JP2014049701A - Wiring board and method for manufacturing the same - Google Patents

Wiring board and method for manufacturing the same Download PDF

Info

Publication number
JP2014049701A
JP2014049701A JP2012193608A JP2012193608A JP2014049701A JP 2014049701 A JP2014049701 A JP 2014049701A JP 2012193608 A JP2012193608 A JP 2012193608A JP 2012193608 A JP2012193608 A JP 2012193608A JP 2014049701 A JP2014049701 A JP 2014049701A
Authority
JP
Japan
Prior art keywords
layer
hole
wiring
conductor
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012193608A
Other languages
Japanese (ja)
Inventor
Muneyuki Iwata
宗之 岩田
Taku Miyamoto
卓 宮本
Yoshiaki Nagaya
善明 長屋
Yutaka Imanishi
豊 今西
Naoko Mori
奈緒子 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012193608A priority Critical patent/JP2014049701A/en
Publication of JP2014049701A publication Critical patent/JP2014049701A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve adhesion between a through conductor and a wiring conductor layer, and to provide a wiring board with excellent connection reliability.SOLUTION: A wiring conductor layer 23 and a through hole 26 continuously penetrating resin insulating layers 21 and 22 are formed on a wiring board 10 for electronic component inspection. A via conductor 27 connected to the wiring conductor layer 23 is formed by filling the through hole 26 with a conductive paste. A through hole 26 portion penetrating the wiring conductor layer 23 includes a small diameter hole 51 located on surface sides of the resin insulating layers 21 and 22 and formed by an inner wall surface of the wiring conductor layer 23 and a large diameter part 52 provided in a position more away from surfaces of the resin insulating layers 21 and 22 than the small diameter part 51 and formed so that a diameter of the inner wall surface of the wiring conductor layer 23 is enlarged to the small diameter part 51.

Description

本発明は、樹脂絶縁層と、樹脂絶縁層の表面上に形成された配線導体層と、配線導体層及び樹脂絶縁層を貫通する貫通穴と、貫通穴内に導電性ペーストを充填することで形成され配線導体層に接続される貫通導体とを備えた配線基板及びその製造方法に関するものである。   The present invention is formed by filling a resin insulating layer, a wiring conductor layer formed on the surface of the resin insulating layer, a through hole penetrating the wiring conductor layer and the resin insulating layer, and filling the through hole with a conductive paste. In addition, the present invention relates to a wiring board including a through conductor connected to a wiring conductor layer and a method for manufacturing the wiring board.

コンピュータのマイクロプロセッサ等として使用される半導体集積回路素子(ICチップ)は、近年ますます高速化、高機能化しており、これに付随して端子数が増え、端子間ピッチも狭くなる傾向にある。一般的にICチップの底面には多数の端子が密集してアレイ状に配置されている。このICチップなどの電子部品を検査するために、電子部品検査用配線基板が使用されている。   In recent years, semiconductor integrated circuit elements (IC chips) used as computer microprocessors and the like have become increasingly faster and more functional, with an accompanying increase in the number of terminals and a tendency to narrow the pitch between terminals. . In general, a large number of terminals are densely arranged in an array on the bottom surface of an IC chip. In order to inspect electronic components such as the IC chip, a wiring board for inspecting electronic components is used.

電子部品検査用配線基板として、複数のセラミック絶縁層及び複数の導体層を積層してなるセラミック基板部の上層側に、複数の樹脂絶縁層及び複数の導体層を積層してなる樹脂絶縁部を形成した配線基板が実用化されている。この電子部品検査用配線基板において、各セラミック絶縁層や各樹脂絶縁層には、それら絶縁層を貫通する貫通導体(ビア導体)が設けられ、貫通導体によって層間の電気的接続が図られている。   As a wiring board for inspecting electronic components, a resin insulation portion formed by laminating a plurality of resin insulation layers and a plurality of conductor layers on the upper layer side of a ceramic substrate portion obtained by laminating a plurality of ceramic insulation layers and a plurality of conductor layers. The formed wiring board has been put into practical use. In this electronic component inspection wiring board, each ceramic insulating layer and each resin insulating layer are provided with through conductors (via conductors) penetrating the insulating layers, and electrical connection between the layers is achieved by the through conductors. .

図14には、配線基板100において、樹脂絶縁層101の厚さ方向に貫通するよう形成された貫通導体102と樹脂絶縁層101の表面に形成される配線導体層103との接続例を示している。図14の配線基板100では、樹脂絶縁層101及び配線導体層103を貫通する貫通穴104が形成され、その貫通穴104内に貫通導体102が形成されている(例えば、特許文献1参照)。このような配線基板100は、以下の手法で製造される。具体的には、先ず、樹脂絶縁層101の表面に銅箔が貼り付けられた銅箔付き樹脂フィルムを準備する。次いで、樹脂フィルムの銅箔を、例えばサブトラクティブ法でパターニングすることで配線導体層103を形成する。その後、レーザ穴加工などによって樹脂絶縁層101及び配線導体層103を貫通する貫通穴104を形成し、貫通穴104内に導電性ペーストを充填することで配線導体層103に繋がる貫通導体102を形成する。   FIG. 14 shows an example of connection between the through conductor 102 formed so as to penetrate the resin insulating layer 101 in the thickness direction and the wiring conductor layer 103 formed on the surface of the resin insulating layer 101 in the wiring substrate 100. Yes. In the wiring substrate 100 of FIG. 14, a through hole 104 penetrating the resin insulating layer 101 and the wiring conductor layer 103 is formed, and the through conductor 102 is formed in the through hole 104 (see, for example, Patent Document 1). Such a wiring board 100 is manufactured by the following method. Specifically, first, a resin film with a copper foil in which a copper foil is attached to the surface of the resin insulating layer 101 is prepared. Next, the wiring conductor layer 103 is formed by patterning the copper foil of the resin film by, for example, a subtractive method. Thereafter, a through hole 104 penetrating the resin insulating layer 101 and the wiring conductor layer 103 is formed by laser drilling or the like, and a through conductor 102 connected to the wiring conductor layer 103 is formed by filling the through hole 104 with a conductive paste. To do.

特開2003−318546号公報(図11)JP2003-318546A (FIG. 11) 特開2003−92471号公報JP 2003-92471 A

ところで、配線基板100において、貫通導体102と配線導体層103とは、貫通導体102の端部の側面を介して接続されているが、貫通導体102が形成される貫通穴104は同じ直径のストレートな壁面を有する貫通穴となっている。従って、配線導体層103と接続される貫通導体102の側面の面積は少なく密着強度が弱くなる。特に、配線導体層103のファインピッチ化が図られる配線基板では、配線導体層103が薄く形成されるとともに、貫通導体102のサイズも小さくなる傾向にある。このような場合には、貫通導体102と配線導体層103との間の密着強度が弱くなる。また、配線導体層103を銅箔のパターニングにより形成し、貫通導体102を導電性ペーストで形成しているため、貫通導体102(導電性ペースト)と配線導体層103(銅箔)との収縮率が異なる。これら収縮率の差によって、貫通導体102と配線導体層103との界面に隙間106が生じる(図15参照)。このようなことから、貫通導体102と配線導体層103との界面付近で接続信頼性が乏しくなり、オープン不良(断線)が生じ易くなる。   By the way, in the wiring board 100, the through conductor 102 and the wiring conductor layer 103 are connected via the side surface of the end portion of the through conductor 102, but the through hole 104 in which the through conductor 102 is formed is a straight having the same diameter. It is a through hole with a simple wall surface. Accordingly, the area of the side surface of the through conductor 102 connected to the wiring conductor layer 103 is small, and the adhesion strength is weakened. In particular, in a wiring board in which the fine pitch of the wiring conductor layer 103 is achieved, the wiring conductor layer 103 is formed thin, and the size of the through conductor 102 tends to be small. In such a case, the adhesion strength between the through conductor 102 and the wiring conductor layer 103 is weakened. Further, since the wiring conductor layer 103 is formed by patterning of copper foil and the through conductor 102 is formed of a conductive paste, the shrinkage ratio between the through conductor 102 (conductive paste) and the wiring conductor layer 103 (copper foil). Is different. Due to the difference in shrinkage rate, a gap 106 is formed at the interface between the through conductor 102 and the wiring conductor layer 103 (see FIG. 15). For this reason, connection reliability is poor near the interface between the through conductor 102 and the wiring conductor layer 103, and an open defect (disconnection) is likely to occur.

また、貫通導体102と配線導体層103との接続性を高めるために、図16に示されるように、配線導体層103における貫通穴104の開口部周辺にはみ出るように導電性ペーストを埋め込んで貫通導体102を形成した配線基板110が知られている(例えば、特許文献2参照)。しかしながら、複数の樹脂絶縁層101を多層化する場合、配線導体層103上に突出する導電性ペーストは積層時の加圧により押し潰されて広がる。この場合、導電性ペーストが隣接する配線導体層103の配線パターンまで広がることで配線パターン間でのショートを引き起こすおそれがある。このため、配線パターンの間隔を広くしたり、配線パターンの幅を広くしたりする必要が生じ、配線の微細化や高密度化を図ることが困難となる。さらに、配線導体層103上に突出する導電性ペーストが積層時の加圧により押し潰されて広がることで、配線導体層103の表面に凹凸が生じるといった問題も生じてしまう。   Further, in order to improve the connectivity between the through conductor 102 and the wiring conductor layer 103, as shown in FIG. 16, the conductive paste is embedded so as to protrude around the opening of the through hole 104 in the wiring conductor layer 103. A wiring board 110 on which a conductor 102 is formed is known (see, for example, Patent Document 2). However, when a plurality of resin insulation layers 101 are formed in a multilayer, the conductive paste protruding on the wiring conductor layer 103 is crushed and spread by the pressure applied during lamination. In this case, the conductive paste spreads to the wiring pattern of the adjacent wiring conductor layer 103, which may cause a short circuit between the wiring patterns. For this reason, it is necessary to widen the interval between the wiring patterns or widen the width of the wiring pattern, and it becomes difficult to miniaturize and increase the density of the wiring. Furthermore, the conductive paste protruding on the wiring conductor layer 103 is crushed and spread by the pressurization at the time of lamination, which causes a problem that the surface of the wiring conductor layer 103 is uneven.

本発明は上記の課題に鑑みてなされたものであり、その目的は、貫通導体と配線導体層との密着性を向上させ、接続信頼性に優れた配線基板を提供することにある。また別の目的は、上記配線基板を製造することができる配線基板の製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a wiring board that improves the adhesion between the through conductor and the wiring conductor layer and is excellent in connection reliability. Another object is to provide a method of manufacturing a wiring board capable of manufacturing the wiring board.

そして上記課題を解決するための手段(手段1)としては、樹脂絶縁層と、前記樹脂絶縁層の表面上に形成された配線導体層と、前記配線導体層及び前記樹脂絶縁層を連続して貫通する貫通穴と、前記貫通穴内に導電性ペーストを充填することで形成され前記配線導体層に接続される貫通導体とを備えた配線基板であって、前記貫通穴は、前記配線導体層を貫通する部分において、前記樹脂絶縁層の表面側に位置し前記配線導体層の内壁面により形成される小径部と、前記小径部よりも前記樹脂絶縁層の表面から離れた位置に設けられその小径部に対して前記配線導体層の内壁面の径が拡径するよう形成された大径部とを有し、前記貫通導体は、前記小径部と前記大径部とを含む前記貫通穴に充填形成されていることを特徴とする配線基板がある。   And as means (means 1) for solving the above-mentioned problems, a resin insulating layer, a wiring conductor layer formed on the surface of the resin insulating layer, the wiring conductor layer and the resin insulating layer are continuously provided. A wiring board comprising a through hole that penetrates and a through conductor that is formed by filling a conductive paste in the through hole and is connected to the wiring conductor layer, wherein the through hole includes the wiring conductor layer. In the penetrating part, a small-diameter portion that is located on the surface side of the resin insulating layer and formed by the inner wall surface of the wiring conductor layer, and the small-diameter portion that is provided at a position farther from the surface of the resin insulating layer than the small-diameter portion A large-diameter portion formed so that the diameter of the inner wall surface of the wiring conductor layer is enlarged with respect to the portion, and the through-conductor fills the through-hole including the small-diameter portion and the large-diameter portion. A wiring board characterized by being formed That.

手段1に記載の発明によると、貫通穴は、配線導体層を貫通する部分において小径部とその小径部よりも配線導体層の内壁面の径が拡径するよう形成された大径部とを含み、貫通穴に貫通導体が充填形成されている。このようにすると、貫通導体と配線導体層との接触面積が増し、それら貫通導体と配線導体層との密着性を向上させることができる。従って、配線導体層と貫通導体との界面付近での接続信頼性を高めることができ、従来技術のようなオープン不良が生じ難くなる。   According to the invention described in Means 1, the through hole includes a small diameter portion and a large diameter portion formed so that the diameter of the inner wall surface of the wiring conductor layer is larger than the small diameter portion in the portion penetrating the wiring conductor layer. In addition, a through conductor is filled in the through hole. If it does in this way, the contact area of a penetration conductor and a wiring conductor layer increases, and the adhesiveness of these penetration conductors and a wiring conductor layer can be improved. Therefore, the connection reliability in the vicinity of the interface between the wiring conductor layer and the through conductor can be increased, and the open defect as in the conventional technique is less likely to occur.

配線導体層の大径部と小径部との境界部分には、小径部の内壁面から大径部の内壁面に向かって延びる段差面が形成されていてもよい。このようにすると、貫通導体と配線導体層との密着性を向上させることができ、配線導体層と貫通導体との接続信頼性を高めることができる。また、大径部は、その開口側に行くに従って徐々に拡径するように、つまりテーパ状の内壁面を有するように形成されていてもよい。このようにしても、貫通導体と配線導体層との接触面積が増し、それら貫通導体と配線導体層との密着性を向上させることができる。   A stepped surface extending from the inner wall surface of the small diameter portion toward the inner wall surface of the large diameter portion may be formed at a boundary portion between the large diameter portion and the small diameter portion of the wiring conductor layer. If it does in this way, the adhesiveness of a penetration conductor and a wiring conductor layer can be improved, and the connection reliability of a wiring conductor layer and a penetration conductor can be improved. The large diameter portion may be formed so as to gradually increase in diameter as it goes to the opening side, that is, to have a tapered inner wall surface. Even if it does in this way, the contact area of a penetration conductor and a wiring conductor layer increases, and the adhesiveness of these penetration conductors and a wiring conductor layer can be improved.

段差面には、配線導体層の表面と平行な平坦面が存在していてもよい。この場合、貫通導体が収縮して、貫通穴の壁面に隙間が生じた状態でも、境界部分の平坦面にて配線導体層と貫通導体とを確実に密着させることができ、従来技術のようなオープン不良が生じ難くなる。   A flat surface parallel to the surface of the wiring conductor layer may exist on the step surface. In this case, even when the through conductor contracts and a gap is generated in the wall surface of the through hole, the wiring conductor layer and the through conductor can be reliably adhered to each other on the flat surface of the boundary portion, as in the prior art. Open defects are less likely to occur.

配線基板は、複数の樹脂絶縁層と複数の配線導体層とが積層された樹脂絶縁部と、樹脂絶縁部の下層側に設けられ、複数のセラミック絶縁層と複数の導体層とが積層されたセラミック基板部とを備える多層配線基板であってもよい。また、多層配線基板は電子部品検査用配線基板として用いてもよい。この場合、貫通導体を介して各層の配線導体層が確実に接続されるため、接続信頼性の優れた多層配線基板を得ることができる。さらに、電子部品検査用配線基板における配線導体層と貫通導体との接続信頼性を確保できるため、多数の端子が密集してアレイ状に配置されている電子部品を確実に検査することができる。   The wiring board is provided on a lower layer side of the resin insulation part, in which a plurality of resin insulation layers and a plurality of wiring conductor layers are laminated, and a plurality of ceramic insulation layers and a plurality of conductor layers are laminated. A multilayer wiring board provided with a ceramic substrate part may be used. The multilayer wiring board may be used as an electronic component inspection wiring board. In this case, since the wiring conductor layers of the respective layers are reliably connected through the through conductors, a multilayer wiring board having excellent connection reliability can be obtained. Furthermore, since the connection reliability between the wiring conductor layer and the through conductor in the wiring board for inspecting electronic components can be ensured, it is possible to reliably inspect electronic components in which a large number of terminals are densely arranged.

貫通導体の端面の位置が貫通穴における大径部の開口よりも内側に収まるように貫通導体が形成されていてもよい。このようにすると、積層時の加圧によって貫通導体が貫通穴からはみ出て広がることがないため、配線基板における配線の微細化や高密度化を図ることができる。   The through conductor may be formed so that the position of the end face of the through conductor is inside the opening of the large diameter portion in the through hole. If it does in this way, since a penetration conductor does not protrude and spread from a penetration hole by pressurization at the time of lamination, miniaturization and densification of wiring in a wiring board can be attained.

大径部の厚さを配線導体層の厚さの50%以上とすると、大径部に貫通導体を確実に充填形成することができる。また、大径部の直径は、小径部の直径の1.1倍以上であってもよい。このように大径部の直径を大きくすると、貫通導体と配線導体層との密着性を十分に確保することができる。   When the thickness of the large diameter portion is 50% or more of the thickness of the wiring conductor layer, the through conductor can be reliably filled and formed in the large diameter portion. In addition, the diameter of the large diameter portion may be 1.1 times or more the diameter of the small diameter portion. When the diameter of the large diameter portion is increased in this way, sufficient adhesion between the through conductor and the wiring conductor layer can be ensured.

貫通導体の直径は50μm以下であり、金属箔の厚さが10μm以下であってもよい。このように、貫通導体の直径を小さくして、金属箔(配線導体層)を薄くすると、配線基板における配線の微細化や高密度化を図ることができる。   The diameter of the through conductor may be 50 μm or less, and the thickness of the metal foil may be 10 μm or less. Thus, if the diameter of the through conductor is reduced and the metal foil (wiring conductor layer) is thinned, the wiring on the wiring board can be miniaturized and densified.

樹脂絶縁層における上面及び下面の両方の表面に配線導体層を備え、貫通導体は、上面の配線導体層、下面の配線導体層及び樹脂絶縁層を貫通する導体であり、貫通穴の上面側の配線導体層及び下面側の配線導体層を貫通する部分には大径部及び小径部が設けられていてもよい。このようにしても、貫通導体と配線導体層との接触面積が増し、それら貫通導体と配線導体層との密着性を向上させることができる。   Wiring conductor layers are provided on both the upper and lower surfaces of the resin insulating layer, and the through conductor is a conductor that penetrates the upper wiring conductor layer, the lower wiring conductor layer, and the resin insulating layer. A portion that penetrates the wiring conductor layer and the wiring conductor layer on the lower surface side may be provided with a large diameter portion and a small diameter portion. Even if it does in this way, the contact area of a penetration conductor and a wiring conductor layer increases, and the adhesiveness of these penetration conductors and a wiring conductor layer can be improved.

樹脂絶縁層は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層と、第1樹脂層の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層とにより構成されていてもよい。この場合、加圧及び加熱を行うことにより、第2樹脂層が接着層として機能するため、複数の樹脂絶縁層を一体化した多層配線基板を確実に製造することができる。   The resin insulating layer may include a first resin layer made of a polyimide-based thermosetting resin and a second resin layer formed on both surfaces of the first resin layer and made of a polyimide-based thermoplastic resin. . In this case, since the second resin layer functions as an adhesive layer by applying pressure and heating, a multilayer wiring board in which a plurality of resin insulating layers are integrated can be reliably manufactured.

樹脂絶縁層は、ポリイミド系の樹脂以外の樹脂を用いて形成されるものでもよく、絶縁性、耐熱性、耐湿性等を考慮して適宜選択することができる。また、樹脂絶縁層は、樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料、あるいは、連続多孔質PTFE等の三次元網目状フッ素系樹脂基材に熱硬化性樹脂を含浸させた樹脂−樹脂複合材料等を使用してもよい。   The resin insulating layer may be formed using a resin other than a polyimide-based resin, and can be appropriately selected in consideration of insulation, heat resistance, moisture resistance, and the like. In addition, the resin insulation layer is formed on a composite material of resin and glass fiber (glass woven fabric or glass nonwoven fabric) or organic fiber such as polyamide fiber, or a three-dimensional network fluorine resin base material such as continuous porous PTFE. A resin-resin composite material impregnated with a curable resin may be used.

また、上記課題を解決するための別の手段(手段2)としては、手段1に記載の配線基板の製造方法であって、前記樹脂絶縁層となる樹脂絶縁材の片面または両面に、前記配線導体層となる金属層が形成された樹脂フィルムを準備する準備工程と、前記樹脂フィルムの金属層を貫通しない非貫通穴であって前記大径部となる第1の部分と、前記金属層及び前記樹脂絶縁材を貫通する貫通穴であって前記小径部となる第2の部分とを形成する貫通穴形成工程と、前記第1の部分及び前記第2の部分内に導電性ペーストを充填して前記貫通導体を形成する貫通導体形成工程と、前記金属層に対するエッチングを行って前記配線導体層をパターン形成する導体層形成工程とを含むことを特徴とする配線基板の製造方法がある。   Further, as another means (means 2) for solving the above-mentioned problem, there is provided a method for manufacturing a wiring board according to means 1, wherein the wiring is provided on one or both sides of a resin insulating material to be the resin insulating layer. A preparation step of preparing a resin film on which a metal layer to be a conductor layer is formed, a first portion that is a non-through hole that does not penetrate the metal layer of the resin film and is the large-diameter portion, the metal layer, and A through-hole forming step for forming a through-hole penetrating the resin insulating material and forming the second portion serving as the small-diameter portion; and filling the first portion and the second portion with a conductive paste There is a method for manufacturing a wiring board, comprising: a through conductor forming step for forming the through conductor; and a conductive layer forming step for patterning the wiring conductor layer by etching the metal layer.

手段2に記載の発明によると、貫通穴形成工程では、樹脂フィルムの金属層を貫通しない第1の部分(大径部となる非貫通穴)が形成され、金属層及び樹脂絶縁材を貫通する第2の部分(小径部となる貫通穴)が形成される。その後、貫通導体形成工程では、第1の部分及び第2の部分内に導電性ペーストが充填されて貫通導体が形成される。また、導体層形成工程では、金属層に対するエッチングを行うことで、貫通導体に繋がる配線導体層がパターン形成される。このように、貫通導体を形成する貫通穴に大径部が設けられているので、貫通導体と配線導体層との接触面積が増す。従って、貫通導体と配線導体層との密着性を向上させることができ、接続信頼性の高い配線基板を製造することができる。   According to the invention described in Means 2, in the through hole forming step, a first portion that does not penetrate the metal layer of the resin film (a non-through hole that becomes a large diameter portion) is formed, and penetrates the metal layer and the resin insulating material. A second portion (a through hole that becomes a small diameter portion) is formed. Thereafter, in the through conductor forming step, the first portion and the second portion are filled with the conductive paste to form the through conductor. In the conductor layer forming step, the wiring conductor layer connected to the through conductor is patterned by etching the metal layer. Thus, since the large diameter portion is provided in the through hole forming the through conductor, the contact area between the through conductor and the wiring conductor layer is increased. Therefore, the adhesion between the through conductor and the wiring conductor layer can be improved, and a wiring board with high connection reliability can be manufactured.

貫通穴形成工程では、レーザ加工により、非貫通穴を形成した後、非貫通穴と中心が一致するようその底面中央にて開口する貫通穴を形成してもよい。この場合、貫通穴における小径部及び大径部を位置精度良く確実に形成することができる。また、貫通穴形成工程において、貫通穴を形成した後、貫通穴の周囲に非貫通穴を形成してもよい。このようにしても、小径部及び大径部を有する貫通穴を形成することができる。   In the through hole forming step, after forming the non-through hole by laser processing, a through hole that opens at the center of the bottom surface may be formed so that the center coincides with the non-through hole. In this case, the small diameter portion and the large diameter portion in the through hole can be reliably formed with high positional accuracy. Further, in the through hole forming step, after forming the through hole, a non-through hole may be formed around the through hole. Even if it does in this way, the through-hole which has a small diameter part and a large diameter part can be formed.

準備工程では、樹脂絶縁材の表面上に金属層としての金属箔を貼り付けた金属箔付き樹脂フィルムを準備してもよい。また、準備工程において、樹脂絶縁材の表面に金属層としてのめっき層やスパッタ層を形成した樹脂フィルムを準備してもよい。   In the preparation step, a resin film with a metal foil in which a metal foil as a metal layer is attached on the surface of the resin insulating material may be prepared. Moreover, in a preparatory process, you may prepare the resin film which formed the plating layer and sputter | spatter layer as a metal layer on the surface of the resin insulating material.

樹脂フィルムの金属箔が銅箔であり、貫通導体形成工程で用いられる導電性ペーストが銀ペーストであってもよい。この場合、一般的に使用される汎用の材料である銅箔付き樹脂フィルムや銀ペーストを用いることができるため、配線基板の製造コストを低く抑えることができる。   The metal foil of the resin film may be a copper foil, and the conductive paste used in the through conductor forming process may be a silver paste. In this case, since a resin film with a copper foil and a silver paste, which are general-purpose materials that are generally used, can be used, the manufacturing cost of the wiring board can be kept low.

また、貫通穴形成工程及び貫通導体形成工程を行った後に導体層形成工程を行ってもよいし、貫通導体形成工程を行う前に導体層形成工程を行ってもよい。但し、導体層形成工程後に貫通導体形成工程を行うと、その貫通導体形成工程において配線導体層の端部等に導電性ペーストが付着する場合があり、その場合には導電性ペーストを拭き取るなどの余分な工程が必要となる。これに対して、貫通導体形成工程後に導体層形成工程を行う場合には、導電性ペーストの拭き取りなどの作業工程が不要となり、配線基板を比較的容易に製造することができる。   Further, the conductor layer forming step may be performed after the through hole forming step and the through conductor forming step, or the conductor layer forming step may be performed before the through conductor forming step. However, if the through conductor forming process is performed after the conductor layer forming process, the conductive paste may adhere to the end of the wiring conductor layer in the through conductor forming process. In that case, the conductive paste may be wiped off, etc. An extra step is required. On the other hand, when the conductor layer forming step is performed after the through conductor forming step, a work step such as wiping off the conductive paste is not required, and the wiring board can be manufactured relatively easily.

多層配線基板を製造する場合には、配線導体層をパターン形成した複数の樹脂絶縁層をその厚さ方向に複数積層して多層化する積層工程をさらに含んでいてもよい。この場合、積層工程時の加圧によって貫通導体が貫通穴からはみ出て広がることがないため、多層配線基板における配線の微細化を図ることができる。   In the case of manufacturing a multilayer wiring board, it may further include a laminating step of laminating a plurality of resin insulating layers patterned with wiring conductor layers in the thickness direction. In this case, since the through conductor does not protrude from the through hole due to the pressurization during the lamination process, the wiring in the multilayer wiring board can be miniaturized.

本実施の形態における電子部品検査用配線基板の概略構成を示す断面図。Sectional drawing which shows schematic structure of the wiring board for electronic component inspection in this Embodiment. 配線導体層とビア導体との接続部分を示す拡大断面図。The expanded sectional view which shows the connection part of a wiring conductor layer and a via conductor. セラミック基板部の貫通穴形成工程を示す説明図。Explanatory drawing which shows the through-hole formation process of a ceramic substrate part. セラミック基板部のビア導体及び導体層の形成工程を示す説明図。Explanatory drawing which shows the formation process of the via conductor of a ceramic substrate part, and a conductor layer. セラミック基板部の積層工程を示す説明図。Explanatory drawing which shows the lamination process of a ceramic substrate part. 樹脂フィルムの準備工程を示す説明図。Explanatory drawing which shows the preparation process of a resin film. 貫通穴形成工程を示す説明図。Explanatory drawing which shows a through-hole formation process. 貫通穴形成工程を示す説明図。Explanatory drawing which shows a through-hole formation process. 貫通導体形成工程を示す説明図。Explanatory drawing which shows a penetration conductor formation process. 導体層形成工程を示す説明図。Explanatory drawing which shows a conductor layer formation process. 積層工程を示す説明図。Explanatory drawing which shows a lamination process. 別の実施の形態の貫通穴及びビア導体を示す断面図。Sectional drawing which shows the through hole and via conductor of another embodiment. 別の実施の形態の貫通穴及びビア導体を示す断面図。Sectional drawing which shows the through hole and via conductor of another embodiment. 従来の配線基板を示す説明図。Explanatory drawing which shows the conventional wiring board. 従来の配線基板を示す説明図。Explanatory drawing which shows the conventional wiring board. 従来の配線基板を示す説明図。Explanatory drawing which shows the conventional wiring board.

以下、本発明を電子部品検査用配線基板に具体化した一実施の形態を図面に基づき詳細に説明する。図1は、本実施の形態の電子部品検査用配線基板の概略構成を示す断面図である。   Hereinafter, an embodiment in which the present invention is embodied in an electronic component inspection wiring board will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of an electronic component inspection wiring board according to the present embodiment.

図1に示される電子部品検査用配線基板10は、ICチップの電気検査を行うための検査装置の一部に使用される部品である。電子部品検査用配線基板10は、樹脂絶縁部20とその樹脂絶縁部20の下層側に設けられるセラミック基板部30とを備える。電子部品検査用配線基板10は、縦横の長さが10cm程度、厚さが4mm程度の基板であり、使用時において配線基板10の主面11(樹脂絶縁部20の表面)が検査対象である電子部品に向けて配置される。   An electronic component inspection wiring board 10 shown in FIG. 1 is a component used in a part of an inspection apparatus for performing an electrical inspection of an IC chip. The electronic component inspection wiring board 10 includes a resin insulating portion 20 and a ceramic substrate portion 30 provided on the lower layer side of the resin insulating portion 20. The electronic component inspection wiring substrate 10 is a substrate having a length and width of about 10 cm and a thickness of about 4 mm, and the main surface 11 (the surface of the resin insulating portion 20) of the wiring substrate 10 is an inspection target in use. Arranged toward the electronic component.

セラミック基板部30には、複数のセラミック絶縁層31,32,33と複数の導体層34とが積層されている。セラミック絶縁層31〜33は、例えばアルミナの焼結体であり、導体層34は、例えばタングステン、モリブデン等のメタライズ層である。セラミック基板部30において、各セラミック絶縁層31〜33には厚さ方向に貫通する貫通穴36が形成されており、その貫通穴36内には層間の導体層34に接続されるビア導体37が形成されている。各貫通穴36は断面円形状をなしており、それらの内径は60μm程度である。各ビア導体37も断面円形状をなしており、それらの外径は60μm程度である。ビア導体37は、導体層34と同様にタングステン、モリブデン等のメタライズ層からなる。さらに、配線基板10の裏面12(セラミック基板部30の表面)には、複数の裏面側端子38がほぼ全域にわたってアレイ状に形成されている。各裏面側端子38は断面円形状をなし、裏面側端子38の直径は、1.0mm程度に設定されている。   A plurality of ceramic insulating layers 31, 32, 33 and a plurality of conductor layers 34 are laminated on the ceramic substrate portion 30. The ceramic insulating layers 31 to 33 are, for example, alumina sintered bodies, and the conductor layer 34 is a metallized layer such as tungsten or molybdenum. In the ceramic substrate portion 30, each ceramic insulating layer 31 to 33 is formed with a through hole 36 penetrating in the thickness direction, and a via conductor 37 connected to the interlayer conductor layer 34 is formed in the through hole 36. Is formed. Each through-hole 36 has a circular cross section, and the inner diameter thereof is about 60 μm. Each via conductor 37 also has a circular cross section, and the outer diameter thereof is about 60 μm. The via conductor 37 is made of a metallized layer such as tungsten or molybdenum in the same manner as the conductor layer 34. Further, on the back surface 12 of the wiring substrate 10 (the surface of the ceramic substrate portion 30), a plurality of back surface side terminals 38 are formed in an array over almost the entire area. Each back terminal 38 has a circular cross section, and the diameter of the back terminal 38 is set to about 1.0 mm.

樹脂絶縁部20には、複数の樹脂絶縁層21,22と複数の配線導体層23とが積層されている。樹脂絶縁層21,22は、例えばポリイミド系樹脂からなる絶縁層である。具体的には、樹脂絶縁層21,22は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層24と、第1樹脂層24の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層25とにより構成されている。本実施の形態において、樹脂絶縁層21,22を構成する第1樹脂層24の厚みは20μm程度であり、第2樹脂層25の厚みは5μm程度である。つまり、樹脂絶縁層21,22は30μm程度である。また、配線導体層23は、例えば銅からなる導体層であり、その厚みは5μm程度である。樹脂絶縁部20において、樹脂絶縁層21,22及び配線導体層23を貫通する貫通穴26が形成されており、その貫通穴26内には層間の配線導体層23に接続されるビア導体27(貫通導体)が形成されている。樹脂絶縁部20の貫通穴26及びビア導体27も断面円形状をなす。   A plurality of resin insulation layers 21 and 22 and a plurality of wiring conductor layers 23 are laminated on the resin insulation portion 20. The resin insulating layers 21 and 22 are insulating layers made of, for example, a polyimide resin. Specifically, the resin insulating layers 21 and 22 are formed on both surfaces of the first resin layer 24 made of a polyimide-based thermosetting resin and the first resin layer 24, and are made of a second resin made of a polyimide-based thermoplastic resin. And a resin layer 25. In the present embodiment, the thickness of the first resin layer 24 constituting the resin insulating layers 21 and 22 is about 20 μm, and the thickness of the second resin layer 25 is about 5 μm. That is, the resin insulating layers 21 and 22 are about 30 μm. The wiring conductor layer 23 is a conductor layer made of, for example, copper and has a thickness of about 5 μm. In the resin insulating portion 20, a through hole 26 penetrating the resin insulating layers 21 and 22 and the wiring conductor layer 23 is formed, and a via conductor 27 (connected to the interlayer wiring conductor layer 23 in the through hole 26 ( (Through conductor) is formed. The through hole 26 and the via conductor 27 of the resin insulating portion 20 also have a circular cross section.

また、配線基板10の主面11(樹脂絶縁部20の表面)上の中央部分には、配線導体層23を構成する複数の主面側端子28(部品接続用端子)がアレイ状に形成されている。主面側端子28は断面円形状をなし、その直径は例えば50μm程度に設定されている。   In addition, a plurality of main surface side terminals 28 (component connection terminals) constituting the wiring conductor layer 23 are formed in an array at a central portion on the main surface 11 (surface of the resin insulating portion 20) of the wiring board 10. ing. The main surface side terminal 28 has a circular cross section, and its diameter is set to about 50 μm, for example.

図1及び図2に示されるように、貫通穴26は、配線導体層23(主面側端子28や内層の配線パターン)を貫通する部分において、配線導体層23の内層側(樹脂絶縁層21,22の表面側)に位置し配線導体層23の内壁面により形成される小径部51と、その小径部51よりも配線導体層23の表層側(樹脂絶縁層21,22の表面から離れた位置)に設けられた大径部52とを有する。小径部51は、樹脂絶縁層21,22における貫通穴26と等しい直径D1を有し、その直径D1は35μm程度である。大径部52は、その小径部51に対して配線導体層23の内壁面の径が拡径するよう形成され、その直径D2は40μm程度である。また、ビア導体27は、小径部51と大径部52とを含む貫通穴26に充填形成されている。従って、ビア導体27は、小径部51の部分で35μm程度、大径部52の部分で40μm程度の直径を有している。また、大径部52の厚さは、3μm程度であり、配線導体層23の厚さの50%以上となっている。   As shown in FIG. 1 and FIG. 2, the through hole 26 is formed on the inner layer side (resin insulating layer 21) of the wiring conductor layer 23 in a portion that penetrates the wiring conductor layer 23 (main surface side terminal 28 or inner layer wiring pattern). , 22) and a small-diameter portion 51 formed by the inner wall surface of the wiring conductor layer 23, and a surface layer side of the wiring conductor layer 23 (the surface of the resin insulating layers 21, 22 away from the small-diameter portion 51). And a large diameter portion 52 provided at a position). The small diameter portion 51 has a diameter D1 equal to the through hole 26 in the resin insulating layers 21 and 22, and the diameter D1 is about 35 μm. The large-diameter portion 52 is formed so that the diameter of the inner wall surface of the wiring conductor layer 23 is larger than the small-diameter portion 51, and the diameter D2 is about 40 μm. The via conductor 27 is filled in the through hole 26 including the small diameter portion 51 and the large diameter portion 52. Therefore, the via conductor 27 has a diameter of about 35 μm at the small diameter portion 51 and a diameter of about 40 μm at the large diameter portion 52. The large diameter portion 52 has a thickness of about 3 μm, which is 50% or more of the thickness of the wiring conductor layer 23.

本実施の形態では、貫通穴26における小径部51と大径部52との境界部分に小径部51の内壁面から大径部52の内壁面に向かって延びる段差面53が形成されている。また、段差面53には、小径部51と大径部52との境界部分に配線導体層23の表面と平行な平坦面54が存在している。そして、小径部51及び大径部52の内壁面に加えてその段差面53にもビア導体27が密着した状態で形成されている。   In the present embodiment, a step surface 53 extending from the inner wall surface of the small diameter portion 51 toward the inner wall surface of the large diameter portion 52 is formed at the boundary portion between the small diameter portion 51 and the large diameter portion 52 in the through hole 26. Further, the step surface 53 has a flat surface 54 parallel to the surface of the wiring conductor layer 23 at the boundary between the small diameter portion 51 and the large diameter portion 52. In addition to the inner wall surfaces of the small diameter portion 51 and the large diameter portion 52, the via conductor 27 is formed in close contact with the step surface 53.

図1に示されるように、電子部品検査用配線基板10において、各主面側端子28は、ビア導体27を介して内層側の配線導体層23に接続され、さらにセラミック基板部30の導体層34やビア導体37を介して裏面側端子38に接続される。   As shown in FIG. 1, in the electronic component inspection wiring substrate 10, each main surface side terminal 28 is connected to an inner layer side wiring conductor layer 23 via a via conductor 27, and further, a conductor layer of the ceramic substrate portion 30. 34 and via conductors 37 are connected to the back-side terminals 38.

次に、本実施の形態における電子部品検査用配線基板10の製造方法を説明する。   Next, a method for manufacturing the electronic component inspection wiring board 10 in the present embodiment will be described.

先ず、アルミナ粉末を主成分とするセラミック材料を用いてグリーンシートを複数枚形成する。そして、複数枚のグリーンシート41に対し、レーザ照射加工、パンチング加工、ドリル加工等による穴あけを行って、所定の位置に複数の貫通穴36を多数形成する(図3参照)。その後、従来周知のペースト圧入充填装置(図示略)を用い、各グリーンシート41の貫通穴36に導電性ペースト(例えばタングステン、モリブデンペースト)を充填し、未焼成のビア導体37を形成する。さらに、従来周知のペースト印刷装置を用いて、導電性ペーストを印刷して未焼成の導体層34や裏面側端子38を形成する(図4参照)。なお、導電性ペーストの圧入充填及び印刷の順序は逆にしてもよい。   First, a plurality of green sheets are formed using a ceramic material mainly composed of alumina powder. Then, a plurality of through holes 36 are formed at predetermined positions by drilling the plurality of green sheets 41 by laser irradiation processing, punching processing, drill processing, or the like (see FIG. 3). Thereafter, a conductive paste (for example, tungsten or molybdenum paste) is filled in the through holes 36 of each green sheet 41 by using a conventionally known paste press-fitting and filling device (not shown) to form an unfired via conductor 37. Further, a conductive paste is printed using a conventionally known paste printing apparatus to form the unfired conductor layer 34 and the back-side terminal 38 (see FIG. 4). The order of press-fitting and printing with the conductive paste may be reversed.

そして、導電性ペーストの乾燥後、それら複数枚のグリーンシート41を積み重ねて配置し、シート積層方向に押圧力を付与することにより、各グリーンシート41を圧着、一体化してセラミック積層体43を形成する(図5参照)。次に、セラミック積層体43を脱脂し、さらに所定温度で所定時間焼成を行う。その結果、グリーンシート41のアルミナ及びペースト中の銅が同時焼結し、セラミック基板部30が形成される。   Then, after the conductive paste is dried, the plurality of green sheets 41 are stacked and disposed, and a pressing force is applied in the sheet stacking direction, whereby the green sheets 41 are bonded and integrated to form a ceramic laminate 43. (See FIG. 5). Next, the ceramic laminate 43 is degreased and fired at a predetermined temperature for a predetermined time. As a result, the alumina of the green sheet 41 and the copper in the paste are simultaneously sintered, and the ceramic substrate portion 30 is formed.

また、樹脂絶縁部20を以下の手法で作製する。具体的には、図6に示されるように、樹脂絶縁層21,22となる樹脂絶縁材45の片面46(図6では上面)に、配線導体層23となる銅箔47が形成された銅箔付き樹脂フィルム48を準備する(準備工程)。なお、樹脂絶縁材45は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層24と、第1樹脂層24の両面に配設されポリイミド系の熱可塑性樹脂からなる第2樹脂層25とから構成される。そして、樹脂絶縁材45の上面46側に、厚さが5μmである銅箔47が貼り付けられている。   Moreover, the resin insulation part 20 is produced with the following method. Specifically, as shown in FIG. 6, copper having a copper foil 47 to be the wiring conductor layer 23 formed on one surface 46 (upper surface in FIG. 6) of the resin insulating material 45 to be the resin insulating layers 21 and 22. A resin film 48 with foil is prepared (preparation step). The resin insulating material 45 includes a first resin layer 24 made of a polyimide-based thermosetting resin, and a second resin layer 25 made of a polyimide-based thermoplastic resin disposed on both surfaces of the first resin layer 24. Composed. A copper foil 47 having a thickness of 5 μm is attached to the upper surface 46 side of the resin insulating material 45.

次に、図7に示されるように、レーザ加工により、樹脂フィルム48の銅箔47を貫通しない非貫通穴であって大径部52となる第1の部分を形成する(図7参照)。第1の部分52の非貫通穴は、直径が40μm程度であり、深さが3μm程度である。その後、レーザ加工により、銅箔47及び樹脂絶縁材45を貫通する貫通穴であって小径部51となる第2の部分を形成する(図8参照)。ここでは、第1の部分52(非貫通穴)と中心が一致するようその底面中央にて開口する第2の部分51(貫通穴)を形成する。なお、第2の部分51の貫通穴の直径は35μm程度である。このように、樹脂フィルム48の樹脂絶縁材45及銅箔47を連続して貫通し、銅箔47の貫通部分において小径部51及び大径部52を有する貫通穴26を形成する(貫通穴形成工程)。   Next, as shown in FIG. 7, a first portion that is a non-through hole that does not penetrate the copper foil 47 of the resin film 48 and becomes the large-diameter portion 52 is formed by laser processing (see FIG. 7). The non-through hole of the first portion 52 has a diameter of about 40 μm and a depth of about 3 μm. Then, the 2nd part which is a through-hole which penetrates the copper foil 47 and the resin insulating material 45, and becomes the small diameter part 51 is formed by laser processing (refer FIG. 8). Here, the second portion 51 (through hole) that opens at the center of the bottom surface is formed so that the center coincides with the first portion 52 (non-through hole). The diameter of the through hole of the second portion 51 is about 35 μm. In this way, the resin insulating material 45 and the copper foil 47 of the resin film 48 are continuously penetrated, and the through hole 26 having the small diameter portion 51 and the large diameter portion 52 is formed in the through portion of the copper foil 47 (through hole formation). Process).

次に、ペースト圧入充填装置(図示略)を用い、図9に示されるように、樹脂フィルム48の貫通穴26内に導電性ペーストとしての銀ペーストを充填し、ビア導体27を形成する(貫通導体形成工程)。ここでは、ビア導体27の端面の位置が貫通穴26における大径部52の開口よりも内側に収まるようにビア導体27が形成される。   Next, using a paste press-fitting and filling device (not shown), as shown in FIG. 9, a silver paste as a conductive paste is filled into the through hole 26 of the resin film 48 to form a via conductor 27 (through). Conductor formation process). Here, the via conductor 27 is formed so that the position of the end face of the via conductor 27 is inside the opening of the large diameter portion 52 in the through hole 26.

その後、樹脂フィルム48の銅箔47を、サブトラクティブ法でパターニングすることで、樹脂絶縁層21上に配線導体層23(主面側端子28)を形成する(図10参照)。具体的には、樹脂絶縁材45の上面46及び下面49上において、ドライフィルムをラミネートし、同ドライフィルムに対して露光及び現像を行う。これにより、樹脂絶縁層21の下面49にその全面を覆うようにエッチングレジストを形成するとともに、樹脂絶縁層21の上面46に所定のパターンのエッチングレジストを形成する。この状態で、樹脂フィルム48の銅箔47に対してエッチングによるパターニングを行うことにより、樹脂絶縁層21上に各主面側端子28を形成する(導体層形成工程)。その後、剥離液に接触させることにより、各主面側端子28上に残存するエッチングレジストを除去するとともに、裏面49側のエッチングレジストを除去する。   Thereafter, the copper foil 47 of the resin film 48 is patterned by a subtractive method to form the wiring conductor layer 23 (main surface side terminal 28) on the resin insulating layer 21 (see FIG. 10). Specifically, a dry film is laminated on the upper surface 46 and the lower surface 49 of the resin insulating material 45, and the dry film is exposed and developed. Thus, an etching resist is formed on the lower surface 49 of the resin insulating layer 21 so as to cover the entire surface, and an etching resist having a predetermined pattern is formed on the upper surface 46 of the resin insulating layer 21. In this state, each main surface side terminal 28 is formed on the resin insulating layer 21 by performing patterning by etching on the copper foil 47 of the resin film 48 (conductor layer forming step). Thereafter, by contacting with the stripping solution, the etching resist remaining on each main surface side terminal 28 is removed, and the etching resist on the back surface 49 side is removed.

このような工程を経て、各主面側端子28と各端子28に接続されるビア導体27とを有する樹脂絶縁層21が形成される。また、上述した準備工程〜導体層形成工程を同様に行うことで、配線導体層23の配線パターンとその配線パターンに接続されるビア導体27とを有する樹脂絶縁層22が形成される。   Through such a process, the resin insulating layer 21 having each main surface side terminal 28 and the via conductor 27 connected to each terminal 28 is formed. Moreover, the resin insulating layer 22 which has the wiring pattern of the wiring conductor layer 23 and the via conductor 27 connected to the wiring pattern is formed by performing the preparation process-conductor layer formation process mentioned above similarly.

次いで、樹脂絶縁層21と樹脂絶縁層22とを積層配置し、180℃程度の温度に加熱しつつ20kgf/cm程度の圧力で加圧する。この結果、図11に示されるように、各樹脂絶縁層21,22が圧着されて樹脂絶縁部20が形成される(積層工程)。そして、セラミック基板部30の上層側に、樹脂絶縁部20を積層配置し、350℃程度の温度に加熱しつつ75kgf/cm程度の圧力で加圧する。この結果、図1に示されるように、樹脂絶縁部20とセラミック基板部30とが一体化した電子部品検査用配線基板10が製造される。なお、上記製造工程において、樹脂絶縁層21及び樹脂絶縁層22をセラミック基板部30と同時に積層して電子部品検査用配線基板10を製造してもよい。 Next, the resin insulating layer 21 and the resin insulating layer 22 are laminated and pressed with a pressure of about 20 kgf / cm 2 while heating to a temperature of about 180 ° C. As a result, as shown in FIG. 11, the resin insulation layers 21 and 22 are pressure-bonded to form the resin insulation part 20 (lamination process). And the resin insulation part 20 is laminated | stacked and arrange | positioned on the upper layer side of the ceramic substrate part 30, and it pressurizes with the pressure of about 75 kgf / cm < 2 >, heating to the temperature of about 350 degreeC. As a result, as shown in FIG. 1, the electronic component inspection wiring substrate 10 in which the resin insulating portion 20 and the ceramic substrate portion 30 are integrated is manufactured. In the above manufacturing process, the electronic component inspection wiring substrate 10 may be manufactured by laminating the resin insulating layer 21 and the resin insulating layer 22 simultaneously with the ceramic substrate portion 30.

従って、本実施の形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施の形態の電子部品検査用配線基板10において、ビア導体27が形成される貫通穴26は、配線導体層23を貫通する部分にて小径部51とその小径部51よりも配線導体層23の内壁面の径が拡径するよう形成された大径部52とを含む。このようにすると、従来技術のように同じ直径のストレートな壁面を有する貫通穴104(図4参照)と比較して、ビア導体27と配線導体層23との接触面積が増し、それらビア導体27と配線導体層23との密着性を向上させることができる。従って、配線導体層23とビア導体27との界面付近での接続信頼性を高めることができ、従来技術のようなオープン不良が生じ難くなる。   (1) In the electronic component inspection wiring board 10 of the present embodiment, the through hole 26 in which the via conductor 27 is formed has a smaller diameter portion 51 and a wiring than the small diameter portion 51 at a portion that penetrates the wiring conductor layer 23. And a large-diameter portion 52 formed so that the diameter of the inner wall surface of the conductor layer 23 is increased. In this way, the contact area between the via conductor 27 and the wiring conductor layer 23 is increased as compared with the through hole 104 (see FIG. 4) having a straight wall with the same diameter as in the prior art. And the wiring conductor layer 23 can be improved in adhesion. Therefore, the connection reliability in the vicinity of the interface between the wiring conductor layer 23 and the via conductor 27 can be increased, and the open defect as in the prior art is less likely to occur.

(2)本実施の形態の電子部品検査用配線基板10では、貫通穴26において小径部51と大径部52との境界部分には、小径部51の内壁面から大径部52の内壁面に向かって延びる段差面53が形成されており、その段差面53には配線導体層23の表面と平行な平坦面54が存在している。この場合、ビア導体27が収縮して貫通穴26の壁面に隙間が生じた状態でも、境界部分の平坦面54にて配線導体層23とビア導体27とを確実に密着させることができ、従来技術のようなオープン不良が生じ難くなる。   (2) In the electronic component inspection wiring board 10 of the present embodiment, the boundary between the small diameter portion 51 and the large diameter portion 52 in the through hole 26 is located from the inner wall surface of the small diameter portion 51 to the inner wall surface of the large diameter portion 52. A step surface 53 extending toward the surface is formed, and a flat surface 54 parallel to the surface of the wiring conductor layer 23 exists on the step surface 53. In this case, even when the via conductor 27 contracts and a gap is generated in the wall surface of the through hole 26, the wiring conductor layer 23 and the via conductor 27 can be reliably adhered to each other on the flat surface 54 at the boundary portion. Open defects like technology are less likely to occur.

(3)本実施の形態の電子部品検査用配線基板10では、ビア導体27の端面の位置が貫通穴26における大径部52の開口よりも内側に収まるようにビア導体27が形成されている。このようにすると、積層時の加圧によってビア導体27が貫通穴26からはみ出て広がることがないため、電子部品検査用配線基板10における配線の微細化や高密度化を図ることができる。また、ビア導体27の端部が貫通穴26における大径部52の開口から突出していないので、樹脂絶縁層21,22の積層後において配線導体層23の表面に凹凸が生じることがない。   (3) In the electronic component inspection wiring board 10 of the present embodiment, the via conductor 27 is formed so that the position of the end face of the via conductor 27 is inside the opening of the large diameter portion 52 in the through hole 26. . In this case, the via conductor 27 does not protrude from the through hole 26 due to the pressurization at the time of lamination, so that the wiring in the electronic component inspection wiring board 10 can be miniaturized and densified. Further, since the end portion of the via conductor 27 does not protrude from the opening of the large-diameter portion 52 in the through hole 26, the surface of the wiring conductor layer 23 is not uneven after the resin insulating layers 21 and 22 are laminated.

(4)本実施の形態の場合、貫通穴形成工程において、レーザ加工により、樹脂フィルム48の銅箔47を貫通しない非貫通穴(大径部52となる第1の部分)が形成される。その後、レーザ加工により、非貫通穴と中心が一致するようその底面中央にて開口する貫通穴(小径部51となる第2の部分)が形成されている。このようにすると、貫通穴26における小径部51及び大径部52を位置精度良く確実に形成することができる。   (4) In the case of the present embodiment, in the through hole forming step, a non-through hole (a first portion that becomes the large diameter portion 52) that does not penetrate the copper foil 47 of the resin film 48 is formed by laser processing. Thereafter, a through hole (second portion that becomes the small diameter portion 51) that is opened at the center of the bottom surface is formed by laser processing so that the center coincides with the non-through hole. If it does in this way, the small diameter part 51 and the large diameter part 52 in the through-hole 26 can be reliably formed with a sufficient positional accuracy.

(5)本実施の形態の場合、一般的に使用される汎用の材料である銅箔付き樹脂フィルム48や銀ペーストを用いているため、電子部品検査用配線基板10の製造コストを低く抑えることができる。   (5) In the case of this embodiment, since the resin film 48 with copper foil and silver paste, which are general-purpose materials that are generally used, are used, the manufacturing cost of the electronic component inspection wiring board 10 is kept low. Can do.

(6)本実施の形態の場合、貫通導体形成工程を行った後に導体層形成工程を行っている。これとは逆に、導体層形成工程後に貫通導体形成工程を行うと、配線導体層の端部等に導電性ペーストが付着する場合があり、その場合には導電性ペーストを拭き取るなどの余分な工程が必要となる。これに対して、本実施の形態のように貫通導体形成工程後に導体層形成工程を行う場合には、導電性ペーストの拭き取りなどの作業工程が不要となり、配線基板10を比較的容易に製造することができる。   (6) In the case of the present embodiment, the conductor layer forming step is performed after the through conductor forming step. On the contrary, if the through conductor forming process is performed after the conductor layer forming process, the conductive paste may adhere to the end of the wiring conductor layer, etc. In such a case, an excess of the conductive paste is wiped off. A process is required. On the other hand, when the conductor layer forming step is performed after the through conductor forming step as in the present embodiment, a work step such as wiping off the conductive paste is not required, and the wiring board 10 is manufactured relatively easily. be able to.

(7)本実施の形態の電子部品検査用配線基板10では、大径部52の内壁面の直径D2は40μm程度であり、小径部51の内壁面の直径D1(35μ程度)の1.1倍以上となっている。また、大径部52の深さは3μmであり、配線導体層23の厚さの1/2以上となっている。このように大径部52を形成すると、大径部52にビア導体27を確実に充填形成することができ、ビア導体27と配線導体層23との密着性を十分に確保することができる。   (7) In the electronic component inspection wiring board 10 of the present embodiment, the diameter D2 of the inner wall surface of the large diameter portion 52 is about 40 μm, and 1.1 of the diameter D1 (about 35 μm) of the inner wall surface of the small diameter portion 51. It is more than double. Further, the depth of the large diameter portion 52 is 3 μm, which is ½ or more of the thickness of the wiring conductor layer 23. When the large diameter portion 52 is formed in this way, the via conductor 27 can be reliably filled and formed in the large diameter portion 52, and sufficient adhesion between the via conductor 27 and the wiring conductor layer 23 can be ensured.

(8)本実施の形態の電子部品検査用配線基板10では、樹脂絶縁層21,22は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層24と、第1樹脂層24の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層25とにより構成されている。この場合、各樹脂絶縁層21,22の積層工程で加圧及び加熱を行うことにより、第2樹脂層25が接着層として機能するため、複数の樹脂絶縁層21,22を一体化した配線基板10を確実に製造することができる。   (8) In the electronic component inspection wiring substrate 10 of the present embodiment, the resin insulating layers 21 and 22 are formed on both surfaces of the first resin layer 24 made of a polyimide-based thermosetting resin and the first resin layer 24. The second resin layer 25 is made of a polyimide-based thermoplastic resin. In this case, since the second resin layer 25 functions as an adhesive layer by applying pressure and heating in the laminating process of the resin insulating layers 21 and 22, a wiring board in which a plurality of resin insulating layers 21 and 22 are integrated. 10 can be manufactured reliably.

なお、本発明の実施の形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記実施の形態の電子部品検査用配線基板10では、ビア導体27を形成する貫通穴26は、小径部51と大径部52との境界部分に平坦面54が形成されていたがこれに限定されるものではない。例えば、図12に示される貫通穴26のように、開口側に行くに従って徐々に拡径するように、つまりテーパ状の内壁面を有するように大径部52を形成してもよい。図12の貫通穴26でも、小径部51の直径D1が35μm程度、大径部52の直径D2が40μm程度となるように形成される。なおここで、小径部51の径D1は、小径部51のうち樹脂絶縁層21の表面からもっとも離れた位置で測定される値である。また、大径部52の径D2は大径部52のうち樹脂絶縁層21の表面にもっとも近い位置で測定される値である。このように貫通穴26を形成しても、ビア導体27と配線導体層23との接触面積が増し、それらビア導体27と配線導体層23との密着性を向上させることができる。   In the electronic component inspection wiring substrate 10 of the above embodiment, the through hole 26 forming the via conductor 27 has the flat surface 54 formed at the boundary portion between the small diameter portion 51 and the large diameter portion 52. It is not limited. For example, like the through hole 26 shown in FIG. 12, the large-diameter portion 52 may be formed so as to gradually increase in diameter toward the opening side, that is, to have a tapered inner wall surface. The through hole 26 of FIG. 12 is also formed so that the diameter D1 of the small diameter portion 51 is about 35 μm and the diameter D2 of the large diameter portion 52 is about 40 μm. Here, the diameter D1 of the small diameter portion 51 is a value measured at a position farthest from the surface of the resin insulating layer 21 in the small diameter portion 51. Further, the diameter D2 of the large diameter portion 52 is a value measured at a position closest to the surface of the resin insulating layer 21 in the large diameter portion 52. Even if the through hole 26 is formed in this way, the contact area between the via conductor 27 and the wiring conductor layer 23 increases, and the adhesion between the via conductor 27 and the wiring conductor layer 23 can be improved.

・貫通穴26の形成方法としては、上記実施の形態のようにレーザ加工に限定されるものではなく、エッチングやパンチング加工など他の手法を利用してもよい。具体的には、例えば、大径部52となる第1の部分(非貫通穴)を銅箔47のエッチングにより形成した後、小径部51となる第2の部分(貫通穴)をレーザ加工によって形成してもよい。さらに、プレス機等を用いて凹加工(例えば、刻印加工)を施すことによって大径部52となる第1の部分(非貫通穴)を銅箔47の表面に形成した後、小径部51となる第2の部分(貫通穴)をレーザ加工によって形成してもよい。なおこの手法で貫通穴26を形成すると、図13に示されるように、配線導体層23において、表層側を凹ませることで貫通穴26の周囲の内層側が樹脂絶縁層21側に突出した形状となる。このように形成した貫通穴26にビア導体27を充填形成しても、ビア導体27と配線導体層23との接触面積が増し、それらビア導体27と配線導体層23との密着性を向上させることができる。   The method for forming the through hole 26 is not limited to laser processing as in the above embodiment, and other methods such as etching and punching may be used. Specifically, for example, after forming the first portion (non-through hole) that becomes the large diameter portion 52 by etching the copper foil 47, the second portion (through hole) that becomes the small diameter portion 51 is formed by laser processing. It may be formed. Furthermore, after forming the 1st part (non-through-hole) used as the large diameter part 52 in the surface of the copper foil 47 by giving a concave process (for example, engraving process) using a press etc., the small diameter part 51 and The second part (through hole) to be formed may be formed by laser processing. When the through hole 26 is formed by this method, as shown in FIG. 13, the wiring conductor layer 23 has a shape in which the inner layer side around the through hole 26 protrudes toward the resin insulating layer 21 side by denting the surface layer side. Become. Even if the via conductor 27 is filled and formed in the through hole 26 formed in this way, the contact area between the via conductor 27 and the wiring conductor layer 23 is increased, and the adhesion between the via conductor 27 and the wiring conductor layer 23 is improved. be able to.

・上記実施の形態では、樹脂絶縁部20とセラミック基板部30とを備える電子部品検査用配線基板10に具体化したが、他の用途で使用される配線基板に本発明を具体化してもよい。例えば、複数の樹脂絶縁層からなる多層配線基板に本発明を具体化してもよいし、単層の樹脂絶縁層からなる配線基板に本発明を具体化してもよい。なお、単層の樹脂絶縁層からなる配線基板を製造する場合、準備工程において、樹脂絶縁材45の上面46及び下面49の両面に、配線導体層23となる銅箔47が形成された銅箔付き樹脂フィルム48を準備する。そして、上記実施の形態と同様に、貫通穴形成工程を行い、樹脂絶縁材45の両面46,49の銅箔47に第1の部分(大径部52となる非貫通穴)と第2の部分(小径部51となる貫通穴)を有する貫通穴26を形成する。その後、その貫通穴26内に導電性ペーストを充填してビア導体27を形成する。このようにすると、貫通穴26の上面側の配線導体層23及び下面側の配線導体層23を貫通する部分に小径部51及び大径部52が設けられる。この結果、ビア導体27と配線導体層23との接触面積が増し、それらビア導体27と配線導体層23との密着性を向上させることができる。   In the above embodiment, the electronic component inspection wiring substrate 10 including the resin insulating portion 20 and the ceramic substrate portion 30 is embodied. However, the present invention may be embodied in a wiring substrate used for other applications. . For example, the present invention may be embodied in a multilayer wiring board composed of a plurality of resin insulation layers, or may be embodied in a wiring board composed of a single resin insulation layer. In the case of manufacturing a wiring board made of a single resin insulating layer, a copper foil in which a copper foil 47 to be the wiring conductor layer 23 is formed on both the upper surface 46 and the lower surface 49 of the resin insulating material 45 in the preparation step. The attached resin film 48 is prepared. Then, similarly to the above embodiment, a through hole forming step is performed, and a first portion (a non-through hole that becomes the large diameter portion 52) and a second portion are formed on the copper foil 47 on both surfaces 46 and 49 of the resin insulating material 45. A through hole 26 having a portion (a through hole that becomes the small diameter portion 51) is formed. Thereafter, the via conductor 27 is formed by filling the through hole 26 with a conductive paste. In this way, the small diameter portion 51 and the large diameter portion 52 are provided in a portion that penetrates the wiring conductor layer 23 on the upper surface side and the wiring conductor layer 23 on the lower surface side of the through hole 26. As a result, the contact area between the via conductor 27 and the wiring conductor layer 23 increases, and the adhesion between the via conductor 27 and the wiring conductor layer 23 can be improved.

・上記実施の形態において、導電性ペーストとして、銀ペーストを用いたが、これに限定されるものではなく、銅ペーストなどの他の導電性ペーストを用いてもよい。   -In the said embodiment, although silver paste was used as an electrically conductive paste, it is not limited to this, You may use other electrically conductive pastes, such as a copper paste.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施の形態によって把握される技術的思想を以下に列挙する。   Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiments described above are listed below.

(1)手段1において、前記大径部は、その開口側に行くに従って徐々に拡径するよう形成されていることを特徴とする配線基板。   (1) In the wiring board according to the first aspect, the large diameter portion is formed so as to gradually increase in diameter toward the opening side.

(2)手段1において、前記貫通導体の端面の位置が前記貫通穴における前記大径部の開口よりも内側に収まるように前記貫通導体が形成されていることを特徴とする配線基板。   (2) The wiring board characterized in that in the means 1, the through conductor is formed so that the position of the end face of the through conductor is located inside the opening of the large diameter portion in the through hole.

(3)手段1において、前記大径部の厚さは、前記配線導体層の厚さの50%以上であることを特徴とする配線基板。   (3) In the means 1, the wiring board is characterized in that the thickness of the large diameter portion is 50% or more of the thickness of the wiring conductor layer.

(4)手段1において、前記大径部の内壁面の直径は、前記小径部の内壁面の直径の1.1倍以上であることを特徴とする配線基板。   (4) The wiring board according to (1), wherein the diameter of the inner wall surface of the large diameter portion is 1.1 times or more than the diameter of the inner wall surface of the small diameter portion.

(5)手段1において、前記貫通導体の直径は、50μm以下であることを特徴とする配線基板。   (5) The wiring board according to means 1, wherein the through conductor has a diameter of 50 μm or less.

(6)手段1において、前記金属箔の厚さが、10μm以下であることを特徴とする配線基板。   (6) The wiring board according to means 1, wherein the thickness of the metal foil is 10 μm or less.

(7)手段1において、前記樹脂絶縁層は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層と、前記第1樹脂層の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層とにより構成されていることを特徴とする配線基板。   (7) In means 1, the resin insulation layer is formed on both surfaces of the first resin layer made of a polyimide-based thermosetting resin and the polyimide-based thermoplastic resin. A wiring board comprising a layer.

(8)手段1において、前記配線基板は、電子部品を検査するための電子部品検査用配線基板であることを特徴とする配線基板。   (8) In the means 1, the wiring board is an electronic component inspection wiring board for inspecting an electronic component.

(9)手段1において、前記樹脂絶縁層における上面及び下面の両方の表面に前記配線導体層を備え、前記貫通導体は、前記上面の配線導体層、前記下面の配線導体層及び前記樹脂絶縁層を貫通する導体であり、前記貫通穴の前記上面側の前記配線導体層及び前記下面側の前記配線導体層を貫通する部分には前記大径部及び前記小径部が設けられていることを特徴とする配線基板。   (9) In the means 1, the wiring conductor layer is provided on both the upper surface and the lower surface of the resin insulating layer, and the penetrating conductor includes the wiring conductor layer on the upper surface, the wiring conductor layer on the lower surface, and the resin insulating layer. The large diameter portion and the small diameter portion are provided in a portion penetrating the wiring conductor layer on the upper surface side and the wiring conductor layer on the lower surface side of the through hole. Wiring board.

(10)手段2において、前記貫通穴形成工程において、前記貫通穴を形成した後、前記貫通穴の周囲に前記非貫通穴を形成することを特徴とする配線基板の製造方法。   (10) The method of manufacturing a wiring board according to (2), wherein, in the through hole forming step, after the through hole is formed, the non-through hole is formed around the through hole.

(11)手段2において、前記貫通穴形成工程及び前記貫通導体形成工程を行った後に前記導体層形成工程を行うことを特徴とする配線基板の製造方法。   (11) The method of manufacturing a wiring board according to the method 2, wherein the conductor layer forming step is performed after the through hole forming step and the through conductor forming step.

(12)手段2において、前記配線導体層をパターン形成した複数の前記樹脂絶縁層をその厚さ方向に複数積層して多層化する積層工程をさらに含むことを特徴とする配線基板の製造方法。   (12) The method for manufacturing a wiring board according to (2), further comprising a laminating step of laminating a plurality of the resin insulating layers formed by patterning the wiring conductor layers in the thickness direction.

10…配線基板としての電子部品検査用配線基板
21,22…樹脂絶縁層
23…配線導体層
26…貫通穴
27…貫通導体としてのビア導体
28…配線導体層を構成する主面側端子
45…樹脂絶縁材
46…樹脂絶縁材の片面としての上面
47…金属層としての銅箔
48…樹脂フィルム
49…樹脂絶縁材の片面としての下面
51…小径部
52…大径部
DESCRIPTION OF SYMBOLS 10 ... Wiring board for electronic component inspection as a wiring board 21, 22 ... Resin insulating layer 23 ... Wiring conductor layer 26 ... Through hole 27 ... Via conductor as penetrating conductor 28 ... Main surface side terminal constituting wiring conductor layer 45 ... Resin insulating material 46 ... Upper surface as one surface of resin insulating material 47 ... Copper foil as metal layer 48 ... Resin film 49 ... Lower surface as one surface of resin insulating material 51 ... Small diameter portion 52 ... Large diameter portion

Claims (8)

樹脂絶縁層と、前記樹脂絶縁層の表面上に形成された配線導体層と、前記配線導体層及び前記樹脂絶縁層を連続して貫通する貫通穴と、前記貫通穴内に導電性ペーストを充填することで形成され前記配線導体層に接続される貫通導体とを備えた配線基板であって、
前記貫通穴は、前記配線導体層を貫通する部分において、前記樹脂絶縁層の表面側に位置し前記配線導体層の内壁面により形成される小径部と、前記小径部よりも前記樹脂絶縁層の表面から離れた位置に設けられその小径部に対して前記配線導体層の内壁面の径が拡径するよう形成された大径部とを有し、
前記貫通導体は、前記小径部と前記大径部とを含む前記貫通穴に充填形成されている
ことを特徴とする配線基板。
A resin insulating layer; a wiring conductor layer formed on a surface of the resin insulating layer; a through hole that continuously passes through the wiring conductor layer and the resin insulating layer; and a conductive paste is filled in the through hole. A wiring board comprising a through conductor formed and connected to the wiring conductor layer,
The through hole has a small diameter portion formed by an inner wall surface of the wiring conductor layer located on the surface side of the resin insulating layer in a portion penetrating the wiring conductor layer, and the resin insulating layer more than the small diameter portion. A large-diameter portion formed so that the diameter of the inner wall surface of the wiring conductor layer is increased with respect to the small-diameter portion provided at a position away from the surface;
The wiring board according to claim 1, wherein the through conductor is filled in the through hole including the small diameter portion and the large diameter portion.
前記配線導体層の前記大径部と前記小径部との境界部分には、前記小径部の内壁面から前記大径部の内壁面に向かって延びる段差面が形成されていることを特徴とする請求項1に記載の配線基板。   A stepped surface extending from an inner wall surface of the small diameter portion toward an inner wall surface of the large diameter portion is formed at a boundary portion between the large diameter portion and the small diameter portion of the wiring conductor layer. The wiring board according to claim 1. 前記段差面には、前記配線導体層の表面と平行な平坦面が存在することを特徴とする請求項2に記載の配線基板。   The wiring board according to claim 2, wherein the stepped surface has a flat surface parallel to the surface of the wiring conductor layer. 複数の前記樹脂絶縁層と複数の前記配線導体層とが積層された樹脂絶縁部と、前記樹脂絶縁部の下層側に設けられ、複数のセラミック絶縁層と複数の導体層とが積層されたセラミック基板部とを備えることを特徴とする請求項1乃至3のいずれか1項に記載の配線基板。   A resin insulation part in which a plurality of resin insulation layers and a plurality of wiring conductor layers are laminated, and a ceramic in which a plurality of ceramic insulation layers and a plurality of conductor layers are laminated on a lower layer side of the resin insulation part The wiring board according to claim 1, further comprising a board portion. 請求項1乃至4のいずれか1項に記載の配線基板の製造方法であって、
前記樹脂絶縁層となる樹脂絶縁材の片面または両面に、前記配線導体層となる金属層が形成された樹脂フィルムを準備する準備工程と、
前記樹脂フィルムの金属層を貫通しない非貫通穴であって前記大径部となる第1の部分と、前記金属層及び前記樹脂絶縁材を貫通する貫通穴であって前記小径部となる第2の部分とを形成する貫通穴形成工程と、
前記第1の部分及び前記第2の部分内に導電性ペーストを充填して前記貫通導体を形成する貫通導体形成工程と、
前記金属層に対するエッチングを行って前記配線導体層をパターン形成する導体層形成工程と
を含むことを特徴とする配線基板の製造方法。
A method of manufacturing a wiring board according to any one of claims 1 to 4,
A preparation step of preparing a resin film in which a metal layer to be the wiring conductor layer is formed on one side or both sides of the resin insulating material to be the resin insulating layer;
A first portion that is a non-through hole that does not penetrate the metal layer of the resin film and serves as the large diameter portion, and a second portion that is a through hole that penetrates the metal layer and the resin insulating material and serves as the small diameter portion. A through hole forming step for forming a portion of
A through conductor forming step of filling the first portion and the second portion with a conductive paste to form the through conductor; and
And a conductor layer forming step of patterning the wiring conductor layer by etching the metal layer.
前記貫通穴形成工程では、レーザ加工により、前記非貫通穴を形成した後、前記非貫通穴と中心が一致するようその底面中央にて開口する前記貫通穴を形成することを特徴とする請求項5に記載の配線基板の製造方法。   The said through-hole formation process forms the said through-hole opened in the center of the bottom face so that a center may correspond with the said non-through-hole after forming the said non-through-hole by laser processing. 5. A method for manufacturing a wiring board according to 5. 前記準備工程では、前記樹脂絶縁材の表面上に前記金属層としての金属箔を貼り付けた金属箔付き樹脂フィルムを準備することを特徴とする請求項5または6に記載の配線基板の製造方法。   The method for manufacturing a wiring board according to claim 5 or 6, wherein in the preparation step, a resin film with a metal foil is prepared by attaching a metal foil as the metal layer on the surface of the resin insulating material. . 前記金属箔が銅箔であり、前記貫通導体形成工程で用いられる導電性ペーストが銀ペーストであることを特徴とする請求項7に記載の配線基板の製造方法。   The method for manufacturing a wiring board according to claim 7, wherein the metal foil is a copper foil, and the conductive paste used in the through conductor forming step is a silver paste.
JP2012193608A 2012-09-03 2012-09-03 Wiring board and method for manufacturing the same Pending JP2014049701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012193608A JP2014049701A (en) 2012-09-03 2012-09-03 Wiring board and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193608A JP2014049701A (en) 2012-09-03 2012-09-03 Wiring board and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014049701A true JP2014049701A (en) 2014-03-17

Family

ID=50609040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193608A Pending JP2014049701A (en) 2012-09-03 2012-09-03 Wiring board and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014049701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060951B1 (en) 2016-06-17 2019-12-31 니뽄 도쿠슈 도교 가부시키가이샤 Multilayer Wiring Boards for Electronic Component Inspection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188533A (en) * 2001-12-17 2003-07-04 Fujikura Ltd Circuit board, method of manufacturing the same and multilayer circuit board
JP2009076873A (en) * 2007-08-24 2009-04-09 Ngk Spark Plug Co Ltd Multilayer wiring substrate and method for manufacturing the same, and substrate for use in ic inspection device and method for manufacturing the same
JP2009200356A (en) * 2008-02-22 2009-09-03 Tdk Corp Printed wiring board and manufacturing method therefor
JP2010177471A (en) * 2009-01-29 2010-08-12 Sumitomo Electric Printed Circuit Inc Flexible printed wiring board, manufacturing method thereof, and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188533A (en) * 2001-12-17 2003-07-04 Fujikura Ltd Circuit board, method of manufacturing the same and multilayer circuit board
JP2009076873A (en) * 2007-08-24 2009-04-09 Ngk Spark Plug Co Ltd Multilayer wiring substrate and method for manufacturing the same, and substrate for use in ic inspection device and method for manufacturing the same
JP2009200356A (en) * 2008-02-22 2009-09-03 Tdk Corp Printed wiring board and manufacturing method therefor
JP2010177471A (en) * 2009-01-29 2010-08-12 Sumitomo Electric Printed Circuit Inc Flexible printed wiring board, manufacturing method thereof, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060951B1 (en) 2016-06-17 2019-12-31 니뽄 도쿠슈 도교 가부시키가이샤 Multilayer Wiring Boards for Electronic Component Inspection

Similar Documents

Publication Publication Date Title
WO2017217138A1 (en) Multilayer wiring board for inspection of electronic components
TWI555451B (en) Circuit board, production method of circuit board, and electronic equipment
KR20090068227A (en) Multilayer printed wiring board and method for manufacturing the same
WO2013031822A1 (en) Thin-film wiring substrate and substrate for probe card
KR100832650B1 (en) Multi layer printed circuit board and fabricating method of the same
JP6099902B2 (en) Wiring board manufacturing method
JP6058321B2 (en) Wiring board manufacturing method
JP4939519B2 (en) Multilayer circuit board manufacturing method
KR100782404B1 (en) Printed circuit board and manufacturing method thereof
JP6324669B2 (en) Multilayer wiring board and manufacturing method thereof
KR100657410B1 (en) Manufacturing multi-layer pcb
TWI477214B (en) Printed circuit board having buried component and method for manufacturing same
JP2014049701A (en) Wiring board and method for manufacturing the same
KR100734244B1 (en) Multilayer printed circuit board and fabricating method thereof
JP6139856B2 (en) Wiring board and manufacturing method thereof
JP2014192497A (en) Wiring board
KR100733814B1 (en) Manufacturing method of pcb
JP2009289789A (en) Printed wiring board with built-in component and its manufacturing method
JP4748281B2 (en) Wiring board manufacturing method and wiring board
JP6016017B2 (en) Manufacturing method of printed wiring board with adhesive sheet and manufacturing method of bonded printed wiring board using the same
JP6322066B2 (en) Wiring board manufacturing method
TWI407874B (en) Muti-layer printed circuit board and method for manufacturing the same
JP5556984B2 (en) Multilayer wiring board and manufacturing method thereof
JP6017921B2 (en) Manufacturing method of multilayer wiring board
JP2001144445A (en) Method for producing multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221