JP6303311B2 - シンクロナスリラクタンスモータ - Google Patents

シンクロナスリラクタンスモータ Download PDF

Info

Publication number
JP6303311B2
JP6303311B2 JP2013152894A JP2013152894A JP6303311B2 JP 6303311 B2 JP6303311 B2 JP 6303311B2 JP 2013152894 A JP2013152894 A JP 2013152894A JP 2013152894 A JP2013152894 A JP 2013152894A JP 6303311 B2 JP6303311 B2 JP 6303311B2
Authority
JP
Japan
Prior art keywords
rotor
pole coil
coil
magnetic flux
reluctance motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013152894A
Other languages
English (en)
Other versions
JP2015023767A (ja
Inventor
真大 青山
真大 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2013152894A priority Critical patent/JP6303311B2/ja
Publication of JP2015023767A publication Critical patent/JP2015023767A/ja
Application granted granted Critical
Publication of JP6303311B2 publication Critical patent/JP6303311B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Synchronous Machinery (AREA)

Description

本発明は、シンクロナスリラクタンスモータに関し、詳しくは、自己励磁機能を備えて高効率の回転を実現するものに関する。
シンクロナスリラクタンスモータは、各種駆動装置に駆動源として搭載されている。リラクタンスモータは、ロータ側に永久磁石を埋め込んでマグネットトルクを利用することにより駆動するタイプのモータ(電動機)と比較して、リラクタンストルクのみを利用するタイプの場合には、大トルクが得られ難いという課題がある。
特に、大トルクを必要とする、ハイブリッド自動車(Hybrid Electric Vehicle)や電気自動車(Electric Vehicle)に搭載する場合には、マグネットトルクと共に、リラクタンストルクを効果的に利用するように、磁力の強いネオジム磁石(Neodymium magnet)などの永久磁石をロータ(回転子)内にV字に埋め込む、IPM(Interior Permanent Magnet)構造を採用するモータが多用されている。
ところで、リラクタンスモータでも、例えば、非特許文献1に記載されているような自己励磁機能を採用することにより効率を向上させることが提案されている。車載モータとしては、安価に作製可能なリラクタンスモータでのトルク向上等の特性改善が望まれている。
この非特許文献1に記載の自己励磁式では、ステータ側の電機子極コイルに供給する駆動電流の基本周波数よりも高い周波数の磁束をロータ側に鎖交させて、そのロータ側に配置する自己励磁用コイルに誘導電流を発生させる。この自己励磁式では、その誘導電流を半波整流した後に自己励磁用コイルに供給する(戻す)ことにより、自己励磁用コイルを電磁石極コイルとしても機能させている。
しかしながら、非特許文献1に記載の自己励磁機能では、自己励磁用コイルを電磁石極コイルとしても機能させるように兼用させることから、磁気的な干渉が生じて誘導電流を効率よく発生させることができず、また、発生させる電磁力も弱めてしまう。
また、非特許文献1に記載の構造では、ロータの外面から離隔する深部まで自己励磁用コイルを配置するが、磁束の高周波成分(空間高調波成分)はロータ深部まで進入する(鎖交する)ことができずに、自己励磁用コイルに非常に小さな誘導電流しか発生させることができない。
なお、特許文献1にも、自己励磁式のモータが提案されているが、同様に、効率よく誘導電流を発生させることができず、同様の課題を有している。
また、特許文献2には、ステータ側のコイルに高周波電流を別途入力することによりロータ側の自己励磁用コイルに励磁電流を発生させることが提案されているが、励磁エネルギを外部入力する必要があり、高効率な駆動を望むことができない(効率低下は免れない)。
特開平10−271781号公報 特開2010−22185号公報
野中作太郎著「自励形単相同期電動機」電気学会雑誌78巻842号、1958年11月、P.18−26
そこで、本発明は、損失エネルギを回収して機能する自己励磁を実現して、高効率回転させてトルクを向上させたシンクロナスリラクタンスモータを提供することを目的としている。
本発明は、複数相の駆動電流が入力される電機子極コイルを有するステータと、前記電機子極コイルに発生する磁束が鎖交する複数の突極を有するロータと、を備えるシンクロナスリラクタンスモータであって、前記ロータは、前記電機子極コイルにおいて発生した前記磁束に重畳する空間高調波成分により誘導電流を発生する誘導子極コイルと、前記誘導子極コイルで発生した前記誘導電流を整流する整流素子と、前記整流素子で整流された前記誘導電流が界磁電流として通電されることにより該ロータの回転力を補助する電磁力を発生する電磁石極コイルと、回転軸側から前記ステータの内周面側に向かって延在する複数のロータティースと、隣り合う前記ロータティース間に配置されているロータスロットと、前記ロータスロットの底部から前記ロータの外周面側に向かって延在する支持部と、前記ロータティースの外周面側において前記ロータスロット側に向かって延在する延長部と、前記延長部と前記支持部との間において前記ロータの外周面側に向かってV字型に設置される永久磁石と、を備え、前記永久磁石は、第1永久磁石および第2永久磁石を含み、当該第1永久磁石および第2永久磁石のうち、いずれか一方の永久磁石のロータ外周面側端部にN極が配置されており、他方の永久磁石のロータ外周面側端部にS極が配置されていることを特徴とするものである。
このように、本発明によれば、損失エネルギを回収して機能する自己励磁を実現して、高効率回転させてトルクを向上させることができる。
図1は、本発明に係るシンクロナスリラクタンスモータの一実施形態を示す図であり、その概略構成を示す径方向断面図である。 図2は、その概略構成を示す一部拡大径方向断面図である。 図3は、ロータとステータとの間で鎖交する磁束経路を示す概念図である。 図4は、ロータにおける電磁石極コイルと永久磁石を等価磁気回路で表したモデル図である。 図5は、誘導子極コイルと電磁石極コイルとをダイオードを介して接続する回路構成を分かり易く説明する簡易モデルの回路図である。 図6は、図5に示す回路における一方の誘導子極コイルから取り出す誘導電流波形を示すグラフである。 図7は、図5に示す回路における図5と異なる他方の誘導子極コイルから取り出して反転させた誘導電流波形を示すグラフである。 図8は、図6と図7の誘導電流を合流させた合成波形を示すグラフである。 図9は、本実施形態のシンクロナスリラクタンスモータで得られる界磁電流によるトルクの上昇を示すグラフである。 図10は、本実施形態の他の態様を示す図であり、その一部を切りだした状態の斜視図である。
以下、図面を参照して、本発明の実施形態について詳細に説明する。図1〜図9は本発明に係る一実施形態のシンクロナスリラクタンスモータを説明するための図である。ここで、図2は、シンクロナスリラクタンスモータの径方向断面図であり、軸心を中心とする機械角60度分を図示しており、当該機械角60度分が周方向に周期的に繰り返される構造に作製されている。
(一般的なシンクロナスリラクタンスモータの基本構造)
図1および図2において、シンクロナスリラクタンスモータ10は、例えば、ハイブリッド自動車や電気自動車において、内燃機関と同様の駆動源として車載、あるいは車輪ホイール内に搭載するのに好適な性能を有しており、上述の特許文献2とは異なって、後述するように、外部からロータにエネルギ入力する必要のない構造に作製されている。
シンクロナスリラクタンスモータ10は、概略円筒形状に形成されたステータ(固定子)11と、このステータ11内に回転自在に収納されて軸心に一致する回転軸が固設されるロータ(回転子)21と、を備えている。
ステータ11には、ロータ21(ロータティース22)の外周面22aにギャップGを介して内周面12a側を対面させるように、径方向に延長される突極形状に形成されている複数本のステータティース12が周方向に均等配置されている。ステータティース12には、隣接する側面間に形成される空間のステータスロット13を利用して、相毎の3相巻線をそれぞれ個々に集中巻きすることにより電機子極コイル14が形成されている。ステータティース12は、電機子極コイル14に駆動電流を入力することにより、内部に対面収納されているロータ21を回転させる磁束を発生する電磁石として機能する。
ロータ21には、ステータティース12と同様に径方向に延長される突極形状に形成されている複数本のロータティース(突極)22が周方向に均等配置されている。ロータティース22は、ステータティース12と全周方向の本数を異ならせて、相対回転時に外周面22aがステータティース12の内周面12aに適宜近接対面するように形成されている。
これにより、シンクロナスリラクタンスモータ10は、ステータ11のステータスロット13内の電機子極コイル14に通電することにより発生する磁束を、ステータティース12の内周面12aから対面するロータティース22の外周面22aに鎖交させることができ、その磁束が通過する磁路(磁気結合)を最短にしようとするリラクタンストルク(主回転力)によりロータ21を相対回転させることができる。この結果、シンクロナスリラクタンスモータ10は、ステータ11内で相対回転するロータ21と一体回転する回転軸から通電入力する電気的エネルギを機械的エネルギとして出力することができる。
このシンクロナスリラクタンスモータ10では、ステータティース12の内周面12aからロータティース22の外周面22aに鎖交する磁束に空間高調波成分が重畳している。このため、ロータ21側でも、ステータ11側から鎖交する磁束の空間高調波成分の磁束密度の変化を利用して、内蔵するコイルに誘導電流を発生させ電磁力を得ることもできる。
詳細には、このとき、ステータ11の電機子極コイル14には基本周波数の駆動電力を供給してロータ21(ロータティース22)をその基本周波数で変動する主磁束で回転させることから、ロータ21側にコイルを単に配置しても鎖交する磁束に変化はなく誘導電流が生じることはない。
その一方で、磁束に重畳する空間高調波成分は基本周波数と異なる周期で時間的に変化しつつロータティース22に外周面22a側から鎖交する。このことから、別途入力することなく、基本周波数の磁束に重畳する空間高調波成分はロータティース22の外周面22aの近傍に設置するコイルに効率よく誘導電流を発生させることができる。この結果、鉄損の原因となる空間高調波磁束は自己励磁するためのエネルギとして回収することができる。
ここで、上述した非特許文献1には、自己励磁技術が提案されている。この非特許文献1に記載の自己励磁技術は、ロータティース22にコイルを巻くことにより、基本周波数よりも高い周波数の磁束がロータ側コイルに鎖交することで誘導電流を発生させるものであり、その誘導電流を整流素子(ダイオード)で半波整流して戻すことにより、そのロータ側コイルを自己励磁式の電磁石として機能させるようになっている。
しかしながら、非特許文献1に記載の自己励磁技術には、次のような課題がある。
1.ロータ側のコイルとしては、誘導電流を発生させるコイルおよび整流した誘導電流を界磁電流として流すコイルとして兼用するので、磁気的な干渉が生じて効率よく誘導電流を発生させることができず、また、起磁力も非常に小さくなってしまう。
2.基本周波数よりも高い高次の磁束の高周波成分は、ロータ21(ロータティース22)に鎖交するにしても外周面22a付近に分布するのに留まるため、軸心側にコイルを配置してしまうと非常に小さな誘導電流しか発生しない。なお、ロータ側コイルは、ロータティース22の外周面22a付近に設置するにしても、現実的には無理がある。例えば、線径の細い導線の極少量を巻いてコイルとしても、導体抵抗が高くなって、その結果、銅損が増加して効率のよい電磁石として機能させるのは難しい。また、ロータ表面では、ステータ側に接触してしまう懸念も生じてしまう。
3.ステータ11側のコイルとしては、分布巻にしてしまうと、高次の高調波が磁束に重畳する傾向にあり、上述するように、高次の磁束の高周波成分ではより小さな誘導電流しか期待できない。要するに、コイルの巻き方としては、分布巻は不適当である。
4.非特許文献1では、基本周波数の2倍の高調波磁束でロータ側コイルを励磁するように説明するが、2次の高調波磁束で発生する誘導電流は整流合成したときに谷ができてしまう。また、誘導電流は磁束の時間変化が大きいほど大電流となるので、高くなり過ぎない3次程度の高調波磁束の方が有利である。
(本実施形態のシンクロナスリラクタンスモータの構造)
このことから、シンクロナスリラクタンスモータ10は、ロータティース22の隣接する側面間に形成される空間をロータスロット23として利用して、そのロータティース22の全体をコア材として有効利用して巻線を巻き付けて集中巻を形成することにより誘導子極コイル27を配置するとともに、そのロータスロット23の底部側に電磁石極コイル28を配置する。
誘導子極コイル27は、ステータティース12の内周面12aからロータティース22の外周面22aに鎖交する磁束の空間高調波成分(磁束密度の変化)により誘導電流を発生させて、電磁石極コイル28に供給する。電磁石極コイル28は、誘導子極コイル27から受け取った誘導電流を界磁電流として自己励磁することにより、磁束(電磁力)を発生させることができる。
これにより、シンクロナスリラクタンスモータ10は、図3に示す電機子極コイル14による磁束MGに加えて、その磁束MGに重畳する空間高調波成分で誘導子極コイル27に流れる誘導電流を電磁石極コイル28が受け取って磁束を発生させることができ、ロータティース22の外周面22aからステータティース12の内周面12aに鎖交させることができる。このため、主回転力を発生する電機子極コイル14の磁束MGとは別に鎖交する磁束が通過磁路を最短にしようとするリラクタンストルク(補助回転力)を得ることができ、ロータ21の相対回転を補助することができる。
この結果、シンクロナスリラクタンスモータ10は、ロータティース22のみの場合には利用することができずに、損失要因となっていた磁束の空間高調波成分をエネルギとして回収して出力することができ、ロータスロット23のみでは駆動力を発生させることができずに発生していたトルクリプルを低減することができる。
ここで、シンクロナスリラクタンスモータ10は、ロータティース22を含めてロータ21全体が電磁鋼板(磁性体)の積層構造を採用されることにより透磁率が高められて、ステータ11との間で磁束を高密度に鎖交可能にしており、ステータティース12の内周面12aに極力小さなエアギャップGを介して対面させることで、より多くの空間高調波磁束を鎖交させるようになっている。なお、このシンクロナスリラクタンスモータ10では、ロータティース22内を通過する磁束の方向がd軸となり、そのd軸と電気角において磁気的に直交する方向がq軸となる。
具体的には、シンクロナスリラクタンスモータ10は、ロータ21内に、ロータスロット23よりも回転軸側に位置して巻線の巻付作業用の空間として機能する第2ロータスロット33が形成されている。このシンクロナスリラクタンスモータ10は、第2ロータスロット33を分割するように、ロータスロット23の底部側中心から回転軸側に向かって延長した連結部35を形成することによりロータ21が回転軸を中心にして回転する回転体を構成するように形成されている。すなわち、第2ロータスロット33は、ロータスロット23の背面側の連結部35の回転方向の両側に位置して、ロータティース22の回転軸側に位置する空間に形成されている。
そして、シンクロナスリラクタンスモータ10は、ロータスロット23と第2ロータスロット33の間をコア材(電磁石コア)28aとして、連結部35の両側のロータスロット23毎に集中巻線することによりロータスロット23の底部側に電磁石極コイル28が配置されている。
このように、集中巻構造を採用することにより、誘導子極コイル27や電磁石極コイル28では、複数スロットに亘って周方向に巻線をする必要がなく、全体的に小型化することができる。また、誘導子極コイル27では、1次側での銅損損失を低減しつつ、低次である3次の空間高調波磁束の鎖交による誘導電流を効率よく発生させて、回収可能な損失エネルギを増加させることができる。
また、誘導子極コイル27には、3次の空間高調波磁束を利用することにより、上述の非特許文献1で説明する2次の空間高調波磁束を利用する場合よりも、効果的に誘導電流を発生させることができる。詳細には、誘導電流は2次よりも3次の空間高調波磁束を利用する方が磁束の時間変化を大きくして大電流にすることができ、効率よく回収することができる。なお、非特許文献1では、ロータの軸心側深部に巻線したコイルが図示されており、空間高調波の鎖交領域が考慮されておらず、有効利用できる構造になっていない。
電磁石極コイル28は、誘導子極コイル27から誘導電流(界磁電流)を受け取って自己励磁したときに、図4に等価磁気回路として図示するように、ロータ21内でq軸と直交する磁化方向D3、D4の電磁石28Mとして機能する。この電磁石極コイル28は、両端部の磁極のN極とS極がロータスロット23の背面側では連続して互いに対向する位置関係になるように形成することにより1つの電磁石28Mとして機能するようになっており、また、ロータティース22の回転軸側ではN極同士またはS極同士が互いに対向する位置関係になるように形成されている。
これにより、図3に示すように、ステータ11のステータティース12からロータ21のロータティース22に鎖交した磁束は、積極的に電磁石極コイル28内(コア材28a)のd軸を磁路として通過した後に隣接するロータティース22を抜けてステータティース12に鎖交することができる。また、電磁石極コイル28の自己励磁による磁束も、同一方向の磁路を通してロータティース22からステータティース12に鎖交させることができる。よって、シンクロナスリラクタンスモータ10では、反時計回り(counterclockwise)方向にロータ21を効果的に回転させるリラクタンストルクを効果的に発生させることができる。
このシンクロナスリラクタンスモータ10は、ロータスロット23内に、ロータティース22の外周面22a側の回転方向に対する端部をロータスロット23の内部側に向かってそれぞれ延長した第1、第2ブリッジ(延長部)32A、32Bと、ロータスロット23のq軸上の底面部を回転軸中心から外周面方向に延長して形成した支持部34と、を備えることにより永久磁石37A、37Bを挟み込む形態で支持するようになっている。
詳細には、永久磁石37A、37Bは、N極とS極の間の磁化方向D1、D2の厚さがその磁化方向D1、D2に対する直交方向の厚さと同等になるように形成されており、従来のIPM型モータでロータ内に埋め込む永久磁石よりも大幅に薄いブロック形状に形成されている。
ロータ21の外周面側の第1、第2ブリッジ32A、32Bには、ロータスロット23の中心側に対面する支持斜面32sが形成されるとともに、ロータ21の回転軸側の支持部34には、その支持斜面32sに対面して永久磁石37A、37Bを収容する支持溝34sが形成されている。
この構造により、永久磁石37A、37Bは、支持溝34s内に嵌め込んで支持斜面32sで押えるようにして磁化方向D1、D2がロータ21の外周面側に向かってV字型に開く形態で支持されている。
また、支持部34には、支持溝34s間をロータ21の外周面側(半径方向)に延長した薄板の補強ブリッジ34bが一体形成されているとともに、第1、第2ブリッジ32A、32Bには、ロータスロット23の内部側にさらに延長して回転軸側に屈曲させその補強ブリッジ34bに連続する薄板の補強ブリッジ32bが一体形成されている。
この構造により、第1、第2ブリッジ32A、32Bは、補強ブリッジ32bがそれぞれ補強ブリッジ34bに連結されることによりロータスロット23内を外部に向かって開放する形態のままにされる場合よりも、回転時に加わる遠心力などでも変形してしまうことを抑制することができる。
この補強ブリッジ32b、34bは、薄板形状に形成されていることからステータ11側から流れ込む磁束量を少なく抑えることができ、また、補強ブリッジ32bは、外周面側にステータ11に対する磁気抵抗を大きくする溝形状32Dを備えさせてステータ11から磁束が流れ込むのを制限するようになっている。
さらに、補強ブリッジ32b、34bは、磁気抵抗の高い永久磁石37A、37Bを介在させることにより、ロータティース22に対する磁気的な独立性が高められており、ロータティース22の突極比の低下を抑えつつ永久磁石37A、37Bを信頼性高くロータスロット23内に配置することを実現している。
また、永久磁石37A、37Bは、ロータスロット23毎の電磁石極コイル28の組数と同一の極数になるように設置されており、図3や図4に示すように、その磁化方向D1、D2を電磁石極コイル28により促進される磁束の鎖交方向に合わせるように(電磁石極コイル28の巻付方向に応じて)、N極とS極とが交互に支持部34側で連続してループ状の磁束を形成するように設置されている。
この永久磁石37A、37B付近を通過する磁束は、図3に示すように、補強ブリッジ32bを、q軸とd軸の間に位置してループ状の磁路を形成する鉄心として機能させて、ギャップGを介してステータ11側からロータ21側に鎖交した後に再度ステータ11側に戻る経路を積極的に選択して、リラクタンストルクを効果的に発生させるようになっている。
このとき、永久磁石37A、37Bが備える磁力(磁束)もギャップGを介してロータ21側からステータ11側に鎖交させて周方向に作用するマグネットトルクを発生させることができ、ロータ21を回転させるリラクタンストルクを補助することができる。
これにより、ステータ11からロータ21に鎖交する磁束は、ロータスロット23の配置領域においても、積極的にステータティース12からロータティース22に鎖交させた後に戻すようにして効果的に磁気結合させることができ、磁気抵抗に起因する脈動を小さくするとともに、全周に亘って周方向の電磁力を発生させて高品質かつ高トルクで反時計回りに効率よく回転させることができる。永久磁石37A、37Bは、ステータ11からロータ21への磁束の鎖交方向を促す磁力でも十分であることから、従来のIPMモータよりも極少量で十分である。すなわち、永久磁石37A、37Bは、磁力の大きなネオジウム磁石に限らず、フェライト磁石やアルニコ磁石など永久的に磁力が固定されている種別のものを適宜選択すればよい。
そして、電磁石極コイル28は、図5に示すように、全直列接続されている両端部が、並列接続されている誘導子極コイル27(27A、27B)の両端部にそれぞれダイオード29(29A、29B)を介して接続されている。ダイオード29は、誘導子極コイル27や電磁石極コイル28(28A、28B)を多極化させる場合でも電磁石極コイル28を全直列させることで使用数を抑えている。このダイオード29は、大量使用を回避するために、一般的なHブリッジ型の全波整流回路を形成するのではなく、それぞれ180度位相差になるように結線して、一方の誘導電流を反転させて半波整流出力する中性点クランプ型の半波整流回路を形成している。
これにより、シンクロナスリラクタンスモータ10では、誘導子極コイル27が透磁率の高い電磁鋼板のコア材27a(ロータティース22)に、ステータティース12の内周面12aからロータティース22の外周面22aに鎖交する磁束の空間高調波成分を通過させて誘導電流を効率よく発生させて回収することができる。誘導子極コイル27の個々に発生させる誘導電流は、ダイオード29で整流させた後に合流させて、直列接続させている電磁石極コイル28の個々に流すことができ、その電磁石極コイル28を効果的に自己励磁させて大きな磁束(電磁力)を発生させることができる。
この結果、シンクロナスリラクタンスモータ10は、励磁用と電磁石用とを共通のコイルにすると互いに干渉して弱め合ってしまう磁束を、その励磁用の誘導子極コイル27および電磁石用の電磁石極コイル28として分割して独立させることで、有効かつ平滑化させて利用することができ、効率よくエネルギとして回収して出力することができる。
また、誘導子極コイル27および電磁石極コイル28は、ロータ21の周方向に複数配置して多極化しているので、上述の非特許文献1に記載のような2極モータの場合よりも、ロータティース22の1歯当たりの鎖交する磁束量を周方向に分散化させることができ、個々のロータティース22に作用する電磁力(リラクタンストルク)も周方向に分散化させて電磁振動を抑えることができ、静寂化させることができる。
また、誘導子極コイル27および電磁石極コイル28は、電機子極コイル14も含めて、銅導体よりなる線材を採用して巻線形成されており、銅導体の採用により電気伝導率を高くして損失を低減することにより、効率よく誘導電流を発生させて界磁電流として利用することができる。このコイル27、28、14の線材として銅導体を採用する場合には、平角導線を採用するのが好ましく、これにより、コイル抵抗に起因する銅損や発熱損失を低減することができる。さらに、コイル27、28、14の形態としては、短辺側を内径面側になるように縦に巻いたエッジワイズコイルとすることにより、分布容量(浮遊容量)を小さくして周波数特性を向上させることができ、また、線材の周囲長が長いため表皮効果による抵抗増加を抑えて効率が低下してしまうことを抑制することができる。この結果、コイル27、28、14では、少ない銅導体量で、より多くの損失エネルギを回収可能になっている。なお、コイル27、28、14の線材は、銅導体に限るものではなく、他の目的を持って選択してもよく、例えば、比重が銅の1/3のアルミバー導体を採用して軽量化を図ってもよい。
さらに、電機子極コイル14は、ステータティース12の内周面12a側を正逆双方の周方向に突出させた鍔形状部12bを有するオープンタイプのステータスロット13に形成することにより、空間高調波磁束を効率よく誘導子極コイル27内に鎖交させるようにしている。
このような、シンクロナスリラクタンスモータ10としては、例えば、2.0×1.0mmの平角銅線の巻線を18ターンさせて誘導子極コイル27を形成するとともに、2.0×1.0mmの平角銅線の巻線を9ターンさせて電磁石極コイル28を形成している。なお、これらの数値は、ロータ21の外径に応じて、コイルを巻く空間スペースと主磁路の磁気飽和が起きない磁路幅を確保するなど、それぞれで許容できる最適な数値を組み合わせて設定すればよく、例えば、ステータ11の外径がφ200mmで極数12での一例を示している。
このシンクロナスリラクタンスモータ10では、図5の簡易モデルで示す誘導子極コイル27A、27B、電磁石極コイル28A、28Bに、図6〜図8に示す電流波形の電流が流れる。
詳細には、誘導子極コイル27Aで発生する誘導電流は、図6に示すように、ダイオード29Aで半波整流させて下流側へと供給する。誘導子極コイル27Bで発生する誘導電流は、図7に示すように、ダイオード29Bで半波整流して反転させて下流へと供給する。電磁石極コイル28A、28Bは、直列接続されていることから、図6と図7に示す誘導電流を合成した図8に示す合成波をそれぞれ界磁電流として流して電磁石として機能させることができる。要するに、誘導子極コイル27が従来には損失要因となっていた磁束の空間高調波をダイオード29A、29Bを利用してエネルギ源として回収し、電磁石極コイル28がその回収エネルギを有効利用して磁束を生成し、その磁束をステータ11の電機子極コイル14で発生する磁束に追加してロータ21を効率よく回転させる。
ここで、シンクロナスリラクタンスモータ10は、図6や図7に示すように、誘導子極コイル27で発生させて電磁石極コイル28に供給する界磁電流が電気角1周期中に3回の脈動が認められる3倍調波を主成分としていることが分かり、誘導子極コイル27に主に誘導電流を発生させているのは3次空間高調波磁束であることが分かる。
このように、シンクロナスリラクタンスモータ10は、電機子極コイル14で発生させる磁束をステータティース12からロータティース22に鎖交させることによるリラクタンストルクでロータ21が回転する。
このとき、シンクロナスリラクタンスモータ10では、図9に示すように、誘導子極コイル27に磁束の空間高調波成分が鎖交することにより、電磁石極コイル28に供給する界磁電流が発生して、従来、損失となっていた空間高調波を界磁エネルギ源として回収できていることが分かり、その界磁電流が上昇するにつれて、そのリラクタンストルクも上昇していることが分かる。
なお、図9は、時間高調波を考慮しない正弦波電流源で行った磁界解析結果を示すグラフであり、上段のトルクが下段の界磁電流の振幅に連動していることが分かるように、トルクと界磁電流の振幅の対応するもの同士の一部を破線で繋げている。
したがって、シンクロナスリラクタンスモータ10では、構造的な要因に起因して磁気抵抗の変動に伴う脈動が大きな集中リラクタンスモータに比べて、従来、損失となっていた空間高調波を界磁エネルギ源として回収することができ、永久磁石の使用量を転減しつつ、所謂、IPMモータに近いトルクを得ることが実現することができ、また、脈動の抑えられた高品質な回転を実現して、トルクリプルに起因して発生するステータ11の電磁振動(収縮・膨張をするk=0の振動モード)も低減させて、モータの電磁振動および電磁騒音も低減できる。
そして、シンクロナスリラクタンスモータ10は、3f次の空間高調波磁束(f=1、2、3・・・)を主に利用する構造として、ロータ21側の突極(ロータティース22)の数P:ステータ11側のステータスロット13の数Sが2:3になる構造に作製されている。例えば、3次の空間高調波磁束は、電機子極コイル14に入力する基本周波数よりも周波数が高いために短周期で脈動する。このため、ロータ21は、ロータティース22間の誘導子極コイル27に鎖交する磁束強度が変化することにより、効率的に誘導電流を発生させて、基本周波数の磁束に重畳する空間高調波成分の損失エネルギを効率よく回収して回転することができる。
また、このように、シンクロナスリラクタンスモータ10は、ロータ21側とステータ11側の間での相対的な磁気的作用の品質を決定する構造として、ロータティース突極数Pとステータスロット数Sの比としてP/S=2/3を採用するのは、電磁振動を低減して電磁騒音の小さな回転を実現するためである。
詳細には、磁束密度分布の磁界解析をすると、ロータティース突極数Pとステータスロット数Sの比に応じて、機械角360度内の周方向に磁束密度分布も分散化されるため、ステータ11に働く電磁力分布にも偏在が認められることになる。
これに対して、シンクロナスリラクタンスモータ10では、ロータティース突極数8とステータスロット数12を組み合わせる8P12S(P/S=2/3)構造を採用することにより、機械角360度の全周に亘って均等な密度分布となる磁束を鎖交させることができ、ロータ21をステータ11内で高品質に回転させることができる。
これにより、シンクロナスリラクタンスモータ10では、空間高調波磁束を損失とすることなく利用して、回転動作させることができ、損失エネルギを効率よく回収して、電磁振動を大幅に低減し静寂性高く回転させることができる。
本実施形態の他の態様としては、シンクロナスリラクタンスモータ10のようなラジアルギャップ構造の場合には、ステータ11やロータ21を電磁鋼板の積層構造で作製することが多用されているが、これに限るものではなく、例えば、鉄粉などの磁性を有する粒子の表面を絶縁被覆処理した軟磁性複合粉材(SoftMagnetic Composites)をさらに鉄粉圧縮成形および熱処理製造した圧粉磁心、所謂、SMCコアを採用してもよい。
さらに、シンクロナスリラクタンスモータ10のようなラジアルギャップ構造に限らずに、アキシャルギャップ構造に作製してもよい。この場合には、例えば、図10に示すマルチギャップ型構造に作製すればよい。このマルチギャップ型構造では、ステータ11側にはロータ21の軸方向端面側に対面するアキシャルステータ31を形成して、延長した電機子極コイル14´を巻き掛ける。また、ロータ21側には、軸方向端面側でそのアキシャルステータ31に対面する誘導子極コイル47をコア材47aに巻き掛ける構造を追加し、そのコア材47aとの間に不図示の永久磁石を挟み込ませればよい。
扁平の大径モータ構造に作製する場合には、図示することは省略するが、インナステータとアウタステータとの間に回転自在にロータを収容するダブルギャップ型モータ構造を採用してもよい。このダブルギャップ型モータ構造では、インナステータ側に誘導子極コイルを配置して損失エネルギを回収し、アウタステータ側に電磁石極コイルを配置してトルクを発生させる構造とすることでも大幅にトルクを向上させることができる。また、ダブルギャップ型に限らず、シングルステータ構造では、ラジアルギャップ方向に電磁石極コイルを配置し、アキシャルギャップ方向に誘導子極コイルを配置した構造とすることでも大幅にトルクを向上させることができる。
さらに、シンクロナスリラクタンスモータ10は、車載用に限定されるものではなく、例えば、風力発電や、工作機械などの駆動源として好適に採用することができる。
本発明の実施形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。
また、本発明の第1の態様によれば、ステータ側の電機子極コイルで生成される磁束をロータ側の突極に鎖交させることにより主回転力が発生するのと同時に、その磁束に重畳する空間高調波成分がロータ側の誘導子極コイルに鎖交して誘導電流が発生する。その誘導電流は整流素子で整流して界磁電流として電磁石極コイルに供給(通電)することにより、その電磁石極コイルで電磁力(磁束)を発生させてステータ側からの磁束と協働させることができ、主回転力を補助する補助回転力を発生させてロータ側を回転させることができる。
さらに加えて、主回転力と補助回転力とで回転するロータは、埋め込まれている永久磁石がステータに対して磁気力を働かせて協働させることにより、より大きな力で回転させることができる。
したがって、ロータ側の電磁石極コイルに別途エネルギ供給をすることなく、従来には有効利用できていなかった(鉄損の発生要因になっていた)磁束の空間高調波成分を利用しつつ、永久磁石の磁気力と協働して、ロータを高効率回転させることができる。このとき、誘導子極コイルと電磁石極コイルとに同一電流が流れることなく、互いに干渉して損失となってしまうことがない。この結果、損失エネルギを効果的に回収してシンクロナスリラクタンスモータのトルクを向上させつつ、永久磁石の磁気力をも利用してロータを回転させることができる。
また、本発明の第2の態様によれば、永久磁石はロータティース間のロータスロット内に配置される。このため、永久磁石の設置の有無に影響なく、所望の寸法形状にロータティースを作製して最適な突極比にすることができ、また、永久磁石に影響されることなく、空間高調波成分を鎖交させることができる。したがって、リラクタンストルクを有効に発生させることができる。
また、誘導子極コイルを巻き掛けるロータティース間に永久磁石を配置するので、単なる空隙にすることなく、ロータの外周面の周方向における磁束の変動を小さくすることができ、ロータティース間でもステータに対して磁束を鎖交させることができる。したがって、ロータを回転させるトルクの脈動を小さくすることができ、高品質な回転を実現することができる。
また、本発明の第3の態様によれば、回転軸側となるロータスロット底部の電磁石コアに電磁石極コイルを巻き掛けることにより、その電磁石極コイルに妨げられることなく、空間高調波成分を含む磁束が鎖交するロータの外周面側に十分なコイルターン数の誘導子極コイルを配置することができる。
したがって、磁束の空間高調波成分を有効に効率よく回収することができ、電磁石トルクを有効に発生させることができる。
また、本発明の第4の態様によれば、ロータスロット底部の電磁石コアの両端部をN極およびS極にする電磁石極コイルがロータティースの両隣で対称となる位置関係となる電磁石として機能することができ、ロータティース内を磁路としてステータ側との間で鎖交させる磁束を発生・案内することができる。したがって、ロータティースでトルクを有効に発生させることができる。
また、永久磁石がロータティース間の外周面側に位置してステータとの間にループ状の磁路を形成し鎖交させるので、磁気力がロータの回転力として寄与する。したがって、永久磁石の磁力も有効に利用してトルクを効率よく発生させることができる。
また、本発明の第5の態様によれば、ロータの外周面側に向かってV字型に開くように設置されている第1、第2永久磁石の一端側のN極とS極の間に、ステータとの間でループ状に鎖交する磁束を形成するので、第1、第2永久磁石を支持する第1、第2延長部を利用してステータとの間で鎖交する磁束を積極的に案内することができ、ロータの外周面を広く使って磁束を鎖交させることができる。
したがって、脈動を大きくすることなく、トルクを発生させることができる。また、第1、第2延長部間を繋げた場合には、ステータティース間の磁気抵抗の変化を緩やかにして、より高品質なトルクを発生させるようにすることもできる。

10 シンクロナスリラクタンスモータ
11 ステータ
12 ステータティース
12a 内周面
13 ステータスロット
14 電機子極コイル
21 ロータ
22 ロータティース
22a 外周面
23 ロータスロット
27、27A、27B 誘導子極コイル
27a、28a コア材
28、28A、28B 電磁石極コイル
29、29A、29B ダイオード
32A、32B ブリッジ
32D 溝形状
32b、34b 補強ブリッジ
32s 支持斜面
34 支持部
34s 支持溝
35 連結部
37A、37B 永久磁石

Claims (4)

  1. 複数相の駆動電流が入力される電機子極コイルを有するステータと、前記電機子極コイルに発生する磁束が鎖交する複数の突極を有するロータと、を備えるシンクロナスリラクタンスモータであって、
    前記ロータは、
    前記電機子極コイルにおいて発生した前記磁束に重畳する空間高調波成分により誘導電流を発生する誘導子極コイルと、
    前記誘導子極コイルで発生した前記誘導電流を整流する整流素子と、
    前記整流素子で整流された前記誘導電流が界磁電流として通電されることにより該ロータの回転力を補助する電磁力を発生する電磁石極コイルと、
    回転軸側から前記ステータの内周面側に向かって延在する複数のロータティースと、
    隣り合う前記ロータティース間に配置されているロータスロットと、
    前記ロータスロットの底部から前記ロータの外周面側に向かって延在する支持部と、
    前記ロータティースの外周面側において前記ロータスロット側に向かって延在する延長部と、
    前記延長部と前記支持部との間において前記ロータの外周面側に向かってV字型に設置される永久磁石と、を備え
    前記永久磁石は、第1永久磁石および第2永久磁石を含み、
    当該第1永久磁石および第2永久磁石のうち、いずれか一方の永久磁石のロータ外周面側端部にN極が配置されており、他方の永久磁石のロータ外周面側端部にS極が配置されていることを特徴とするシンクロナスリラクタンスモータ。
  2. 前記誘導子極コイルは、前記ロータティースに巻き掛けて形成されるとともに、前記ロータスロット内に配置されることを特徴とする請求項1に記載のシンクロナスリラクタンスモータ。
  3. 前記ロータは、
    前記ロータスロットの底部に前記電磁石極コイルを巻き掛ける電磁石コアが形成されており、
    前記誘導子極コイルは、前記ロータティースの外周側に配置されており、
    前記電磁石極コイルは、前記ロータティースの回転軸側に配置されていることを特徴とする請求項2に記載のシンクロナスリラクタンスモータ。
  4. 前記電磁石極コイルは、
    前記ロータティースを挟んでN極同士およびS極同士を対向させるように設置され、
    前記永久磁石は、
    前記ロータスロット内において前記ロータの外周面側に設置されていることを特徴とする請求項3に記載のシンクロナスリラクタンスモータ。
JP2013152894A 2013-07-23 2013-07-23 シンクロナスリラクタンスモータ Active JP6303311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013152894A JP6303311B2 (ja) 2013-07-23 2013-07-23 シンクロナスリラクタンスモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013152894A JP6303311B2 (ja) 2013-07-23 2013-07-23 シンクロナスリラクタンスモータ

Publications (2)

Publication Number Publication Date
JP2015023767A JP2015023767A (ja) 2015-02-02
JP6303311B2 true JP6303311B2 (ja) 2018-04-04

Family

ID=52487778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013152894A Active JP6303311B2 (ja) 2013-07-23 2013-07-23 シンクロナスリラクタンスモータ

Country Status (1)

Country Link
JP (1) JP6303311B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6507721B2 (ja) * 2015-03-05 2019-05-08 スズキ株式会社 回転電機および回転電機の電流入力制御方法
JP6424729B2 (ja) * 2015-05-07 2018-11-21 スズキ株式会社 回転電機
JP6464917B2 (ja) * 2015-05-13 2019-02-06 株式会社デンソー 界磁巻線型同期機
JP6544151B2 (ja) * 2015-08-31 2019-07-17 スズキ株式会社 回転電機
JP2017093147A (ja) * 2015-11-10 2017-05-25 スズキ株式会社 回転電機
JP6668844B2 (ja) * 2016-03-14 2020-03-18 スズキ株式会社 回転電機
JP2017169281A (ja) * 2016-03-14 2017-09-21 スズキ株式会社 回転電機
JP6645352B2 (ja) * 2016-05-12 2020-02-14 スズキ株式会社 回転電機
JP6766575B2 (ja) * 2016-10-06 2020-10-14 スズキ株式会社 回転電機
CN113788099B (zh) * 2021-06-04 2024-01-12 李宙按 一种电动车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580683B2 (ja) * 2004-05-17 2010-11-17 株式会社東芝 永久磁石式リラクタンス型回転電機
JP5302527B2 (ja) * 2007-10-29 2013-10-02 株式会社豊田中央研究所 回転電機及びその駆動制御装置
JP2010022185A (ja) * 2008-06-13 2010-01-28 Suri-Ai:Kk 同期機
JP5760895B2 (ja) * 2011-09-22 2015-08-12 トヨタ自動車株式会社 回転電機制御システム

Also Published As

Publication number Publication date
JP2015023767A (ja) 2015-02-02

Similar Documents

Publication Publication Date Title
JP6303311B2 (ja) シンクロナスリラクタンスモータ
JP6142601B2 (ja) リラクタンスモータ
JP4926107B2 (ja) 回転電機
JP6332011B2 (ja) アキシャルギャップ型の回転電機
JP5682600B2 (ja) 回転電機のロータ
JP6115360B2 (ja) リラクタンスモータ
JP6331949B2 (ja) モータ
US7902700B1 (en) Low harmonic loss brushless motor
JP6326938B2 (ja) 電動回転機
JP2011078202A (ja) アキシャルギャップモータ
JP2016540488A (ja) 誘導分極bldcモータ
JP5782850B2 (ja) 電磁石型回転電機
JP6308076B2 (ja) 回転電機
JP6561693B2 (ja) 回転電機
JP2007202292A (ja) 励磁機
JP5694062B2 (ja) 電磁石型回転電機
JP5337382B2 (ja) 永久磁石式同期モータ
JP6344144B2 (ja) リラクタンスモータ
JP2016197941A (ja) 回転電機
Zhao et al. Dual-stator, spoke-type ferrite permanent magnet motor with phase-group concentrated-coil windings using auxiliary inner stator
JP2014131373A (ja) 永久磁石同期機
JP7355100B2 (ja) 回転電機
JP2008263681A (ja) 交流モータ
JP2017184532A (ja) 回転電機
Okamoto et al. Influence of magnet and flux barrier arrangement for IPMSM with concentrated winding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R151 Written notification of patent or utility model registration

Ref document number: 6303311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151