態における電子部品検査用配線基板の概略構成を示す断面図。Sectional drawing which shows schematic structure of the wiring board for electronic component inspection in this embodiment. 配線層と貫通導体との接続部分を示す拡大断面図。The expanded sectional view which shows the connection part of a wiring layer and a penetration conductor. セラミック基板部の貫通孔を形成する工程を示す説明図。Explanatory drawing which shows the process of forming the through-hole of a ceramic substrate part. セラミック基板部のビア導体及び導体層を形成する工程を示す説明図。Explanatory drawing which shows the process of forming the via conductor and conductor layer of a ceramic substrate part. セラミック基板部となるセラミック積層体を形成する工程を示す説明図。Explanatory drawing which shows the process of forming the ceramic laminated body used as a ceramic substrate part. 基材準備工程を示す説明図。Explanatory drawing which shows a base material preparation process. 基材載置工程を示す説明図。Explanatory drawing which shows a base material mounting process. 貫通孔形成工程を示す説明図。Explanatory drawing which shows a through-hole formation process. 貫通孔形成工程を示す要部平面図。The principal part top view which shows a through-hole formation process. 貫通導体形成工程を示す説明図。Explanatory drawing which shows a penetration conductor formation process. 配線層を形成する工程を示す説明図。Explanatory drawing which shows the process of forming a wiring layer. 従来技術における配線基板の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of the wiring board in a prior art.

以下、本発明を電子部品検査用配線基板に具体化した一実施形態を図面に基づき詳細に説明する。   Hereinafter, an embodiment in which the present invention is embodied in an electronic component inspection wiring board will be described in detail with reference to the drawings.

図1に示されるように、本実施形態の電子部品検査用配線基板10(以下「配線基板10」という)は、ICチップ(電子部品)の電気検査を行うための検査装置の一部に使用される部品である。配線基板10は、樹脂絶縁部20と、樹脂絶縁部20の下層側に設けられたセラミック基板部30とを備える。配線基板10は、縦横の長さが10cm程度、厚さが4mm程度の配線基板であり、使用時において配線基板10の主面11(樹脂絶縁部20の表面)が検査対象であるICチップに向けて配置される。   As shown in FIG. 1, an electronic component inspection wiring board 10 (hereinafter referred to as “wiring board 10”) according to the present embodiment is used as a part of an inspection apparatus for performing an electrical inspection of an IC chip (electronic component). Parts to be used. The wiring substrate 10 includes a resin insulating part 20 and a ceramic substrate part 30 provided on the lower layer side of the resin insulating part 20. The wiring board 10 is a wiring board having a vertical and horizontal length of about 10 cm and a thickness of about 4 mm. In use, the main surface 11 (the surface of the resin insulating portion 20) of the wiring board 10 is an IC chip to be inspected. Placed.

セラミック基板部30は、セラミック絶縁層31,32,33と導体層34とを交互に積層した構造を有している。各セラミック絶縁層31〜33は、例えばアルミナの焼結体であり、導体層34は、例えば、タングステン、モリブデン、または、これらの合金からなるメタライズ層である。各セラミック絶縁層31〜33には厚さ方向に貫通する貫通孔36が形成され、貫通孔36内には導体層34に接続される貫通導体37が形成されている。各貫通孔36は、断面円形状をなし、内径が60μm程度に設定されている。各貫通導体37は、断面円形状をなし、外径が60μm程度に設定されている。貫通導体37は、導体層34と同様の材料、即ち、タングステン、モリブデン、または、これらの合金からなるメタライズ層である。さらに、配線基板10の裏面12(セラミック基板部30の裏面)には、複数の裏面側端子38がほぼ全域に亘ってアレイ状に形成されている。各裏面側端子38は、断面円形状をなし、直径が1.0mm程度に設定されている。   The ceramic substrate portion 30 has a structure in which ceramic insulating layers 31, 32, 33 and conductor layers 34 are alternately stacked. Each of the ceramic insulating layers 31 to 33 is, for example, an alumina sintered body, and the conductor layer 34 is a metallized layer made of, for example, tungsten, molybdenum, or an alloy thereof. A through hole 36 penetrating in the thickness direction is formed in each ceramic insulating layer 31 to 33, and a through conductor 37 connected to the conductor layer 34 is formed in the through hole 36. Each through-hole 36 has a circular cross section, and the inner diameter is set to about 60 μm. Each through conductor 37 has a circular cross-section and an outer diameter of about 60 μm. The through conductor 37 is a metallized layer made of the same material as the conductor layer 34, that is, tungsten, molybdenum, or an alloy thereof. Furthermore, on the back surface 12 of the wiring substrate 10 (the back surface of the ceramic substrate portion 30), a plurality of back surface side terminals 38 are formed in an array over almost the entire area. Each back-side terminal 38 has a circular cross section and a diameter of about 1.0 mm.

図1に示されるように、樹脂絶縁部20は、樹脂絶縁層21,22と配線層23とを交互に積層した構造を有している。各樹脂絶縁層21,22は、例えばポリイミド系樹脂からなる絶縁層である。具体的に言うと、樹脂絶縁層21,22は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層24と、第1樹脂層24の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層25とにより構成されている。本実施形態では、第1樹脂層24の厚さが20μm程度に設定され、第2樹脂層25の厚さが5μm程度に設定されている。よって、樹脂絶縁層21,22の厚さは30μm程度となる。また、配線層23は、例えば銅からなる導体層であり、厚さが5μm程度に設定されている。   As shown in FIG. 1, the resin insulating portion 20 has a structure in which resin insulating layers 21 and 22 and wiring layers 23 are alternately stacked. Each of the resin insulating layers 21 and 22 is an insulating layer made of, for example, a polyimide resin. Specifically, the resin insulating layers 21 and 22 are formed on both surfaces of the first resin layer 24 made of a polyimide-based thermosetting resin and the first resin layer 24, and are made of a polyimide-based thermoplastic resin. 2 resin layers 25. In the present embodiment, the thickness of the first resin layer 24 is set to about 20 μm, and the thickness of the second resin layer 25 is set to about 5 μm. Therefore, the thickness of the resin insulating layers 21 and 22 is about 30 μm. The wiring layer 23 is a conductor layer made of copper, for example, and has a thickness of about 5 μm.

図1,図2に示されるように、各樹脂絶縁層21,22には、樹脂絶縁層21,22及び配線層23を厚さ方向に貫通する貫通孔26が形成され、貫通孔26内には配線層23に接続される貫通導体27が形成されている。各貫通孔26は、断面円形状をなし、内径A1が30μmに設定されている。隣接する貫通孔26間のピッチA3(図8参照)は60μmに設定されている。また、各貫通導体27は、断面円形状をなし、外径が30μmに設定されている。貫通導体27は、配線層23とは異なる材料である銅からなる。   As shown in FIGS. 1 and 2, each resin insulation layer 21, 22 is formed with a through hole 26 that penetrates the resin insulation layers 21, 22 and the wiring layer 23 in the thickness direction. A through conductor 27 connected to the wiring layer 23 is formed. Each through hole 26 has a circular cross section, and an inner diameter A1 is set to 30 μm. A pitch A3 (see FIG. 8) between the adjacent through holes 26 is set to 60 μm. Each through conductor 27 has a circular cross section and an outer diameter of 30 μm. The through conductor 27 is made of copper, which is a material different from that of the wiring layer 23.

さらに、配線基板10の主面11(樹脂絶縁部20の表面)上の中央部分には、配線層23である複数の主面側端子28がアレイ状に形成されている。各主面側端子28は、断面円形状をなし、直径が例えば50μm程度に設定されている。よって、図1に示される配線基板10では、各主面側端子28が、貫通導体27を介して内層側の配線層23に接続され、さらにセラミック基板部30の導体層34や貫通導体37を介して裏面側端子38に接続される。   Furthermore, a plurality of main surface side terminals 28 which are the wiring layers 23 are formed in an array at the central portion on the main surface 11 (the surface of the resin insulating portion 20) of the wiring substrate 10. Each main surface side terminal 28 has a circular cross section and has a diameter of, for example, about 50 μm. Therefore, in the wiring board 10 shown in FIG. 1, each main surface side terminal 28 is connected to the wiring layer 23 on the inner layer side through the through conductor 27, and further the conductor layer 34 and the through conductor 37 of the ceramic substrate portion 30 are connected. To the back side terminal 38.

次に、配線基板10の製造方法を説明する。   Next, a method for manufacturing the wiring board 10 will be described.

まず、アルミナ粉末を主成分とするセラミック材料を用いてグリーンシート41を複数枚形成する(図3参照)。そして、複数枚のグリーンシート41に対して、レーザー加工、パンチング加工、ドリル加工等による孔あけを行い、所定位置に貫通孔36を多数形成する(図3参照)。その後、従来周知のペースト印刷装置(図示略)を用いて、各貫通孔36内に導電性ペースト(例えばタングステンペースト)を充填し、未焼成の貫通導体37を形成する(図4参照)。さらに、ペースト印刷装置を用いて、各グリーンシート41の表面及び裏面に導電性ペーストを印刷し、未焼成の導体層34や未焼成の裏面側端子38を形成する(図4参照)。なお、導電性ペーストの充填及び印刷の順序は逆であってもよい。   First, a plurality of green sheets 41 are formed using a ceramic material mainly composed of alumina powder (see FIG. 3). Then, a plurality of through holes 36 are formed at predetermined positions by drilling the plurality of green sheets 41 by laser processing, punching processing, drilling, or the like (see FIG. 3). Thereafter, using a conventionally known paste printing apparatus (not shown), each through hole 36 is filled with a conductive paste (for example, tungsten paste) to form an unfired through conductor 37 (see FIG. 4). Further, using a paste printing device, a conductive paste is printed on the front and back surfaces of each green sheet 41 to form unfired conductor layers 34 and unfired backside terminals 38 (see FIG. 4). The order of filling and printing with the conductive paste may be reversed.

そして、導電性ペーストの乾燥後、各グリーンシート41を積層し、シート積層方向に押圧力を付与する。その結果、各グリーンシート41が一体化され、セラミック積層体43が形成される(図5参照)。次に、セラミック積層体43を脱脂し、さらに所定温度で所定時間焼成を行う。その結果、グリーンシート41のアルミナ及びペースト中のタングステンが同時焼結し、セラミック基板部30が形成される。   Then, after the conductive paste is dried, the green sheets 41 are stacked and a pressing force is applied in the sheet stacking direction. As a result, the green sheets 41 are integrated to form a ceramic laminate 43 (see FIG. 5). Next, the ceramic laminate 43 is degreased and fired at a predetermined temperature for a predetermined time. As a result, the alumina of the green sheet 41 and the tungsten in the paste are simultaneously sintered, and the ceramic substrate portion 30 is formed.

また、樹脂絶縁部20を構成する樹脂絶縁層21,22を以下の手法で作製する。具体的には、まず、基材準備工程を行い、樹脂絶縁層21,22となる樹脂絶縁材45(基材)を準備する(図6参照)。なお、樹脂絶縁材45は、第1面46と第1面46の反対側に位置する第2面47とを有する板状に形成され、配線層23となる厚さ5μmの銅箔48(金属層)が第2面47(図6では上面)に貼付された銅箔付き樹脂フィルムである。また、樹脂絶縁材45は、第1樹脂層24と、第1樹脂層24の両面に配設された第2樹脂層25とにより構成されている。   Moreover, the resin insulation layers 21 and 22 which comprise the resin insulation part 20 are produced with the following method. Specifically, first, a base material preparation step is performed to prepare a resin insulating material 45 (base material) to be the resin insulating layers 21 and 22 (see FIG. 6). The resin insulating material 45 is formed in a plate shape having a first surface 46 and a second surface 47 located on the opposite side of the first surface 46, and a copper foil 48 (metal) having a thickness of 5 μm serving as the wiring layer 23. Layer) is a resin film with a copper foil affixed to the second surface 47 (the upper surface in FIG. 6). The resin insulating material 45 includes the first resin layer 24 and the second resin layer 25 disposed on both surfaces of the first resin layer 24.

続く基材載置工程では、まず、従来周知のラミネーターを用いて、樹脂絶縁材45の第1面46上に厚さ50μm以下の保護フィルム51(保護層)を貼付する(図7参照)。同様に、樹脂絶縁材45の第2面47上(具体的には、銅箔48の表面上)にも、厚さ50μm以下の保護フィルム52(保護層)を貼付する。その結果、互いに共通の厚さを有する保護フィルム51,52が、第1面46上及び第2面47上の両方に形成されるようになる。なお、本実施形態の保護フィルム51,52は、光透過性を有する材料であるポリエチレンテレフタレート樹脂によってシート状に形成されている。即ち、保護フィルム51,52は、互いに共通の材料からなっている。   In the subsequent substrate mounting step, first, a protective film 51 (protective layer) having a thickness of 50 μm or less is pasted on the first surface 46 of the resin insulating material 45 using a conventionally known laminator (see FIG. 7). Similarly, a protective film 52 (protective layer) having a thickness of 50 μm or less is also pasted on the second surface 47 of the resin insulating material 45 (specifically, on the surface of the copper foil 48). As a result, the protective films 51 and 52 having a common thickness are formed on both the first surface 46 and the second surface 47. In addition, the protective films 51 and 52 of this embodiment are formed in the sheet form with the polyethylene terephthalate resin which is a material which has a light transmittance. That is, the protective films 51 and 52 are made of a common material.

そして、支持治具49(支持部材)の支持面50に樹脂絶縁材45の第1面46を向けた状態で、貫通孔26(図8参照)を形成すべき樹脂絶縁材45を支持面50上に載置する(図7参照)。このとき、保護フィルム51は、樹脂絶縁材45と支持治具49との間に介在するようになる。なお、基材載置工程に用いられる支持治具49は、金属材料であるステンレス(SUS303)によって板状に形成され、厚さが80μmに設定されている。また、支持治具49において、形成すべき複数の貫通孔26と対応する位置には、支持治具49を厚さ方向に貫通する複数の孔部53が設けられている。孔部53の内径A2の大きさは、貫通孔26の内径A1(30μm)以上であって、隣接する貫通孔26間のピッチA3(60μm)未満であり、本実施形態では35μmに設定されている(図7,図8参照)。   Then, the resin insulating material 45 in which the through hole 26 (see FIG. 8) is to be formed is supported on the support surface 50 with the first surface 46 of the resin insulating material 45 facing the support surface 50 of the support jig 49 (support member). Place it on top (see Figure 7). At this time, the protective film 51 is interposed between the resin insulating material 45 and the support jig 49. The support jig 49 used in the substrate placing step is formed in a plate shape from stainless steel (SUS303), which is a metal material, and has a thickness of 80 μm. In the support jig 49, a plurality of holes 53 that penetrate the support jig 49 in the thickness direction are provided at positions corresponding to the plurality of through holes 26 to be formed. The size of the inner diameter A2 of the hole 53 is not less than the inner diameter A1 (30 μm) of the through hole 26 and less than the pitch A3 (60 μm) between the adjacent through holes 26, and is set to 35 μm in this embodiment. (See FIGS. 7 and 8).

続く貫通孔形成工程では、樹脂絶縁材45において支持治具49側とは反対側(具体的には第2面47側)からレーザーL1(本実施形態ではUVレーザー)を照射することにより、樹脂絶縁材45を厚さ方向に貫通する複数の貫通孔26を形成する(図8参照)。具体的には、レーザー照射装置(図示略)を貫通孔26の開口縁となる仮想円C1(図9参照)に沿って平面方向(本実施形態では時計回り方向)に移動させながら、レーザーL1を複数回に分けて照射する。その結果、1個の貫通孔26が形成される。そして、残りの貫通孔26に関しても同様のレーザー照射を行うことにより、全ての貫通孔26が形成される。その後、保護フィルム51,52を剥離する。   In the subsequent through-hole forming step, the resin insulating material 45 is irradiated with a laser L1 (in this embodiment, a UV laser) from the side opposite to the support jig 49 side (specifically, the second surface 47 side), thereby forming the resin. A plurality of through holes 26 penetrating the insulating material 45 in the thickness direction are formed (see FIG. 8). Specifically, the laser L1 is moved while moving the laser irradiation device (not shown) along the virtual circle C1 (see FIG. 9) serving as the opening edge of the through hole 26 in the plane direction (clockwise direction in the present embodiment). Irradiate in several steps. As a result, one through hole 26 is formed. All the through holes 26 are formed by performing similar laser irradiation on the remaining through holes 26. Thereafter, the protective films 51 and 52 are peeled off.

そして、貫通孔形成工程後の貫通導体形成工程では、ペースト印刷装置(図示略)を用いて、樹脂絶縁材45の第2面47側から貫通孔26内に導電性ペースト(具体的には、銀ペースト)を充填する。そして、180℃程度の温度で1時間加熱することにより、貫通導体27が形成される(図10参照)。   Then, in the through conductor forming step after the through hole forming step, a conductive paste (specifically, in the through hole 26 from the second surface 47 side of the resin insulating material 45 using a paste printing device (not shown). Fill with silver paste. And the penetration conductor 27 is formed by heating at the temperature of about 180 degreeC for 1 hour (refer FIG. 10).

その後、配線層形成工程を行い、樹脂絶縁材45の銅箔48をサブトラクティブ法でパターニングし、樹脂絶縁層21上に主面側端子28(配線層23)を形成する(図11参照)。具体的には、樹脂絶縁材45の第1面46上及び第2面47上のそれぞれにドライフィルムをラミネートし、同ドライフィルムに対して露光及び現像を行う。その結果、樹脂絶縁層21の第1面46の全面を覆うようにエッチングレジストが形成されるとともに、樹脂絶縁層21の第2面47に所定パターンのエッチングレジストが形成される。この状態で、銅箔48に対してエッチングによるパターニングを行うことにより、樹脂絶縁層21上に主面側端子28を形成する。その後、剥離液に接触させることにより、主面側端子28上に残存するエッチングレジストを除去するとともに、第1面46側のエッチングレジストを除去する。   Thereafter, a wiring layer forming step is performed, and the copper foil 48 of the resin insulating material 45 is patterned by a subtractive method to form the main surface side terminal 28 (wiring layer 23) on the resin insulating layer 21 (see FIG. 11). Specifically, a dry film is laminated on each of the first surface 46 and the second surface 47 of the resin insulating material 45, and the dry film is exposed and developed. As a result, an etching resist is formed so as to cover the entire first surface 46 of the resin insulating layer 21, and an etching resist having a predetermined pattern is formed on the second surface 47 of the resin insulating layer 21. In this state, the main surface side terminal 28 is formed on the resin insulating layer 21 by performing patterning by etching on the copper foil 48. Thereafter, the contact with the stripping solution removes the etching resist remaining on the main surface side terminal 28 and the etching resist on the first surface 46 side.

以上の工程を経て、主面側端子28と主面側端子28に接続される貫通導体27とを有する樹脂絶縁層21が形成される。また、上述した基材準備工程〜配線層形成工程を同様に行うことにより、配線層23と配線層23に接続される貫通導体27とを有する樹脂絶縁層22が形成される。   Through the above steps, the resin insulating layer 21 having the main surface side terminals 28 and the through conductors 27 connected to the main surface side terminals 28 is formed. Moreover, the resin insulation layer 22 which has the wiring layer 23 and the penetration conductor 27 connected to the wiring layer 23 is formed by performing the base material preparation process-wiring layer formation process mentioned above similarly.

次に、セラミック基板部30の上層側に、樹脂絶縁層21及び樹脂絶縁層22を積層配置し、300〜400℃程度の温度に加熱した状態で30〜100kgf/cm程度の圧力で加圧する。その結果、樹脂絶縁部20とセラミック基板部30とが一体化した配線基板10が製造される(図1参照)。なお、上記製造工程において、樹脂絶縁層21及び樹脂絶縁層22を加圧積層した後、セラミック基板部30に積層した配線基板10を製造してもよい。 Next, the resin insulating layer 21 and the resin insulating layer 22 are stacked on the upper layer side of the ceramic substrate portion 30 and pressurized at a pressure of about 30 to 100 kgf / cm 2 while being heated to a temperature of about 300 to 400 ° C. . As a result, the wiring substrate 10 in which the resin insulating portion 20 and the ceramic substrate portion 30 are integrated is manufactured (see FIG. 1). In the above manufacturing process, after the resin insulating layer 21 and the resin insulating layer 22 are pressure laminated, the wiring substrate 10 laminated on the ceramic substrate unit 30 may be produced.

次に、樹脂絶縁材45の評価方法及びその結果を説明する。   Next, the evaluation method of the resin insulating material 45 and the result will be described.

まず、測定用サンプルを次のように準備した。本実施形態と同じ樹脂絶縁材45、具体的には、銅箔48が第2面47に形成され、かつ、第1面46上及び第2面47上の両方に保護フィルム51,52が貼付された樹脂絶縁材45を準備し、これを実施例とした。また、銅箔は形成されるものの、保護フィルム51,52が貼付されていない樹脂絶縁材を準備し、これを比較例とした。   First, a measurement sample was prepared as follows. The same resin insulating material 45 as that of the present embodiment, specifically, a copper foil 48 is formed on the second surface 47, and the protective films 51 and 52 are pasted on both the first surface 46 and the second surface 47. The prepared resin insulating material 45 was prepared and used as an example. Moreover, although the copper foil was formed, the resin insulating material in which the protective films 51 and 52 were not affixed was prepared and this was made into the comparative example.

次に、各測定用サンプル(実施例、比較例)の銅箔側からレーザーを照射することにより、各測定用サンプルに複数の貫通孔を形成した。そして、各測定用サンプルのレーザーの入射面(銅箔側の面)において、X方向(図9参照)及びY方向(図9参照)における貫通孔の内径を測定した。さらに、入射面における全ての内径の平均値、最大値、最小値を算出するとともに、入射面における内径の標準偏差を算出した。また、各測定用サンプルのレーザーの出射面(樹脂絶縁材側の面)において、X方向及びY方向における貫通孔の内径を測定し、出射面における全ての内径の平均値、最大値、最小値を算出するとともに、出射面における内径の標準偏差を算出した。そして、各測定サンプルに対して、{(出射面における内径の平均値)/(入射面における内径の平均値)}×100の式から導出されるテーパ率を算出した。以上の結果を表1に示す。なお、各測定用サンプルは、それぞれ9個ずつ準備した。

Figure 0006322066
Next, a plurality of through holes were formed in each measurement sample by irradiating a laser from the copper foil side of each measurement sample (Example, Comparative Example). And the internal diameter of the through-hole in the X direction (refer FIG. 9) and the Y direction (refer FIG. 9) was measured in the incident surface (surface on the copper foil side) of the laser of each measurement sample. Further, the average value, maximum value, and minimum value of all the inner diameters on the incident surface were calculated, and the standard deviation of the inner diameter on the incident surface was calculated. In addition, on the laser emission surface (surface on the resin insulation side) of each measurement sample, the inner diameters of the through holes in the X direction and the Y direction are measured, and the average value, maximum value, and minimum value of all inner diameters on the emission surface are measured. And the standard deviation of the inner diameter at the exit surface was calculated. Then, for each measurement sample, a taper ratio derived from the equation {(average value of inner diameters on the exit surface) / (average value of inner diameters on the incident surface)} × 100 was calculated. The results are shown in Table 1. In addition, nine samples for each measurement were prepared.
Figure 0006322066

その結果、比較例では、入射面における内径の平均値が37.7μm、最大値が40μm、最小値が35μmとなり、入射面における内径の標準偏差が1.7となった。また、比較例では、出射面における内径の平均値が30.9μm、最大値が32μm、最小値が30μmとなり、出射面における内径の標準偏差が0.7となった。さらに、比較例では、テーパ率が81.80%となった。   As a result, in the comparative example, the average value of the inner diameter on the incident surface was 37.7 μm, the maximum value was 40 μm, the minimum value was 35 μm, and the standard deviation of the inner diameter on the incident surface was 1.7. In the comparative example, the average value of the inner diameter on the exit surface was 30.9 μm, the maximum value was 32 μm, the minimum value was 30 μm, and the standard deviation of the inner diameter on the exit surface was 0.7. Furthermore, in the comparative example, the taper rate was 81.80%.

一方、実施例では、入射面における内径の平均値が27.9μm、最大値が31μm、最小値が26μmとなり、入射面における内径の標準偏差が1.5となった。また、実施例では、出射面における内径の平均値が27.4μm、最大値が30μm、最小値が26μmとなり、出射面における内径の標準偏差が1.2となった。さらに、実施例では、テーパ率が98.20%となった。   On the other hand, in the example, the average value of the inner diameter at the incident surface was 27.9 μm, the maximum value was 31 μm, the minimum value was 26 μm, and the standard deviation of the inner diameter at the incident surface was 1.5. In the example, the average value of the inner diameter on the exit surface was 27.4 μm, the maximum value was 30 μm, the minimum value was 26 μm, and the standard deviation of the inner diameter on the exit surface was 1.2. Furthermore, in the Example, the taper rate became 98.20%.

以上のことから、樹脂絶縁材の両面(第1面及び第2面)に保護フィルムを貼付した状態で貫通孔を形成すれば、入射面における内径が大きくなり過ぎず、テーパが生じにくい貫通孔を形成できることが確認された。   From the above, if the through hole is formed with the protective film pasted on both surfaces (first surface and second surface) of the resin insulating material, the inner diameter on the incident surface does not become too large, and the through hole is less likely to be tapered. It was confirmed that can be formed.

従って、本実施形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施形態の配線基板10の製造方法では、基材載置工程において、複数の孔部53が設けられた支持治具49の支持面50上に樹脂絶縁材45を載置している。その結果、貫通孔形成工程において樹脂絶縁材45にレーザーL1を照射したとしても、樹脂絶縁材45に加わるレーザーL1の加工熱が、金属材料(本実施形態ではステンレス)からなる支持治具49を介して拡散されるとともに、孔部53を通過して外部に放出される。しかも、基材載置工程では、光透過性を有する材料(本実施形態ではポリエチレンテレフタレート樹脂)からなる保護フィルム51を樹脂絶縁材45と支持治具49との間に介在させている。その結果、樹脂絶縁材45に照射されたレーザーL1が保護フィルム51内を直進するため、樹脂絶縁材45内においてレーザーL1が散乱しにくくなる。以上のことから、貫通孔26の内径A1が小さい場合であっても、レーザーL1の加工熱やレーザーL1の散乱に起因する貫通孔26の内径A1のバラツキが生じにくくなり、貫通孔26を正確に形成できるようになる。ゆえに、不良品発生率が低く抑えられ、製造される配線基板10の歩留まりが高くなる。   (1) In the manufacturing method of the wiring board 10 of the present embodiment, the resin insulating material 45 is placed on the support surface 50 of the support jig 49 provided with the plurality of holes 53 in the base material placing step. Yes. As a result, even if the resin insulating material 45 is irradiated with the laser L1 in the through-hole forming step, the processing heat of the laser L1 applied to the resin insulating material 45 causes the support jig 49 made of a metal material (stainless steel in this embodiment) to And is released to the outside through the hole 53. In addition, in the substrate placing step, a protective film 51 made of a light transmissive material (polyethylene terephthalate resin in the present embodiment) is interposed between the resin insulating material 45 and the support jig 49. As a result, since the laser L1 irradiated to the resin insulating material 45 travels straight in the protective film 51, the laser L1 is less likely to be scattered in the resin insulating material 45. From the above, even when the inner diameter A1 of the through hole 26 is small, variations in the inner diameter A1 of the through hole 26 due to the processing heat of the laser L1 and the scattering of the laser L1 are less likely to occur, and the through hole 26 can be accurately Can be formed. Therefore, the defective product occurrence rate is suppressed low, and the yield of the manufactured wiring board 10 is increased.

(2)従来の製造方法では、レーザーの照射によって基材103に貫通孔108を形成しているが、レーザーの加工熱の影響を受けて基材103または金属層101が溶け出すおそれがある(図12参照)。特に、レーザーの入射面(図12では上面)には過剰な加工熱が加わるため、入射面における貫通孔108の内径が大きくなったり、貫通孔108の入射面側の端部が盛り上がったりしやすくなる。この場合、形成される貫通孔108に大きなテーパが生じてしまう(即ち、テーパ率が小さくなる)ため、貫通孔108を正確に形成できないという問題がある。   (2) In the conventional manufacturing method, the through-hole 108 is formed in the base material 103 by laser irradiation, but the base material 103 or the metal layer 101 may be melted under the influence of laser processing heat ( (See FIG. 12). In particular, since excessive processing heat is applied to the laser incident surface (the upper surface in FIG. 12), the inner diameter of the through hole 108 on the incident surface is likely to increase, and the end of the through hole 108 on the incident surface side is likely to rise. Become. In this case, a large taper is generated in the formed through hole 108 (that is, the taper rate is small), and thus there is a problem that the through hole 108 cannot be formed accurately.

そこで、本実施形態では、樹脂絶縁材45の第1面46上に保護フィルム51を形成するだけではなく、樹脂絶縁材45の第2面47上にも保護フィルム52を貼付した状態で、貫通孔26を形成している。この場合、レーザーL1は、保護フィルム52の内部を直進した後、そのままの向きで第2面47側から樹脂絶縁材45内に進入するため、樹脂絶縁材45の第2面47付近においてレーザーL1が散乱しにくくなる。その結果、レーザーの入射面である第2面47に過剰な加工熱が加わりにくくなるため、入射面における貫通孔108の内径が大きくなることや、貫通孔108の入射面側の端部が盛り上がることが抑制されるようになる。ゆえに、貫通孔26に生じるテーパが小さくなり、複数の貫通孔26をファインピッチで形成できるようになるため、不良品発生率がより低く抑えられ、製造される配線基板10の歩留まりがよりいっそう高くなる。   Therefore, in the present embodiment, not only the protective film 51 is formed on the first surface 46 of the resin insulating material 45 but also the protective film 52 is stuck on the second surface 47 of the resin insulating material 45, and the penetration is made. A hole 26 is formed. In this case, the laser L1 travels straight inside the protective film 52 and then enters the resin insulating material 45 from the second surface 47 side in the same direction. Therefore, the laser L1 is near the second surface 47 of the resin insulating material 45. Becomes difficult to scatter. As a result, it is difficult for excessive processing heat to be applied to the second surface 47, which is the laser incident surface, so that the inner diameter of the through hole 108 on the incident surface is increased and the end of the through hole 108 on the incident surface side is raised. It will be suppressed. Therefore, the taper generated in the through-hole 26 is reduced, and a plurality of through-holes 26 can be formed at a fine pitch. Therefore, the defective product generation rate is further suppressed, and the yield of the manufactured wiring board 10 is further increased. Become.

(3)本実施形態の貫通孔26は、貫通孔26の開口縁となる仮想円C1(図9参照)に沿ってレーザーL1を複数回に分けて照射することにより形成される。このように、複数回に分けてレーザーL1を照射すると、樹脂絶縁材45の加工部分に与える累積熱量が減るため、樹脂絶縁材45への加工熱によるダメージを回避しつつ貫通孔26を確実に形成することができる。   (3) The through-hole 26 of the present embodiment is formed by irradiating the laser L1 in a plurality of times along a virtual circle C1 (see FIG. 9) serving as an opening edge of the through-hole 26. As described above, when the laser L1 is irradiated in a plurality of times, the cumulative amount of heat applied to the processed portion of the resin insulating material 45 is reduced, so that the through-hole 26 can be surely avoided while avoiding damage to the resin insulating material 45 due to processing heat. Can be formed.

(4)本実施形態の配線基板10では、樹脂絶縁層21,22が、ポリイミド系の熱硬化性樹脂からなる第1樹脂層24と、第1樹脂層24の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層25とにより構成されている。この場合、各樹脂絶縁層21,22を積層する工程で加熱及び加圧を行うことにより、第2樹脂層25が接着層として機能するため、各樹脂絶縁層21,22が一体化された樹脂絶縁部20を有する配線基板10を確実に製造することができる。   (4) In the wiring substrate 10 of the present embodiment, the resin insulating layers 21 and 22 are formed on both surfaces of the first resin layer 24 made of a polyimide-based thermosetting resin and the first resin layer 24, and polyimide-based The second resin layer 25 is made of a thermoplastic resin. In this case, since the second resin layer 25 functions as an adhesive layer by heating and pressing in the step of laminating the resin insulation layers 21 and 22, the resin in which the resin insulation layers 21 and 22 are integrated. The wiring board 10 having the insulating part 20 can be reliably manufactured.

なお、本実施形態を以下のように変更してもよい。   In addition, you may change this embodiment as follows.

・上記実施形態の基材載置工程では、シート状の保護フィルム51が第1面46上に貼付された樹脂絶縁材45を、支持治具49の支持面50上に載置していた。しかし、基材載置工程では、支持治具49の支持面50に貼付されたシート状の保護フィルム51上に、樹脂絶縁材45を載置するようにしてもよい。   In the substrate placing process of the above embodiment, the resin insulating material 45 having the sheet-like protective film 51 attached on the first surface 46 is placed on the support surface 50 of the support jig 49. However, in the substrate placing step, the resin insulating material 45 may be placed on the sheet-like protective film 51 attached to the support surface 50 of the support jig 49.

・上記実施形態では、第1面46上に保護フィルム51が貼付されるとともに、第2面47上に保護フィルム52が貼付された樹脂絶縁材45が用いられていた。しかし、第1面46上のみに保護フィルムが貼付された樹脂絶縁材を用いてもよい。即ち、第2面47上に貼付される保護フィルムは省略されていてもよい。   In the above embodiment, the resin insulating material 45 in which the protective film 51 is stuck on the first surface 46 and the protective film 52 is stuck on the second surface 47 is used. However, a resin insulating material in which a protective film is attached only on the first surface 46 may be used. That is, the protective film stuck on the second surface 47 may be omitted.

・上記実施形態では、基材準備工程において準備される基材として、銅箔48が第2面47のみに形成された樹脂絶縁材45が用いられていた。しかし、銅箔48が第1面46のみに形成された樹脂絶縁材を用いてもよいし、銅箔48が第1面46及び第2面47の両方に形成された樹脂絶縁材45を用いてもよい。   -In the said embodiment, the resin insulating material 45 in which the copper foil 48 was formed only in the 2nd surface 47 was used as a base material prepared in a base material preparation process. However, a resin insulating material in which the copper foil 48 is formed only on the first surface 46 may be used, or a resin insulating material 45 in which the copper foil 48 is formed on both the first surface 46 and the second surface 47 is used. May be.

・上記実施形態では、貫通導体形成工程において貫通孔26内に充填される導電性ペーストとして、銀ペーストが用いられていた。しかし、これに限定されるものではなく、銅ペーストや、銀と銅とを含むペーストなどの他の導電性ペーストを用いてもよい。   -In the said embodiment, the silver paste was used as an electrically conductive paste with which the through-hole 26 is filled in a through-conductor formation process. However, the present invention is not limited to this, and other conductive pastes such as a copper paste or a paste containing silver and copper may be used.

・上記実施形態では、セラミック絶縁層31〜33としてアルミナの焼結体を用いたが、これに限定される訳ではない。アルミナではなく、例えばガラスセラミックでもよい。ガラスセラミックを用いる場合、ビア導体34及び貫通導体37としては、銀、銅、またはこれらの合金が用いられる。   -In the said embodiment, although the sintered compact of the alumina was used as the ceramic insulating layers 31-33, it is not necessarily limited to this. For example, glass ceramic may be used instead of alumina. When glass ceramic is used, as the via conductor 34 and the through conductor 37, silver, copper, or an alloy thereof is used.

・上記実施形態では、樹脂絶縁部20とセラミック基板部30とを備える電子部品検査用配線基板10に本発明を具体化したが、他の用途で使用される配線基板に本発明を具体化してもよい。例えば、複数の樹脂絶縁層からなる多層配線基板に本発明を具体化してもよい。   In the above embodiment, the present invention is embodied in the electronic component inspection wiring substrate 10 including the resin insulating portion 20 and the ceramic substrate portion 30. However, the present invention is embodied in a wiring substrate used in other applications. Also good. For example, the present invention may be embodied in a multilayer wiring board composed of a plurality of resin insulating layers.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。   Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiment described above are listed below.

(1)上記手段1において、前記保護層は、前記第1面上及び前記第2面上の両方に形成されており、前記第1面上に形成された保護層、及び、前記第2面上に形成された保護層が、共通の材料からなることを特徴とする配線基板の製造方法。   (1) In the means 1, the protective layer is formed on both the first surface and the second surface, the protective layer formed on the first surface, and the second surface A method for manufacturing a wiring board, wherein the protective layer formed thereon is made of a common material.

(2)上記手段1において、前記保護層は、前記第1面上及び前記第2面上の両方に形成されており、前記第1面上に形成された保護層、及び、前記第2面上に形成された保護層が、共通の厚さを有することを特徴とする配線基板の製造方法。   (2) In the above means 1, the protective layer is formed on both the first surface and the second surface, the protective layer formed on the first surface, and the second surface A method for manufacturing a wiring board, wherein the protective layer formed thereon has a common thickness.

(3)上記手段1において、前記基材載置工程では、シート状の前記保護層が前記第1面上に貼付された前記基材を前記支持面上に載置することを特徴とする配線基板の製造方法。   (3) In the above means 1, in the base material placing step, the base material having the sheet-like protective layer stuck on the first surface is placed on the support surface. A method for manufacturing a substrate.

(4)上記手段1において、前記基材載置工程では、前記支持部材に貼付されたシート状の前記保護層上に前記基材を載置することを特徴とする配線基板の製造方法。   (4) In the said means 1, the said base material mounting process WHEREIN: The said base material is mounted on the said sheet-like protective layer affixed on the said supporting member, The manufacturing method of the wiring board characterized by the above-mentioned.

(5)上記手段1において、前記保護層は、厚さ50μm以下の保護フィルムであることを特徴とする配線基板の製造方法。   (5) In the said means 1, the said protective layer is a protective film 50 micrometers or less in thickness, The manufacturing method of the wiring board characterized by the above-mentioned.

(6)上記手段1において、前記支持部材は、前記貫通孔を形成すべき前記基材が前記支持面上に載置され、前記複数の孔部が厚さ方向に貫通する板状の治具であることを特徴とする配線基板の製造方法。   (6) In the above means 1, the support member is a plate-like jig in which the base material on which the through hole is to be formed is placed on the support surface, and the plurality of holes penetrates in the thickness direction. A method for manufacturing a wiring board, wherein:

(7)上記手段1において、前記配線基板は、前記基材からなる複数の樹脂絶縁層と複数の配線層とが積層された樹脂絶縁部と、前記樹脂絶縁部の下層側に設けられ、複数のセラミック絶縁層と複数の導体層とが積層されたセラミック基板部とを備える電子部品検査用配線基板であることを特徴とする配線基板の製造方法。   (7) In the above means 1, the wiring board is provided on a lower side of the resin insulation part, a resin insulation part in which a plurality of resin insulation layers made of the base material and a plurality of wiring layers are laminated, A method of manufacturing a wiring board, comprising: an electronic component inspection wiring board comprising: a ceramic substrate layer on which a ceramic insulating layer and a plurality of conductor layers are laminated.

10…配線基板(電子部品検査用配線基板)
21,22…樹脂絶縁層
23…配線層
26…貫通孔
27…貫通導体
45…基材としての樹脂絶縁材
46…第1面
47…第2面
48…金属層としての銅箔
49…支持部材としての支持治具
50…支持面
51,52…保護層としての保護フィルム
53…孔部
A1…貫通孔の内径
A2…孔部の内径
A3…貫通孔間のピッチ
C1…仮想円
L1…レーザー
10. Wiring board (wiring board for electronic component inspection)
21, 22 ... Resin insulating layer 23 ... Wiring layer 26 ... Through hole 27 ... Through conductor 45 ... Resin insulating material 46 as base material ... First surface 47 ... Second surface 48 ... Copper foil 49 as metal layer ... Support member Supporting jig 50 as a support surface 51, 52 ... Protective film 53 as a protective layer ... Hole A1 ... Inside diameter A2 of the through hole ... Pitch C1 between the through holes C1 ... Virtual circle L1 ... Laser

Claims (8)

第1面と前記第1面の反対側に位置する第2面とを有する板状に形成された基材に、前記基材を厚さ方向に貫通する複数の貫通孔が形成される配線基板の製造方法であって、
前記基材を準備する基材準備工程と、
金属材料からなる支持部材の支持面に前記第1面を向けた状態で、前記支持面上に前記基材を載置するとともに、光透過性を有する材料からなる保護層を前記基材と前記支持部材との間に介在させる基材載置工程と、
前記基材において前記支持部材側とは反対側からレーザーを照射することにより、前記基材に前記複数の貫通孔を形成する貫通孔形成工程と
を含み、
前記基材載置工程に用いられる前記支持部材において、形成すべき前記複数の貫通孔と対応する位置に複数の孔部が設けられ、
前記孔部の内径の大きさが、前記貫通孔の内径以上であって、隣接する前記貫通孔間のピッチ未満に設定されている
ことを特徴とする配線基板の製造方法。
A wiring board in which a plurality of through holes penetrating the base material in the thickness direction are formed in a base material formed in a plate shape having a first surface and a second surface located on the opposite side of the first surface A manufacturing method of
A substrate preparation step of preparing the substrate;
With the first surface facing the support surface of a support member made of a metal material, the base material is placed on the support surface, and a protective layer made of a light-transmitting material is disposed on the base material and the base material. A substrate placing step to be interposed between the support member,
A through hole forming step of forming the plurality of through holes in the base material by irradiating a laser from the side opposite to the support member side in the base material;
In the support member used in the substrate placing step, a plurality of holes are provided at positions corresponding to the plurality of through holes to be formed,
The method of manufacturing a wiring board, wherein the size of the inner diameter of the hole is equal to or larger than the inner diameter of the through hole and less than the pitch between the adjacent through holes.
前記保護層は、前記第1面上及び前記第2面上の両方に形成されていることを特徴とする請求項1に記載の配線基板の製造方法。   The method for manufacturing a wiring board according to claim 1, wherein the protective layer is formed on both the first surface and the second surface. 前記基材準備工程では、配線層となる金属層が前記第1面及び前記第2面の少なくとも一方に形成された前記基材を準備することを特徴とする請求項1または2に記載の配線基板の製造方法。   The wiring according to claim 1 or 2, wherein in the base material preparation step, the base material in which a metal layer to be a wiring layer is formed on at least one of the first surface and the second surface is prepared. A method for manufacturing a substrate. 前記金属層は銅箔であることを特徴とする請求項3に記載の配線基板の製造方法。   The method for manufacturing a wiring board according to claim 3, wherein the metal layer is a copper foil. 前記レーザーはUVレーザーであり、
前記貫通孔形成工程では、前記貫通孔の開口縁となる仮想円に沿ってレーザーを複数回に分けて照射することにより、前記貫通孔を形成する
ことを特徴とする請求項1乃至4のいずれか1項に記載の配線基板の製造方法。
The laser is a UV laser;
The said through-hole formation process forms the said through-hole by irradiating a laser in multiple times along the virtual circle used as the opening edge of the said through-hole in the said through-hole formation process. A method for manufacturing a wiring board according to claim 1.
前記貫通孔の内径は40μm以下に設定され、隣接する前記貫通孔間のピッチは100μm以下に設定されていることを特徴とする請求項1乃至5のいずれか1項に記載の配線基板の製造方法。   6. The wiring board manufacturing method according to claim 1, wherein an inner diameter of the through hole is set to 40 μm or less, and a pitch between the adjacent through holes is set to 100 μm or less. Method. 前記貫通孔形成工程後、前記貫通孔内に導電性ペーストを充填して貫通導体を形成する貫通導体形成工程を行うことを特徴とする請求項1乃至6のいずれか1項に記載の配線基板の製造方法。   The wiring board according to claim 1, wherein after the through hole forming step, a through conductor forming step of forming a through conductor by filling the through hole with a conductive paste is performed. Manufacturing method. 前記基材は、樹脂絶縁層となる樹脂絶縁材であることを特徴とする請求項1乃至7のいずれか1項に記載の配線基板の製造方法。   The method for manufacturing a wiring board according to claim 1, wherein the base material is a resin insulating material to be a resin insulating layer.
JP2014130904A 2014-06-26 2014-06-26 Wiring board manufacturing method Expired - Fee Related JP6322066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014130904A JP6322066B2 (en) 2014-06-26 2014-06-26 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014130904A JP6322066B2 (en) 2014-06-26 2014-06-26 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2016009810A JP2016009810A (en) 2016-01-18
JP6322066B2 true JP6322066B2 (en) 2018-05-09

Family

ID=55227165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130904A Expired - Fee Related JP6322066B2 (en) 2014-06-26 2014-06-26 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP6322066B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116586789A (en) * 2023-07-13 2023-08-15 盛合晶微半导体(江阴)有限公司 Laser perforating method and preparation method of semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071585A (en) * 2001-06-18 2003-03-11 Matsushita Electric Ind Co Ltd Laser beam machining device
JP5177968B2 (en) * 2006-07-04 2013-04-10 日東電工株式会社 Through-hole forming method and printed circuit board manufacturing method
JP2011009256A (en) * 2009-06-23 2011-01-13 Panasonic Corp Multilayer substrate and method of manufacturing the same
JP2011067848A (en) * 2009-09-28 2011-04-07 Kyocera Corp Implement and apparatus for laser beam machining

Also Published As

Publication number Publication date
JP2016009810A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
TWI466607B (en) Printed circuit board having buried component and method for manufacturing same
US20090051041A1 (en) Multilayer wiring substrate and method for manufacturing the same, and substrate for use in ic inspection device and method for manufacturing the same
TWI658754B (en) Multilayer wiring board for electronic parts inspection
JP6099902B2 (en) Wiring board manufacturing method
JP6322066B2 (en) Wiring board manufacturing method
JP6324669B2 (en) Multilayer wiring board and manufacturing method thereof
JP6058321B2 (en) Wiring board manufacturing method
JP2016111244A (en) Wiring board and manufacturing method thereof
JP6420088B2 (en) Manufacturing method of ceramic multilayer wiring board
JP6250309B2 (en) Manufacturing method of multilayer wiring board
JP2004104079A (en) Ceramic multilayer circuit and manufacturing method thereof
JP6442136B2 (en) Wiring board and manufacturing method thereof
KR20120137300A (en) Method of manufacturing multilayer wiring substrate, and multilayer wiring substrate
JP6139856B2 (en) Wiring board and manufacturing method thereof
JP6301595B2 (en) Wiring board and method for manufacturing multilayer wiring board
JP2014049701A (en) Wiring board and method for manufacturing the same
Jaakola et al. Low cost printed flexible multilayer substrates
TWI507109B (en) A supporting substrate for manufacturing a multilayer wiring board, and a method for manufacturing the multilayer wiring board
JP5926898B2 (en) Wiring board manufacturing method
JP6017921B2 (en) Manufacturing method of multilayer wiring board
JP2010040906A (en) Method of manufacturing component built-in substrate, and component built-in substrate
JP2006114744A (en) Resistive element mounting sheet and manufacturing method thereof, and manufacturing method of multilayer wiring board containing resistors using the same
JP2017028181A (en) Wiring board
JP2016181619A (en) Wiring board manufacturing method
JP2014168005A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180406

R150 Certificate of patent or registration of utility model

Ref document number: 6322066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees