JP6058321B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP6058321B2
JP6058321B2 JP2012194273A JP2012194273A JP6058321B2 JP 6058321 B2 JP6058321 B2 JP 6058321B2 JP 2012194273 A JP2012194273 A JP 2012194273A JP 2012194273 A JP2012194273 A JP 2012194273A JP 6058321 B2 JP6058321 B2 JP 6058321B2
Authority
JP
Japan
Prior art keywords
conductor
layer
resin
fine particle
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012194273A
Other languages
Japanese (ja)
Other versions
JP2014049732A (en
Inventor
奈緒子 森
奈緒子 森
宗之 岩田
宗之 岩田
卓 宮本
卓 宮本
善明 長屋
善明 長屋
豊 今西
豊 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012194273A priority Critical patent/JP6058321B2/en
Publication of JP2014049732A publication Critical patent/JP2014049732A/en
Application granted granted Critical
Publication of JP6058321B2 publication Critical patent/JP6058321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

本発明は、樹脂絶縁層と、樹脂絶縁層の表面上に形成された配線導体層と、配線導体層及び樹脂絶縁層を貫通する貫通導体とを備えた配線基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a wiring board including a resin insulating layer, a wiring conductor layer formed on the surface of the resin insulating layer, and a through conductor penetrating the wiring conductor layer and the resin insulating layer.

コンピュータのマイクロプロセッサ等として使用される半導体集積回路素子(ICチップ)は、近年ますます高速化、高機能化しており、これに付随して端子数が増え、端子間ピッチも狭くなる傾向にある。一般的にICチップの底面には多数の端子が密集してアレイ状に配置されている。このICチップなどの電子部品を検査するために、電子部品検査用配線基板が使用されている。   In recent years, semiconductor integrated circuit elements (IC chips) used as computer microprocessors and the like have become increasingly faster and more functional, with an accompanying increase in the number of terminals and a tendency to narrow the pitch between terminals. . In general, a large number of terminals are densely arranged in an array on the bottom surface of an IC chip. In order to inspect electronic components such as the IC chip, a wiring board for inspecting electronic components is used.

電子部品検査用配線基板として、複数のセラミック絶縁層及び複数の導体層を積層してなるセラミック基板部の上層側に、複数の樹脂絶縁層及び複数の導体層を積層してなる樹脂絶縁部を形成した配線基板が実用化されている。この電子部品検査用配線基板において、各セラミック絶縁層や各樹脂絶縁層には、それら絶縁層を貫通する貫通導体(ビア導体)が設けられ、貫通導体によって層間の電気的接続が図られている。   As a wiring board for inspecting electronic components, a resin insulation portion formed by laminating a plurality of resin insulation layers and a plurality of conductor layers on the upper layer side of a ceramic substrate portion obtained by laminating a plurality of ceramic insulation layers and a plurality of conductor layers. The formed wiring board has been put into practical use. In this electronic component inspection wiring board, each ceramic insulating layer and each resin insulating layer are provided with through conductors (via conductors) penetrating the insulating layers, and electrical connection between the layers is achieved by the through conductors. .

図10には、配線基板100において、樹脂絶縁層101の厚さ方向に貫通するよう形成された貫通導体102と樹脂絶縁層101の表面に形成される配線導体層103との接続例を示している。図10の配線基板100では、樹脂絶縁層101及び配線導体層103を貫通する貫通穴104が形成され、その貫通穴104内に貫通導体102が形成されている(例えば、特許文献1参照)。つまり、貫通導体102における端部の側面が配線導体層103に設けられた貫通穴104の内壁面に接するように形成されている。このような配線基板100は、以下の手法で製造される。具体的には、先ず、樹脂絶縁層101の表面に銅箔が貼り付けられた銅箔付き樹脂フィルムを準備する。次いで、レーザ穴加工などによって樹脂絶縁層101及び樹脂フィルムの銅箔を貫通する貫通穴104を形成し、貫通穴104内に導電性ペーストを充填する。その後樹脂フィルムの銅箔を、例えばサブトラクティブ法でパターニングすることで配線導体層103を形成し、配線導体層103に繋がる貫通導体102を形成する。   FIG. 10 shows a connection example between the through conductor 102 formed so as to penetrate the resin insulating layer 101 in the thickness direction and the wiring conductor layer 103 formed on the surface of the resin insulating layer 101 in the wiring substrate 100. Yes. In the wiring substrate 100 of FIG. 10, a through hole 104 penetrating the resin insulating layer 101 and the wiring conductor layer 103 is formed, and the through conductor 102 is formed in the through hole 104 (see, for example, Patent Document 1). That is, the side surface of the end portion of the through conductor 102 is formed so as to contact the inner wall surface of the through hole 104 provided in the wiring conductor layer 103. Such a wiring board 100 is manufactured by the following method. Specifically, first, a resin film with a copper foil in which a copper foil is attached to the surface of the resin insulating layer 101 is prepared. Next, a through hole 104 that penetrates the resin insulating layer 101 and the copper foil of the resin film is formed by laser hole machining or the like, and the through hole 104 is filled with a conductive paste. Thereafter, the copper foil of the resin film is patterned by, for example, a subtractive method to form the wiring conductor layer 103, and the through conductor 102 connected to the wiring conductor layer 103 is formed.

特開2011−228727号公報JP 2011-228727 A 特開2009−43917号公報JP 2009-43917 A

ところで、配線基板100において、貫通導体102と配線導体層103とは、貫通導体102の端部の側面を介して接続されているが、その側面の面積は少なく密着強度が弱くなる。特に、配線導体層103の高密度化や微細化が図られる配線基板100では、配線導体層103が薄く形成されるとともに、貫通導体102のサイズも小さくなる傾向にある。このような場合には、貫通導体102と配線導体層103との間の密着強度が弱くなる。また、配線導体層103を銅箔のパターニングにより形成し、貫通導体102を導電性ペーストで形成する場合には、貫通導体102(導電性ペースト)と配線導体層103(銅箔)との収縮率が異なる。これら収縮率の差によって、配線導体層103と貫通導体102との界面に隙間が生じる。このようなことから、貫通導体102と配線導体層103との界面付近でオープン不良(断線)が生じ易くなるといった問題が生じてしまう。   By the way, in the wiring board 100, the through conductor 102 and the wiring conductor layer 103 are connected via the side surface of the end portion of the through conductor 102, but the area of the side surface is small and the adhesion strength is weakened. In particular, in the wiring substrate 100 in which the wiring conductor layer 103 is increased in density and miniaturization, the wiring conductor layer 103 is formed thin, and the size of the through conductor 102 tends to be reduced. In such a case, the adhesion strength between the through conductor 102 and the wiring conductor layer 103 is weakened. When the wiring conductor layer 103 is formed by patterning of copper foil and the through conductor 102 is formed of a conductive paste, the shrinkage rate between the through conductor 102 (conductive paste) and the wiring conductor layer 103 (copper foil). Is different. Due to the difference in shrinkage rate, a gap is generated at the interface between the wiring conductor layer 103 and the through conductor 102. For this reason, there arises a problem that an open defect (disconnection) is likely to occur near the interface between the through conductor 102 and the wiring conductor layer 103.

また、特許文献2では、導体層を底部とする有底穴内にビア導体を形成する手法が開示されている。ここでは、有底穴の底部に銅めっき層を形成するとともに有底穴内に導電性ペーストを充填している。このように、導体層とビア導体との界面にめっき層を介在させることで、導体層とビア導体との接続信頼性を高めている。しかしながら、ビア導体を形成するビア穴が有底穴であるため、その隅にめっき残渣や洗浄液残渣が付着したり、導電性ペーストの充填不良が発生するといった問題が生じてしまう。   Patent Document 2 discloses a method of forming a via conductor in a bottomed hole having a conductor layer as a bottom. Here, a copper plating layer is formed at the bottom of the bottomed hole, and a conductive paste is filled in the bottomed hole. Thus, by interposing the plating layer at the interface between the conductor layer and the via conductor, the connection reliability between the conductor layer and the via conductor is enhanced. However, since the via hole forming the via conductor is a bottomed hole, there arises a problem that a plating residue or a cleaning liquid residue adheres to the corner of the via conductor or a defective filling of the conductive paste occurs.

本発明は上記の課題に鑑みてなされたものであり、その目的は、貫通導体と配線導体層との密着性を向上させ、接続信頼性に優れた配線基板を製造することができる配線基板の製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to improve the adhesion between the through conductor and the wiring conductor layer, and to manufacture a wiring board with excellent connection reliability. It is to provide a manufacturing method.

そして上記課題を解決するための手段(手段1)としては、樹脂絶縁層と、前記樹脂絶縁層の表面上に形成された配線導体層と、前記配線導体層及び前記樹脂絶縁層を貫通する貫通導体とを備え、前記樹脂絶縁層が、ポリイミド系の熱硬化性樹脂からなる第1樹脂層と、前記第1樹脂層の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層とにより構成されている配線基板の製造方法であって、前記樹脂絶縁層となる樹脂絶縁材の片面または両面に、前記配線導体層となる金属層が形成された樹脂フィルムを準備する準備工程と、前記金属層またはその金属層をパターン形成して得られた前記配線導体層と前記樹脂絶縁層とを貫通する貫通穴を形成するとともに、その貫通穴内に導電性ペーストを充填し、加熱して、前記配線導体層に接続するための前記貫通導体を形成する貫通導体形成工程と、前記貫通導体形成工程の際の加熱により前記金属層との境界部分に隙間が生じた前記貫通導体の端面上に、平均粒子径が前記導電性ペーストに含まれる導体粒の平均粒子径よりも小さくかつ1μm以下である微粒子導体を含む導電性ペーストを用いて微粒子導体層を形成する微粒子導体配置工程と、前記貫通導体及び前記微粒子導体層が形成された前記樹脂絶縁層を少なくとも1層含む複数の樹脂絶縁層を積層配置して加熱しつつ加圧することで、複数の樹脂絶縁層を一体化するとともに、前記金属層をパターン形成して得られた前記配線導体層と前記貫通導体との境界部分にある前記隙間に対し、溶解した前記微粒子導体を入り込ませて前記微粒子導体からなる導体層を介在させる導体密着工程とを含むことを特徴とする配線基板の製造方法がある。 As means (means 1) for solving the above problems, there are a resin insulating layer, a wiring conductor layer formed on the surface of the resin insulating layer, and a through hole penetrating the wiring conductor layer and the resin insulating layer. e Bei a conductor, said resin insulating layer, a first resin layer made of a thermosetting polyimide resin, are formed on both surfaces of the first resin layer, a second resin layer of a thermoplastic polyimide resin And a preparation step of preparing a resin film in which a metal layer to be the wiring conductor layer is formed on one side or both sides of the resin insulating material to be the resin insulating layer. And forming a through hole penetrating the wiring conductor layer obtained by patterning the metal layer or the metal layer and the resin insulating layer, filling the through hole with a conductive paste, and heating. The wiring A through conductor forming step for forming the through conductor for connecting to a body layer, and an average on the end surface of the through conductor in which a gap is generated at a boundary portion with the metal layer due to heating in the through conductor forming step A fine particle conductor arranging step of forming a fine particle conductor layer using a conductive paste containing a fine particle conductor having a particle diameter smaller than the average particle diameter of the conductor particles contained in the conductive paste and not more than 1 μm; A plurality of resin insulation layers including at least one resin insulation layer on which the fine particle conductor layer is formed are stacked and heated and pressed to unify the plurality of resin insulation layers, and the metal layer A conductor layer made of the fine particle conductor is formed by inserting the dissolved fine particle conductor into the gap at the boundary portion between the wiring conductor layer and the through conductor obtained by pattern formation. There is a method for manufacturing a wiring board including an interposing conductor adhesion step.

手段1に記載の発明によると、貫通導体と配線導体層との収縮率が異なり、それらの界面に隙間ができた場合でも、その界面に微粒子導体からなる導体層を確実に介在させることができる。この結果、従来技術のように配線導体層と貫通導体との界面付近でオープン不良(断線)が発生するといった問題が回避され、接続信頼性に優れた配線基板を製造することができる。   According to the invention described in the means 1, even when the shrinkage rates of the through conductor and the wiring conductor layer are different and a gap is formed at the interface between them, the conductor layer made of the fine particle conductor can be reliably interposed at the interface. . As a result, the problem that an open defect (disconnection) occurs near the interface between the wiring conductor layer and the through conductor as in the prior art can be avoided, and a wiring board having excellent connection reliability can be manufactured.

微粒子導体配置工程では、貫通導体の端面上において金属層または配線導体層と貫通導体との境界部分を覆うように、平面視で円状または円環状に微粒子導体層を形成してもよい。このようにすると、貫通導体の端面において金属層または配線導体層と貫通導体との界面に微粒子導体からなる導体層を確実に介在させることができる。   In the fine particle conductor arranging step, the fine particle conductor layer may be formed in a circular shape or an annular shape in a plan view so as to cover a boundary portion between the metal layer or the wiring conductor layer and the through conductor on the end face of the through conductor. In this way, the conductor layer made of the fine particle conductor can be reliably interposed at the interface between the metal layer or the wiring conductor layer and the through conductor on the end face of the through conductor.

微粒子導体配置工程において、平面視での微粒子導体層の直径は、貫通穴の直径の1.0倍以上3.0倍以下となるよう形成される。また、微粒子導体層は、表面積が貫通導体の端面の面積よりも大きく、端面の全体を完全に覆うよう形成されていてもよい。このようにすると、貫通導体の端面において金属層または配線導体層との界面に微粒子導体からなる導体層を確実に介在させることができる。   In the fine particle conductor arranging step, the diameter of the fine particle conductor layer in plan view is formed to be 1.0 to 3.0 times the diameter of the through hole. The fine particle conductor layer may be formed so that the surface area is larger than the area of the end face of the through conductor and completely covers the entire end face. In this way, the conductor layer made of the fine particle conductor can be reliably interposed at the interface with the metal layer or the wiring conductor layer on the end face of the through conductor.

微粒子導体の平均粒子径は、貫通導体を形成する導電性ペーストに含まれる導体粒の平均粒子径の1/3以下であってもよい。この場合、貫通導体を構成する導体粒の隙間に微粒子導体が確実に入り込み、貫通導体と配線導体層との密着性を高めることができる。   The average particle diameter of the fine particle conductor may be 1/3 or less of the average particle diameter of the conductor particles contained in the conductive paste forming the through conductor. In this case, the fine particle conductor surely enters the gap between the conductor grains constituting the through conductor, and the adhesion between the through conductor and the wiring conductor layer can be improved.

配線基板は、複数の樹脂絶縁層と複数の配線導体層とが積層された樹脂絶縁部と、樹脂絶縁部の下層側に設けられ、複数のセラミック絶縁層と複数の導体層とが積層されたセラミック基板部とを備える電子部品検査用配線基板であってもよい。この場合、配線導体層が形成された複数の樹脂絶縁層を積層して一体化するための積層工程を導体密着工程として行うことができるため、電子部品検査用配線基板の製造コストを低く抑えることができる。さらに、電子部品検査用配線基板における配線導体層と貫通導体との接続信頼性を確保できるため、多数の端子が密集してアレイ状に配置されている電子部品を確実に検査することができる。   The wiring board is provided on a lower layer side of the resin insulation part, in which a plurality of resin insulation layers and a plurality of wiring conductor layers are laminated, and a plurality of ceramic insulation layers and a plurality of conductor layers are laminated. The wiring board for electronic component inspection provided with a ceramic substrate part may be sufficient. In this case, since a lamination process for laminating and integrating a plurality of resin insulation layers on which wiring conductor layers are formed can be performed as a conductor adhesion process, the manufacturing cost of the electronic component inspection wiring board can be kept low. Can do. Furthermore, since the connection reliability between the wiring conductor layer and the through conductor in the wiring board for inspecting electronic components can be ensured, it is possible to reliably inspect electronic components in which a large number of terminals are densely arranged.

微粒子導体配置工程において、微粒子導体を含む導電性ペーストは、インクジェットヘッドを用いて塗布されるものでもよい。この場合、比較的直径が小さな貫通導体の端面に、微粒子導体を含む導電性ペーストを迅速かつ正確に塗布することができる。   In the fine particle conductor arranging step, the conductive paste containing the fine particle conductor may be applied using an inkjet head. In this case, the conductive paste containing the fine particle conductor can be quickly and accurately applied to the end face of the through conductor having a relatively small diameter.

微粒子導体層の厚さは、金属層の1.0倍以上2.0倍以下であってもよい。このような厚さとすると、微粒子導体層の体積を十分に確保することができ、貫通導体と配線導体層との隙間に微粒子導体からなる導体層を確実に介在させることができる。   The thickness of the fine particle conductor layer may be 1.0 to 2.0 times that of the metal layer. With such a thickness, the volume of the fine particle conductor layer can be sufficiently secured, and the conductor layer made of the fine particle conductor can be reliably interposed in the gap between the through conductor and the wiring conductor layer.

また、樹脂フィルムにおける金属層の厚さが10μm以下である場合、配線基板の高密度化や微細化を図ることができる。   Moreover, when the thickness of the metal layer in the resin film is 10 μm or less, the wiring board can be densified and miniaturized.

準備工程では、樹脂絶縁材の表面に金属層としての金属箔を貼り付けた金属箔付き樹脂フィルムを準備してもよい。また、準備工程において、樹脂絶縁材の表面に金属層としてのめっき層やスパッタ層を形成した樹脂フィルムを準備してもよい。   In the preparation step, a resin film with a metal foil in which a metal foil as a metal layer is attached to the surface of the resin insulating material may be prepared. Moreover, in a preparatory process, you may prepare the resin film which formed the plating layer and sputter | spatter layer as a metal layer on the surface of the resin insulating material.

上記発明において、樹脂絶縁層は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層と、第1樹脂層の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層とにより構成される。この場合、加圧及び加熱を行うことにより、第2樹脂層が接着層として機能するため、複数の樹脂絶縁層を一体化した多層配線基板を確実に製造することができる。 Configuration In the above invention, dendritic fat insulating layer, a first resin layer made of a thermosetting polyimide resin, are formed on both surfaces of the first resin layer, the second resin layer of a thermoplastic polyimide resin Ru is. In this case, since the second resin layer functions as an adhesive layer by applying pressure and heating, a multilayer wiring board in which a plurality of resin insulating layers are integrated can be reliably manufactured.

樹脂絶縁層は、ポリイミド系の樹脂以外の樹脂を用いて形成されるものでもよく、絶縁性、耐熱性、耐湿性等を考慮して適宜選択することができる。また、樹脂絶縁層は、樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料、あるいは、連続多孔質PTFE等の三次元網目状フッ素系樹脂基材に熱硬化性樹脂を含浸させた樹脂−樹脂複合材料等を使用してもよい。   The resin insulating layer may be formed using a resin other than a polyimide-based resin, and can be appropriately selected in consideration of insulation, heat resistance, moisture resistance, and the like. In addition, the resin insulation layer is formed on a composite material of resin and glass fiber (glass woven fabric or glass nonwoven fabric) or organic fiber such as polyamide fiber, or a three-dimensional network fluorine resin base material such as continuous porous PTFE. A resin-resin composite material impregnated with a curable resin may be used.

本実施の形態における電子部品検査用配線基板の概略構成を示す断面図。Sectional drawing which shows schematic structure of the wiring board for electronic component inspection in this Embodiment. セラミック基板部の貫通穴形成工程を示す説明図。Explanatory drawing which shows the through-hole formation process of a ceramic substrate part. セラミック基板部のビア導体及び導体層の形成工程を示す説明図。Explanatory drawing which shows the formation process of the via conductor of a ceramic substrate part, and a conductor layer. セラミック基板部の積層工程を示す説明図。Explanatory drawing which shows the lamination process of a ceramic substrate part. 樹脂フィルムの準備工程を示す説明図。Explanatory drawing which shows the preparation process of a resin film. 貫通導体の形成工程を示す説明図。Explanatory drawing which shows the formation process of a penetration conductor. 配線導体層の形成工程を示す説明図。Explanatory drawing which shows the formation process of a wiring conductor layer. 微粒子導体配置工程を示す説明図。Explanatory drawing which shows a fine particle conductor arrangement | positioning process. 導体密着工程としての積層工程を示す説明図。Explanatory drawing which shows the lamination process as a conductor contact | adherence process. 従来の配線基板を示す説明図。Explanatory drawing which shows the conventional wiring board.

以下、本発明を電子部品検査用配線基板に具体化した一実施の形態を図面に基づき詳細に説明する。図1は、本実施の形態の電子部品検査用配線基板の概略構成を示す断面図である。   Hereinafter, an embodiment in which the present invention is embodied in an electronic component inspection wiring board will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of an electronic component inspection wiring board according to the present embodiment.

図1に示される電子部品検査用配線基板10は、ICチップの電気検査を行うための検査装置の一部に使用される部品である。電子部品検査用配線基板10は、樹脂絶縁部20とその樹脂絶縁部20の下層側に設けられるセラミック基板部30とを備える。電子部品検査用配線基板10は、縦横の長さが10cm程度、厚さが4mm程度の基板であり、使用時において配線基板10の主面11(樹脂絶縁部20の表面)が検査対象である電子部品に向けて配置される。   An electronic component inspection wiring board 10 shown in FIG. 1 is a component used in a part of an inspection apparatus for performing an electrical inspection of an IC chip. The electronic component inspection wiring board 10 includes a resin insulating portion 20 and a ceramic substrate portion 30 provided on the lower layer side of the resin insulating portion 20. The electronic component inspection wiring substrate 10 is a substrate having a length and width of about 10 cm and a thickness of about 4 mm, and the main surface 11 (the surface of the resin insulating portion 20) of the wiring substrate 10 is an inspection target in use. Arranged toward the electronic component.

セラミック基板部30には、複数のセラミック絶縁層31,32,33と複数の導体層34とが積層されている。セラミック絶縁層31〜33は、例えばアルミナの焼結体であり、導体層34は、例えばタングステン、モリブデン、又はこれらの合金のメタライズ層である。セラミック基板部30において、各セラミック絶縁層31〜33には厚さ方向に貫通する貫通穴36が形成されており、その貫通穴36内には層間の導体層34に接続されるビア導体37が形成されている。各貫通穴36は断面円形状をなしており、それらの内径は60μm程度である。各ビア導体37も断面円形状をなしており、それらの外径は60μm程度である。ビア導体37は、導体層34と同様にタングステン、モリブデン、又はこれらの合金のメタライズ層からなる。さらに、配線基板10の裏面12(セラミック基板部30の裏面)には、複数の裏面側端子38がほぼ全域にわたってアレイ状に形成されている。各裏面側端子38は断面円形状をなし、裏面側端子38の直径は、1.0mm程度に設定されている。   A plurality of ceramic insulating layers 31, 32, 33 and a plurality of conductor layers 34 are laminated on the ceramic substrate portion 30. The ceramic insulating layers 31 to 33 are, for example, alumina sintered bodies, and the conductor layer 34 is, for example, a metallized layer of tungsten, molybdenum, or an alloy thereof. In the ceramic substrate portion 30, each ceramic insulating layer 31 to 33 is formed with a through hole 36 penetrating in the thickness direction, and a via conductor 37 connected to the interlayer conductor layer 34 is formed in the through hole 36. Is formed. Each through-hole 36 has a circular cross section, and the inner diameter thereof is about 60 μm. Each via conductor 37 also has a circular cross section, and the outer diameter thereof is about 60 μm. The via conductor 37 is made of a metallized layer of tungsten, molybdenum, or an alloy thereof, similarly to the conductor layer 34. Further, on the back surface 12 of the wiring substrate 10 (the back surface of the ceramic substrate portion 30), a plurality of back-side terminals 38 are formed in an array over almost the entire area. Each back terminal 38 has a circular cross section, and the diameter of the back terminal 38 is set to about 1.0 mm.

樹脂絶縁部20には、複数の樹脂絶縁層21,22と複数の配線導体層23とが積層されている。樹脂絶縁層21,22は、例えばポリイミド系樹脂からなる絶縁層である。具体的には、樹脂絶縁層21,22は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層24と、第1樹脂層24の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層25とにより構成されている。本実施の形態において、樹脂絶縁層21,22を構成する第1樹脂層24の厚みは20μm程度であり、第2樹脂層25の厚みは5μm程度である。つまり、樹脂絶縁層21,22は30μm程度である。また、配線導体層23は、例えば銅からなる導体層であり、その厚みは5μm程度である。樹脂絶縁部20において、樹脂絶縁層21,22及び配線導体層23を貫通する貫通穴26が形成されており、その貫通穴26内には層間の配線導体層23に接続されるビア導体27(貫通導体)が形成されている。樹脂絶縁部20の貫通穴26及びビア導体27も断面円形状をなす。貫通穴26の内径及びビア導体27の外径は、50μm程度である。   A plurality of resin insulation layers 21 and 22 and a plurality of wiring conductor layers 23 are laminated on the resin insulation portion 20. The resin insulating layers 21 and 22 are insulating layers made of, for example, a polyimide resin. Specifically, the resin insulating layers 21 and 22 are formed on both surfaces of the first resin layer 24 made of a polyimide-based thermosetting resin and the first resin layer 24, and are made of a second resin made of a polyimide-based thermoplastic resin. And a resin layer 25. In the present embodiment, the thickness of the first resin layer 24 constituting the resin insulating layers 21 and 22 is about 20 μm, and the thickness of the second resin layer 25 is about 5 μm. That is, the resin insulating layers 21 and 22 are about 30 μm. The wiring conductor layer 23 is a conductor layer made of, for example, copper and has a thickness of about 5 μm. In the resin insulating portion 20, a through hole 26 penetrating the resin insulating layers 21 and 22 and the wiring conductor layer 23 is formed, and a via conductor 27 (connected to the interlayer wiring conductor layer 23 in the through hole 26 ( (Through conductor) is formed. The through hole 26 and the via conductor 27 of the resin insulating portion 20 also have a circular cross section. The inner diameter of the through hole 26 and the outer diameter of the via conductor 27 are about 50 μm.

また、配線基板10の主面11(樹脂絶縁部20の表面)上の中央部分には、配線導体層23を構成する複数の主面側端子28(部品接続用端子)がアレイ状に形成されている。主面側端子28は断面円形状をなし、その直径は例えば60μm程度に設定されている。これら主面側端子28は、ビア導体27を介して内層側の配線導体層23に接続され、さらにセラミック基板部30の導体層34やビア導体37を介して裏面側端子38に接続される。本実施の形態では、樹脂絶縁部20において配線導体層23とビア導体27との境界部分に微粒子導体からなる導体層29が介在され、配線導体層23とビア導体27との密着性が十分に確保されている。   In addition, a plurality of main surface side terminals 28 (component connection terminals) constituting the wiring conductor layer 23 are formed in an array at a central portion on the main surface 11 (surface of the resin insulating portion 20) of the wiring board 10. ing. The main surface side terminal 28 has a circular cross section, and its diameter is set to about 60 μm, for example. These main surface side terminals 28 are connected to the inner wiring conductor layer 23 through via conductors 27, and are further connected to the back surface side terminals 38 through conductor layers 34 and via conductors 37 of the ceramic substrate portion 30. In the present embodiment, a conductor layer 29 made of a fine particle conductor is interposed in the boundary portion between the wiring conductor layer 23 and the via conductor 27 in the resin insulating portion 20, so that the adhesion between the wiring conductor layer 23 and the via conductor 27 is sufficient. It is secured.

次に、本実施の形態における電子部品検査用配線基板10の製造方法を説明する。   Next, a method for manufacturing the electronic component inspection wiring board 10 in the present embodiment will be described.

先ず、アルミナ粉末を主成分とするセラミック材料を用いてグリーンシートを複数枚形成する。そして、複数枚のグリーンシート41に対し、レーザ照射加工、パンチング加工、ドリル加工等による穴あけを行って、所定の位置に複数の貫通穴36を多数形成する(図2参照)。その後、従来周知のペースト印刷装置(図示略)を用い、各グリーンシート41の貫通穴36に導電性ペースト(例えばタングステンペースト)を充填し、未焼成のビア導体37を形成する。さらに、従来周知のペースト印刷装置を用いて、導電性ペーストを印刷して未焼成の導体層34や裏面側端子38を形成する(図3参照)。なお、導電性ペーストの充填及び印刷の順序は逆にしてもよい。   First, a plurality of green sheets are formed using a ceramic material mainly composed of alumina powder. Then, a plurality of through holes 36 are formed at predetermined positions by drilling the plurality of green sheets 41 by laser irradiation processing, punching processing, drill processing, or the like (see FIG. 2). Thereafter, a conductive paste (for example, tungsten paste) is filled in the through holes 36 of each green sheet 41 by using a conventionally known paste printing apparatus (not shown), and an unfired via conductor 37 is formed. Further, using a conventionally known paste printing apparatus, the conductive paste is printed to form the unfired conductor layer 34 and the back-side terminal 38 (see FIG. 3). The order of filling and printing of the conductive paste may be reversed.

そして、導電性ペーストの乾燥後、それら複数枚のグリーンシート41を積み重ねて配置し、シート積層方向に押圧力を付与することにより、各グリーンシート41を圧着、一体化してセラミック積層体43を形成する(図4参照)。次に、セラミック積層体43を脱脂し、さらに所定温度で所定時間焼成を行う。その結果、グリーンシート41のアルミナ及びペースト中のタングステンが同時焼結し、セラミック基板部30が形成される。   Then, after the conductive paste is dried, the plurality of green sheets 41 are stacked and disposed, and a pressing force is applied in the sheet stacking direction, whereby the green sheets 41 are bonded and integrated to form a ceramic laminate 43. (See FIG. 4). Next, the ceramic laminate 43 is degreased and fired at a predetermined temperature for a predetermined time. As a result, the alumina of the green sheet 41 and the tungsten in the paste are simultaneously sintered, and the ceramic substrate portion 30 is formed.

また、樹脂絶縁部20を以下の手法で作製する。具体的には、図5に示されるように、樹脂絶縁層21,22となる樹脂絶縁材45の片面46(図5では上面)に、配線導体層23となる銅箔47が形成された銅箔付き樹脂フィルム48を準備する(準備工程)。なお、樹脂絶縁材45は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層24と、第1樹脂層24の両面に配設されポリイミド系の熱可塑性樹脂からなる第2樹脂層25とから構成される。そして、樹脂絶縁材45の上面46側に、厚さが5μmである銅箔47が貼り付けられている。   Moreover, the resin insulation part 20 is produced with the following method. Specifically, as shown in FIG. 5, copper having a copper foil 47 to be the wiring conductor layer 23 formed on one surface 46 (upper surface in FIG. 5) of the resin insulating material 45 to be the resin insulating layers 21 and 22. A resin film 48 with foil is prepared (preparation step). The resin insulating material 45 includes a first resin layer 24 made of a polyimide-based thermosetting resin, and a second resin layer 25 made of a polyimide-based thermoplastic resin disposed on both surfaces of the first resin layer 24. Composed. A copper foil 47 having a thickness of 5 μm is attached to the upper surface 46 side of the resin insulating material 45.

次に、レーザ加工により、樹脂絶縁層22と銅箔47とを貫通する貫通穴26を形成する。また、ペースト印刷装置(図示略)を用い、図6に示されるように、樹脂フィルム48の貫通穴26内に銅粉末を主成分とする導電性ペースト(銅ペースト)を充填し、樹脂絶縁層22を180℃程度の温度に加熱し、ビア導体27(貫通導体)を形成する(貫通導体形成工程)。   Next, the through hole 26 penetrating the resin insulating layer 22 and the copper foil 47 is formed by laser processing. Further, using a paste printing apparatus (not shown), as shown in FIG. 6, a conductive paste (copper paste) mainly composed of copper powder is filled in the through holes 26 of the resin film 48, and a resin insulating layer is formed. 22 is heated to a temperature of about 180 ° C. to form a via conductor 27 (through conductor) (through conductor forming step).

その後、樹脂フィルム48の銅箔47を、サブトラクティブ法でパターニングすることで、樹脂絶縁層22上に配線導体層23を形成する(図7参照)。具体的には、樹脂絶縁材45の上面46及び下面49上において、ドライフィルムをラミネートし、同ドライフィルムに対して露光及び現像を行う。これにより、樹脂絶縁層22の下面49にその全面を覆うようにエッチングレジストを形成するとともに、樹脂絶縁層22の上面46に所定のパターンのエッチングレジストを形成する。この状態で、樹脂フィルム48の銅箔47に対してエッチングによるパターニングを行うことにより、樹脂絶縁層22上に配線導体層23を形成する。その後、剥離液に接触させることにより、配線導体層23上に残存するエッチングレジストを除去するとともに、裏面49側のエッチングレジストを除去する。   Then, the wiring conductor layer 23 is formed on the resin insulating layer 22 by patterning the copper foil 47 of the resin film 48 by a subtractive method (see FIG. 7). Specifically, a dry film is laminated on the upper surface 46 and the lower surface 49 of the resin insulating material 45, and the dry film is exposed and developed. Thereby, an etching resist is formed on the lower surface 49 of the resin insulating layer 22 so as to cover the entire surface, and an etching resist having a predetermined pattern is formed on the upper surface 46 of the resin insulating layer 22. In this state, the wiring conductor layer 23 is formed on the resin insulating layer 22 by performing patterning by etching on the copper foil 47 of the resin film 48. Thereafter, by contacting with the stripping solution, the etching resist remaining on the wiring conductor layer 23 is removed, and the etching resist on the back surface 49 side is removed.

その後、図8に示されるように、ビア導体27の上端面及び下端面上に、インクジェットヘッド(図示略)を用いて微粒子導体を含む導電性ペーストを塗布して微粒子導体層51を形成する(微粒子導体配置工程)。ここでは、微粒子導体として、平均粒子径が上記貫通導体形成工程で用いた導電性ペースト(ビア導体27)に含まれる導体粒の平均粒子径よりも小さくかつ1μm以下である銅粒子が用いられる。なお、貫通導体形成工程で用いる導電性ペーストの平均粒子径は3μm以上であり、微粒子導体層51を形成する微粒子導体は、その平均粒子径の1/3以下となっている。また、微粒子導体層51は、平面視で円状の導体層であり、貫通穴26の1.0倍以上3.0倍以下(具体的には、50μm〜150μm)の直径を有している。つまり、微粒子導体層51は、表面積がビア導体27の端面の面積よりも大きく、端面の全体を完全に覆うよう形成されている。また、微粒子導体層51は、5μm〜10μmの厚さで形成されている。   Thereafter, as shown in FIG. 8, a conductive paste containing fine particle conductors is applied to the upper and lower end surfaces of the via conductors 27 using an ink jet head (not shown) to form the fine particle conductor layer 51 (see FIG. 8). Fine particle conductor placement process). Here, copper particles having an average particle size smaller than the average particle size of the conductor particles contained in the conductive paste (via conductor 27) used in the through conductor forming step and 1 μm or less are used as the fine particle conductor. The average particle diameter of the conductive paste used in the through conductor forming step is 3 μm or more, and the fine particle conductor forming the fine particle conductor layer 51 is 1/3 or less of the average particle diameter. The fine particle conductor layer 51 is a circular conductor layer in a plan view, and has a diameter of 1.0 to 3.0 times (specifically, 50 μm to 150 μm) of the through hole 26. . That is, the fine particle conductor layer 51 has a surface area larger than the area of the end face of the via conductor 27 and is formed so as to completely cover the entire end face. The fine particle conductor layer 51 is formed with a thickness of 5 μm to 10 μm.

このような工程を経て、配線導体層23とその導体層23に接続されるビア導体27及び微粒子導体層51とを有する樹脂絶縁層22が形成される。また、上述した準備工程〜微粒子導体配置工程を同様に行うことで、主面側端子28とその端子28に接続されるビア導体27及び微粒子導体層51とを有する樹脂絶縁層21が形成される。   Through these steps, the resin insulating layer 22 having the wiring conductor layer 23, the via conductor 27 connected to the conductor layer 23, and the fine particle conductor layer 51 is formed. Moreover, the resin insulation layer 21 which has the main surface side terminal 28, the via conductor 27 connected to the terminal 28, and the fine particle conductor layer 51 is formed by performing the preparation process-fine particle conductor arrangement | positioning process mentioned above similarly. .

次いで、セラミック基板部30の上層側に、樹脂絶縁層21と樹脂絶縁層22とを積層配置し、350℃程度の温度に加熱しつつ75kgf/cm程度の圧力で加圧する(導体密着工程)。この結果、図1に示されるように、各樹脂絶縁層21,22が圧着された樹脂絶縁部20とセラミック基板部30とが一体化した電子部品検査用配線基板10が製造される。また、このときの加熱によって微粒子導体層51に含まれる微粒子導体が溶け、配線導体層23とビア導体27との間の隙間に入り込んでいく。この結果、図9に示されるように、配線導体層23とビア導体27と境界部分に微粒子導体からなる導体層29が介在する。また、微粒子導体の一部は、配線導体層23やビア導体27に固着して配線導体層23とビア導体27との密着性が向上される。 Next, the resin insulating layer 21 and the resin insulating layer 22 are laminated on the upper side of the ceramic substrate portion 30 and are pressurized at a pressure of about 75 kgf / cm 2 while being heated to a temperature of about 350 ° C. (conductor adhesion process). . As a result, as shown in FIG. 1, the electronic component inspection wiring substrate 10 in which the resin insulating portion 20 to which the resin insulating layers 21 and 22 are bonded and the ceramic substrate portion 30 are integrated is manufactured. Further, the fine particle conductor contained in the fine particle conductor layer 51 is melted by the heating at this time, and enters the gap between the wiring conductor layer 23 and the via conductor 27. As a result, as shown in FIG. 9, the conductor layer 29 made of the fine particle conductor is interposed between the wiring conductor layer 23 and the via conductor 27 and the boundary portion. Further, a part of the fine particle conductor is fixed to the wiring conductor layer 23 and the via conductor 27 and the adhesion between the wiring conductor layer 23 and the via conductor 27 is improved.

従って、本実施の形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施の形態では、微粒子導体配置工程において、ビア導体27の端面上に微粒子導体層51が形成された後、導体密着工程において、ビア導体27と微粒子導体層51とが加熱されるとともに加圧される。このようにすると、配線導体層23とビア導体27との収縮率が異なり、それらの界面に隙間ができた場合でも、その界面に微粒子導体からなる導体層29を確実に介在させることができる。この結果、従来技術のように配線導体層23とビア導体27との界面付近でオープン不良(断線)が発生するといった問題が回避され、接続信頼性に優れた電子部品検査用配線基板10を製造することができる。   (1) In the present embodiment, after the fine particle conductor layer 51 is formed on the end surface of the via conductor 27 in the fine particle conductor arrangement step, the via conductor 27 and the fine particle conductor layer 51 are heated in the conductor contact step. Pressurized together. In this way, even if the shrinkage rates of the wiring conductor layer 23 and the via conductor 27 are different and there is a gap at the interface between them, the conductor layer 29 made of a fine particle conductor can be reliably interposed at the interface. As a result, the problem that an open defect (disconnection) occurs in the vicinity of the interface between the wiring conductor layer 23 and the via conductor 27 as in the prior art is avoided, and the wiring board 10 for inspecting electronic components excellent in connection reliability is manufactured. can do.

(2)本実施の形態では、微粒子導体配置工程において、ビア導体27の端面上において配線導体層23とビア導体27との境界部分を覆うように、平面視で円状の微粒子導体層51が形成されている。この微粒子導体層51を形成する微粒子導体はナノオーダの微粒子からなるので、導体密着工程で加熱することで比較的低い温度で溶解し、配線導体層23とビア導体27との隙間を確実に埋めることができる。従って、配線導体層23とビア導体27とを確実に接続することができる。   (2) In the present embodiment, in the fine particle conductor arranging step, the circular fine particle conductor layer 51 in plan view is formed so as to cover the boundary portion between the wiring conductor layer 23 and the via conductor 27 on the end surface of the via conductor 27. Is formed. Since the fine particle conductor forming the fine particle conductor layer 51 is made of nano-order fine particles, it is melted at a relatively low temperature by heating in the conductor contact process, and the gap between the wiring conductor layer 23 and the via conductor 27 is surely filled. Can do. Therefore, the wiring conductor layer 23 and the via conductor 27 can be reliably connected.

(3)本実施の形態では、平面視での微粒子導体層51の直径は、貫通穴26の直径の1.0倍以上3.0倍以下となるよう形成される。この場合、微粒子導体層51の表面積がビア導体27の端面の面積よりも大きくなり、微粒子導体層51によってその端面の全体を完全に覆うことができる。このように微粒子導体層51を形成すると、導体密着工程において、配線導体層23とビア導体27との界面に微粒子導体からなる導体層29を確実に介在させることができる。   (3) In the present embodiment, the diameter of the fine particle conductor layer 51 in plan view is formed to be 1.0 to 3.0 times the diameter of the through hole 26. In this case, the surface area of the fine particle conductor layer 51 is larger than the area of the end surface of the via conductor 27, and the entire end surface can be completely covered by the fine particle conductor layer 51. When the fine particle conductor layer 51 is formed in this manner, the conductor layer 29 made of the fine particle conductor can be reliably interposed at the interface between the wiring conductor layer 23 and the via conductor 27 in the conductor contact process.

(4)本実施の形態では、微粒子導体層51を形成する微粒子導体の平均粒子径は、ビア導体27を形成する導電性ペーストに含まれる導体粒の平均粒子径の1/3以下である。この場合、ビア導体27を構成する導体粒の隙間に微粒子導体が確実に入り込み、配線導体層23とビア導体27との密着性を高めることができる。   (4) In the present embodiment, the average particle diameter of the fine particle conductor forming the fine particle conductor layer 51 is 1/3 or less of the average particle diameter of the conductor particles included in the conductive paste forming the via conductor 27. In this case, the fine particle conductor surely enters the gap between the conductor grains constituting the via conductor 27, and the adhesion between the wiring conductor layer 23 and the via conductor 27 can be improved.

(5)本実施の形態の場合、微粒子導体を含む導電性ペーストがインクジェットヘッドを用いて塗布されて微粒子導体層51が形成されている。この場合、比較的直径が小さなビア導体27の端面に、導電性ペーストを迅速かつ正確に塗布することができる。   (5) In the case of the present embodiment, a conductive paste containing a fine particle conductor is applied using an inkjet head to form the fine particle conductor layer 51. In this case, the conductive paste can be applied quickly and accurately to the end face of the via conductor 27 having a relatively small diameter.

(6)本実施の形態の電子部品検査用配線基板10では、樹脂絶縁層21,22は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層24と、第1樹脂層24の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層25とにより構成されている。この場合、導体密着工程において加圧及び加熱を行うことにより、第2樹脂層25が接着層として機能するため、複数の樹脂絶縁層21,22を一体化した配線基板10を確実に製造することができる。   (6) In the electronic component inspection wiring substrate 10 of the present embodiment, the resin insulating layers 21 and 22 are formed on both surfaces of the first resin layer 24 made of a polyimide-based thermosetting resin and the first resin layer 24. The second resin layer 25 is made of a polyimide-based thermoplastic resin. In this case, since the second resin layer 25 functions as an adhesive layer by performing pressurization and heating in the conductor adhesion process, the wiring substrate 10 in which the plurality of resin insulating layers 21 and 22 are integrated is reliably manufactured. Can do.

(7)本実施の形態の電子部品検査用配線基板10では、貫通穴26に導電性ペーストを充填してビア導体27を形成しているので、有底穴に導電性ペーストを充填する従来技術のような導電性ペーストの充填不良は発生しない。また、従来技術のように導体層とビア導体との間にめっき層を形成する必要がないため、貫通穴26の隅にめっき残渣や洗浄液残渣が付着するといった問題が回避される。   (7) Since the via conductor 27 is formed by filling the through hole 26 with the conductive paste in the electronic component inspection wiring substrate 10 of the present embodiment, the conventional technique for filling the bottomed hole with the conductive paste. Such poor filling of the conductive paste does not occur. Further, since it is not necessary to form a plating layer between the conductor layer and the via conductor as in the prior art, the problem of plating residue and cleaning liquid residue adhering to the corner of the through hole 26 is avoided.

なお、本発明の実施の形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記実施の形態では、樹脂絶縁部20とセラミック基板部30とを備える電子部品検査用配線基板10に具体化したが、他の用途で使用される配線基板に本発明を具体化してもよい。例えば、複数の樹脂絶縁層からなる多層配線基板の製造時に本発明を具体化してもよいし、単層の樹脂絶縁層からなる配線基板の製造時に本発明を具体化してもよい。なお、単層の樹脂絶縁層からなる配線基板を製造する場合、準備工程において、樹脂絶縁材45の上面46及び下面49の両面に、配線導体層23となる銅箔47が形成された銅箔付き樹脂フィルム48を準備する。そして、上記実施の形態と同様に、貫通導体形成工程を行い、サブトラクティブ法によって樹脂絶縁材45の上面46及び下面49に配線導体層23をパターン形成した後、微粒子導体配置工程を行う。なお、この微粒子導体配置工程では、ビア導体27の上端面及び下端面に、微粒子導体層51を形成する。その後、セラミック基板部30の上に樹脂絶縁材45を積層配置し加熱及び加圧することで、配線導体層23とビア導体27との境界部分に微粒子導体からなる導体層29を介在させる。このように配線基板を製造しても、配線導体層23とビア導体27との密着性を向上させることができ、接続信頼性を高めることができる。   In the above embodiment, the electronic component inspection wiring substrate 10 including the resin insulating portion 20 and the ceramic substrate portion 30 is embodied. However, the present invention may be embodied in a wiring substrate used for other applications. . For example, the present invention may be embodied at the time of manufacturing a multilayer wiring board composed of a plurality of resin insulating layers, or may be embodied at the time of manufacturing a wiring board composed of a single resin insulating layer. In the case of manufacturing a wiring board made of a single resin insulating layer, a copper foil in which a copper foil 47 to be the wiring conductor layer 23 is formed on both the upper surface 46 and the lower surface 49 of the resin insulating material 45 in the preparation step. The attached resin film 48 is prepared. Then, similarly to the above embodiment, a through conductor forming step is performed, and after the wiring conductor layer 23 is patterned on the upper surface 46 and the lower surface 49 of the resin insulating material 45 by a subtractive method, the fine particle conductor arranging step is performed. In this fine particle conductor arrangement step, the fine particle conductor layer 51 is formed on the upper end surface and the lower end surface of the via conductor 27. Thereafter, a resin insulating material 45 is laminated on the ceramic substrate portion 30 and heated and pressed to interpose a conductor layer 29 made of a fine particle conductor at the boundary between the wiring conductor layer 23 and the via conductor 27. Even when the wiring board is manufactured in this manner, the adhesion between the wiring conductor layer 23 and the via conductor 27 can be improved, and the connection reliability can be improved.

・上記実施の形態において、導体密着工程では、加熱及び加圧することで配線導体層23とビア導体27との境界部分に微粒子導体からなる導体層29を介在させていたが、これに限定されるものではない。導体密着工程において、加熱のみを行うようにしてもよいし、加圧のみを行うようにしてもよい。   In the above embodiment, in the conductor contact process, the conductor layer 29 made of the fine particle conductor is interposed in the boundary portion between the wiring conductor layer 23 and the via conductor 27 by heating and pressurizing, but the present invention is limited to this. It is not a thing. In the conductor contact process, only heating or only pressurization may be performed.

・上記実施の形態において、導電性ペーストとして、銅粉末を含んで構成される銅ペーストを用いたが、これに限定されるものではない。銅以外の金属粉末、例えば銀粉末を含んで構成される銀ペーストを用いてもよいし、銅粉末と銀粉末とを含む導電性ペーストを用いてもよい。さらに、貫通導体形成工程で使用する導電性ペーストと微粒子導体配置工程で使用する導電性ペーストとで異なる金属粉末を含むものを用いてもよい。具体的には、例えばビア導体27を銅ペーストで形成し、微粒子導体層51を銀ペーストで形成する場合、加熱によって微粒子導体層51の微粒子導体が固溶し、一部がビア導体27や配線導体層23を構成する金属粒子と金属結合する。このため、ビア導体27と配線導体層23との密着性が向上し、接続信頼性が高められる。   -In the said embodiment, although the copper paste comprised including a copper powder was used as an electrically conductive paste, it is not limited to this. A metal paste other than copper, for example, a silver paste containing silver powder may be used, or a conductive paste containing copper powder and silver powder may be used. Furthermore, you may use what contains different metal powder by the conductive paste used at a through-conductor formation process, and the conductive paste used at a fine particle conductor arrangement | positioning process. Specifically, for example, when the via conductor 27 is formed of copper paste and the fine particle conductor layer 51 is formed of silver paste, the fine particle conductor of the fine particle conductor layer 51 is dissolved by heating, and a part of the via conductor 27 and the wiring are formed. Metal bonds are formed with the metal particles constituting the conductor layer 23. For this reason, the adhesion between the via conductor 27 and the wiring conductor layer 23 is improved, and the connection reliability is improved.

・上記実施の形態では、微粒子導体配置工程において、インクジェットヘッドを用いて、微粒子導体を含む導電性ペーストを塗布して微粒子導体層51を形成していたが、これに限定されるものではない。例えば、微粒子導体を含む導電性ペーストをディスペンサ装置などを用いて塗布することで微粒子導体層51を形成してもよい。さらに、印刷法などの他の手法で微粒子導体層51を形成してもよい。   In the above embodiment, in the fine particle conductor arranging step, the fine particle conductor layer 51 is formed by applying the conductive paste containing the fine particle conductor using the inkjet head. However, the present invention is not limited to this. For example, the fine particle conductor layer 51 may be formed by applying a conductive paste containing a fine particle conductor using a dispenser device or the like. Furthermore, the fine particle conductor layer 51 may be formed by other methods such as a printing method.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施の形態によって把握される技術的思想を以下に列挙する。   Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiments described above are listed below.

(1)手段1において、前記微粒子導体の平均粒子径は、前記貫通導体を形成する導電性ペーストに含まれる導体粒の平均粒子径の1/3以下であることを特徴とする配線基板の製造方法。   (1) Production of a wiring board characterized in that, in the means 1, the average particle diameter of the fine particle conductor is 1/3 or less of the average particle diameter of conductor particles contained in the conductive paste forming the through conductor. Method.

(2)手段1において、前記微粒子導体配置工程において、前記微粒子導体層は、表面積が前記貫通導体の端面の面積よりも大きく、前記端面の全体を完全に覆うよう形成されることを特徴とする配線基板の製造方法。   (2) In the means 1, in the fine particle conductor arranging step, the fine particle conductor layer has a surface area larger than an area of the end face of the through conductor, and is formed so as to completely cover the entire end face. A method for manufacturing a wiring board.

(3)手段1において、前記微粒子導体を含む導電性ペーストは、インクジェットヘッドを用いて塗布されることを特徴とする配線基板の製造方法。   (3) The method for manufacturing a wiring board according to means 1, wherein the conductive paste containing the fine particle conductor is applied using an inkjet head.

(4)手段1において、前記微粒子導体配置工程では、前記貫通導体の端面上に導電性ペーストを塗布して微粒子導体層を形成することを特徴とする配線基板の製造方法。   (4) A method of manufacturing a wiring board according to means 1, wherein, in the fine particle conductor arranging step, a fine conductive layer is formed by applying a conductive paste on an end face of the through conductor.

(5)手段1において、前記微粒子導体層の厚さは、前記金属層の1.0倍以上2.0倍以下であることを特徴とする配線基板の製造方法。   (5) The method for manufacturing a wiring board according to means 1, wherein the thickness of the fine particle conductor layer is 1.0 to 2.0 times that of the metal layer.

(6)手段1において、前記微粒子導体は、銀粉末及び/または銅粉末を含むことを特徴とする配線基板の製造方法。   (6) The method for manufacturing a wiring board according to means 1, wherein the fine particle conductor contains silver powder and / or copper powder.

(7)手段1において、前記金属層の厚さが、10μm以下であることを特徴とする配線基板の製造方法。   (7) A method of manufacturing a wiring board according to means 1, wherein the metal layer has a thickness of 10 μm or less.

(8)手段1において、前記準備工程では、前記樹脂絶縁材の表面上に前記金属層としての金属箔を貼り付けた金属箔付き樹脂フィルムを準備することを特徴とする配線基板の製造方法。   (8) The method for manufacturing a wiring board according to the method 1, wherein in the preparation step, a resin film with a metal foil is prepared by attaching a metal foil as the metal layer on the surface of the resin insulating material.

(9)手段1において、前記配線基板は、複数の前記樹脂絶縁層と複数の前記配線導体層とが積層された樹脂絶縁部と、前記樹脂絶縁部の下層側に設けられ、複数のセラミック絶縁層と複数の導体層とが積層されたセラミック基板部とを備える電子部品検査用配線基板であり、前記導体密着工程は、前記配線導体層が形成された前記複数の樹脂絶縁層を積層して一体化するための積層工程であることを特徴とする配線基板の製造方法。   (9) In the means 1, the wiring board is provided on a lower layer side of the resin insulating portion in which a plurality of the resin insulating layers and the plurality of wiring conductor layers are laminated, and a plurality of ceramic insulating layers. A wiring board for inspecting electronic components comprising a ceramic substrate portion on which a layer and a plurality of conductor layers are laminated, wherein the conductor adhesion step comprises laminating the plurality of resin insulation layers on which the wiring conductor layers are formed. A method of manufacturing a wiring board, which is a lamination process for integration.

(10)手段1において、前記樹脂絶縁層は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層と、前記第1樹脂層の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層とにより構成されていることを特徴とする配線基板の製造方法。   (10) In means 1, the resin insulation layer is formed on both surfaces of the first resin layer made of polyimide thermosetting resin and the first resin layer, and made of polyimide thermoplastic resin. A method of manufacturing a wiring board, comprising: a layer.

10…配線基板としての電子部品検査用配線基板
21,22…樹脂絶縁層
23…配線導体層
26…貫通穴
27…貫通導体としてのビア導体
28…配線導体層を構成する主面側端子
29…微粒子導体からなる導体層
45…樹脂絶縁材
46…樹脂絶縁材の片面としての上面
47…金属層としての銅箔
48…樹脂フィルム
49…樹脂絶縁材の片面としての下面
51…微粒子導体層
DESCRIPTION OF SYMBOLS 10 ... Wiring board for electronic component inspection as a wiring board 21, 22 ... Resin insulating layer 23 ... Wiring conductor layer 26 ... Through hole 27 ... Via conductor as penetrating conductor 28 ... Main surface side terminal constituting wiring conductor layer 29 ... Conductor layer made of fine particle conductor 45 ... resin insulating material 46 ... upper surface as one surface of resin insulating material 47 ... copper foil as metal layer 48 ... resin film 49 ... lower surface as one surface of resin insulating material 51 ... fine particle conductor layer

Claims (3)

樹脂絶縁層と、前記樹脂絶縁層の表面上に形成された配線導体層と、前記配線導体層及び前記樹脂絶縁層を貫通する貫通導体とを備え、前記樹脂絶縁層が、ポリイミド系の熱硬化性樹脂からなる第1樹脂層と、前記第1樹脂層の両面に形成され、ポリイミド系の熱可塑性樹脂からなる第2樹脂層とにより構成されている配線基板の製造方法であって、
前記樹脂絶縁層となる樹脂絶縁材の片面または両面に、前記配線導体層となる金属層が形成された樹脂フィルムを準備する準備工程と、
前記金属層またはその金属層をパターン形成して得られた前記配線導体層と前記樹脂絶縁層とを貫通する貫通穴を形成するとともに、その貫通穴内に導電性ペーストを充填し、加熱して、前記配線導体層に接続するための前記貫通導体を形成する貫通導体形成工程と、
前記貫通導体形成工程の際の加熱により前記金属層との境界部分に隙間が生じた前記貫通導体の端面上に、平均粒子径が前記導電性ペーストに含まれる導体粒の平均粒子径よりも小さくかつ1μm以下である微粒子導体を含む導電性ペーストを用いて微粒子導体層を形成する微粒子導体配置工程と、
前記貫通導体及び前記微粒子導体層が形成された前記樹脂絶縁層を少なくとも1層含む複数の樹脂絶縁層を積層配置して加熱しつつ加圧することで、複数の樹脂絶縁層を一体化するとともに、前記金属層をパターン形成して得られた前記配線導体層と前記貫通導体との境界部分にある前記隙間に対し、溶解した前記微粒子導体を入り込ませて前記微粒子導体からなる導体層を介在させる導体密着工程と
を含むことを特徴とする配線基板の製造方法。
A resin insulating layer, wherein a resin insulating layer wiring conductor layer formed on the surface of, e Bei a through conductor that passes through the wiring conductor layer and the resin insulating layer, the resin insulation layer is a polyimide heat A method of manufacturing a wiring board comprising a first resin layer made of a curable resin and a second resin layer formed on both surfaces of the first resin layer and made of a polyimide-based thermoplastic resin ,
A preparation step of preparing a resin film in which a metal layer to be the wiring conductor layer is formed on one side or both sides of the resin insulating material to be the resin insulating layer;
While forming a through hole penetrating the wiring conductor layer obtained by patterning the metal layer or the metal layer and the resin insulating layer, filling the through hole with a conductive paste, heating, A through conductor forming step of forming the through conductor for connecting to the wiring conductor layer;
On the end face of the through conductor in which a gap is generated at the boundary with the metal layer due to heating in the through conductor forming step, the average particle diameter is smaller than the average particle diameter of the conductor grains contained in the conductive paste. And a fine particle conductor disposing step of forming a fine particle conductor layer using a conductive paste containing a fine particle conductor of 1 μm or less,
A plurality of resin insulation layers including at least one resin insulation layer in which the through conductors and the fine particle conductor layers are formed are stacked and heated while being pressed, thereby integrating the plurality of resin insulation layers, Conductor in which the dissolved fine particle conductor is inserted into the gap at the boundary portion between the wiring conductor layer and the through conductor obtained by patterning the metal layer and the conductor layer made of the fine particle conductor is interposed. A method for manufacturing a wiring board, comprising: an adhesion step.
前記微粒子導体配置工程では、前記貫通導体の端面上において前記金属層または前記配線導体層と前記貫通導体との境界部分を覆うように、平面視で円状または円環状に前記微粒子導体層を形成することを特徴とする請求項1に記載の配線基板の製造方法。   In the fine particle conductor arranging step, the fine particle conductor layer is formed in a circular shape or an annular shape in plan view so as to cover a boundary portion between the metal layer or the wiring conductor layer and the through conductor on the end surface of the through conductor. The method of manufacturing a wiring board according to claim 1. 平面視での前記微粒子導体層の直径は、前記貫通穴の直径の1.0倍以上3.0倍以下であることを特徴とする請求項2に記載の配線基板の製造方法。   3. The method of manufacturing a wiring board according to claim 2, wherein a diameter of the fine particle conductor layer in a plan view is 1.0 to 3.0 times the diameter of the through hole.
JP2012194273A 2012-09-04 2012-09-04 Wiring board manufacturing method Expired - Fee Related JP6058321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012194273A JP6058321B2 (en) 2012-09-04 2012-09-04 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012194273A JP6058321B2 (en) 2012-09-04 2012-09-04 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2014049732A JP2014049732A (en) 2014-03-17
JP6058321B2 true JP6058321B2 (en) 2017-01-11

Family

ID=50609065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012194273A Expired - Fee Related JP6058321B2 (en) 2012-09-04 2012-09-04 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP6058321B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805633B2 (en) * 2016-08-24 2020-12-23 富士通株式会社 Electronic devices and their manufacturing methods
CN212463677U (en) 2017-05-26 2021-02-02 株式会社村田制作所 Multilayer wiring board and electronic device
JP7075785B2 (en) * 2018-03-08 2022-05-26 スタンレー電気株式会社 Circuit boards, electronic circuit devices, and methods for manufacturing circuit boards

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329217A (en) * 1989-06-27 1991-02-07 Fujitsu Ltd Formation of conductive part on metal nitride ceramic circuit board
JPH05314810A (en) * 1992-05-14 1993-11-26 Matsushita Electric Ind Co Ltd Conductor paste composition
JP2003092469A (en) * 2001-07-10 2003-03-28 Fujikura Ltd Multi-layer wiring board, base material for multi-layer wiring and manufacturing method therefor
JP4012022B2 (en) * 2002-09-06 2007-11-21 株式会社フジクラ Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof
JP2005050966A (en) * 2003-07-31 2005-02-24 Ngk Spark Plug Co Ltd Wiring board and its manufacturing method
JP2005340279A (en) * 2004-05-24 2005-12-08 Fujikura Ltd Multilayer wiring board and its manufacturing method
JP4917271B2 (en) * 2005-04-28 2012-04-18 京セラSlcテクノロジー株式会社 Wiring board manufacturing method
JP4939519B2 (en) * 2008-12-05 2012-05-30 パナソニック株式会社 Multilayer circuit board manufacturing method
JP5767435B2 (en) * 2009-09-29 2015-08-19 三ツ星ベルト株式会社 Conductive paste for hole filling, conductor hole filling board, method for manufacturing conductor hole filling board, circuit board, electronic component, semiconductor package

Also Published As

Publication number Publication date
JP2014049732A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
KR100574847B1 (en) Printed circuit board and its manufacturing method
TWI555451B (en) Circuit board, production method of circuit board, and electronic equipment
KR20090068227A (en) Multilayer printed wiring board and method for manufacturing the same
WO2013031822A1 (en) Thin-film wiring substrate and substrate for probe card
WO2017217138A1 (en) Multilayer wiring board for inspection of electronic components
JP6058321B2 (en) Wiring board manufacturing method
JP6099902B2 (en) Wiring board manufacturing method
JP5581828B2 (en) Multilayer circuit board and substrate manufacturing method
JP6324669B2 (en) Multilayer wiring board and manufacturing method thereof
KR100657410B1 (en) Manufacturing multi-layer pcb
TWI477214B (en) Printed circuit board having buried component and method for manufacturing same
CN103889169B (en) Package substrate and preparation method thereof
JP2006093439A (en) Multilayer substrate and its production method
JP2008016651A (en) Component built-in wiring board and its manufacturing method
JP5671857B2 (en) Manufacturing method of wiring board with embedded parts
JP4824972B2 (en) Circuit wiring board and manufacturing method thereof
JP2014049701A (en) Wiring board and method for manufacturing the same
JP2006049536A (en) Multilayer circuit board
JP6139856B2 (en) Wiring board and manufacturing method thereof
JP5556984B2 (en) Multilayer wiring board and manufacturing method thereof
JP6016017B2 (en) Manufacturing method of printed wiring board with adhesive sheet and manufacturing method of bonded printed wiring board using the same
US20240188216A1 (en) Circuit board, method for manufacturing circuit board, and electronic device
JP6017921B2 (en) Manufacturing method of multilayer wiring board
JP2006237526A (en) Method for manufacturing film element built-in printed-wiring board, and film element built-in printed-wiring board
TW202339570A (en) Multilayer substrate, multilayer substrate production method, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6058321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees