JP6293838B2 - 回転式単相電磁アクチュエーター - Google Patents

回転式単相電磁アクチュエーター Download PDF

Info

Publication number
JP6293838B2
JP6293838B2 JP2016195869A JP2016195869A JP6293838B2 JP 6293838 B2 JP6293838 B2 JP 6293838B2 JP 2016195869 A JP2016195869 A JP 2016195869A JP 2016195869 A JP2016195869 A JP 2016195869A JP 6293838 B2 JP6293838 B2 JP 6293838B2
Authority
JP
Japan
Prior art keywords
stator
rotor
actuator
stators
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016195869A
Other languages
English (en)
Other versions
JP2017022995A (ja
Inventor
ジヤマル・バトウ
Original Assignee
バトウ,ジヤマル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バトウ,ジヤマル filed Critical バトウ,ジヤマル
Publication of JP2017022995A publication Critical patent/JP2017022995A/ja
Application granted granted Critical
Publication of JP6293838B2 publication Critical patent/JP6293838B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/141Stator cores with salient poles consisting of C-shaped cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/34Reciprocating, oscillating or vibrating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

優先権主張
本出願は2009年11月4日出願、名称“回転式単相電磁アクチュエーター”の米国特許出願第12/612,627号明細書の優先権を有するPCT出願である。
本発明は電磁アクチュエーター及びサーボ−アクチュエーターに関する。
限定した角度のブラシレス直流回転アクチュエーターは公知であり、商業的に入手可能である。1つのこの様なアクチュエーターは特許文献2で開示されている。もう1つは特許文献3で開示されている。
現在入手可能な、上記で確認された参考文献で示される該アクチュエーターは“トルクモーター”として商業的に公知であり、そして回転部材からなる磁石に取り付けられた強磁性ヨークを備える。該ヨークは、動作用に該回転部材を充分強化し、取り付けられた磁石の磁気回路を閉じるために、必要と考えられる。しかし、該ヨークの存在は、動的性能を下げ、そして該回転部材上に、該部材を固定子の方へ引きつける不平衡磁力を創る片側式固定子構造を有する高慣性モーメントの構造体に帰着する。
この様なアクチュエーターの1欠点は該アクチュエーター自身の慣性を動かすために電力消費の約20%以上が使われ、動的性能を下げることである。応用品のデューテイサイクルにより、この無駄な電力消費値は遙かに高く成り得る。
第2の欠点は、該不平衡設計のために該ローター磁石は該固定子構造体に向かう磁気的引力を有し、該引力が、該ローターの必要な回転自由度をなお許しながら、軸方向停止機能を行うために高価なスラストボールベアリングの使用を余儀なくさせることである。この軸方向吸引力の1部は或る応用品で使用される時、振動に耐えるために有用であるが、いずれにしても、該ローター回転は摩擦トルクにさらされるので、回転及び出力トルクを創るため使われる一部の磁力は浪費される。
第3の欠点は電磁束の漏洩である。4つのコイルと固定子極が相互に非常に近く配置される必要があることは、図1及び図2に於ける様に従来技術の構造を見ることにより明らかに理解される。ローターヨーク及び極の間の狭い磁気エアギャップを以てしても、高トルク創生に必要な高電流で飽和が現れると、大抵のコイル磁束はトルクを創る該磁石を通過せず、代わりに隣接コイル上で磁気回路を閉じる。
第4の欠点は、サーボ応用品で、該アクチュエーター磁石は位置センサーレシーバーを駆動するためには使われ得ず、第2の別の磁石が該ヨークに取り付けられる必要があり、該回転部材にコストと重量を付加することである。
第5の欠点は、該固定子とコイルの製造と組立に必要な物理的空間のために、従来技術の4極片側アクチュエーターの現実の有用ストロークは、大抵の応用で好ましい90度の理論的ストロークに比較して約75度であることである。同じ物理的アクチュエーター寸法の従来技術の2極構造の使用は、90度の有用なストロークを作るが、しかしながらトルクは50%減じられ、該減少はこの様なアクチュエーターを望ましくなくし、多くの応用で使われなくする。そして、必要なトルクを得るためにアクチュエーター寸法を増すことはまた、最終寸法、重量及びコストの故に該アクチュエーターを望ましくなくする。
米国特許出願第12/612,627号明細書、2009年11月4日出願 米国特許第5,512,871号、1996年4月30日発行 米国特許第6,313,553号、2001年11月6日発行
文脈が他の様に示さない限り、本発明の説明では下記定義が適用され、モーター設計の技術の当業者には公知であり、理解される。
用語“固定子”は直線又は回転運動に於いて固定された1つ又は多数片(複数を含む)の高透磁率強磁性構造体を意味する。
用語“能動固定子”は極を有し、磁束を作るために励磁コイル捲き線を受けるよう構成された“固定子”を意味する。
用語“受動固定子”は磁束用通路を提供するが、何等励磁コイル捲き線を組み入れない固定子を意味する。例えば、“受動固定子”は高透磁率強磁性プレートであってもよい。
用語“固定子回路”は該極上に置かれた励磁コイルを加えた“能動固定子”を意味する。
用語“固定子組立体”はオーバーモールドされた“固定子回路”又はオーバーモールドされた“受動固定子”を意味する。
表記Eを有する用語“エアギャップ”又は“磁気エアギャップ”はローターの存在しない、軸方向に隔てられた固定子間の距離を意味する。
用語“極対”は磁石のN極及びS極を意味する。
用語“多極の”は1より多い極対を有するよう磁化された磁石を意味する。
用語“ローター”又は“ローター磁石”又は“ディスク磁石ローター”は半径方向の境界線(radial demarcation)又は転移線(transition line)により規定された極対を有する、軸方向に磁化された多極ディスク磁石を意味する。
用語“応用品”は本アクチュエーターが取り付けられそして該アクチュエーターにより運転されるデバイスを意味する。
用語“2極構成”又は“2極アクチュエーター”等はローターの1つの側に少なくとも1つの2極能動的固定子があり、該ロ−ターが2つの極対を有する実施例を意味する。
用語“4極構成”又は“4極アクチュエーター”等はローターの1つの側に少なくとも1つの4極能動的固定子があり、該ロ−ターが4つの極対を有する実施例を意味する。
用語“慣性組立体”は性能指数AKを計算する目的で慣性の計算に寄与する全アクチュエーター部分を意味する。
1実施例の本発明はその有用なストロークとして知られる限定された移動角距離で、実質的に一定のトルクそして電流に比例するトルクを生じる回転式単相アクチュエーターを有する電磁アクチュエーターに関し、前記有用なストロークは典型的に60度から110度の間にある。該アクチュエーターは、軸方向に間隙を介して、相互に面し、そしてそれらの間隔がエアギャップを確立する、2又は4極を有する固定子と、該エアギャップ内の2又は4極対の磁化された多極ディスク磁石から成るローターと、を備える。他の特徴と実施例は下記で説明される。
もう1つの実施例では、該ローターの1つの側に能動固定子が、そして該ローターのもう1つの側に受動固定子がある。
回転式であれ或いは直線であれ、本発明が連携する応用品の移動の終点は、該アクチュエーターの有用ストロークの適当な始点及び終点に機械的に連結される。該アクチュエーターの回転はまた、内部停止部によりその有用なストロ−クに限定されてもよい。該アクチュエーターの応用品は直接回転運動を提供するためにその出力トルクを使うか、又は該回転運動のトルクを直線運動力に変換するために、カムとフォローワー又はクランクとスライダーの様な回転−直線機構を使ってもよい。
本発明は、従来技術のアクチュエーターと実質的に等価な寸法で、等しいか又はより高いトルクと、より早い動的応答時間と、を伴いながら、その有用ストロークに亘り一定トルクそして電流に比例したトルクを生ずる。1実施例では、90°の有用ストロークに亘り、電流に比例した90°一定トルクが利用可能である。他の実施例では、一定トルクでより短いストロークが利用可能である。
本発明は、エアコン、排気ガス再循環バルブ、そしてターボチャージャーベーン及びウエーストゲートの様な種々の自動車応用品の制御に特定の応用を見出す。
本発明は、ローターの相対する側での固定子の使用が、等価の寸法及び空間で、従来技術に於けるより大きな動的効果を可能にして、従来技術で見られる問題を回避すると言う認識に基づいている。本発明の原理に依れば、強磁性ヨークに回転磁石を取り付けるよりも寧ろ、該ヨークが取り除かれる。ローターの両側上で相対して面する、2つの固定された、高透磁率強磁性磁気固定子組立体が使われる。ディスク磁石ローターの各側の固定子組立体の使用は、従来技術で使われた強磁性ヨークを除去する。
少なくとも1つの固定子組立体が励起されると、固定子組立体のローターの磁場との相互作用の効果のためにアクチュエータートルクが達成される。1実施例では、該固定子組立体は同様であるが、しかしながら同様でない固定子組立体を有する実施例も、下記で説明する様に有用である。
本発明は、軸方向に間隙を介して相対して面する固定子組立体の最も近い面間のエアギャップEを利用し、該エアギャップ内のディスク磁石ローターは、該ディスク磁石ローターの両側に間隔e1とe2を規定する。1実施例ではe1=e2である。しかしながら、下記説明で見られる様に、e1≠e2であるよう等しくない間隔を有することが有利である時がある。
本発明の様な磁気構造体では、固定子励磁コイルに電流が印加されない時そして該コイルが励起される時も、ローター磁石を各側で固定子に引く“静的”軸方向磁力がある。該コイルに電流が印加されると、該コイルは励起され、それによりそれらの磁場を発生し、それらの磁場のローター磁石の場との相互作用は該シャフトを回し、応用品を駆動するト
ルクを創る。
ローター磁石と、各側の隣接した固定子組立体と、の間の軸方向力の管理は本発明の特徴である。該ローター磁石と該固定子組立体との間に作用する静的軸方向磁力は、該ローターの各側で使われる固定子組立体の種類及び/又はエアギャップE内のローターの軸方向位置により決まる。自動車応用品の様な或る応用品では、軸方向の振動に対抗するのを助けるためにシャフトに軸方向“プリロード”力を導入するのが望ましい。本発明では、この様なバイアス力(biasing force)の導入は、ローターを1つの固定子組立体へ僅かに近づけて配置するか、又は1つの固定子組立体に向かって該ローターにバイアスをかける不平衡軸方向力を働かせるために2つの幾分異なる固定子組立体を使うか、何れかで、容易に達成される。この様なバイアス力の導入は本発明の出力トルクを減じることはない。
本発明の実施例では、該ローターの各側の固定子組立体の位置は、内方へ面するリップを有する非磁性円形捲きベルトにより提供され、該リップは連続していても、不連続であってもよく、磁気エアギャップEに等しい幅を有する。該リップは、固定子組立体が対して設置される座面を有し、かくして容易なアクチュエーター組立を可能にして、低製造コストのみならず高寸法精度に帰着する。かくして、該磁気的エアギャップEは該ベルトの内方へ面するリップの幅により規定される。
代わりの実施例では、該ローターの1つの側の固定子組立体は、磁気回路を閉じるよう選ばれる厚さの、適当な高透磁率強磁性プレート(受動固定子)であってもよい。もし高透磁率強磁性プレートが使われるなら、アクチュエータートルク量は該ローターの各側に能動的固定子を有する実施例により提供されるトルク量より減じられるが、何故ならば追加の磁束を創るコイルが該プレート上に無いからである。
上記の様に、固定子回路は、固定子組立体を作る非磁性材料内に同様にオーバーモールドされ、そして該ローター及びシャフトと共に、組み立てられ、前記非磁性円形捲きベルトにより連結される。
しかしながら、もう1つの実施例では、一体化された固定子組立体を創るために、第1固定子回路のオーバーモールドはまた、普通のモールドと共通に成形された該固定子回路の基部側上に、もう1つの固定子組立体の取り付けと間隔空けを可能にするのに役立つ該ベルトの部分を組み込む。該ベルトと、設置用耳部と一緒のリップ座面と、は一体化された固定子組立体を規定するために、該固定子回路の極面側上で該モールドと共通に成形される。望ましいベルトの他の特徴と同様に共通のモールド部分として180°、120°又は90°にそれぞれ隔てられて2、3又は4つの設置用耳部があってもよい。この実施例では、ローター及びシャフトを該一体化された固定子組立体内に組立後、磁気的エアギャプEを規定するために、第2の別にオーバーモールドされた固定子組立体が該ベルトのリップ座面に対し座し、再び容易な組立、高寸法精度そして低製造コストを可能にする。
該非磁性捲きベルトと間隔空け用リップは、アクチュエーターローター磁束を利用する可変磁場情報を受けるためにアクチュエーター磁気エアギャップEの近くにセンサーを配置する埋め込みローター位置センサーレシーバーを有してもよい。この実施例では、可変エアギャップそしてかくしてセンサー用可変磁場を提供するために、該アクチュエーターローター磁石は非円形断面、例えば楕円を有するか、又はそのエッジに特定の磁化パターンを有するか何れかである。この実施例は、アクチュエーターシャフトの1端に付帯コストと空間的ペナルテイを伴う第2エミッタ磁石とセンサーレシーバーの配置の必要を取り除く。
前記を与えられると、本発明の2つの能動固定子を有する2極回転アクチュエーターの下記基本説明が提供される。該アクチュエーターの出力トルクは、モーター設計の当業者に公知であるローレンツ力の法則の原理を適用して開発される。ローター磁石はその厚さを軸方向に通して磁化される。磁化は磁化ヘッドで実現される。固定子極は銅又はアルミニウムマグネットワイヤで捲かれ、それぞれ反対の捲き線方向に、励起されると、異なる極性の極が各固定子組立体内に誘導される。固定子組立体は、ローターが中に存在するエアギャップを規定するために、軸方向に隔てられ、相互に向き合っているローターの各側に配置される。励起されると、ローターの各側の固定子組立体の面している極は反対極性であり、各ローター磁石極は反対極性の固定子極に面する。励起されたコイルにより創られる磁束はローター磁石の磁束と相互作用し、該アクチュエーターの出力トルクを創る。
2極設計では、本発明は180度の合計ストロークを有し、そのストローク内には、トルクが一定で印加電流に比例する90度の期間がある。これは、自動車用エアコンバルブ、排気ガス再循環バルブ、そして自動車用可変形状ターボチャージャー及びウエーストゲートの様な種々の応用品の制御用に有用な範囲である。
本発明はまた、交互極性を有する少なくとも1つの固定子組立体の4つの極と、交互極性のローターの4つの極対と、を備える4極構成で実施されてもよい。4極設計では、合計ストロークは90度であり、50度の有用で、一定トルクと比例期間を有する。
ローター磁石は、衝撃及び振動力に耐えるよう高強度であり、強磁性ヨークを利用する従来技術の設計に比較して低慣性を有する。ローターと相互作用するよう集中磁束を提供するローターの各側の固定子組立体の使用は高出力トルクを提供する。かくして、本発明の動的性能は従来設計に優り、より大きいトルクと一緒に、適用される応用品の遙かに精密な制御を提供する。
本発明の他の実施例はリップを有するベルトの形でエアギャップ距離を確立する手段を提供する。
本発明の他の特徴と実施例は下記で説明される。
従来技術のアクチュエーターを図解する断面図である。 従来技術の固定子、極及びコイルの構成の図である。 本発明の例示用アクチュエーターの斜視図を示す。 本発明の例示用部品の分解図である。 本発明の例示用固定子構造体の斜視図である。 本発明の例示用固定子回路の斜視図である。 本発明の例示用のオーバーモールドされた固定子組立体の斜視図である。 図3の8−8線を通る断面図である。 固定子構造体の図5の矢印Aから見た側面図の略図である。 ローター角度位置を決めるためベルト内に配置されたセンサーレシーバーと共に、磁気エミッタとしての非円形ローター磁石を示す図である。 ローター角度位置を決めるため結合ベルト内に配置されたセンサーレシーバーと共に、磁気エミッタとして円周部分に沿って変化する磁化作用を有するローター部分を示す略図である。 結合ベルトの斜視図である。 固定子結合ベルトの部分的斜視図である。 回転位置レシーバーがカバー内のプリント回路基板又はリードフレームに設置され、磁場エミッタがシャフトに設置された本発明の実施例の分解斜視図である。 本発明の2極の実施例の動作を示しており、そのうち図14aは固定子極の中心から−45°の用意位置を示し、図14bは固定子極の中心から+45°で、コイルが励起された最終位置を示す。 本発明の2極の実施例のトルク曲線のグラフ線図である。 本発明の4極の実施例の図を示しており、そのうち図16aは斜視図であり、図16bは固定子極の中心から−25°の用意位置を示し、図16cは固定子極の中心から+25°で、コイルが励起された最終位置を示す。 本発明の4極の実施例のトルク曲線のグラフ線図である。 2つの非対称固定子構造体を使う本発明の実施例の図であり、そのうち図18aは組み立てられた装置の斜視図であり、図18bは図18aの1つの非対称固定子構造体の斜視図であり、図18cは図18aのもう1つの非対称固定子構造体の斜視図である。 ローターの1つの側に能動固定子を、該ローターの相対する側に磁気回路を閉じるための、1枚のプレートの形の受動固定子を、有する実施例の図である。 アクチュエーターが回転運動で空気制御バルブを直接駆動する実施例の図である。 1つの固定子のオーバーモールドが結合ベルトと共通にモールドされる一体化された固定子組立体の実施例の図である。 空間空け用リップが不連続である実施例の部分図である。
図1は特許文献2の図6から取られた図解用の従来技術のアクチュエーターの断面図である。該アクチュエーターは強磁性ヨーク112に接合された磁化されたディスク102から成り、かくして可動デバイス100を構成し、該可動デバイスは結合シャフト110に連結される。静止部分108は静止固定子組立体を有する。スラストボールベアリング104は該可動デバイス100の静止固定子組立体108の方への軸方向運動を制限するため必要である。該ヨークは該磁化されたディスクと共に回転し、かくして全ての目的用に、内容がそれら全体でここに組み入れられる特許文献2及び3の様な従来技術に関連して上記で述べられた問題を招来することは注意されるべきである。
図2は従来技術の固定子回路の図であり、固定子ベース200内に機械的に圧入された固定子極206を示す。4つの固定子極206の各々は、この従来技術のアクチュエーターの場合約75°に過ぎない最大角度移動を、90度の理論的移動に出来るだけ近く達せさせるために、それらのヘッドのレベルに磁極片202を有する。該アクチュエーター用の磁束を発生するため使われる給電コイル204は4つの固定子極206の各々の上に置かれる。望ましい高トルク創生用の高電流で飽和が現れると、コイル204の磁束のほとんどは該トルクを創るローター磁石を通過せず、代って隣接コイル204上で磁束自身を閉じる。
図3は本発明の原理による実施例のアクチュエーター10の全体図を示す。該アクチュエーターは第1及び第2の類似のオーバーモールドされた固定子組立体12と、結合ベルト14と、更に図4で説明するようなすべての他の部品とを有する。
図4は本発明の例示用実施例10の組立分解図である。該アクチュエーターは、第1及び第2のオーバーモールドされた固定子組立体12、結合ベルト14そして磁化されたディスクローター16を有する。ディスクローター16はその回転をシャフトに加える結合部材20によりシャフト18に取り付けられる。該ローター16は、図8、11及び12で図解される内方へ面するリップ22と座面24及び26とを用いて結合ベルト14により規定される、該2つの固定子組立体12間の、エアギャップ内に配置される。両固定子組立体12が対するよう位置する第1及び第2の座面24及び26はエアギャップEを規
定する。1実施例の結合ベルト14は、以下でより明らかになる様に充分に堅い円形ベルトとして構成される。該ベルトは下記で説明される様に係合クリップ用の開口部を有する切り欠き耳部28を備える。該固定子組立体12は、座面24及び26に対して位置付けられるディスク磁石ローター16用の磁気エアギャップEを規定する仕方で、相対する方向から該ベルト内に位置付けられ、図示の様に、対応する座面24及び26上に設置される。寸法e1及びe2は、固定子極端面36(図5参照)から該ローターの接面までの距離である。典型的実施例では、ディスク磁石ローター16は該固定子組立体から等しく隔てられた、すなわちe1=e2の、磁気エアギャップEの中心に配置される。シャフト18は該固定子組立体12に対し軸方向に固定され、ローター16はまた、該ユニットが組み立てられた時、該ローター16が磁気エアギャップE内で軸方向に固定した位置に存在するように軸方向に固定され、シャフト18上で結合されることは理解される。典型的応用では、該ローター16は、該ローターの各側で、等しい間隔でそして軸方向に対称な類似の固定子組立体により提供される磁力の対称性により、何等の正味の軸方向力無しに保持される。しかしながら、振動環境がある時の様な本発明の或る応用品では、1方向の振動に抵抗し、それによりその軸方向位置に応用負荷を保持するのを助けるために、該ローター16に軸方向力を導入することが有利である。1方向の振動に抵抗するように、出力トルクの減少無しに該ローター16上に望ましい軸方向力を提供するために、シャフト18上のディスク磁石ローター16の位置はどちらかの固定子組立体12の方へ軸方向に調整されてもよい。該ローター16上に軸方向力を誘導するもう1つの手段が図18a−18cを参照して下記で説明される。該ローター上の軸方向力のこの調整は2極及び4極の両構成で実施されてもよい。
本発明が意図された応用品では、出来るだけ短い時間で応用品を位置付けるために、高い動的応答能力が重要な要求であることを注意すべきである。必要なトルクを生じ、応用品をその命じられた位置に位置付けるアクチュエーターの能力の測度は、性能指数(figures of merit)の使用により提供され、ここでは、約1000に等しいかそれより大きい絶対数値を有する性能指数AKが規定され、該指数はモーター急峻度をモーター慣性Jmで割り算した比により下記の様に計算され、ここでモーター急峻度はモーター定数Kmの2乗に等しく、
Figure 0006293838
なお、ここでKmは入力電力に基づき出力トルクを生じるモーターの能力を示しており、種々のモーターを比較するのに有用な固有の性能指数である。Kmは出力トルク(T)の入力電力(W)の平方根との比に比例する。すなわち
Figure 0006293838
である。
mは図4で見られる様にローター16の慣性と、シャフト18の慣性とそして結合部材20の慣性の合計である。モーター定数Km、モーター急峻度、モーター慣性Jm、トルクTそして入力電力Wはモーター設計の当業者に公知の項目と性能指数である。
ここに説明される2極構成の例示用アクチュエーターは少なくとも1,000に等しい
性能指数AKを提供するよう表1のパラメーターで作られてもよい。与えられた例では下記の様である。
Figure 0006293838
Figure 0006293838
図5は、有利には、金属粉焼結過程で作られた本発明の固定子構造体30の図である。この例示用版では、該固定子構造体30は2つの極32とベース34を有する。該極32は端面36を有する。固定子構造体30はU字型形状を規定する。
図6は成形ボビン44上に捲かれ、電気接続用アクセスを提供するためのピン46で終端するコイル42を示す本発明の2極構成の固定子回路40の図である。該ボビン44は該固定子構造体30の極32上に設置される。
図7は2極構成用の本発明のオーバーモールドされた固定子組立体12の図である。この図では固定子極端面36とコイル接続部46が見られる。
オーバーモールド材料44は商業的例がゼナイト(Zenite)である液晶ポリマー(LCP)型の熱可塑性ポリマー又は商業的に公知の例がスタニル(Stanyl)及びザイテル(Zytel)である熱可塑性ポリアミド配合であってもよい。オーバーモールド44は、結合ベルト14の切り欠き耳部52(図11)又はカバー48(図13)の切り欠き耳部54の形の嵌合するファスナー要素が固定される突出するグリッパー又はクリップ50の形のファスナー要素の存在により、該オーバーモールドされた固定子組立体12の該ベルト14又はカバー48(図13)との機械的結合を提供することを可能にする。該嵌合するファスナーは部品を一緒にまとめるが、エアギャプEの正確な寸法を規定するのはリップ22である(図11及び12)。該エアギャップEは向かい合う固定子極端面間、又は下記でより詳細に説明される様に、1つの側の固定子極端面とローターのもう1つの側の受動固定子との間、の距離である。本実施例では、オーバーモールドは固定子極端面と同一面であるので、寸法Eは固定子組立体のオーバーモールド上に位置するその座面24及び26を有するリップ22の幅により決定される。どんな構成に於いても、該リップの幅は、寸法Eが極端面間、又は場合によっては、極端面と受動固定子の間、の距離であることを保証するよう調整されてもよい。固定子組立体12の結合ベルト14との機械的結合に加えて、固定子組立体12とローター16の間に磁気的な軸方向力が存在し、該力はアクチュエーター10を一緒に保持し、特に該固定子組立体12をリップ22の該座面24及び26上に確実に設置するのに寄与することは注意されるべきである。
図8は図7の線8−8を通る断面図である。この図で、固定子極36を通る断面のU字型形状は明らかである。磁気エアギャップEはリップ側部24及び26のオーバーモールドされた固定子組立体12との係合により決まる。磁束回路FCは該固定子を通して効率的に流れる。
図9は該固定子構造体30の図3の矢印Aに沿う略図であり、該U字型断面を示し、キー寸法D及びHを規定する。寸法Dは極36間の間隔で、該磁気エアギャップEの約2から5倍の範囲にあり、励起されたコイル間の電磁束漏洩を避けるのに充分な間隔を提供するために該磁気エアギャップEの約4倍であるのが好ましい。寸法Hはベース34上の固定子極36の高さであり、該磁気エアギャップEの約8倍より少なく、エネルギー付与するコイルに本発明の動作用に充分な銅容積を有させる該磁気エアギャップEの約6倍以下であるのが好ましい。
従来技術の回転アクチュエーターが角度位置センサーをも装備していることも注意されるべきである。この種の構成はサーボアクチュエーターと呼ばれることが多い。この様なセンサーは、回転ヨークに設置された追加の磁石と、該アクチュエーターカバーに取り付けられたセンサーレシーバーを要する。本発明の原理によるアクチュエーターの特徴は、該追加の磁石が無いことである。センサーレシーバーは、下記で論じる様に、磁化されたディスク磁石ローター16とエネルギー結合関係にある該ベルト14内の位置に配置される。
図10aは、ローター角度位置を決めるためにセンサーレシーバー58用の磁気的エミッタとして機能する非円形磁石ローター56を示す図である。該センサー58はベルト14上に設置される。非円形、例えば、楕円形、ローターの使用は、ローター16とセンサーレシーバー58の間の変動距離を創り、それにより連続する変動磁場強さ情報が角度位置情報を決めるため使われる。該非円形形状は、寸法D2より大きい寸法D1により図解される。
図10bはセンサー58に変動磁束信号を提供するもう1つの方法である。この実施例で、各極の部分60N及び60Sは、磁気エミッタとして次第に又は個別的に変化する変動磁場強さで磁化されるので、センサー58が変動する信号として変動する磁束を受け、
鎖線は該変化を略図で画いている。
図11及び12はベルト14の図面である。該ベルト材料はDupont Crastin PBTの様な熱可塑性ポリエステルであってもよい。中央リップ22は図8で見られる様に、磁気エアギャップEを固定するために該固定子組立体12を隔てる。切り欠き耳部52は該固定子組立体20のグリッパー50上にクリップするよう使われる。固定子回路コイルピン46への電気接続は範囲62内で行われる。もしセンサーレシーバー58がベルト14上に設置されるのならば、範囲62もまたその電気接続用に使われてもよい。リップ24は連続要素として示されるが、該リップは、エアギャップEを保持するために面24及び26の充分な部分がある限り不連続であってもよい。これはリップセグメント64が間隙を介している図22で図解される。
図13は本発明のもう1つの実施例10の分解図であり、角度位置レシーバー58はカバー48内のプリント回路基板又はリードフレーム66に設置され、磁場エミッタ68はシャフト18の端部に設置される。切り欠き耳部54はグリッパー50上へクリップすることによりカバー48を該固定子組立体20に機械的に固定する。
ここで、アクチュエーターの動作が説明される。
図14a及び14bは、2極構成用の変動する動作位置の固定子の磁極36a及び36bと、ローター16の2つの極対70と、の略図を示す。ローター16の磁極対の境界又は遷移部は72で示される。図14aで、ローター16は固定子36a及び36bに対し準備位置にあり、該両固定子は最初の準備状態では励起されてない。該準備位置は極36aの中心に対し公称−45°にある。ローター16は、例えば空気バルブ“全開”の様な、ユーザー応用品の1つの極端な位置とのその連携のために、その有用なストロークの1端にある。図8で見られる様に、該アクチュエーターを動作させるために、固定子36a及び36bはそれぞれN及びS極として励磁され、固定子36c及び36dはそれぞれS及びN極として励磁される。それは該ローターを矢印Rの方向に回転させる。これはユーザー応用品を動作させるよう、シャフト18を回転する。図14bは、ローター16の有用なストロークのもう1つの端部、極36aの中心に対し公称+45°の最終位置、への回転後のローター16の位置を示すが、該最終位置は例えば空気バルブ“全閉”の様な該応用品のもう1つの極端な位置である。もし、電流が該コイルから除かれると、ばねの様な機械的手段が、該アクチュエーターを最初の準備位置へ戻らせるよう使われてもよい。該アクチュエーターが組み込まれた戻りばねを有してもよいが、典型的応用機器は該戻りばねを提供するであろう。
図15は、ローターの各側に2つの固定子極があり、該ローターが2極対を有する、本発明の2極回転式アクチュエーターのグラフ線図である。該グラフで、該90°の有用ストロークは実質的に一定トルクを有し、該トルクは印加電流に比例し、当該技術では一定トルクアクチュエーターとして取り上げられる。
図16a−16cは、ローター78の各側の固定子組立体76a及び76bの各々上に4つの固定子極があり、該ローター78が4極対を有する、本発明の4極構成74を図解する。この図でベルト14は示されないが、設置時、該ベルトはエアギャップ空間Eを規定する。図16bは固定子極の中心から公称−25°に4極構成用のスタート位置を示し、図16cは固定子極の中心から公称+25°に最終位置を示す。典型的に、該4極構成は約50から65度の一定トルク用有用ストロークを有する。
図17は本発明の4極回転式アクチュエーターのグラフ線図である。該グラフ線図では一定トルクの50°の有用ストロークが画かれている。
図18a−18cは本発明の非対称実施例80を示す。図18b及び18cを比較することにより示される該非対称実施例では、ローター16の1つの側の固定子極82はもう1つの側の固定子極84より大きい。これは大きい固定子極の方へのローター40上の軸方向引力に帰着し、該力はユーザー応用品からの振動に耐えるために有用である。2極構成が示されるが、該非対称性は4極構成でも同様に実施され得る。
図19は本発明のもう1つの実施例90を示し、該実施例では、ローター16はエアギャップEの1つの側に固定子組立体12を有し、もう1つの側に強磁性プレート96で例示される受動固定子組立体94を有する。この実施例は低コストであるが低トルクを有するアクチュエーターを提供する。該受動固定子は該能動固定子組立体の端面と相対する面を有するどんな形で作られてもよい。例えば、コイルを有しない2極固定子が使われてもよい。受動固定子に於いてはエアギャップ寸法Eは能動固定子極の端面と該受動固定子の相対する面との間の間隔であることは評価されるであろう。これは、固定子組立体12がローター16の1つの側にあり、プレート96が受動固定子として役立つ受動的組立体94がもう1つの側にある図19で示される。該アクチュエーターは、機器が回転運動で応用品を直接駆動するか、又はシャフトの回転を直線運動に変換する種類の動作デバイスに取り付けられてもよい。図20は、動作部品102が停止機構106と一緒にシャフト104の回転により直接回転される種類の動作デバイス100に取り付けられたアクチュエーター10を略図で示す。これはオン−オフバタフライ型空気バルブにより例示される。
回転型又は直線の、何れの種類の機器でも本発明のサーボアクチュエーターの版と共に使用されてもよく、該機器では該機器の回転又は直線の運動の量と、ローターの回転の量と、はセンサーにより検出され、ローターと、そしてその結果サーブされる機器と、の回転位置を変える命令が制御システムにより与えられる。
該アクチュエーターの出力トルクを使う回転制御応用品の例は、空気又は排気ガス再循環(EGR)制御バルブ、ターボチャージャー可変容量ベーン又はウエーストゲート制御、又は“バタフライバルブ”形状を利用するスロットルである。
回転から直線への運動は“クランク及びスライダー”機構を介して、又は直線の運動及び力を作るローラーフォロワー付き回転カムにより、達成される。ピントル型EGRバルブと、可変容量ターボチャージャーは本発明を利用する自動車応用品の例である。
典型的に、これらの応用品は、該アクチュエーターへの印加電力無しで保持される“ホーム”位置と、応用品がその最大値にある動力ストローク終端位置と、を有する。本発明は該ストロークに沿ったどこの位置も取れるよう制御され、命令されると、該ストロークに沿って素早く前後に動く。電源故障時と、電力が故意に停止された時該アクチュエーターをそのホーム位置へ戻すために“フェイルセーフ”戻しばねが該応用品に組み込まれることが多い。戻しばねが無い場合、該アクチュエーターは電力が印加されなくてもそのストローク終了位置をどちらかの端部に保持することが出来る。
図21は本発明の統合版を図解するが、そこでは一体化された部品110、すなわち組込構造体としてのベルト及び固定子組立体、を創るために固定子組立体のオーバーモールド44がベルト14と共に共通で成形される。この実施例では、シャフト、ローターそして相対する固定子組立体が該一体化された部品110に簡易に組み立てられる。これは容易な組立を可能にして、エアギャップ空間Eの確立に於いて1つの寸法許容差変動を取り除く。
図22はベルト14の実施例を図解し、該ベルトではリップが離間したリップセグメン
ト64により示される様に不連続である。
例と好ましい実施例の前記詳細説明は、法律の要求により図解と開示の目的で提示された。該説明は網羅的である、又は説明した精密な形式又は複数形式に本発明を限定する、ようには意図されておらず、当業者が如何に本発明が特定の使用又は実施用に好適であるかを理解し得るよう意図されている。当業者には変型及び変更の可能性は明らかであるだろう。許容差、特徴的寸法、特定の動作条件、技術仕様等を含み、そして実施例間で又は従来技術に対する変更を伴って変わってもよい例示実施例の説明による限定は意図されておらず、該説明からの限定は意味されるべきでない。この開示は現在の技術に対して行われるのみならず、進歩も考慮しており、将来に於けるその適合は、それらの進歩、すなわち現在の技術による進歩も考慮している。本発明の範囲は書かれた請求項と適用可能な等価物により規定されるよう意図されている。単数形の請求項要素への参照は明示的に述べられてないならば、“1つそして1つのみ”を意味するよう意図されてない。更に、本開示でのどの要素、部品、方法又はプロセスの過程も、該要素、部品、又は過程が請求項内で明示的に詳述されているかどうかに無関係に、公共に捧げるよう意図されてない。ここに於ける請求項の要素が“...用手段”の語句を用いて明示的に詳述してないならば、ここのどの請求項要素も米国特許法第112条第6項の規定下にあると解釈されるべきでなく、ここのどの方法又はプロセス過程も語句“...用過程(複数を含む)を具備する”を使って明示的に詳述してないならば、ここのどの方法又はプロセス過程もそれらの規定下にあると解釈されるべきでない。
以下に本発明の主な特徴と態様を列挙する。
1. 回転式電磁アクチュエーターであって、
固定子部分であって、
ローターの各側に1つずつある2つの固定子を備え、該固定子の少なくとも1つが能動固定子であり、該能動固定子は、1又は2に等しいNについて、2Nの固定子極を有しており、該2つの固定子はエアギャップ寸法Eを規定する予め決められた間隔だけ軸方向に隔てられている該2つの固定子を、
を備える固定子部分と、
慣性組立体であって、
軸線を規定するシャフトと、
該シャフトを回転するため該シャフト上に設置される高透磁率磁性材料のヨークを有しないディスク磁石ローターであって、該ローター磁石が、交互極性の2N極対を有するよう軸方向に磁化された該ローターと、
を備える慣性組立体と、
を具備する該アクチュエーターであり、
前記ローターは前記エアギャップ内にあり、予め決められた間隔だけ各固定子から隔てられており、
磁気回路が該固定子極及び該ローターを通る該2つの固定子間で規定されており、該ローターの磁場と該固定子の磁場の間の相互作用は該シャフトにより供給されるトルクの発生に帰着する、該アクチュエーター。
2. 電気エネルギーから機械エネルギーへの高効率変換と前記慣性組立体の非常に低い慣性との組み合わせが、下記
Figure 0006293838
ここでモーター定数(Km)は、出力トルク(T)の入力電力(W)の平方根に対する比
に比例しており、すなわち
Figure 0006293838
であり、該モーター慣性は該慣性組立体に等しい、前記AKとなる様な性能指数AKを提供する1.に記載のアクチュエーター。
3. 前記固定子は、固定子組立体に組み込まれており、そして前記アクチュエーターは、予め決められた間隔だけ離れ隔てられた第1及び第2空間規定用エッジ面を備えた内方へ面するリップを有する非磁性ベルトを更に具備しており、該第1及び第2空間規定用エッジ面は固定子間に寸法Eの軸方向エアギャップを規定するために前記ローターの各側で該固定子組立体と接している1.に記載のアクチュエーター。
4. 前記ベルトを前記固定子組立体に取り付けるために該固定子組立体上及び該ベルト上に嵌合用取り付け部材を更に具備する3.に記載のアクチュエーター。
5. 前記リップが連続的である3.に記載のアクチュエーター。
6. 前記リップが不連続的である3.に記載のアクチュエーター。
7. 前記嵌合部材が前記ベルト上の耳部と前記固定子組立体上の係合用クリップである4.に記載のアクチュエーター。
8. 前記クリップの前記耳部への係合が前記固定子組立体を前記リップのエッジ面に対しバイアスをかける3.に記載のアクチュエーター。
9. 前記固定子部分が該ローターの1つの側に能動固定子を、そして該ローターのもう1つの側に受動固定子を更に備える1.に記載のアクチュエーター。
10. 前記固定子部分が該ローターの各側に能動固定子構造体を更に備える1.に記載のアクチュエーター。
11. 各能動固定子構造体が2つの隔てられた極のU字型断面を有する1.に記載のアクチュエーター。
12. 前記能動固定子構造体の2つの固定子極が、前記エアギャップ寸法の約2から5倍の範囲の半径方向距離Dだけ隔てられる1.に記載のアクチュエーター。
13. 前記距離Dが前記エアギャップ寸法の約4倍である12.に記載のアクチュエーター。
14. 前記能動固定子構造体の該2つの固定子極が、前記エアギャップ寸法の約8倍以下である高さHを有する1.に記載のアクチュエーター。
15. 前記高さHが前記エアギャップ寸法の約6倍以下である14.に記載のアクチュエーター。
16. 前記ローターが非円形であるか、又は特に変化する磁気作用を有しており、そして磁気的位置センサーレシーバーが、該ローターへの距離の変化によるか、又は該特に変化する磁気作用により引き起こされる変化により、該ローターの回転時、変化する磁束に感応性の位置にあるよう設置される1.に記載のアクチュエーター。
17. 前記ローターの1つの側の前記能動固定子の極が、該ローターのもう1つの側の相対する能動固定子極端面より大きい表面積を有しており、該ローターが、該大きい表面積を有する固定子極面の方向に軸方向により大きい力を該ローター上に有する1.に記載のアクチュエーター。
18. 前記ローターが該エアギャップ内で、1つの固定子の方へ、第2固定子より近くにあり、該ローターが、該ローターがより近い該固定子の方向に軸方向でより大きい力を該ローター上に有する1.に記載のアクチュエーター。
19. 回転式電磁アクチュエーターであって、
非磁性ベルトを備えた一体化された固定子組立体であって、該ベルトが該一体化された固定子組立体から予め決められた距離に第2固定子組立体を受ける座面を有するリップと、ファスナー要素と、を備える該固定子組立体と、
第2固定子あって、該ベルト上の該ファスナー要素へファスナー要素を嵌合することに
より該ベルトへ取り付けられ、該一体化された固定子組立体と該第2固定子との間に予め決められた寸法Eのエアギャップを規定するよう該座面に対して位置している該第2固定子と、
回転軸線を規定するために該一体化された固定子組立体と該第2固定子組立体とを通るよう延びるシャフトと、
該シャフトに固定され、2Nの極対を有するディスク磁石ローターであって、該ローターが、該固定子の励磁時回転するために、軸方向で交互の方向に磁化されている該ディスク磁石ローターと、を具備する回転式電磁アクチュエーター。
20. 前記ローターが非円形であるか又は特に変化する磁気作用を有しており、磁気的位置センサーレシーバーが、該ローターへの距離の変化によるか、又は該特に変化する磁気作用により引き起こされる変化により、該ローターの回転時、変化する磁束に感応性の位置にあるよう設置される19.に記載のアクチュエーター。
21. 制御システムであって、
固定子部分であって、
ローターの各側にある2つの固定子であって、少なくとも1つが能動固定子であり、該能動固定子は、1又は2に等しいNについて、2Nの固定子極を有しており、該2つの固定子はエアギャップ寸法Eを規定する予め決められた間隔だけ軸方向に隔てられている該2つの固定子
を有する固定子部分と、
慣性組立体であって、
軸線を規定するシャフトと、
該シャフトを回転するため該シャフト上に設置される高透磁率磁性材料のヨークを有しないディスク磁石ローターであって、該ローター磁石が、交互極性の2N極対を有するよう軸方向に磁化された該ローターと、
を有する慣性組立体と、
を備える回転式電磁アクチュエーターを具備しており、
前記ローターは前記エアギャップE内にあり、予め決められた間隔だけ各固定子から隔てられており、
磁気回路が該固定子極及び該ローターを通る該2つの固定子間で規定されており、該ローターの磁場と該固定子組立体の磁場の間の相互作用は該シャフトにより供給されるトルクの発生に帰着しており、そして
該アクチュエーターの該シャフトに取り付けられ、該アクチュエーターの予め決められた一定トルク範囲内の範囲に該アクチュエーターの回転を限定する停止部を有する応用品を具備している、該制御システム。
22. 前記ローターが非円形であるか、又は特に変化する磁気作用を有しており、磁気的位置センサーレシーバーが、該ローターまでの距離の変化によるか、又は該特に変化する磁気作用により引き起こされる変化により、該ローターの回転時、変化する磁束に感応性の位置にあるよう設置される21.に記載のアクチュエーター。

Claims (21)

  1. 単相回転式電磁アクチュエーターであって、
    2つの固定子であって、
    これらの固定子の1つが磁束を作り出すように構成された能動固定子であり、そして他の固定子が受動固定子であり、該固定子のそれぞれが2の固定子極を有しており、該2つの固定子はエアギャップ寸法Eを規定する予め決められた間隔だけ軸方向に隔てられている、該2つの固定子と、
    慣性組立体であって、
    軸線を規定するシャフトと、
    該シャフトを回転するため該シャフト上に設置される高透磁率磁性材料のヨークを有しないディスク磁石ローターであって、該ローター磁石が、交互極性の2極対を有するよう軸方向に磁化された該ローターと、
    を備える慣性組立体と、
    を具備する該単相回転式電磁アクチュエーターであり、
    前記ローターは前記エアギャップ内にあり、予め決められた間隔だけ各固定子から隔てられており、
    前記2つの固定子は、前記能動固定子が励磁されるときに、2つの固定子の対向するNとSの固定子極及びローターを通る該2つの固定子間を流れ、そして該固定子のそれぞれを通して該固定子の1つの極からその他方の極へと流れる、閉ループ磁束回路を確立するように、お互いに関連するよう構成され位置づけられ、
    そして該能動固定子の励磁されたコイル間の前記磁束の漏洩を防ぐために、D対Eの比(D/E)が2から5の範囲にあるように該能動固定子の該2つの固定子極が半径方向距離Dだけ隔てられ、
    180度以下となる角度のストロークを生じるように、該ローターの磁場と該固定子の磁場の間の相互作用が、該シャフトに供給されるトルクの発生に帰着する、該単相回転式電磁アクチュエーター。
  2. 前記アクチュエーターが少なくとも1000の性能指数AKを示し、
    ここで、
    Figure 0006293838
    ここで、
    Figure 0006293838
    であり、Tは前記アクチュエーターの出力トルクを、そして、Wは入力電力を表し、
    mはローターの慣性とシャフトの慣性の合計である、
    請求項1に記載のアクチュエーター。
  3. 前記固定子は、固定子組立体に組み込まれており、そして前記アクチュエーターは、予め決められた間隔だけ離れ隔てられた第1及び第2空間規定用エッジ面を備えた内方へ面するリップを有する非磁性ベルトを更に具備しており、該第1及び第2空間規定用エッジ面は固定子間に寸法Eの軸方向エアギャップを規定するために前記ローターの各側で該固定子組立体と接している請求項1に記載のアクチュエーター。
  4. 前記ベルトを前記固定子組立体に取り付けるために該固定子組立体上及び該ベルト上に嵌合用取り付け部材を更に具備する請求項3に記載のアクチュエーター。
  5. 前記リップが連続的である請求項3に記載のアクチュエーター。
  6. 前記リップが不連続的である請求項3に記載のアクチュエーター。
  7. 前記嵌合部材が前記ベルト上の耳部と前記固定子組立体上の係合用クリップである請求項4に記載のアクチュエーター。
  8. 前記クリップの前記耳部への係合が前記固定子組立体を前記リップのエッジ面に対しバイアスをかける請求項3に記載のアクチュエーター。
  9. 前記2つの固定子のそれぞれが能動固定子であり、該2つの能動固定子が前記ローターの互いに対向する側に位置する請求項1に記載のアクチュエーター。
  10. 固定子の1つが受動固定子である請求項1に記載のアクチュエーター。
  11. 前記固定子のそれぞれが2つの隔てられた極のU字型断面を有する請求項1に記載のアクチュエーター。
  12. 前記能動固定子構造体の該2つの固定子極が、前記エアギャップ寸法の約8倍以下である高さHを有する請求項1に記載のアクチュエーター。
  13. 前記高さHが前記エアギャップ寸法の約6倍以下である請求項12に記載のアクチュエーター。
  14. 前記ローターが回転するときに変化する磁束を提供し、そして磁気的位置センサーレシーバーが、該ローターへの距離の変化により該ローターの回転時、変化する磁束に感応性の位置にあるよう設置される請求項1に記載のアクチュエーター。
  15. 前記2つの固定子が能動固定子であり、ローター上の軸方向の力が大きい表面積を備えた極を有する固定子の方向により大きいように、1つの固定子の極の面の表面積が、対応する他の固定子の表面積より大きい請求項1に記載のアクチュエーター。
  16. 前記ローターが該エアギャップ内で、1つの固定子の方へ、第2固定子より近くにあり、該ローターが、該ローターがより近い該固定子の方向に軸方向でより大きい力を該ローター上に有する請求項1に記載のアクチュエーター。
  17. 請求項1に記載の前記回転式電磁アクチュエーターであって、
    非磁性ベルト(14)を備えた一体化された固定子組立体であって、該ベルトが座面を有するリップ(22)とファスナー要素を備え、該一体化された固定子組立体が前記2つの固定子の1つを有する、該一体化された固定子組立体を備え、
    前記2つの固定子のもう一方が、該ベルト(14)上の該ファスナー要素へファスナー要素を嵌合することにより該ベルトへ取り付けられ、該一体化された固定子組立体と該第2固定子との間に予め決められた寸法Eのエアギャップを規定するよう該座面に対して位置している、該回転式電磁アクチュエーター。
  18. 前記ローターが回転するときに変化する磁束を提供し、磁気的位置センサーレシーバーが、該ローターの回転時、変化する磁束に感応性の位置にあるよう設置される請求項17に記載のアクチュエーター。
  19. 制御システムであって、
    回転式電磁アクチュエーターであって
    2つの固定子の1つが磁束を生じるよう構成された能動固定子であり、そして他の固定子が受動固定子である2つの固定子であって、該固定子のそれぞれが2の固定子極を有しており、該2つの固定子はエアギャップ寸法Eを規定する予め決められた間隔だけ軸方向に隔てられている該2つの固定子と、
    慣性組立体であって、
    軸線を規定するシャフトと、
    該シャフトを回転するため該シャフト上に設置される高透磁率磁性材料のヨークを有しないディスク磁石ローターであって、該ローター磁石が、交互極性の2極対を有するよう軸方向に磁化された該ディスク磁石ローターと、を備える慣性組立体と、
    を備える該回転式電磁アクチュエーターを具備しており、
    前記ローターは前記エアギャップE内にあり、予め決められた間隔だけ各固定子から隔てられており、
    前記2つの固定子は、前記能動固定子が励磁されるときに、2つの固定子の対向するNとSの固定子極及びローターを通る該2つの固定子間を流れ、そして該固定子のそれぞれを通して該固定子の1つの極からその他方の極へと流れる、閉ループ磁束回路を確立するように、お互いに関連するよう構成され位置づけられ、
    そして該能動固定子の励磁されたコイル間の前記磁束の漏洩を防ぐために、D対Eの比が2から5の範囲にあるように該能動固定子の該2つの固定子極が半径方向距離Dだけ隔てられ、
    該ローターの磁場と該固定子組立体の磁場の間の相互作用が、該シャフトに供給されるトルクの発生に帰着し、そして
    該アクチュエーターの該シャフトに取り付けられ、該アクチュエーターの予め決められた一定トルク範囲内の範囲に該アクチュエーターの回転を限定する停止部を有する応用品を備えている、該制御システム。
  20. 前記ローターが回転するときに変化する磁束を提供し、磁気的位置センサーレシーバーが、該ローターの回転時、該変化する磁束に感応性の位置にあるよう設置される請求項19に記載のアクチュエーター。
  21. ローターを軸に沿って長手方向に動かす傾向がある磁気引力が無い軸の回りを回転するようにローターが構成されている、請求項1に記載のアクチュエーター。
JP2016195869A 2009-11-04 2016-10-03 回転式単相電磁アクチュエーター Active JP6293838B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/612,627 US8872395B2 (en) 2009-11-04 2009-11-04 Rotary single-phase electromagnetic actuator
US12/612,627 2009-11-04

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012537455A Division JP2013510549A (ja) 2009-11-04 2010-10-23 回転式単相電磁アクチュエーター

Publications (2)

Publication Number Publication Date
JP2017022995A JP2017022995A (ja) 2017-01-26
JP6293838B2 true JP6293838B2 (ja) 2018-03-14

Family

ID=43924630

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012537455A Pending JP2013510549A (ja) 2009-11-04 2010-10-23 回転式単相電磁アクチュエーター
JP2016195869A Active JP6293838B2 (ja) 2009-11-04 2016-10-03 回転式単相電磁アクチュエーター

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012537455A Pending JP2013510549A (ja) 2009-11-04 2010-10-23 回転式単相電磁アクチュエーター

Country Status (6)

Country Link
US (2) US8872395B2 (ja)
EP (2) EP3118975B1 (ja)
JP (2) JP2013510549A (ja)
KR (1) KR101790364B1 (ja)
CN (1) CN102714443B (ja)
WO (1) WO2011055227A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144061A2 (de) * 2008-04-15 2009-12-03 Alstom Technology Ltd Verfahren zur überwachung einer elektrodynamischen maschine
US8872395B2 (en) * 2009-11-04 2014-10-28 Fraen Mechatronics, Llc Rotary single-phase electromagnetic actuator
CN102664095B (zh) * 2012-06-06 2013-12-11 哈尔滨工业大学 一种双定子双通道轴向磁路磁阻式旋转变压器
CN102842412B (zh) * 2012-07-30 2014-09-03 哈尔滨工业大学 共励磁粗精耦合磁阻式旋转变压器
ES2537220B1 (es) * 2013-06-21 2016-03-17 Arturo PÉREZ RODRÍGUEZ Perfeccionamientos de las máquinas de campo magnético rotatorio
EP3069434B1 (en) 2013-11-12 2019-10-02 Fraen Mechatronics, LLC Dual cam torque transfer mechanism
WO2015101898A1 (en) * 2013-12-30 2015-07-09 Koninklijke Philips N.V. Actuator with grouped magnets for personal care appliance
US9711269B2 (en) * 2014-01-08 2017-07-18 Honeywell International Inc. Torque motor actuator with an armature stop
DE102014108712A1 (de) * 2014-06-21 2015-12-24 BROSE SCHLIEßSYSTEME GMBH & CO. KG Kraftfahrzeugschloss
US10749398B2 (en) * 2014-07-30 2020-08-18 Richard Joseph Morris High torque motor failsafe operating system
US10199914B2 (en) * 2014-07-30 2019-02-05 Richard Joseph Morris Closed loop leveraging electromagnetic motor
DE102015109355A1 (de) * 2015-06-12 2016-12-15 BROSE SCHLIEßSYSTEME GMBH & CO. KG Elektrischer rotatorischer Antrieb eines Kraftfahrzeugs
FR3073341B1 (fr) * 2017-11-06 2021-08-06 Whylot Sas Moteur ou generatrice electromagnetique a flux axial a circuit de refroidissement commun au moteur et a ses moyens electroniques de commande et de puissances
US20200036271A1 (en) * 2018-07-25 2020-01-30 Roy Michael Kies Brushless Doubly Fed Radial Wound Electric Machine
US11441785B2 (en) * 2019-05-31 2022-09-13 Lg Electronics Inc. Gas furnace
CN114287103B (zh) * 2019-10-17 2023-11-03 住友电气工业株式会社 旋转电机
KR102658128B1 (ko) * 2019-11-07 2024-04-16 엘지전자 주식회사 가스 퍼니스

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2920574A (en) * 1956-01-23 1960-01-12 Thompson Ramo Wooldridge Inc Motor-pump unit and method of making same
GB956036A (en) 1961-03-27 1964-04-22 Carr Fastener Co Ltd Improvements in and relating to devices for connecting rod or like members
US3469134A (en) * 1965-07-31 1969-09-23 Lloyd Dynamowerke Gmbh Electrical machines
NL133950C (ja) 1966-02-03
DE2730142C2 (de) * 1977-07-04 1988-01-21 Papst-Motoren GmbH & Co KG, 7742 St Georgen Kollektorloser Gleichstrommotor der zweisträngigen Bauart
DE3034360C2 (de) 1979-09-24 1993-11-18 Secr Defence Brit Verbrennbare Treibladungshülse
CH663121A5 (de) * 1983-10-03 1987-11-13 Mavilor Syst Sa Wechselstrom-synchron-servomotor.
CH663300A5 (en) 1983-11-30 1987-11-30 Portescap Electric motor with disc-shaped magnetised rotor
JPS6158460A (ja) * 1984-08-27 1986-03-25 Hitachi Ltd トルクモ−タ
CH664652A5 (fr) 1985-05-10 1988-03-15 Portescap Moteur electrique synchrone a rotor en forme de disque.
CH665922A5 (fr) 1985-05-10 1988-06-15 Portescap Moteur electrique synchrone a rotor en forme de disque.
CN85106425A (zh) * 1985-08-26 1987-04-29 株式会社日立制作所 转矩电动机
CH676647A5 (ja) 1988-06-10 1991-02-15 Portescap
FR2648632B1 (fr) * 1989-06-16 1991-10-04 Moving Magnet Tech Actionneur electromagnetique monophase de faible encombrement
FR2654271B1 (fr) * 1989-11-06 1992-01-24 Moving Magnet Tech Actionneur electromagnetique monophase angulaire.
US5512871A (en) 1990-12-17 1996-04-30 Moving Magnet Technologies S.A. Rotatable single-phase electromagnetic actuator
US5168187A (en) * 1991-02-20 1992-12-01 Dana Corporation, Warner Electric Brake & Clutch Division Axial pole stepping motor
FR2688105B1 (fr) 1992-02-28 1994-05-06 Moving Magnet Technologies Sa Actionneur rotatif electromagnetique monophase de course entre 60 et 120 degres.
WO2004075379A1 (ja) * 1992-03-18 2004-09-02 Kazuto Sakai アキシャルギャップ回転電機
JPH05284713A (ja) * 1992-03-30 1993-10-29 Shicoh Eng Co Ltd 揺動ブラシレスアクチュエ−タ
US5337030A (en) 1992-10-08 1994-08-09 Lucas Industries, Inc. Permanent magnet brushless torque actuator
AU1299595A (en) * 1993-12-03 1995-06-19 Maxtor Corporation Axial spindle motor for hard disk drive assembly
FR2717947B1 (fr) 1994-03-25 1996-05-31 Sagem Actionneur électromagnétique rotatif à débattement angulaire limité.
FR2734963B1 (fr) * 1995-05-31 1997-08-01 Sonceboz Sa Actionneur electromagnetique presentant au moins deux positions stables par verrouillage magnetique
DE19706989A1 (de) * 1996-02-23 1997-08-28 Unisia Jecs Corp Ventilbetätigungsvorrichtungsanordnung für einen Motor mit innerer Verbrennung
US5731649A (en) * 1996-12-27 1998-03-24 Caama+E,Otl N+Ee O; Ramon A. Electric motor or generator
US6543416B2 (en) * 1997-10-21 2003-04-08 Hitachi, Ltd. Electric-control-type throttle apparatus
JPH11190815A (ja) * 1997-12-25 1999-07-13 Canon Inc 駆動装置および光学機器
JPH11206092A (ja) * 1998-01-14 1999-07-30 Denso Corp トルクモータ
DE29816561U1 (de) 1998-09-15 1998-12-17 Lin, Shou-Mei, Taipeh/T'ai-pei Doppelseitiger bürstenloser Gleichstrommotor mit NE-Kern und axialem Magnetfeld des Dauermagnettyps
FR2784521B1 (fr) 1998-10-12 2001-07-06 Sagem Actionneur magnetique rotatif
FR2786042B1 (fr) * 1998-11-13 2000-12-15 Moving Magnet Tech Actionneur electromagnetique rotatif comprenant au moins un aimant encastre dans un materiau ferromagnetique
EP1153469B1 (de) * 1999-02-12 2003-05-02 Helmut Schiller Elektrische maschine
US6750748B2 (en) 2001-08-09 2004-06-15 Delphi Technologies, Inc. Limited angle unidirectional torque motor
FR2830136B1 (fr) * 2001-09-25 2004-09-03 Moving Magnet Tech Moteur polyphase a deux ou trois phases
JP3938501B2 (ja) * 2001-10-16 2007-06-27 三菱電機株式会社 回転角度検出装置、それを用いた永久磁石型回転電機、及び、永久磁石型回転電機を用いた電動パワーステアリング装置
US20030164648A1 (en) 2002-03-01 2003-09-04 Byram Robert J. Four-pole torque motor
US20030164646A1 (en) * 2002-03-01 2003-09-04 Tooke Winston D. Neon light sparkplug wire
JP2003274612A (ja) * 2002-03-18 2003-09-26 Mitsuba Corp 電動アクチュエータ
US6891456B2 (en) 2002-06-10 2005-05-10 Delphi Technologies, Inc. Multi-pole electromagnetic motor apparatus and method of assembling
US6543415B1 (en) * 2002-09-09 2003-04-08 Visteon Global Technologies, Inc. Throttle miswire detection
FR2849712B1 (fr) 2003-01-07 2005-05-20 Moving Magnet Tech Actionneur rotatif bistable monophase hybride
EP1717935A2 (de) * 2005-04-28 2006-11-02 LuK Lamellen und Kupplungsbau Beteiligungs KG Elektrische Maschine
FR2887376B1 (fr) 2005-06-15 2007-12-14 Sonceboz Sa Sa Suisse Servo-actionneur electromagnetique monophase rotatif comprenant un actionneur et un capteur de position
FR2888418B1 (fr) 2005-07-11 2011-04-22 Moving Magnet Tech Moteur ou moto-reducteur electromagnetique associe a un systeme de verrouillage et deverrouillage mecanique unidirectionnel ou bidirectionnel et a un systeme de rappel elastique
JP4904736B2 (ja) * 2005-07-21 2012-03-28 日産自動車株式会社 回転電機の固定子
KR20080089448A (ko) * 2006-01-26 2008-10-06 더 팀켄 컴퍼니 이중 고정자를 갖는 축방향 플럭스 영구자석 모터용 가상움직임 공극
US8872395B2 (en) * 2009-11-04 2014-10-28 Fraen Mechatronics, Llc Rotary single-phase electromagnetic actuator

Also Published As

Publication number Publication date
US8872395B2 (en) 2014-10-28
EP2497185B1 (en) 2016-12-07
KR20120120158A (ko) 2012-11-01
JP2017022995A (ja) 2017-01-26
CN102714443B (zh) 2016-09-21
JP2013510549A (ja) 2013-03-21
EP3118975B1 (en) 2022-05-04
EP2497185A2 (en) 2012-09-12
US20110101813A1 (en) 2011-05-05
KR101790364B1 (ko) 2017-11-20
US20150061418A1 (en) 2015-03-05
WO2011055227A3 (en) 2012-06-14
EP3118975A1 (en) 2017-01-18
CN102714443A (zh) 2012-10-03
WO2011055227A2 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP6293838B2 (ja) 回転式単相電磁アクチュエーター
JP5735564B2 (ja) 素早く作動する双安定分極電磁アクチュエータ
CN109842255B (zh) 带有磁通可变机构的旋转电机
WO2007082457A1 (fr) Dispositif de rotation à force magnétique
KR100582804B1 (ko) 토오크 모터 및 그 제조 방법
JP7193422B2 (ja) 回転電機及び回転電機の製造方法
US7560845B2 (en) Rotor for a switched reluctance machine
US6617740B2 (en) D.C. PM motor and generator with a stator core assembly formed of pressure shaped processed ferromagnetic particles
JP2007318859A (ja) アクチュエータ
US20090152974A1 (en) Stepper motor device
Wang et al. Comparative study of winding configurations of short-stroke, single phase tubular permanent magnet motor for refrigeration applications
JP2018125918A (ja) アウターロータ型モータ
JP3873764B2 (ja) リニアアクチュエータ
CN109075680B (zh) 旋转发电机
JP4352679B2 (ja) 公転モータ及び圧縮機
JP2004350492A (ja) 軸流構造形式の電気機械
JP2020188587A (ja) 電動機用ロータ、及び電動機
JP3873791B2 (ja) リニアアクチュエータ
JP2006345669A5 (ja)
WO2008055416A1 (fr) Moteur rotatif connecté en série, radial
JPH08163850A (ja) 単極形リニア直流モータ
JP2005328633A (ja) 駆動装置及び光量調節装置
JP2003235231A (ja) リニアアクチュエータ
JP2008263687A (ja) 単相永久磁石モータ
JP2006074929A (ja) トルクモータ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170630

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180214

R150 Certificate of patent or registration of utility model

Ref document number: 6293838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250