WO2004075379A1 - アキシャルギャップ回転電機 - Google Patents

アキシャルギャップ回転電機 Download PDF

Info

Publication number
WO2004075379A1
WO2004075379A1 PCT/JP1993/000312 JP9300312W WO2004075379A1 WO 2004075379 A1 WO2004075379 A1 WO 2004075379A1 JP 9300312 W JP9300312 W JP 9300312W WO 2004075379 A1 WO2004075379 A1 WO 2004075379A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
axial
gap
rotating electric
permanent magnet
Prior art date
Application number
PCT/JP1993/000312
Other languages
English (en)
French (fr)
Inventor
Kazuto Sakai
Original Assignee
Kazuto Sakai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4061886A external-priority patent/JP2957346B2/ja
Priority claimed from JP18332892A external-priority patent/JP3207251B2/ja
Application filed by Kazuto Sakai filed Critical Kazuto Sakai
Priority to US08/140,130 priority Critical patent/US5619087A/en
Priority to KR1019940703700A priority patent/KR950701117A/ko
Publication of WO2004075379A1 publication Critical patent/WO2004075379A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2798Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings

Definitions

  • the present invention relates to an axial gap rotating electric machine, and more particularly to an axial gap permanent magnet rotating electric machine.
  • the rotating electric machine has a radial gap rotating electric machine in which the gap between the mouth and the stay is formed in the radial direction of the rotating shaft. There is an axial gap rotating electric machine formed in the axial direction of the rotating shaft.
  • a general radial-gap-type ultra-high-speed rotating electric machine with a rotational speed of 1000 rpm or more has a considerably large centrifugal force during rotation.
  • a radial-gap type ultra-high-speed rotating electrical machine that uses a permanent magnet for the field of the rotor a non-magnetic retaining ring with a considerable thickness is attached to the outer peripheral surface of the permanent magnet to prevent the permanent magnet from scattering. Is provided.
  • press the end ring of the coil with a retaining ring in the case of a radial gap type ultra-high-speed rotating electric machine using a coil for the field of the mouth.
  • one rotor disk and a stator disk provided with an armature coil are arranged to face each other via a gap in the axial direction of the same rotating shaft.
  • This rotor disk has magnetic poles A coil or permanent magnet is provided to achieve this.
  • reference numeral 103 denotes a stay frame
  • reference numeral 104 denotes a stay iron core
  • reference numeral 105 denotes a coil
  • reference numeral 106 denotes a rotor
  • reference numeral 107 denotes a mouth yoke
  • Reference numeral 108 denotes a rotating shaft
  • reference numeral 109 denotes a gap.
  • the disk-shaped mouth yoke 110 is made of a magnetic material metal such as soft iron, as schematically shown in FIG.
  • a magnetic material metal such as soft iron
  • This type of axial-gap rotary electric machine has considerably greater rotor inertia than a general radial-gap type rotary electric machine. Therefore, the time from starting to reaching the target speed and the time from rotating to stopping become considerably longer. For this reason, this kind of axial-gap rotating electric machine is not suitable for rapid acceleration / deceleration operation required for mouth bots, automatic machines, and the like.
  • reference numeral 1 1 1 comprises a motor frame
  • reference numeral 1 2 comprises a stay yoke
  • reference numeral 1 13 comprises 11-phase 1 13 &, V-phase 1 13 b, and W-phase 1 13 c.
  • the reference numeral 114 denotes a bearing
  • the reference numeral 115 denotes a rotating shaft
  • the reference numeral 116 denotes a permanent magnet.
  • the rotor disk cannot be multi-staged to enable large-capacity and high-speed rotation. This is not feasible because it is necessary to alternately arrange the stator disk provided with the armature coils and the rotor disk in the axial direction of the rotating shaft. Therefore, because the capacity is increased by using only one rotor disk, the outer diameter of the rotor increases, making it difficult to increase the speed and output.
  • the rotor uses a magnetic material such as soft iron for the rotor work 110 because of the magnetic path through which the magnetic flux passes.
  • the axial gear rotary electric machine of this type becomes heavier at the mouth and causes a problem in mechanical strength of the brass material due to centrifugal resistance.
  • the load on the bearing also increases, the critical speed, which is the rotational speed limit of the rotating shaft, decreases, and high-speed rotation is not possible.
  • An object of the present invention is to provide an axial-gap rotating electric machine capable of ultra-high-speed rotation.
  • Another object of the present invention is to provide an axial-gap rotating electric machine capable of increasing the output.
  • Still another object of the present invention is to enable ultra-high speed rotation and large output. It is an object of the present invention to provide a functional axial gap rotating electric machine.
  • the above object is achieved by the following axial gap rotating electric machine. That is, in an axial-gap rotating electric machine in which a gap between a rotor member having a rotating shaft and a stator member is formed in an axial direction of the rotating shaft,
  • the rotor member is a disk member made of a non-magnetic material that rotates integrally with the rotation shaft, and a plurality of magnetic poles are formed inside the disk member, respectively. And a plurality of permanent magnet member groups.
  • the rotor magnetic poles are formed by a plurality of permanent magnet members provided inside the disk member without using a yoke, the vibration can be reduced and The centrifugal resistance is improved, and high-speed rotation can be realized.
  • the stator member includes a casing member and a casing member. And at least one step winding which is divided into a plurality in the radial direction of the rotating shaft.
  • the stator winding is divided into a plurality in the radial direction of the rotating shaft. Therefore, a tandem configuration can be achieved, and a large capacity can be realized without increasing the diameter of the rotor.
  • a disk member made of a non-magnetic material that rotates integrally with the rotating shaft and a plurality of magnetic poles are formed on the disk member.
  • a plurality of permanent magnet member groups provided inside the disk member, respectively.
  • a rotor member comprising:
  • a casing member and a stay member composed of at least one stator winding which is divided into a plurality in the radial direction of the rotating shaft are provided.
  • the low magnetic poles are formed by a plurality of permanent magnet members provided inside the disk member without using a yoke, thereby contributing to a reduction in vibration.
  • the centrifugal force is improved, and high-speed rotation can be realized.
  • the stay winding is divided into a plurality in the radial direction of the rotating shaft, a tandem configuration can be achieved, and a large capacity can be realized without increasing the diameter of the rotor.
  • Figure 1 is a cross-sectional view of the upper half of a radial-gap permanent magnet rotating electric machine.
  • Figure 2 shows an outline of a conventional axial gap permanent magnet rotating electric machine. Explanatory drawing which shows schematic structure.
  • FIG. 3 is a vertical cross-sectional view showing a main part of one embodiment of the present invention.
  • FIG. 4 is an explanatory view schematically showing a stay in one embodiment of the present invention.
  • FIG. 5 is a configuration diagram of a mold winding in one embodiment of the present invention.
  • FIG. 6 is a configuration diagram of a backup in one embodiment of the present invention.
  • FIG. 7 is a plan view along the line VII-VII in FIG.
  • FIG. 8 is a plan view showing a state in which a permanent magnet is embedded in a rotor disk in one embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an upper half of one embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a molded coil used in one embodiment of the present invention.
  • FIG. 11 is a front view of a back yoke used in one embodiment of the present invention.
  • Figure 12 is a cross-sectional view of Figure 11 taken along the line XI
  • FIG. 13 is a configuration diagram of a mouth disk used in one embodiment of the present invention.
  • FIG. 14 is an explanatory diagram showing the operation of one embodiment of the present invention.
  • FIG. 15 is an explanatory diagram showing the operation of the embodiment of the present invention different from FIG.
  • FIG. 16 is a cross-sectional view showing the upper half of another embodiment of the present invention.
  • FIG. 17 is a front view of a back yoke used in another embodiment of the present invention.
  • FIG. 18 is an XVH—XVE arrow view of FIG.
  • FIG. 19 is a cross-sectional view of the upper half of another embodiment of the present invention.
  • FIG. 20 is a mouth disk used in each embodiment of the present invention, and is a configuration diagram of a rotor disk different from FIG. 13.
  • FIG. 3 is a vertical sectional view showing a main part of one embodiment of the present invention by cutting.
  • the axial gap rotating electric machine 10 includes a stator 11 and a rotor 12 supported on the stay 11 via a bearing.
  • the station 11 includes a casing 11A and a molded winding 16B.
  • the casing 11A is composed of a frame 13, a bracket 14-1, 14-2, a back yoke 15, 15 and a mold winding 16A-1, 16A-. Consists of two. And, as shown schematically in FIG. 5, the stage 11 composed of the plurality of members is divided vertically into two in a plane including the axis of the row 12.
  • the frame 13 is formed in a substantially cylindrical shape. Brackets 14-1 and 14-2 are attached to the openings at both ends of frame 13.
  • the back yokes 15-1 and 15-2 have no slots, are accommodated in recesses formed in the respective brackets 14-1 and 14-2, and are fixed by fixing means (not shown).
  • the molded windings 16A-1 and 16A-2 are mounted on the bracket 14 on the back yoke 15-1 and 15-2, and the stator Construct the winding.
  • the molded winding 16B is attached to the center of the frame 13 to form a stator winding.
  • the molded windings 16A-1 and 16B-2 and 16B are formed in a disk shape as a whole, and are divided into two upper and lower parts as shown in Fig. 5 to form two semicircular bodies. It is configured. Each of the two semicircular bodies is provided with U, V, and W phase windings 17 at three locations. These windings 17 are integrated with a molding resin layer 18 such as an epoxy resin.
  • the winding 17 is manufactured by a single winding method or a concentric winding method. As shown in FIG. 5, the winding 17 forms a real pole (N pole) and an imaginary pole (S pole), and is formed such that the center of the imaginary pole exists on the dividing line of the casing 11. Is done.
  • a through hole 19 for a bolt for mounting to the bracket 14-1, 14-2 ⁇ frame 13 is provided. Furthermore, on the side of the U and V fW windings 17 on the molding resin layer 18, terminals (not shown) for connecting a caple drawn through the frame 13 from an external power supply are attached. It is. In addition, a lead wire is drawn from the end of the winding 17. Then, the lead wire is passed through the hole provided in the frame 13. Lead wire through hole can be connected to capele outside frame 13 o
  • the back yoke 15 is formed by spirally winding a belt-shaped 0.2 mm-thick gay steel plate 20, which is wound around the outer ring 21 and the inner ring. After being fixed between the ring 2 and 2, it is divided into upper and lower parts, and the bracket is used as a semicircular yoke Mounted on 14-1, 14-2.
  • the rotor 12 includes a rotating shaft 23, two mouthpieces 24-1, 24 -2, and 12 group permanent magnet groups 25.
  • the rotating shaft 23 is formed of a magnetic material such as a non-magnetic metal.
  • the two rotor disks 24_1 and 24-2 are also formed of a magnetic material such as a nonmagnetic metal.
  • the two rotor disks 24-1, 24-2, and the rotating shaft 23 are integral with each other. By cutting a magnetic material such as a non-magnetic metal, it is possible to form the rotating shaft 23 and two mouth disks 24-1 and 24-2.
  • the permanent magnet group 25 is equally distributed on the mouth disks 24-1 and 24-2, and 10 permanent magnets are mounted in a distributed manner.
  • the two permanent magnet groups 25 constitute one permanent magnet group 25 —the two permanent magnet pieces 25a are formed in a columnar shape, and are magnetized along the axial direction. It is inserted and fixed in a hole provided along the axial direction on the plane of -2. Well, one permanent magnet group 25 forms one magnetic pole. Therefore, the group of 12 permanent magnets 25 forms 12 magnetic poles at a predetermined distance in the circumferential direction on the surface of the oral study 24-1 and 24-2. .
  • the rotor disks 24-1 and 24-2 have an axial gap 26-1, 26-2, 26-3, 2 between the mold windings 16A and 16B. 6-4 are formed.
  • the magnetic poles generated by the rotor disks 24-1 and 24-2 are composed of ten permanent magnet pieces 25a (permanent magnet groups 25) dispersed and arranged as shown in FIG. Form one pole. In this embodiment The magnetic pole is formed 12 times. In FIG. 8, three permanent magnet groups 25 are illustrated as an example in the circumferential direction of the rotor disks 24-1 and 24-2.
  • 120 permanent magnet pieces 25a are embedded in the rotor disks 24-1, 24-2 per one rotor disk. Further, in this embodiment, since there are two mouth disks, the rotor magnetic pole is formed of 240 permanent magnet pieces 25a.
  • the permanent magnet group 25 (permanent magnet piece 25a) serving as a field is embedded in the plane of the rotor disks 24-1, 24-2 in the axial direction so as to penetrate therethrough. Therefore, the mouth disks 24-1 and 24-2 act to prevent the permanent magnet group 25 (permanent magnet piece 25a) from jumping out due to centrifugal force during high-speed rotation.
  • the thickness of the rotor disk 24-2 needs to be sufficiently thick. In the conventional radial-gap rotating electric machine shown in FIG. 1 described above, when the holding ring 102 provided around the rotor provided for centrifugal resistance is made thicker, the gap 109 becomes longer.
  • the permanent magnet group 25 (permanent magnet piece 25a) is formed even if the thickness of the outer peripheral portion of the rotor disks 24-1 and 24-2 is sufficiently large. Since the magnetic field is formed in the axial direction of the rotating shaft, the magnetic gap of the magnetic circuit does not increase. Therefore, by increasing the mechanical strength as the centrifugal resistance, the output does not decrease and high-speed rotation is possible. It works.
  • the permanent magnet group 25 (permanent magnet pieces 25 a) forming the poles of the field is not one permanent magnet per pole. That is, in the present embodiment, one pole is formed by dispersing a plurality of permanent magnet pieces 25 a constituting one permanent magnet group 25. Then, the permanent magnet group 25 (permanent magnet piece 25a) is centrifuged because of the structure in which a plurality of permanent magnet pieces 25a are embedded in the 10 holes of the rotor disks 24-1 and 24-2. It is possible to prevent stress due to force from being concentrated on a part of the rotor disks 24-1 and 24-2. This makes it possible to withstand ultra-high speed rotation.
  • the rotor 12 has a shape like a flywheel because of an axial gap.
  • the bearings of both sides that support the robin disks 24-1, 24-2 The distance between them can be considerably shortened, so that the rigidity of the rotating shaft system is increased, so that the natural frequency of the shaft system is increased and the shaft can be rotated stably even with ultra-high speed rotation with less vibration. .
  • the stator winding portion includes only the winding 17 and the molding resin layer 18.
  • the stator winding does not have a low iron core.
  • the magnetic circuit is composed of two back yokes 15 provided on the inner surface of the brackets 14-1 and 14-2, a permanent magnet group 25 (permanent magnet piece 25a), and a gap 2 It is formed only of 6-1, 26-2, 26-3, 26-4.
  • the magnetic portion that forms the magnetic path is only the two backups 15 on both sides.
  • the mold windings 16 A-1, 16 A-2, 16 B which can be divided into two or more divisions, and the rotor disk 24 Are arranged alternately one after another between the two back yokes 15 to form a multi-stage rotating electric machine. Therefore, high output can be achieved.
  • the stator core has no teeth.
  • the magnetic circuit consists of only the back yoke 15, permanent magnet 25 (permanent magnet piece 25a) and gaps 26-1, 26-2, 26-3, 26-4.
  • the magnetic part that forms the magnetic path can form the operating part of a multi-stage rotating electric machine only with the two bars and the socks 15 on both sides. Therefore, iron loss is greatly reduced, and efficiency can be increased, and the temperature rise during operation of the rotating electric machine can be reduced.
  • the circumference on the inner diameter side is shortened, so that the space at the end of the winding 17 is narrowed, and the number of windings cannot be increased.
  • the axial gap rotating electric machine of the present embodiment can be configured as a multi-pole rotating electric machine, high output can be achieved by shortening the end of the winding 17 and increasing the number of windings.
  • the back yoke 15 is formed by spirally winding a belt-like 0.2 mm thick gay steel sheet 20 and sandwiching it between the outer ring 21 and the inner ring 22. It is. Such a pack yoke 15 suppresses generation of an eddy current. This will suppress the increase in iron loss of electrical equipment.
  • the gap magnetic flux is generated by the teeth of the stay iron core during high-speed rotation. Moving, generating considerable eddy currents on the rotor surface. Since the rotating electric machine of this embodiment has no iron core teeth, the eddy current does not occur and the efficiency is improved.
  • the soft magnetic material constituting the magnetic path is only the back yoke 15, and the magnetic gap viewed from the winding 17 is considerably large. Therefore, the inductance of the winding 17 becomes considerably small, and the voltage drop of the inductance becomes small, and at the same time, the terminal voltage becomes small. Therefore, the drive power supply can be downsized.
  • the rotary electric machine according to the present invention has a multi-stage operation section for high output, and has a molded winding 16 A- 1, 16 A- 2 formed with a rotor disk 24-24-2. , 16 B are alternately arranged in the axial direction. Therefore, it is difficult to fit the mouth 12 in the casing 11.
  • the stay 11 is divided into two in a plane including the axis of the rotor 12 so as to be combined, so that the stay 11 is divided into two.
  • the rotor 12 can be accommodated.
  • the disk-shaped molding windings 16A-1, 16A-2, 16B are divided into two parts. For this reason, one-sided winding Method or concentric winding method, which is a winding that alternately forms real poles and imaginary poles. And the center of the imaginary pole is made to lie on the dividing line of stator 11. Specifically, when two adjacent windings form an N pole, an imaginary S pole is formed between the windings. Therefore, by setting the center of this imaginary pole on the dividing line of the stay 11, the stator 11 is divided into two. For this reason, the conductive wires in the molded windings 16A-1 and 16A-2 and 16B are not cut.
  • the rotating electric machine of the present invention is of an axial gap type, and can be divided into two in a plane including the axis of the mouth 12. For this reason, it is possible to easily take out the rotor 12 from the stator 11 and maintenance is facilitated. Furthermore, since the winding 17 is not wound around the iron core teeth as in the conventional case, but is formed by the molding winding alone, the step winding 11 is divided to form the winding. Only 16A-1, 16A-2 and 16B can be easily taken out, and the exchange of the winding 17 becomes easy.
  • the induced voltage waveform can be shaped into a sine wave, and output pulsation can be reduced.
  • the stator winding portion in the embodiment described above is obtained by molding the winding 7 with epoxy resin.
  • a semi-circular winding in which conductors are printed on a thin electrically insulating substrate is laminated and the stator winding is formed.
  • a line portion can be configured.
  • FIG. 9 is a cross-sectional view showing the upper half of another embodiment of the present invention.
  • the axial gap rotating electric machine 30 of the present embodiment includes a stator 31 and a rotor 32 rotatably supported on the stay 31 via a bearing.
  • the statuser 31 includes a casing 31A and a mold core 35B.
  • the casing 31A includes a frame 33, brackets 34-1, 34-2, molded coils 35A-1, 35A-2, and back yokes 36-1, 36-2.
  • the frame 33 is formed by molding with a fiber reinforced epoxy resin, and has a structure in which the frame 33 is vertically divided into two in a plane including the axis of the mouth 32.
  • Each of the brackets 34-34-2 is attached to both ends of the frame 33 in the axial direction via bolts (not shown), and is formed by molding with fiber reinforced epoxy resin.
  • the mold coil 35B is buried inside the brackets 34-1, 34-2 so as to face the molded coils 35A-1, 35A-2 via a low-speed disk which will be described later.
  • the pack yokes 36-1 and 36-2 are embedded in the brackets 34-1 and 34-2 so as to be outside the molded coil 35 B or are mounted via bolts.
  • Each of the monopole coils 35A-1 and 35A-2 is attached to a bolt or other appropriate fixing means (not shown) at the center of the frame 33 in the axial direction, and has a substantially disk shape as a whole.
  • This is a structure in which the rotor 32 is vertically divided into two parts in a plane including the axis of the rotor 32.
  • the molded coils 35A-1 and 35A-2 are shown in Figure 10 respectively. It has U, V, and W phase windings, adopts one-way winding method or concentric winding method, and is molded with epoxy resin, etc., resulting in a two-part structure.
  • the molded coil 35B also has substantially the same U, V, and W phase windings, but does not have a two-part structure.
  • each of the back yokes 36-1, 36-2 is formed by spirally winding a 0.2 mm thick silicon steel plate 36a, and The inner side and inner side are fixed by sandwiching them with rings 36b and 36c, respectively.
  • the rotor 32 has a rotating shaft 37, and a molded coil 35A_1, 35A-2, 35B and a gap 38-38-2, at an axially intermediate portion of the rotating shaft 37.
  • permanent magnet pieces 40a are equally distributed on each of the discs 3 9 -1, 3 9 -2, and 1 per pole (one pole). 0 pieces are distributed and installed. These ten permanent magnet pieces 40a form one group.
  • One permanent magnet piece group 40 forms-one magnetic pole.
  • a plurality of magnetic poles are formed on each of the rotor disks 39-1 and 39-2 by a plurality of permanent magnet pieces 40 provided on each of the rotor disks 39-1 and 39-2.
  • the permanent magnet piece 40a is formed in a cylindrical shape, is magnetized along the axial direction, and is fixed through holes of the rotor disks 39-1, 39-2.
  • a metal ring (not shown) which is engaged with a key (not shown) for integrally rotating with the rotating shaft 37 is provided integrally with the center side of the rotor disks 39-1, 39-2.
  • a spacer 41 is inserted between the rotor disks 39-1 and 39-2, and a ring-shaped holding bracket is provided on the outside of each of the rotor disks 39-1 and 39-2. It is pressed toward the center by 4 2.
  • a rotating electric machine requires a yoke made of a magnetic material as a magnetic path for passing a magnetic flux all over the mouth, and the inertia becomes relatively large as the capacity increases.
  • the disk is made of a magnetic material such as soft iron
  • the rotor has a disk shape, and the inertia becomes considerably large. Is disadvantageous.
  • the rotor can be made of a non-magnetic material except for the rotating shaft and the permanent magnet 40.
  • the rotor disks 39-1, 39-2 molded with fiber-reinforced resin having a specific gravity of 1.5 for the rotor the inertia of the rotor becomes extremely small.
  • the rotor disks 39-1, 39-2, the frame 33, and the brackets 34-1, 34-2 are also made of resin, and the main part of the metal part is the back yoke 36-1, , 36 -2, Molded coil 35 A-1, 35 A-2, 35 B winding, permanent magnet 40, rotating shaft Only 37.
  • the rotating electric machine of the present embodiment can be increased in capacity in multiple stages as described in the section of increasing the capacity. Therefore, the back yoke 36-1, 36-2 and the brackets 34-1, 34-2 have the same dimensions and weight as they are, and mainly the multi-stage molded coil.
  • the high-speed rotation characteristics of the present embodiment will be described. That is, in the rotating electric machine, it is necessary to sufficiently increase the thickness of the outer peripheral member of the rotor in order to enhance the centrifugal resistance during rotation. As shown in Fig. 1, the conventional rotating electric machine with a cylindrical magnetic circuit having a field coil in the circumferential direction as shown in Fig. 1 requires a thicker holding ring 102 around the rotor provided for centrifugal resistance. Gap 1 09 becomes longer.
  • the rotor disks 39-1, 39-2 act to suppress the permanent magnet group 40 (permanent magnet piece 40a) from jumping out due to centrifugal force at high speed. Further, in the present embodiment, even if the thickness of the outer peripheral portion of the rotor disks 39-1 and 39-2 is made sufficiently large, the magnetic field generated by the permanent magnet group 40 (permanent magnet piece 40a) rotates the rotating shaft. Since it is formed in the axial direction of the magnetic circuit, the magnetic gap of the magnetic circuit does not increase. Therefore, the output does not decrease by increasing the mechanical strength as the centrifugal resistance. And high-speed rotation is possible.
  • the permanent magnet group 40 (permanent magnet pieces 40a) forming the poles of the field is not a single permanent magnet per pole, but a plurality (for example, 10) of permanent magnets per pole. Centrifuging the permanent magnet group 40 (permanent magnet piece 40a) to disperse the pieces 40a and embed them in the multiple (for example, 10) holes of the rotor disks 39-1 and 39-2 It is possible to avoid the stress caused by the force from being concentrated on a part of the mouth disk 39-1, 39-2, and it can withstand ultra-high speed rotation.
  • the magnetic part is only two back yokes 36-1, 36-2 on both sides. Therefore, the molded coil 35 A-1, 35 A-2, which can be divided into two or more parts, and the rotor disks 39-1, 3-1 are connected between the two back yokes 36-1, 36-2. By simply providing them sequentially, the operating parts of a multi-stage rotating electric machine are formed, and high output can be realized.
  • the rotor 32 has a multi-stage configuration in order to increase the capacity.However, the inertia of the rotor 32 to which the rotor disks 39-1, 39-2 made of resin are mounted is smaller than in the past.
  • the mouth 32 since the axial gap is rotated, the mouth 32 has a top shape similar to a flywheel, and the bearing 32 is provided between the bearings of both sides supporting the rotor disks 39-1 and 39-2. Since the distance becomes considerably shorter, the rigidity of the rotating shaft system becomes higher. Therefore, the natural frequency of the shaft system is increased, and the shaft can be rotated stably even with ultra-high speed rotation with less vibration of the shaft.
  • the molded coils 35A-1, 35A-2, 35B are made of only U, V, W phase windings and fiber reinforced epoxy resin, and have no iron core.
  • the circuit consists of two back yokes 36-1, 36-2 provided inside the brackets 34-1, 34-2 and permanent magnets 40 (permanent) provided on the rotor disks 39-1, 39-2. It consists of a magnet piece 40a) and only the gaps 38-1, 38-2, 38-3, 38-4, and the magnetic parts that make up the magnetic path are two back yokes on both sides. Only 36-1 and 36-2.
  • the magnetic circuit has a gap with the back yokes 36-1, 36-2 and the permanent magnet group 40 (permanent magnet piece 40a). It consists of only 38-1, 38-2, 38-3, and 38-4, and the magnetic part that forms the magnetic path is only the two back yokes 36-1 and 36-2 on both sides. Can be formed. Therefore, iron loss is greatly reduced, and efficiency can be increased and the temperature rise during operation of the rotating electric machine can be reduced. If the iron core has teeth, the gap magnetic flux pulsates during high-speed rotation, and a considerably large eddy current is generated on the rotor surface. However, in this embodiment, since there are no iron core teeth, the eddy current does not occur and the efficiency is improved.
  • the back yokes 36-1, 36-2 are formed by spirally winding a 0.2mm thick silicon steel plate 36a, and forming a ring 36b on the outer periphery. It is sandwiched and fixed between the inner ring 36c to reduce iron loss due to eddy currents.
  • the only soft magnetic material that composes the magnetic path is the back yoke 36-1, 36-2, and the mold coil
  • the magnetic gap seen from 35 Al, 35 A -2, and 35 B becomes considerably large. Therefore, the inductance of the molded coils 35A-1, 35A-2, 35B is considerably small, and the voltage drop of the inductance is small, and at the same time, the terminal voltage is small. Therefore, the drive power supply can be downsized.
  • the armature reaction due to the mold coils 35A-1, 35A-2, 35B also decreases, so that the permanent magnet group 40 (permanent magnet pieces 4 0a) can be prevented, and a large current can flow.
  • FIG. 16 is a cross-sectional view of the upper half of this example.
  • the axial gap rotating electric machine 45 includes a stator 46 and a rotor 47 rotatably mounted on the stay 46 via bearings. .
  • the station 46 includes a casing 46A and a molded coil 35C-1, 35C-2.
  • the molded coils 35C-1, 35C-2 are bolted to the bracket 49 so as to face the molded coils 35A-1, 35A-2 via a mouth disk which will be described later. Mounted through.
  • the casing 46 A is composed of the stay overnight frame 48, the brackets 49-1, 49-2, the mold docinoles 35 A-1, 35 A-2, Yoke 50-1 and 50-2.
  • the stator frame 48 is formed of a fiber-reinforced epoxy resin by molding, and has a structure that is vertically divided into two in a plane including the axis of the rotor 47.
  • Each of the brackets 49-1 and 49-2 is formed by molding a fiber-reinforced epoxy resin that is attached via bolts to both ends of the stay frame 48 in the axial direction, and attaches the shaft center of the rotor 47. It is a structure that is divided into upper and lower parts in a horizontal plane. As shown in Fig. 10, each of the mold coils 35A-1, 35A-2 has a bracket 49, -1, 49-2 and a bolt at the center of the stator frame 48 in the axial direction. The structure is divided into two parts vertically.
  • the back yokes 50-1, 50-2 are inserted into the recesses on the brackets 49-1, 49-2 so that they are outside the molded coils 35C-1, 35C-2. It is mounted on brackets 49-1 and 49-2 via bolts. Note that Each of the yoke 50-1 and 50-2 is divided into two parts at the center, as shown in Fig. 17 and Fig. 18, and a 0.2 mm thick silicon steel plate 50a is spirally wound. In this structure, the outer peripheral side and the inner peripheral side are sandwiched and fixed by rings 50b and 50c, respectively.
  • the rotor 47 has a rotating shaft 51 and a molded coil 35 Al, 35 A-2, 35 C-1, 35 C-2 at an intermediate portion in the axial direction of the rotating shaft 51.
  • 52 -2, 52 -3, 52 -4 and two rotor disks 39 -1, 39 -2 mounted so as to rotate integrally with the rotating shaft 51.
  • a plurality of rod-shaped permanent magnet pieces 40a which are magnetized in the axial direction, are attached to the rotor disk 39-1, 39-2 so as to be integrally formed therethrough in the axial direction.
  • a ring (not shown) having a key groove (not shown) for engaging with a key (not shown) for rotating integrally with the rotating shaft 51 is provided integrally.
  • a spacer 41 is inserted between the rotor discs 39 and 39-2, and the outer surface of each of the rotor discs 39-1 and 39-2 is centered by a ring presser fitting 42. Pressed to the side.
  • the stay is divided into two parts, four mold coils to be attached to the stay side, three roller discs to be attached to the rotor side, and a mold coil and back yoke to be attached to the bracket side.
  • FIG. 19 is a cross-sectional view of the upper half of this embodiment.
  • the axial gap rotating electric machine 55 It is composed of an overnight gear 56 and a rotor 57 rotatably mounted on the stator 56 via a bearing.
  • the stay 56 consists of a casing 56A and molded coils 35D-1, 35D-2, 35D-3.
  • the mold coil 35D-1, 35D-2, 35D-3 is bracketed so as to face the molded coil 35A-1, 35A-2 via a rotor disk described later. It is attached to 59-1, 592 by bolts.
  • the casing 56 A is composed of a stator frame 58, brackets 59-1, 59-2, molded coils 35 A-1, 35 A-2, and a back yoke 50. -1, 50 -2.
  • the stay frame 58 is formed by molding with a fiber reinforced epoxy resin, and has a structure that is vertically divided into two in a plane including the axis of the rotor 57.
  • Each of the brackets 59-1 and 59-2 is attached via bolts to both ends of the stator frame 58 in the axial direction, and is formed by molding with fiber-reinforced epoxy resin. It is a structure that is divided into two parts in the plane including the heart. As shown in Fig.
  • each of the molded coils 35A-1 and 35A-2 is connected to an intermediate portion in the axial direction of the stay frame 58 through a port through a port disk described later. It is mounted so as to face each other and divided into two parts in the upper and lower directions.
  • Each of the back yokes 50-1, 50-2 is inserted into a recess provided in the mold coil 35D and the bracket 59, and is attached to the bracket 59 via a bolt.
  • the rotor 57 has a rotating shaft 60 and a rotating shaft 60.
  • a plurality of rod-shaped permanent magnet pieces 40a magnetized in the axial direction are integrally formed on the rotor disks 39-1, 39-2, and 39-3, penetrating in the axial direction.
  • a ring (not shown) having a key groove (not shown) for engaging a key (not shown) for rotating integrally with the rotating shaft 60 is provided integrally at the center.
  • One permanent magnet group 40 is formed by the plurality of permanent magnet pieces 40a.
  • the plurality of permanent magnet groups 40 form a plurality of magnetic poles on each of the mouthpieces 39-1, 39-2, 39-3.
  • a spacer 31 is inserted between the rotor disks 39-1, 39-2, and 39-3, and the rotor disks 39-39 and 39-9 are arranged outside. , 3 9-3 are pressed toward the center side by ring-shaped presser fittings 42.
  • the permanent magnet side 40a attached to the rotor disks 39-1 and 39-2 as shown in Fig. 20 is attached to the outer and inner peripheral sides.
  • the diameters may be different.
  • permanent magnet pieces 40a permanent magnets 40a-1, 40a-2, 40a-3, 40a-4 having different diameters can be used.
  • the outer permanent magnet 40a-1 has a small diameter
  • the inner permanent magnet 40a-4 has a large diameter.
  • permanent magnets with different energy products Stone pieces can be used.
  • permanent magnet pieces having different energy products can be used on the outer peripheral side
  • permanent magnet pieces having different low energy products can be used on the inner peripheral side.
  • the permanent magnet pieces in the present invention permanent magnet members having different magnetic field strengths can be used.
  • the rotor disk may be made of a non-magnetic metal having a low specific gravity, such as duralumin, instead of the fiber-reinforced resin.
  • semiconductor technology is applied.
  • a semi-circular coil in which conductive wires are printed on a thin electrically insulating substrate may be laminated.
  • the rotor disk which is the main configuration diagram of the mouthpiece, is formed of resin
  • the inertia of the rotor is significantly reduced, and ultra-high-speed rotation, rapid acceleration / deceleration, and miniaturization are achieved. Etc. can be realized.
  • the metal part is only a limited part, the weight can be greatly reduced, and the weight of the rotating electric machine itself can be reduced.
  • the output can be used effectively when applied to a robot servo motor that becomes a load or a drive motor for an electric vehicle.
  • the coil and the rotor disk of the stay overnight are alternately geared. It is possible to provide an axial-gap rotating electric machine that has multiple stages through a gap and that can increase the output and facilitate maintenance.
  • the axial gap rotating electric machine of the present invention will be realized in either a single-phase device or a multi-phase device.
  • the drive system can use the existing and existing systems and the systems that will appear in the future. Such drives should be systems using appropriate power electronics technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

明 細 書 アキシャルギャ ップ回転電機 [技 術 分 野]
本発明は、 アキシャルギヤ ップ回転電機に係り、 詳しく は. アキシャルギヤ ップ永久磁石回転電機に関する。
[従来の技術]
回転電機には、 口一夕とステ一夕との間のギャ ップが回転 軸のラジアル方向に形成されるラジアルギヤ ップ回転電機と. ロー夕とステ一夕との間のギャ ップが回転軸のアキシャル方 向に形成されるアキシャルギヤ ップ回転電機とがある。
1 0 0 0 0 r p m以上の一般のラジアルギヤ ップ型超高速 回転電機は、 回転時の遠心力が相当大きく なる。 このため、 ロー夕の界磁に永久磁石を用いたラジアルギヤ ップ型超高速 回転電機の場合には 永久磁石が飛散しないように、 相当の 厚さの非磁性の保持環を永久磁石の外周面に設けている。 ま た、 口一夕の界磁にコィルを用いたラジァルギャ ップ型超高 速回転電機の場合には、 コィルのェン ドリ ングを保持環で押 . い o
—方、 アキシャルギャ ップ回転電機は、 同一の回転軸のァ キシャル方向に、 1個のロータディ スクと、 電機子コイルを 設けたステータディ スクとがギヤ ップを介して対向配置され ている。 そして、 このロータディ スクには、 界磁の磁極を形 成するためコィル又は永久磁石が配置されている。
しかしながら、 上述したような従来のラジアル型回転電機 を、 1 0 0 0 0 r p m以上の超高速回転運転を行う と、 回転 時の遠心力が相当大きく なるため、 ロータのコイルは強度的 に耐えられず破損する虞れがある。
また、 図 1に示すように、 界磁に永久磁石 1 0 1を用いた ラジアルギヤ ップ回転電機の場合、 この永久磁石 1 0 1が飛 散しないように相当の厚さを有する非磁性の保持環 1 0 2が 必要となる。 この保持環 1 0 2は、 磁気回路が短絡にならな いように非磁性材を用いるため、 必然的に磁気的なギヤ ップ 長が長く なる。 このため、 ギャ ップ部間で消費される起磁力 が大きく なり、 回転電機の出力が低下する。 なお 図 1にお いて、 符号 1 0 3はステ一夕フ レーム、 符号 1 0 4はステー 夕鉄心、 符号 1 0 5はコイル、 符号 1 0 6はロータ、 符号 1 0 7は口一夕 ヨーク、 符号 1 0 8は回転軸、 符号 1 0 9は ギヤ ツプをそれぞれ示す。
—方、 アキシャルギャ ップ回転電機の場合は 図 2に模式 的に示すように、 ディ スク状の口一夕ヨーク 1 1 0は、 軟鉄 の如き磁性材金属で構成される。 このため。 この種のアキシ ャルギヤ ップ回転電機は、 一般的なラジアルギヤ ップ型の回 転電機と比較して、 ロータのイナ一シャが相当大きく なる。 したがって、 起動から目標速度に達するまでの時間、 及び回 転から停止に至るまでの時間が相当長く なる。 このため、 こ の種のアキシャルギヤ ップ回転電機は、 口ボッ ト ♦ 自動機械 等に要求される急加減速運転は不適当とされている。 なお、 同図において、 符号 1 1 1はモータフレーム、 符号 1 1 2は ステ一夕ヨーク、 符号 1 1 3は11相 1 1 3 &、 V相 1 1 3 b、 W相 1 1 3 c よ り成る コ イ ル、 符号 1 1 4 は軸受、 符号 1 1 5は回転軸、 符号 1 1 6は永久磁石をそれぞれ示す。
従来のアキシャルギヤ ップ回転電機にあつては、 大容量及 び高速回転が可能なように、 ロータのディ スクを多段にする ことはできない。 何故ならば、 電機子コィルが設けられたス テータディ スク とロータディ スク とを交互に回転軸のァキシ ャル方向に並べる必要があるから、 実現不可能である。 した がって、 ロータディ スクが 1個のみの構成で大容量化を図る ため、 ロータ外径が大き く なり 高速、 大出力化が困難とな さらに、 この種のアキシャルギヤ ップ回転電機では、 磁束 を通す磁路のためロータは、 軟鉄のような磁性材をロータョ ーク 1 1 0に用いる。 このため、 この種のアキシャルギヤ ッ プ回転電機は、 口一夕重量が重く なり、 耐遠心力によるロー 夕材の機械的強度に問題が生じる。 また、 この種のアキシャ ルギャ ップ回転電機は、 軸受けにかかる荷重も増大し、 回転 軸の回転限界速度である危険速度も低下し、 高速回転が不可 tfc:にな
本発明の一の目的は、 超高速回転が可能なアキシャルギヤ ップ回転電機を提供するこ とにある。
本発明の他の目的は、 大出力化が可能なアキシャルギヤ ッ プ回転電機を提供するこ とにある。
本発明のさらに他の目的は、 超高速回転及び大出力化が可 能なアキシャルギヤ ップ回転電機を提供することにある。
[発明の開示]
上記一の目的は、 次のアキシャルギヤ ップ回転電機により 達成される。 すなわち、 回転軸を有するロータ部材とステ一 タ部材との間のギャ ップが前記回転軸のアキシャル方向に形 成されるアキシャルギヤ ップ回転電機において、
前記口—タ部材は、 前記回転軸と一体で回転する非磁性材 からなるディ スク部材と、 複数の磁極それぞれをディ スク部 材上に形成すベく前記ディ スク部材の内部にそれぞれ設けら れる複数の永久磁石部材群とを具備する。
上述した本発明によるアキシャルギャ ップ回転電機によれ ば ヨークを用いないで前記ディ スク部材の内部に設けられ る複数の永久磁石部材群により ロータ磁極を形成するから、 低振動化に寄与すると共に耐遠心力が向上し、 高速回転化が 実現され得る。
また、 上記他の目的は 次のアキシャルギヤ ップ回転電機 により達成される。 すなわち、 回転軸を有するロータ部材と ステ一タ部材との間のギヤ ップが前記回転軸のアキシャル方 向に形成されるアキシャルギヤ ップ回転電機において、 前記ステータ部材は、 ケ一シング部材と、 前記回転軸のラ ジアル方向に複数に分割される少なく とも一つのステ一夕巻 線とを具備する。
上述した本発明によるアキシャルギヤ ップ回転電機によれ ば、 ステ一タ卷線が前記回転軸のラジアル方向に複数に分割 されるから、 タンデム構成とすることができ且つロータの大 径化を図らなく て、 大容量化が実現される。
さらに、 上記さらに他の目的は、 次のアキシャルギャ ップ 回転電機により達成される。 すなわち、 ギャ ップが回転軸の アキシャル方向に形成されるアキシャルギヤ ップ回転電機に おいて、
前記回転軸と一体で回転する非磁性材からなるディ スク部 材と複数の磁極それぞれをディ スク ¾材上に形成すベく前記 ディ スク部材の内部にそれぞれ設けられる複数の永久磁石部 材群とからなるロータ部材と、
ケ一シング部材と前記回転軸のラジアル方向に複数に分割 される少なく と も一つのステ一タ卷線とからなるステ一夕部 材とを具備する。
上述した本発明によるアキシャルギヤ ップ回転電機によれ ば、 ヨークを用いないで前記ディ スク部材の内部に設けられ る複数の永久磁石部材群により ロー夕磁極を形成するから、 低振動化に寄与すると共に耐遠心力が向上し、 高速回転化が 実現され得る。 また、 ステ一夕巻線が前記回転軸のラジアル 方向に複数に分割されるから、 タンデム構成とすることがで き且つロータの大径化を図らなく て、 大容量化が実現される。
[図面の簡単な説明]
図 1は、 ラジアルギヤ ップ永久磁石回転電機の上半部を切 断した断面図。
図 2は、 従来のアキシャルギャ ップ永久磁石回転電機の概 略構成を示す説明図。
図 3は、 本発明の一実施例の主要部分を切断して示す縦断 面図。
図 4は、 本発明の一実施例におけるステ一夕を模式的に示 した説明図。
図 5は、 本発明の一実施例におけるモール ド巻線の構成図。 図 6は、 本発明の一実施例におけるバッ ク ョ一クの構成図。 図 7は、 図 6の VII - VII線に沿った平面図。
図 8は、 本発明の一実施例におけるロータディ スクに永久 磁石が埋め込まれた状態を示す平面図。
図 は、 本発明の一実施例の上半部を切断して示す断面図。 図 1 0は、 本発明の一実施例に用いるモールドコイルの構 成図。
図 1 1は、 本発明の一実施例に用いられるバッ クヨークの 正面図。
図 1 2は、 図 1 1の — XI断面図。
図 1 3は、 本発明の一実施例に用いる口一夕ディ スクの構 成図。
図 1 4は、 本発明の一実施例の作用を示す説明図。
図 1 5は、 図 6と異なる本発明の一実施例の作用を示す説 明図。
図 1 6は、 本発明の他の実施例の上半部を切断して示す断 面図。
図 1 7は、 本発明の他の実施例に用いるバッ ク ヨークの正 面図。 図 1 8は、 図 1 7の XVH— XVE矢視図。
囟 1 9は、 本発明のさらに異なる他の実施例の上半部を切 断した断面図。
図 2 0は、 本発明の各実施例に用いる口一タディ スクであ つて、 図 1 3と異なるロータディ スクの構成図。
[発明を実施するための最良の形態] 図 3は、 本発明の一実施例の主要部分を切断して示す縦断 面図である。 図 3に示すように、 アキシャルギャ ップ回転電 機 1 0は、 ステ一タ 1 1 と、 このステ一夕 1 1に軸受を介し て支持されるロータ 1 2とからなる。
ステ一夕 1 1 は、 ケ一 シ ング 1 1 A及びモール ド巻線 1 6 Bを含む。 ケ一シング 1 1 Aは、 フレーム 1 3と、 ブラ ヶッ 卜 14 -1, 14—2と、 バッ ク ヨーク 1 5, 1 5と、 モ一 ルド卷線 1 6 A-1, 1 6 A-2とからなる。 そして、 これら複 数の部材からなるステ一夕 1 1は 図 5に模式的に示すよう に ロー夕 1 2の軸心を含む平面内で上下に 2分割される構 める。
フ レーム 1 3は、 ほぼ円筒状に形成されている。 ブラケッ ト 14 -1, 1 -2は、 フ レーム 1 3の両端開口部にそれぞれ 取付けられている。 バッ ク ヨーク 1 5 -1, 1 5 -2は、 スロ ッ トが無く、 それぞれのブラケッ ト 14 -1, 14 -2に形成した 凹部に収容され、 図示しない固定手段によりて固定されて いる。 モール ド巻線 1 6 A - 1, 1 6 A - 2は、 バッ ク ヨーク 1 5 -1, 1 5 -2上でプラケッ ト 14に取付けられ、 ステ一タ 卷線を構成する。 モール ド巻線 1 6 Bは、 フ レーム 1 3の中 央部に取付けられ、 ステータ卷線を構成する。
モール ド巻線 1 6 A - 1, 1 6 B -2, 1 6 Bは、 全体として ディ スク状に形成され、 図 5に示すように上下に 2分割され て 2個の半円状体から構成されている。 2個の半円状体それ ぞれには、 3箇所に U, V, W相の卷線 1 7が設けられてい る。 これらの卷線 1 7 は、 エポキシ樹脂の如き成形樹脂層 1 8で一体化されている。 ここで、 卷線 1 7は、 一方巻き方 法又は同心巻き方法により製作されている。 この巻線 1 7は、 図 5に示すように、 実極 (N極) と虚極 ( S極) とを形成し、 虚極の中心がケーシング 1 1の 2分割線上に存在するように 形成される。
また 成形樹脂層 1 8の外周側に近い部分には、 ブラケッ ト 1 4 - 1, 1 4 -2ゃフレーム 1 3に取付けるためのボルトの 貫通穴 1 9を設けている。 さらに、 成形樹脂層 1 8には、 U, V f Wの卷線 1 7の側面には 外部電源からフ レーム 1 3を 貫通して引込まれるケープルを接続するための図示しない端 子が取り付けてある。 この他、 巻線 1 7の端部から リ一ド線 を引出す。 そして、 このリー ド線を、 フレーム 1 3に設けた 穴を貫通させる。 穴を貫通したリー ド線を、 フ レーム 1 3の 外部でケープルに接続することができる o
また、 バッ ク ヨーク 1 5は、 図 6及び図 7に示すように帯 状の 0 . 2 m m厚さのゲイ素鋼板 2 0を渦卷状に巻き、 これ を外側リ ング 2 1 と内側リ ング 2 2の間に挟んで固定した後、 上下に 2分割した構造と し、 半円のヨークと してブラケッ ト 14 -1, 14 -2に取付けられている。
さらにロータ 1 2は、 回転軸 2 3と、 2個の口一タディ ス ク 24 - 1, 24 -2と、 1 2個の群永久磁石群 2 5とからなる。 回転軸 2 3は、 非磁性金属の如き磁性材から形成されてい る。 2個のロータディ スク 24 _1, 24 - 2も非磁性金属の如 き磁性材から形成されている。 2個のロータディ スク 24 - 1, 24 -2、 と、 回転軸 2 3とは一体物である。 非磁性金属の如 き磁性材を切削し、 回転軸 2 3及び 2個の口一夕ディ スク 24 -1, 24 -2を形成することができる。 永久磁石群 2 5は それぞれ口一タディ スク 24 - 1, 24 -2に図 8に示すように 等配された 1 2箇所で、 1箇所当たり 1 0個が分散して取付 けられている。 こ こで、 1 2個の永久磁石群 2 5を構成する —つの永久磁石片 2 5 aは 円柱形状に形成され、 かつ軸方 向に沿って磁化されており、 ロータディ スク 24 -1, 24 -2 の平面に軸方向に沿って設けられた穴に挿入され固定されて いる。 ま† —つの永久磁石群 2 5は 一つの磁極を形成し ている。 従って、 1 2個の永久磁石群 2 5は、 口一タディ ス ク 24 -1, 24 -2の面上に、 1 2個の磁極を、 周方向に所定 距離を置いて形成することになる。
また、 ロータディ スク 24 - 1, 24 -2は、 モ一ル ド巻線 1 6 A, 1 6 B との間に軸方向ギャ ップ 2 6 -1, 2 6 - 2, 26 -3, 2 6 -4が形成されるように配置されている。 —方、 ロータディ スク 24 -1, 24 -2によ り生成される磁極は、 1 0個の永久磁石片 2 5 a (永久磁石群 2 5 ) を図 8に示す ように分散させて配置し、 一つの極を形成する。 本実施例で は、 磁極が 1 2形成される。 なお、 図 8においては、 ロータ ディ スク 24 -1, 24 -2の周方向に 3つの永久磁石群 2 5を 例示して記載している。
従って、 本実施例では、 1つのロータディ スク当たり、 1 2 0個の永久磁石片 2 5 a がロータディ スク 2 4 -1, 24 -2内に埋込まれている。 また、 本実施例では、 2つの口 —タディ スクを有するから、 ロータ磁極を 24 0個の永久磁 石片 2 5 aにより形成していることになる。
次に、 以上のように構成された実施例の作用を説明する。 まず、 機械的な構造上の作用を述べる。 すなわち、 界磁とな る永久磁石群 2 5 (永久磁石片 2 5 a ) がロータディ スク 24 -1, 24 - 2の平面に対して、 軸方向に貫通して埋め込ま れている。 そのため、 口一夕ディ スク 24 -1, 24 - 2は、 高 速回転時に永久磁石群 2 5 (永久磁石片 2 5 a ) が遠心力に より飛び出すのを押さえるように作用する。 耐遠心力を強く するため ロータディ スク 24 -し 24 - 2の厚みを十分に厚 くする必要がある。 上述した図 1に示す従来のラジアルギヤ ップ回転電機は、 耐遠心力のため設けられているロータ外周 の保持環 1 0 2を厚く すると、 ギヤ ップ 1 0 9が長く なる。
ところが、 本実施例の回転電機ではロータディ スク 24 -1, 24 -2の口一夕外周部分の厚みを十分に厚く しても、 永久磁 石群 2 5 (永久磁石片 2 5 a ) の作る磁界が回転軸のアキシ ャル方向に形成されるため、 磁気回路の磁気的なギヤ ップが 増加することはない。 従って、 耐遠心力と して機械強度を上 げることにより、 出力が低下することが無く、 高速回転が可 能となる。
また、 界磁の極を形成する永久磁石群 2 5 (永久磁石片 2 5 a ) は、 1極当たり 1個の永久磁石ではない。 すなわち、 本実施例では、 一つの永久磁石群 2 5を構成する複数の永久 磁石片 2 5 aを分散させて 1極を形成している。 そして、 複 数の永久磁石片 2 5 aを、 ロータディ スク 24 - 1, 24 -2の 1 0個の穴に埋め込む構造のため、 永久磁石群 2 5 (永久磁 石片 2 5 a ) の遠心力による応力がロータディ スク 24 - 1 , 24 -2の一部に集中することを避けることができる。 これに より、 超高速回転に耐え得るものとなる。
ます" 本実施例の回転電機は、 アキシャルギヤ ップのため、 ロータ 1 2はフライホイールの如き形状である。 これにより、 ロー夕ディ スク 24 -1, 24 -2を支える両サイ ドの軸受間の 距離は、 相当短くできる。 このため、 回転する軸系の剛性が 高く なる。 従って、 軸系の固有振動数が高く なり、 超高速回 転においても軸の振動が少なく安定して回転できる。
次に、 本実施例の電磁気的な作用を述べる。 すなわち、 ス テータ卷線部は、 卷線 1 7と成形樹脂層 1 8のみからなる。 また、 ステ一タ巻線部は、 ロー夕鉄心は無い。 このため、 磁 気回路は、 ブラケッ ト 14 -1, 14 -2の内面に設けた 2個の バッ ク ヨーク 1 5、 永久磁石群 2 5 (永久磁石片 2 5 a ) 及 びギャ ップ 2 6 -1, 2 6 -2, 26 -3, 2 6 -4のみで形成され る。 また、 磁路を作る磁性部分は、 両側の 2個のバッ ク ョー ク 1 5のみとなる。 従って、 2分割以上に分割可能なモール ド卷線 1 6 A- 1, 1 6 A-2, 1 6 Bとロータディ スク 24 と を、 2個のバック ヨーク 1 5間に次々と交互に配列するだけ で、 多段の回転電機の動作部が形成される。 このため、 高出 力化が可能である。
また、 ステータ鉄心は歯が無い。 このため、 磁気回路はバ ッ ク ヨーク 1 5、 永久磁石 2 5 (永久磁石片 2 5 a ) 及びギ ヤ ップ 2 6 - 1, 2 6 - 2 , 2 6 - 3, 2 6 -4のみからなり、 磁路 を作る磁性部分が両側の 2個のバ、ソ ク ヨーク 1 5のみで多段 の回転電機の動作部を形成できる。 従って、 鉄損は、 大幅に 減り、 効率の上昇、 回転電機の動作時の上昇温度の低下が可 能となる。
アキシャルギヤ ップ回転電機では、 内径側の円周が短く な るため、 巻線 1 7端部のスペースが狭く なり、 巻線回数を多 くできないという問題点がある。 しかしながら、 上述したよ うに本実施例においては、 鉄損の低下が図られるから、 超高 速且つ多極の回転電機を製作することが可能となる。 また、 本実施例のアキシャルギャ ップ回転電機は 多極型回転電機 に構成できるから、 巻線 1 7の端部は短く して巻線回数を増 やすこ とにより、 高出力化を達成できる。
バッ ク ヨーク 1 5は、 帯状の 0 . 2 m m厚さのゲイ素鋼板 2 0を渦巻状に卷いたものを、 外側リ ング 2 1 と内側リ ング 2 2との間に挟み込んで固定したものである。 このようなパ- ッ ク ヨーク 1 5は、 渦電流の発生が抑制される。 これは、 電 機器の鉄損の増大を抑えることになる。
—般に、 ステ一夕鉄心に歯を設けた回転電機では、 高速回 転時にあって、 ステ一夕鉄心の歯により、 ギャ ップ磁束が脈 動して、 ロータ表面に相当大きな渦電流が発生する。 し力、し、 本実施例の回転電機は、 鉄心の歯がないため、 この渦電流が 発生せずに、 効率が良く なる。
巻線 1 7においては、 磁路を構成する軟磁性材は、 バッ ク ヨーク 1 5のみとなり、 巻線 1 7からみた磁気的なギヤ ップ は、 相当大き く なる。 従って、 巻線 1 7のイ ンダクタ ンスは、 かなり小となり、 イ ンダクタンスの電圧降下が小さく なり、 同時に端子電圧が小さく なる。 従って、 駆動電源の小形化が 可能である。
また、 磁気的なギヤ ップが大きく なると、 巻線 1 7による 電機子反作用も小さ く なるため、 ロータ 1 2に取付けた永久 磁石 2 5 (永久磁石片 2 5 a ) の減磁を防ぐことができ、 大 電流を流すことも可能となる。
次に、 スーテ夕 1 1の分割について説明する。 本発明の回 転電機は、 高出力化のため、 多段の動作部と し、 ロータディ スク 2 4 -し 2 4 - 2と成形されたモール ド卷線 1 6 A - 1 , 1 6 A - 2, 1 6 Bが交互に軸方向に並ぶ構成と している。 そ のため、 ケーシング 1 1内に口一夕 1 2を収めることが困難 であ 。
そこで、 本発明のアキシャルギャ ップ回転電機では、 ステ 一夕 1 1は、 ロータ 1 2の軸心を含む平面内で 2分割して組 合わせる構造としているため、 ステ一夕 1 1を 2分割して、 ロータ 1 2を収めることが可能となっている。
ディ ス ク状と したモール ド卷線 1 6 A - 1, 1 6 A - 2 , 1 6 Bは、 2分割した構造としている。 このため、 一方巻き 方法又は同心巻き方法を採用し、 実極と虚極を交互に形成す る巻線として居る。 そして、 虚極の中心が、 ステ一タ 1 1の 2分割線上に存在するようにしている。 具体的には、 隣接す る 2つの巻線がいずれも N極を形成すると、 巻線間には、 虚 極の S極が形成される。 そこで、 この虚極の中心をステー 夕 1 1の 2分割線上とする こ とにより、 ステ一タ 1 1を 2 分割する。 このため、 モール ド巻線 1 6 A - 1 , 1 6 A - 2, 1 6 B内の導線は、 切断されることがない。
本発明の回転電機は、 アキシャルギャ ップ型であり、 口一 タ 1 2の軸心を含む平面内で 2分割できる。 このため、 ロー 夕 1 2をステ一タ 1 1から容易に取出すこ とができ、 メ ンテ ナンスが容易になる。 さ らに、 巻線 1 7を 従来のように 鉄心の歯に卷き付けずに、 モール ド卷線単独で形成してい るため、 ステ一夕 1 1 を分割する こ とによりモール ド巻線 1 6 A - 1, 1 6 A -2, 1 6 Bのみを容易に取り出すことがで き 卷線 1 7の交換が容易となる。
また、 上述したように多数の円柱形状の永久磁石 2 5を、 図 8に示すように同一半径方向から任意の角度分ずらして配 置することにより、 スキュ一効果が容易に得られる。 これに より、 誘起電圧波形を正弦波に成形し得、 出力の脈動を低減 することができる。
なお、 以上説明した実施例におけるステ一タ巻線部は、 巻 線 7をエポキシ樹脂によりモ一ルドしたものである。 これ 以外に、 半導体技術の応用により、 薄い電気絶縁物の基板に、 導線をプリ ン ト配線した半円状の巻線を積層してステ一タ卷 線部を構成することができる。
図 9は、 本発明の別の実施例の上半部を切断して示す断面 図である。 図 9において、 本実施例のアキシャルギャ ップ回 転電機 30は、 ステ一タ 31と、 このステ一夕 31に軸受を 介して回転自在に支持されているロータ 32とからなる。
ステ一タ 3 1は、 ケ一 シ ング 3 1 Aと、 モール ドコィノレ 3 5 Bとを含む。 ケーシ ング 3 1 Aは、 フ レーム 33と、 ブラケッ ト 34 -1, 34 -2と、 モール ドコイル 3 5 A - 1, 35 A -2と、 バッ クヨーク 36—1, 36 -2とからなる。
フレーム 33は、 繊維強化エポキシ樹脂でモールドして形 成され、 口一夕 32の軸心を含む平面内で上下に 2分割した 構造である。 ブラケッ ト 34 -し 34 -2夫々は、 フ レーム 33の軸方向両端に、 図示しないボルトを介して取付けられ、 繊維強化エポキシ樹脂でモール ドして形成されている。 モー ルドコイル 35 Bは、 モールドコイル 35 A - 1, 35 A -2と 後述するロー夕ディ スクを介して対向するようにブラケッ ト 34 -1, 34 -2の内部に埋設されている。 パッ ク ヨーク 36 -1, 36 -2夫々は、 モールドコイル 35 Bより も外側と なるようにプラケッ ト 34 - 1, 34 -2内に埋設又はボルトを 介して取付けられている。
なお、 モ一ノレ ドコイル 35 A -1, 35 A -2夫々は、 フ レー ム 33の軸方向中心にボルトその他適宜の図示しない固定手 段に取付けられ、 全体と して略ディ スク状とし、 ロータ 32 の軸心を含む平面内で上下に 2分割した構造である。 また、 モールドコイル 35 A -1, 35 A -2夫々は、 図 1 0に示すよ うに U, V, w各相巻線を有し、 一方巻き方法又は同心巻き 方法を採用し、 エポキシ樹脂等でモールドしており、 2分割 構造となる。
なお、 モールドコイル 3 5 B も実質的に同様の U, V, W 各相の卷線を有するが、 2分割構造ではない。 また、 バッ ク ヨーク 3 6 -1, 3 6 -2夫々は、 図 1 1及び図 1 2に示すよう に、 厚さ 0. 2 mmのけい素鋼板 3 6 aを渦巻状に卷回し、 外周側と内周側を夫々 リ ング 36 b, 3 6 cで挟んで固定し た構造としている。
また、 ロータ 3 2は、 回転軸 3 7 と、 この回転軸 3 7の軸 方向中間部でモールドコイル 3 5 A _1, 3 5 A -2, 3 5 Bと ギャ ップ 38- 38 -2, 38 -3, 38 -4を形成するように 配置され、 繊維強化樹脂をモール ドしてディ スク状に形成さ れて回転軸 3 7 と一体に回転するように取付けられた 2個の ロータディ スク 3 9 -1, 3 9 -2により構成されている。 ここ で 口一夕ディ スク 3 9 -1, 3 9 -2夫々には 図 1 3に示す ように 永久磁石片 4 0 aが等配された 1 2箇所で、 1箇所 ( 1極) 当り 1 0箇が分散して取付けられている。 これら 1 0箇の永久磁石片 4 0 aは 1つの群を形成している。 一つ の永久磁石片群 4 0は、 —つの磁極を形成している。 また、 ロータディ スク 3 9 -1, 3 9 -2夫々のに設けられる複数の永 久磁石片群 4 0により、 ロータディ スク 3 9 -1, 3 9 -2夫々 に複数の磁極を形成している。 永久磁石片 4 0 aは、 円柱形 状に形成され、 かつ軸方向に沿って磁化されており、 ロータ ディ スク 3 9 -1, 3 9 -2の穴を貫通して固定されている。 ま た、 ロータディ スク 3 9 -1, 3 9 -2の中心側には回転軸 3 7 と一体に回転させるため図示しないキーに係合させる金属製 の図示しないリ ングが一体に設けられている。 さらに、 ロー タディ スク 3 9 - 1, 3 9 -2相互の間にはスぺ一サ 4 1が挿入 され、 各ロータディ スク 3 9 -1, 3 9 - 2の外側はリ ング状押 え金具 4 2により中心側に押し付けられている。
次に、 以上のように構成された実施例の作用を説明する。 まず、 機械的な構造面から説明する。
先ず、 本実施例における軽量 ·加減速特性について説明す る。 すなわち、 周知のように回転電機は、 口一夕に磁束を通 す磁路として磁性材のヨークが必要不可欠であり、 容量が大 きく なると比較的イナ一シャが大きく なる。 さ らに、 図 2に 示すように従来のアキシャルギヤ ップ回転電機はディ スクが 軟鉄等の磁性材金属であると、 ロータがディ スク状のためィ ナーシャが相当大きく なり、 急加減速運転には不利である。
ところが 本実施例においては、。 ロータは回転軸や永久磁 石 4 0を除き非磁性材で構成でき る。 そ して、 比重が 1. 5の繊維強化樹脂でモール ドして成形したロータディ スク 3 9 -1, 3 9 -2をロータに用いることにより、 ロータのイナ —シャが非常に小さく なる。
本実施例における重量特性について説明する。 すなわち、 ロータディ スク 3 9 -1, 3 9 -2、 フレーム 3 3及びブラケッ ト 34 -1, 34 -2も樹脂で構成されており、 金属部分は、 主 たる部分がバッ ク ヨーク 3 6 -1, 3 6 -2、 モール ドコイル 3 5 A-1, 3 5 A-2, 3 5 Bの巻線、 永久磁石 4 0、 回転軸 37のみである。 これにより、 大幅な軽量化が実現できる。 さらに、 本実施例の回転電機は、 大容量化の項で説明するよ う に多段にして大容量化する こ とができる。 したがって、 バッ ク ヨーク 3 6 -1, 3 6 -2とプラケ ッ ト 34 - 1, 34 -2 はそのままの寸法 · 重量で、 主に多段部のモール ドコイル
35 A-1, 35 A -2と永久磁石 40のみを增加するだけでよ く、 軽量の効果がより著しく現れる。
本実施例の高速回転特性について説明する。 すなわち、 回 転電機において、 回転時の耐遠心力を強化するには、 ロータ 外周部材の厚みを十分に厚くする必要がある。 図 1に示よう に円筒型で径周方向に界磁コィルを持つ径方向磁気回路の従 来の回転電機は 耐遠心力のため設けられているロータ外周 の保持環 1 02を厚くすると、 磁気的なギヤ ップ 1 09が長 く なる。
と ころが、 本実施例においては、 界磁となる永久磁石群
40 (永久磁石片 40 a ) がロー夕ディ スク 39 -1, 39-2 の平面に対して、 軸方向に貫通して埋め込まれている。 その ため、 ロータディ スク 39 -1, 39 -2は、 高速時に永久磁石 群 40 (永久磁石片 40 a) が遠心力により飛び出すのを押 さえるように作用する。 さ らに、 本実施例では、 ロータディ スク 39- 1, 39 -2のロータ外周部分の厚みを十分に厚く し ても、 永久磁石群 40 (永久磁石片 40 a ) の作る磁界が回 転軸のアキシャル方向に形成されるため、 磁気回路の磁気的 なギャ ップが増加することはない。 したがって、 耐遠心力と して機械強度を上げることにより、 出力が低下することはな く 、 高速回転が可能となる。 また、 界磁の極を形成する永久 磁石群 4 0 (永久磁石片 4 0 a ) は、 1極当たり 1個の永久 磁石ではなく 、 1極あたり複数個 (例えば 1 0個) の永久磁 石片 4 0 aを分散させて、 ロータディ スク 3 9 -1, 3 9 -2の 複数個 (例えば 1 0個) の穴に埋め込むため、 永久磁石群 4 0 (永久磁石片 4 0 a ) の遠心力による応力が口一タディ スク 3 9 -1, 3 9 -2の一部に集中することを避けることが可 能となり、 超高速回転に耐え得る。
本実施例の大容量化特性について説明する。 すなわち、 従 来のアキシャルギヤ ップ回転電機を大容量化すると、 ロータ 半径が大きく なり、 必然的に機械が大形化したり、 口一夕の イナーシャの大幅な増大、 耐遠心力口一夕材強度による許容 回転速度の大幅な低下がおこる。 後の電磁気の面で説明する ように本実施例では、 ロータ鉄心も無いため、 磁気回路は両 ブラケッ ト 34 -1, 34 -2の内部に設けた 2個のバッ ク ョ一 ク 3 6 -し 3 6 -2と永久磁石群 4 0 (永久磁石片 4 0 a ) と ギャ ッ プ 3 8 -1, 3 8 -2, 3 8 -3, 3 8 - 4のみからなり、 磁路を作る磁性部分が両側の 2個のバッ ク ヨーク 3 6 -1, 36 -2のみとなる。 したがって、 2分割以上可能なモール ド コイル 3 5 A -1, 3 5 A -2とロータディ スク 3 9 -1, 3 -2 を 2個のバッ ク ヨーク 3 6 -1, 3 6 -2間に順次設けるだけで、 多段の回転電機の動作部が形成され、 高出力が実現できる。 大容量化のため本実施例ではロータ 3 2が多段構成になる が、 樹脂で構成されたロータディ スク 3 9 -1, 3 9 -2を取付 けたロータ 3 2のイナーシャは、 従来に比較して大幅に小さ く なり、 多段のロータディ スク 39 -1, 39-2は全て同一の 外径であるため、 遠心力による機械的応力は増加せず、 機械 的な面でもアキシャルギヤ ップ回転電機の大容量化が実現で る c
また、 本実施例は、 アキシャルギャ ップ回転のため、 口一 タ 32は、 フライホイールに似た独楽の形状となり、 ロータ ディ スク 39- 1, 39 - 2を支える両サイ ドの軸受間の距離も 相当短く なる関係上、 回転軸系の剛性が高く なる。 したがつ て、 軸系の固有振動数が高く なり、 超高速回転においても軸 の振動が少なく安定して回転できる。
図 14に示す本実施例の回転軸振動解析結果により、 回転 軸 1次の振動モー ドは 33000 r p mあり、 十分に高速 回転特性の良好なことが分かる。
図 1 5に示す本実施例の回転強度試験結果によ り、 20000 r p mにおいても回転軸の変動は僅かであり、 口 —タは安定して回転しており 機械強度も十分にあることが 確認された。
次に、 本実施例の電磁気的特性について説明する。 すなわ ち、 モールドコイル 35 A -1, 35 A -2, 3 5 Bは、 U, V, W各相の巻線と繊維強化エポキシ樹脂のみからなり、 口一夕 の鉄心も無いため、 磁気回路はプラケッ ト 34 -1, 34 - 2の 内部に設けた 2個のバッ ク ヨーク 36 -1, 36 -2とロータデ イ スク 39-1, 39 -2に設けた永久磁石群 4 0 (永久磁石片 40 a) とギャ ップ 38-1, 38-2, 38-3, 38-4のみと からなり、 磁路を作る磁性部分が両側の 2個のバッ ク ヨーク 36-1, 36-2のみとなる。 従って、 2分割以上可能なモー ルドコイル 35 A-1, 35 A-2と、 ロータディ スク 39 -し 39 -2とを、 2個のバッ ク ヨーク間に次々と交互に設けるだ けで、 多段の回転電機の動作部が形成され、 高出力化が可能 でめ 。
ステ一夕鉄心の歯が無く 、 ロータの鉄心も無いため、 磁 気回路は、 バッ ク ヨーク 3 6 -1, 3 6 -2と永久磁石群 4 0 (永久磁石片 40 a ) とギャ ップ 38-1, 38 -2, 38 - 3, 38-4のみからなり、 磁路を作る磁性部分が両側の 2個のバ ッ クヨーク 36-1, 36 -2のみで多段の回転電機の動作部を 形成できる。 したがって、 鉄損は 大幅に減り、 効率の上昇、 回転電機の動作時の上昇温度の低下が可能となる。 ステ一夕 鉄心に歯があると、 高速回転時にギヤ ップ磁束が脈動して、 ロータ表面に相当大きな渦電流が発生する。 ところが、 本実 施例では、 鉄心の歯がないため、 この渦電流が発生せず 効 率が向上する。
アキシャルギヤ ップ回転電機では、 内径側の円周が当然短 く なるため、 モール ドコイル 35 A -1, 35 A -2端部のスぺ —スが狭く なり、 コイルの巻回数が多くできない問題点があ る。 しかし、 上述した鉄損の低下の効果により、 高周波駆動 の超高速で多極の回転電機を製作することが可能となり、 多 極数にするとモール ドコイル 35 A -1, 35 A -2の端部は短 く なり、 コイルの巻回数を増やし、 高出力となる。
バッ クヨーク 36 -1, 36 -2は、 帯状の厚さ 0. 2mmの けい素鋼板 36 aを渦巻状に巻いて、 外周のリ ング 36 bと 内周のリ ング 36 c間に挟み、 固定して、 渦電流の発生によ る鉄損を抑えている。
モール ド 3 5 A-1, 3 5 A -2, 3 5.Bにおいては、 磁路を 構成する軟磁性材は、 バッ ク ヨーク 3 6 - 1, 3 6 -2のみとな り、 モール ドコイル 3 5 A-l, 3 5 A -2, 3 5 Bからみた磁 気的なギャ ップは、 かなり大きく なる。 したがって、 モール ドコイル 3 5 A - 1, 3 5 A -2, 3 5 Bのイ ンダクタンスは、 かなり小となり、 イ ンダクタンスの電圧降下が小さ く なり、 同時に端子電圧が小さく なる。 したがって、 駆動電源の小形 化が可能である。
さらに、 磁気的なギャ ップが大きく なると、 モール ドコィ ル 3 5 A-1, 3 5 A-2, 3 5 Bによる電機子反作用も小さ く なるため、 永久磁石群 4 0 (永久磁石片 4 0 a ) の減磁を防 ぐこともでき、 大電流を流すことも可能となる。
なお、 以上説明した実施例は、 ロータ 3 2にロータデイ ス ク 3 9 - 1, 3 9 - 2を 2個取付けている場合を示したが 口一 タディ スク 3 9 -し 3 9 -2を 1個取り付けた構成も可能であ ることは説明するまでもない。 当然この場合には、 モールド コ ィ ノレ 3 5 A - 1, 3 5 - 2は設けられず、 ステ一夕 フ レーム 3 3 も 2分割する必要はない。
次に、 ステ一夕を図 4に示すした実施例の場合と同様に、 2分割し、 プラケッ ト側に取付けるモール ドコィル及びバッ ク ヨークを、 ブラケッ ト とは別個に製作し、 ボルトを介して ブラケッ トに取付けるようにした本発明の更に別の実施例に ついて説明する。 図 1 6は、 この実施例の上半部を切断した断面図である。 図 1 6においては、 アキシャルギャ ップ回転電機 4 5は、 ス テ一タ 4 6と、 このステ一夕 4 6に軸受を介して回転自在に 取付けられているロータ 4 7 とにより構成される。
ステ一夕 4 6は、 ケ一 シ ング 4 6 Aと、 モール ドコイル 3 5 C -1, 3 5 C -2とを含む。 モール ドコイル 3 5 C -1, 3 5 C -2は、 モール ドコイル 3 5 A - 1, 3 5 A -2と後述する 口一タディ スクを介して対向するようにブラケッ ト 4 9にボ ルトを介して取付けられている。
こ こに、 ケ一シング 4 6 Aは、 ステ一夕フ レーム 4 8と、 プラケッ ト 4 9 -1, 4 9 -2と、 モール ドコィノレ 3 5 A - 1, 3 5 A -2と、 バック ヨーク 5 0 -1, 5 0 -2とからなる。
ステ一タフレーム 48は、 繊維強化エポキシ樹脂でモール ドで形成され、 ロータ 4 7の軸心を含む平面内で上下に 2分 割した構造である。 ブラケッ ト 4 9 -1, 4 9 -2夫々は、 ステ —夕フ レーム 4 8の軸方向両端にボルトを介して取付けられ 繊維強化エポキシ樹脂でモールドして形成され、 ロータ 4 7 の軸心を含む水平面内で上下に 2分割した構造である。 モー ル ドコイル 3 5 A -1, 3 5 A -2夫々は、 図 1 0に示すように、 プラケッ ト 4 9 -1, 4 9 - 2と、 ステ一タフレーム 48の軸方 向中心にボルトを介して取付けられ、 上下方向に 2分割され た構造である。 バッ クヨーク 5 0 -1, 5 0 -2夫々は、 モール ドコイル 3 5 C -1, 3 5 C -2より外側となるようにブラケッ ト 4 9 -1, 4 9 -2に設けた凹部に挿入され、 ボルトを介して ブラケッ ト 4 9 -1, 4 9 - 2に取付けられている。 なお、 バッ クヨーク 50 - 1, 50 -2夫々は、 図 1 7及び図 18に示すよ う に中心で上下に 2分割され、 厚さ 0. 2 m mのけい素鋼 板 5 0 aを渦巻状に巻回し、 外周側と内周側を夫々 リ ング 50 b, 50 cで挟んで固定した構造である。
また、 ロータ 47は、 回転軸 5 1と、 この回転軸 51の軸 方向中間部でモール ドコイル 35 A-l, 35 A-2, 35 C -1, 35 C-2と夫々ギヤ ップ 52 -1, 52 -2, 52 -3, 52 - 4を 形成するよ う に配置され、 回転軸 5 1 と一体に回転するよ う に取付けられた 2個のロータディ スク 39 -1, 39 -2と によ り構成されている。 こ こで、 ロータディ スク 39 -1, 3 9 -2には、 軸方向に磁化されている複数の棒状の永久磁 石片 40 aが軸方向に貫通して一体になるように取付けられ ており、 中心には回転軸 5 1 と一体に回転させるためのキ一 (図示しない) に係合させるキー溝 (図示しない) を有する リ ング (図示しない) が一体に設けられている。 また、 ロー タディ スク 39 -し 39 -2相互の間にはスぺーサ 4 1を揷入 し 各ロー夕ディ スク 39-1, 39 -2の外側面はリ ング状押 え金具 42により中心側に押し付けられている。
次に、 ステ一夕を 2分割し、 ステ一夕側に取付けるモール ドコィルを 4個、 これに対応しロータ側に取付けるロー夕デ イ スクを 3個、 ブラケッ ト側に取付けるモール ドコィル及び バック ヨークを、 夫々ブラケッ トとは別体に製作した実施例 について説明する。
図 1 9は、 この実施例の上半部を切断した断面図である。 図 1 9において、 アキシャルギャ ップ回転電機 55は、 ステ 一夕 56と、 このステ一タ 5 6に軸受けを介して回転自在に 取付けられているロータ 5 7とにより構成される。
ステ一夕 5 6は、 ケーシング 5 6 Aと、 モール ドコイル 3 5 D -1, 3 5 D -2, 3 5 D -3とからなる。 モール ドコィ ル 3 5 D -1, 3 5 D -2, 3 5 D -3夫々は、 モールドコイル 3 5 A-1, 3 5 A -2と後述するロータディ スクを介して対向 するようにブラケッ ト 5 9 -1, 5 9 -2にボルトを介して取付 けられている。
また、 ケ一シング 5 6 Aは、 ステ一タフ レーム 58と、 ブラケッ ト 5 9—1, 5 9— 2と、 モール ドコイル 3 5 A-1, 3 5 A -2と、 バッ ク ヨーク 5 0 -1, 5 0 -2とからなる。 ステ 一夕フ レーム 58は、 繊維強化エポキシ樹脂でモール ドして 形成され、 ロータ 5 7の軸心を含む平面内で上下に 2分割し た構造である。 ブラケッ ト 5 9 -1, 5 9 -2夫々は、 ステータ フ レーム 58の軸方向両端にボルトを介して取付けられ、 繊 維強化エポキシ樹脂でモール ドして形成され、 口一夕 5 7の 軸心を含む平面内で上下に 2分割した構造である。 モールド コイル 3 5 A-1, 3 5 A-2夫々は、 図 1 0に示すように、 ス テ一夕フレーム 58の軸方向中間部にポルトを介して後述す る 口一タディ スクを介して対向するように取付けられ、 上 下方向に 2分割された構造である。 バッ ク ヨーク 5 0 -1, 5 0 -2夫々は、 モールドコイル 3 5 D及びブラケッ ト 5 9に 設けた凹部に挿入され、 ボルトを介してプラケッ ト 5 9に取 付けられている。
また、 ロータ 5 7 は、 回転軸 6 0 と、 この回転軸 6 0の 軸方向中間部で、 モール ドコイル 3 5 A -1, 3 5 A -2, 3 5 C -1, 3 5 C -2と夫々ギャ ップ 6 1 -1, 6 1 -2, 6 1 -3, 6 1 - 4を形成するよう に配置され、 回転軸 6 0 と一体に回 転するように取付けられた 3個の口一タディ スク 3 9 - 1, 3 9 -2, 3 9 -3とにより構成されている。 ここで、 ロータ ディ スク 3 9 -1, 3 9 -2, 3 9 -3には、 軸方向に磁化されて いる複数の棒状の永久磁石片 4 0 aが軸方向に貫通して一体 となるように取付けられており、 中心には回転軸 6 0 と一体 に回転させるためのキー (図示しない) に係合させるキー溝 (図示しない) を有する リ ング (図示しない) が一体に設け られている。 複数の永久磁石片 4 0 aにより一つの永久磁石 群 4 0が形成される。 複数の永久磁石群 4 0は、 口一タディ スク 3 9 -1, 3 9 -2, 3 9 -3夫々に複数の磁極を形成する。
また、 ロータディ スク 3 9 - 1, 3 9 -2, 3 9 -3相互の間に はスぺーサ 3 1を揷入し、 外側には配置されるロータディ ス ク 3 9 -し 3 9 -2, 3 9 -3の外側面はリ ング状押え金具 4 2 により中心側に押し付けられている。
その他、 さ らに高速回転に耐え得るようにするため、 図 2 0に示すようにロータディ スク 3 9 -1, 3 9 -2に取付ける 永久磁石辺 4 0 aを、 外周側と内周側で直径を異らせるよう にしてもよい。 また、 永久磁石片 4 0 a として、 直径の異な る永久磁石 4 0 a -1, 4 0 a -2, 4 0 a -3, 4 0 a - 4を用い ることができる。 この場合、 外周側永久磁石 4 0 a -1は小径 であり、 内周側永久磁石 4 0 a -4は大径である。 直径の異な る永久磁石片を用いる代りに、 エネルギー積の異なる永久磁 石片を用いることができる。 この場合、 外周側には高工ネル ギ一積の異なる永久磁石片を用い、 内周側には低エネルギー 積の異なる永久磁石片を用いることができる。 いずれにして も、 本発明における永久磁石片は、 磁界強度の相違する永久 磁石部材を用いることができる。 また、 ロータディ スクを繊 維強化樹脂の代りに、 例えばジユラルミ ンのような非磁性で 比重の小さい金属を用いるようにしてもよく、 モール ドコィ ルを樹脂でモールドする代りに、 半導体技術を応用し、 薄い 電気絶縁物の基板に導線をプリ ン ト配線した半円状のコィル を積層して構成してもよい。 さ らに、 ステ一夕にバック ョー クのみでなく、 一般の回転電機と同様に歯を設けたステー夕 鉄心の構成としても、 大容量化、 高速回転における本発明の 効果を得られる。 但し、 鉄損の増加、 電機子作用の影響、 ス ラス ト方向の磁気吸引力の増加による軸受け荷重の増大等の « ¾ はめる o
以上説明したように本発明によれば、 口一タの主構成図で あるロータディ スクを樹脂で形成するので、 ロータのイナ一 シャを大幅に小さく し、 超高速回転、 急速加減速、 小型化等 を実現できる。 また、 ステ一タフ レーム、 ブラケッ ト等を樹 脂で形成することにより、 金属部分が僅かに限られた部分の みとなり、 重量を大幅に軽減することも可能となり、 回転電 機自体の重量も負荷となるようなロボッ トのサーボモータ、 電気自動車の駆動用モータ等に適用した場合に出力を有効に 利用することができる。 さらに、 ステ一夕を分割構造とする ことにより、 ステ一夕のコイルとロータディ スクを交互にギ ヤ ップを介して多段と し、 大出力化とメ ンテナンスを容易と したアキシャルギヤ ップ回転電機を提供できる。
単相機器又は多相機器のいずれでも本発明のアキシャルギ ャ ップ回転電機は、 実現されるだろう。 駆動装置は、 従来及 び現在に存在するシステム及び将来に出現するシステムを用 いることができる。 このような駆動装置は、 適切なパワーェ レク ト ロニクス技術を用いたシステムであるべきでる。
本発明は上述した実施例に関する事項に限定されることな く、 請求の範囲及び図面に記載した事項、 並びに該事項と周 知事項とを組合わせた事項、 を逸脱しない範囲で種々変形し て実施できるものである。

Claims

請求の範囲
( 1 ) 回転軸を有するロータ部材とステータ部材との間のギ ャ ップが前記回転軸のアキシャル方向に形成されるアキシャ ルギヤ ップ回転電機において、
前記ロータ部材は、 前記回転軸と一体で回転する非磁性材 からなるディ スク部材と、 複数の磁極夫々をディ スク部材上 に形成すべく前記ディ スク部材の内部に夫々設けられる複数 の永久磁石部材群とを具備するアキシャルギヤ ップ回転電機。
(2) 前記ディ スク部材は、 前記アキシャル方向に沿って配 置される複数のディ スクを具備する請求の範囲第 1項に記載 のアキシャルギヤ ップ回転電機。
(3) 前記複数のディ スクは 各ディ スクの磁極中心が相互 にずれようにして前記アキシャル方向に沿つて配置される請 求の範囲第 2項に記載のアキシャルギヤ ップ回転電機。
(4 ) 前記複数の永久磁石部材群夫々は 磁界強度の異なる 複数種の永久磁石片からなる請求の範囲第 1項に記載のアキ シャルギヤ ップ回転電機。
( 5) 前記磁界強度の異なる複数種の永久磁石片のうち磁界 強度の小さい少なく とも一つの永久磁石片はディ スク部材の 外周部内に埋込まれ、 前記磁界強度の異なる複数種の永久磁 石片のうち磁界強度の大きい少なく とも一つの永久磁石片は ディ スク部材の内周部内に埋込まれている請求の範囲第 4項 に記載のアキシャルギヤ ップ回転電機。
( 6) 前記ディ スク部材は、 繊維強化プラスチッ クからなり、 前記回転軸に固着されている請求の範囲第 1項に記載のアキ シャルギヤ ップ回転電機。
(7) 前記ディ スク部材は、 非磁性金属からなり、 前記回転 軸と一体物である請求の範囲第 1項に記載のアキシャルギヤ ップ回転電機。
(8) 回転軸を有するロータ部材とステータ部材との間のギ ャ ップが前記回転軸のアキシャル方向に形成されるアキシャ ルギヤ ップ回転電機において、
前記ステータ部材は、 ケーシング部材と、 前記回転軸のラ ジアル方向に複数に分割される少なく とも一つの第 1ステー 夕巻線とを具備するアキシャルギヤ ップ回転電機。
(9) 前記ケ一シング部材は、 少なく と も一つの第 2ステ一 夕卷線を具備する請求の範囲第 8項に記載のアキシャルギヤ ップ回転電機。
( 10) 前記第 2ステータ卷線は、 前記回転軸のラ ジアル方 向に分割される複数のステ一夕巻線部材からなる請求の範囲 第 9項に記載のアキシャルギヤ ップ回転電機。
( 1 1 ) 前記ケーシング部材は、 フ レーム部材と、 ブラケッ ト部材と、 バッ ク ヨーク部材と、 を含む請求の範囲第 8項に 記載のアキシャルギヤ ップ回転電機。
( 12) 前記ブラケッ ト部材は、 前記ラジアル方向に分割さ れる複数の板部材を具備する請求の範囲第 1 1項に記載のァ キシャルギヤ ップ回転電機。
( 13) 前記バッ ク ヨーク部材は、 前記ラジアル方向に分割 される複数のヨーク部材を具備する請求の範囲第 1 1項に記 載のアキシャルギヤ ップ回転電機。
(14) 前記バッ ク ヨーク部材は、 磁性鋼板がディ スク状に 卷回されてなるョ一ク部材からなる請求の範囲第 1 1項に記 載のアキシャルギヤ ップ回転電機。
(15) 前記バッ ク ヨーク部材は、 磁性鋼板がデイ スク状に 巻回され且つ前記ラジアル方向に分割された複数のヨーク部 材からなる請求項第 1 1項に記載のアキシャルギャ ップ回転
(16) 前記バッ ク ヨーク部材は、 磁性鋼板がディ スク状に 巻回され且つ前記アキシャル方向に分割された複数のヨーク 部材からなる請求項第 1 1項に記載のアキシャルギャ ップ回
(17) ギャ ップが回転軸のアキシャル方向に形成されるァ キシャルギヤ ップ回転電機において、
前記回転軸と一体で回転する非磁性材からなるディ スク部 材と複数の磁極夫々をディ スク部材上に形成すべく前記ディ スク部材の内部に夫々設けられる複数の永久磁石部材群とか らなる口一夕部材と、
ケーシング部材と前記回転軸のラジアル方向に複数に分割 される少なく とも一つの第 1ステ一夕巻線とからなるステー 夕部材とを具備するアキシャルギヤ ップ回転電機。
(18) 前記ディ スク部材は、 前記アキシャル方向に沿つて 配置される複数のディ スクを具備する請求の範囲第 1 7項に 記載のアキシャルギヤ ップ回転電機。
(19) 前記複数のディ スクは、 各ディ スクの磁極中心が相 互にずれようにして前記アキシャル方向に沿って配置される 請求の範囲第 1 8項に記載のアキシャルギヤ ップ回転電機。
( 2 0 ) 前記複数の永久磁石部材群夫々は、 磁界強度の異な る複数種の永久磁石片からなる請求の範囲第 1 7項に記載の アキシャルギヤ ップ回転電機。
( 2 1 ) 前記磁界強度の異なる複数種の永久磁石片のうち磁 界強度の小さい少なく とも一つの永久磁石片はディ スク部材 の外周部内に埋込まれ、 前記磁界強度の異なる複数種の永久 磁石片のうち磁界強度の大きい少なく とも一つの永久磁石片 はディ スク部材の内周部内に埋込まれてなる請求の範囲第 2 0項に記載のァキシャルギャ ップ回転電機。
( 22) 前記ディ スク部材は、 織維強化プラスチッ クからな り、 前記回転軸に固着されている請求の範囲第 1 8項に記載 のアキシャルギヤ ップ回転電機。
( 23) 前記ディ スク部材は、 非磁性金属からなり、 前記回 転軸と一体物である請求の範囲第 1 7項に記載のアキシャル ギヤ ップ回転電機。
( 24 ) 前記ケ一シング部材は、 少なく とも一つの第 2ステ —夕巻線を具備する請求の範囲第 1 7項に記載のアキシャル ギヤ ップ回転電機。
(25) 前記第 2ステータ卷線は、 前記回転軸のラジアル方 向に分割される複数のステータ卷線部材からなる請求の範囲 第 2 4項に記載のアキシャルギヤ ップ回転電機。
(26) 前記ケ一シング部材は、 フ レーム部材と、 ブラケッ ト部材と、 バッ ク ヨーク部材と、 を具備する請求の範囲第 17項に記載のアキシャルギヤ ップ回転電機。
(27) 前記ブラケッ ト部材は、 前記ラジアル方向に分割さ れる複数の板部材を具備する請求の範囲第 2 6項に記載のァ キシャルギヤ ップ回転電機。
(28) 前記バッ クヨーク部材は、 前記ラジアル方向に分割 される複数のヨーク部材を具備する請求の範囲第 2 6項に記 載のアキシャルギヤ ップ回転電機。
(29) 前記バッ クヨーク部材は、 磁性鋼板がディ スク状に 卷回されてなるヨーク部材からなる請求の範囲第 2 6項に記 載のアキシャルギヤ ップ回転電機。
(30) 前記バッ ク ヨーク部材は、 磁性鋼板がディ スク状に 卷回され且つ前記ラジアル方向に分割された複数のヨー ク部 材からなる請求項第 2 6項に記載のアキシャルギャ ップ回転 電機。
(31) 前記バッ クヨーク部材は、 磁性鋼板がディ ス ク状に 巻回され且つ前記アキシャ ル方向に分割された複数のヨーク 部材からなる請求項第 2 6項に記載のァキシャ ルギヤ ップ回 転電機。
PCT/JP1993/000312 1992-03-18 1993-03-16 アキシャルギャップ回転電機 WO2004075379A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/140,130 US5619087A (en) 1992-03-18 1993-03-16 Axial-gap rotary-electric machine
KR1019940703700A KR950701117A (ko) 1993-02-26 1994-10-18 테이프 녹음기

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4061886A JP2957346B2 (ja) 1992-03-18 1992-03-18 アキシャルギャップ回転電機
JP4/61886 1992-03-18
JP4/183328 1992-07-10
JP18332892A JP3207251B2 (ja) 1992-07-10 1992-07-10 アキシャルギャップ回転電機

Publications (1)

Publication Number Publication Date
WO2004075379A1 true WO2004075379A1 (ja) 2004-09-02

Family

ID=26402973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000312 WO2004075379A1 (ja) 1992-03-18 1993-03-16 アキシャルギャップ回転電機

Country Status (2)

Country Link
US (1) US5619087A (ja)
WO (1) WO2004075379A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2505910C2 (ru) * 2011-02-01 2014-01-27 ООО "Научно-производственная фирма "Ноосферные технологии" Электрическая машина с дисковым ротором

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744896A (en) 1996-05-21 1998-04-28 Visual Computing Systems Corp. Interlocking segmented coil array
US5982074A (en) 1996-12-11 1999-11-09 Advanced Technologies Int., Ltd. Axial field motor/generator
US6411002B1 (en) * 1996-12-11 2002-06-25 Smith Technology Development Axial field electric machine
US5998947A (en) * 1996-12-27 1999-12-07 Mitsumi Electric Co., Ltd. Method capable of surely chucking a FD inserted in a high-density type FDD
US5721461A (en) * 1997-01-31 1998-02-24 Lockheed Martin Vought Systems Combined energy storage alternator and pulsed power alternator
JPH11275835A (ja) * 1998-03-25 1999-10-08 Matsushita Electric Ind Co Ltd ブラシレスモータ及びその製造方法
EA003746B1 (ru) 1999-08-09 2003-08-28 Перм Мотор Гмбх Электрическая машина с осевым потоком
US6198194B1 (en) 1999-09-17 2001-03-06 Trw Inc. Segmented rotor for an electric machine
US6633106B1 (en) 1999-09-30 2003-10-14 Dwight W. Swett Axial gap motor-generator for high speed operation
GB0001121D0 (en) * 2000-01-19 2000-03-08 Rolls Royce Plc Rotor disc
US6605883B2 (en) * 2001-04-20 2003-08-12 Japan Servo Co., Ltd. Multi-phase flat-type PM stepping motor and driving circuit thereof
FR2827439B1 (fr) * 2001-07-13 2003-10-24 Leroy Somer Moteurs Machine discoide
JP3690355B2 (ja) * 2002-02-12 2005-08-31 日産自動車株式会社 回転電機のステータ支持構造
US6794783B2 (en) * 2003-01-10 2004-09-21 Sunyen Co., Ltd. Flat rotary electric generator
DE112004000115T5 (de) * 2003-01-13 2005-10-27 Sunyen Co., Ltd. Flacher Drehstromgenerator
US7233088B2 (en) 2003-01-17 2007-06-19 Magnetic Torque International, Ltd. Torque converter and system using the same
US7268454B2 (en) * 2003-01-17 2007-09-11 Magnetic Torque International, Ltd. Power generating systems
US7084548B1 (en) 2003-07-11 2006-08-01 Gabrys Christopher W Low cost high speed electrical machine
JP4193685B2 (ja) * 2003-12-15 2008-12-10 日産自動車株式会社 アキシャルギャップモータ構造
WO2005089327A2 (en) * 2004-03-14 2005-09-29 Revolution Electric Motor Company, Inc. Commercial low cost, high efficiency motor-generator
TW200539549A (en) * 2004-05-24 2005-12-01 Tomy Co Ltd A motor, a driving device and an effector
GB0412085D0 (en) * 2004-05-29 2004-06-30 Univ Durham Axial-flux, permanent magnet electrical machine
US7411325B1 (en) * 2004-10-20 2008-08-12 Revolution Electric Motor Company, Inc. High efficiency combination motor and drive
US7808142B2 (en) * 2004-10-27 2010-10-05 E3 Solutions, Llc Multivariable generator and method of using the same
US20060111191A1 (en) * 2004-11-19 2006-05-25 Magnetic Torque International Torque transfer system and method of using the same
JP4690032B2 (ja) * 2004-12-24 2011-06-01 住友電気工業株式会社 アキシャルギャップ型モータ
JP2006230184A (ja) * 2005-01-18 2006-08-31 Daikin Ind Ltd 電機子、モータ及び圧縮機並びにそれらの製造方法
US20070228859A1 (en) * 2006-03-31 2007-10-04 Rao Dantam K Gapped motor with outer rotor and stationary shaft
US7554241B2 (en) * 2006-03-31 2009-06-30 Rao Dantam K Three-gapped motor with outer rotor and stationary shaft
US7557482B2 (en) * 2006-07-31 2009-07-07 Caterpillar Inc. Axial-flux electric machine
US20080024035A1 (en) * 2006-07-31 2008-01-31 Caterpillar Inc. Power system
US7539083B2 (en) * 2007-06-25 2009-05-26 The United States Of America As Represented By The Secretary Of The Navy Remote voice detection system
US20090001831A1 (en) * 2007-06-26 2009-01-01 Cho Chahee P Axial Field Electric Motor and Method
FR2926935B1 (fr) * 2008-01-30 2012-06-08 Tecddis Machine electrique a flux axial et a aimants permanents
JP4926107B2 (ja) * 2008-03-28 2012-05-09 株式会社豊田中央研究所 回転電機
US10038349B2 (en) * 2008-08-15 2018-07-31 Millennial Research Corporation Multi-phase modular coil element for electric motor and generator
JP2011010375A (ja) * 2009-06-23 2011-01-13 Hokkaido Univ アキシャル型モータ
US8872395B2 (en) * 2009-11-04 2014-10-28 Fraen Mechatronics, Llc Rotary single-phase electromagnetic actuator
WO2011144895A2 (en) * 2010-05-17 2011-11-24 Magnomatics Limited Large magnetically geared machines
DE102009059116A1 (de) * 2009-12-18 2012-02-02 Continental Automotive Gmbh Elektromotor
NO331113B1 (no) * 2010-03-23 2011-10-10 Norwegian Ocean Power As Variabel elektrisk generator
JP5664101B2 (ja) * 2010-10-08 2015-02-04 株式会社安川電機 回転電機、風力発電システムおよび回転電機に用いる回転子
CN102290934A (zh) * 2011-07-06 2011-12-21 国电联合动力技术有限公司 一种大型盘式多定子永磁直驱风力发电机组
RU2521048C1 (ru) * 2013-05-06 2014-06-27 Сергей Михайлович Есаков Магнитноэлектрический генератор
RU2544341C1 (ru) * 2013-10-24 2015-03-20 Сергей Михайлович Есаков Магнитоэлектрический генератор
US10720804B2 (en) 2014-06-27 2020-07-21 General Electric Company Permanent magnet machine with segmented sleeve for magnets
RU2604058C1 (ru) * 2015-11-09 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Синхронный электродвигатель с магнитной редукцией
EP3443642A4 (en) 2016-04-13 2019-12-25 Genesis Robotics and Motion Technologies Canada, ULC AXIAL FLOW ELECTRIC MACHINE WITH A RADIAL PRESSURE BEARING AND RADIAL PRESSURE BEARING
FR3064423B1 (fr) 2017-03-22 2019-11-15 Whylot Sas Rotor pour moteur ou generatrice electromagnetique a structure alveolaire comportant des alveoles pour le logement d'aimants respectifs
GB2563425B (en) * 2017-06-15 2021-10-06 Avid Tech Limited Electric propellor drive and vehicle using the same
PL233865B1 (pl) 2017-07-28 2019-12-31 Equelo Spólka Z Ograniczona Odpowiedzialnoscia Maszyna elektryczna
IT201800003113A1 (it) * 2018-02-28 2019-08-28 Technogym Spa Macchina ginnica a tappeto scorrevole a circuito chiuso perfezionata.
IT201800003111A1 (it) * 2018-02-28 2019-08-28 Technogym Spa Macchina ginnica a nastro scorrevole a circuito chiuso perfezionata.
FR3083023B1 (fr) * 2018-06-22 2021-12-03 Whylot Sas Rotor pour moteur ou generatrice electromagnetique avec branches effiles
CN111525763B (zh) * 2019-02-02 2022-05-31 通用汽车环球科技运作有限责任公司 具有绝缘转子的轴向磁通电动机
RU2708382C1 (ru) * 2019-02-13 2019-12-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Синхронный электродвигатель для винта вертолета
US11942824B2 (en) * 2019-05-21 2024-03-26 John Robert Culleton, III Multi rotor axial flux machine assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482131A (en) * 1966-09-27 1969-12-02 Garrett Corp Polyphase alternator winding arrangement
JPS4729806A (ja) * 1971-03-02 1972-11-07
JPS57108671U (ja) * 1980-12-25 1982-07-05
JPS60216757A (ja) * 1984-04-12 1985-10-30 Fanuc Ltd デイスク型サ−ボモ−タ
JPH01308159A (ja) * 1988-06-06 1989-12-12 Canon Inc 面対向型モータ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1368788A (en) * 1970-12-28 1974-10-02 Gujitsu Ltd Electric stepping motor
US4211945A (en) * 1977-10-20 1980-07-08 Gen-Tech, Inc. Multi-voltage and multi-frequency alternator/generator of modular construction
US4578610A (en) * 1978-06-12 1986-03-25 General Electric Company Synchronous disk motor with amorphous metal stator and permanent magnet rotor and flywheel
JPS57108671A (en) * 1980-12-26 1982-07-06 Toshiba Corp Frequeny detector
US4551645A (en) * 1981-06-04 1985-11-05 Fuji Photo Film Co., Ltd. Disc type brushless motor
JPS6244056A (ja) * 1985-08-20 1987-02-26 Kiyonori Fujisaki 直流モ−タ
US4968911A (en) * 1985-11-20 1990-11-06 Allied-Signal Inc. Clam-shell stator construction for electrical machines
JPH0817563B2 (ja) * 1987-09-30 1996-02-21 松下電器産業株式会社 偏平ブラシレスモータ
DE3806760A1 (de) * 1988-03-02 1989-09-14 Heidelberg Motor Gmbh Elektrische maschine
US5184040A (en) * 1989-09-04 1993-02-02 Lim Jong H Electric power generators having like numbers of magnets and coils
US4996457A (en) * 1990-03-28 1991-02-26 The United States Of America As Represented By The United States Department Of Energy Ultra-high speed permanent magnet axial gap alternator with multiple stators
US5117141A (en) * 1990-07-30 1992-05-26 The United States Of America As Represented By Department Of Energy Disc rotors with permanent magnets for brushless DC motor
US5245238A (en) * 1991-04-30 1993-09-14 Sundstrand Corporation Axial gap dual permanent magnet generator
US5396140A (en) * 1993-05-28 1995-03-07 Satcon Technology, Corp. Parallel air gap serial flux A.C. electrical machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482131A (en) * 1966-09-27 1969-12-02 Garrett Corp Polyphase alternator winding arrangement
JPS4729806A (ja) * 1971-03-02 1972-11-07
JPS57108671U (ja) * 1980-12-25 1982-07-05
JPS60216757A (ja) * 1984-04-12 1985-10-30 Fanuc Ltd デイスク型サ−ボモ−タ
JPH01308159A (ja) * 1988-06-06 1989-12-12 Canon Inc 面対向型モータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2505910C2 (ru) * 2011-02-01 2014-01-27 ООО "Научно-производственная фирма "Ноосферные технологии" Электрическая машина с дисковым ротором

Also Published As

Publication number Publication date
US5619087A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
WO2004075379A1 (ja) アキシャルギャップ回転電機
US7714479B2 (en) Segmented composite rotor
EP2169806B1 (en) Axial gap rotating electric machine
US7902710B2 (en) Electric machine
US8497612B2 (en) Permanent magnet rotating machine
US7554241B2 (en) Three-gapped motor with outer rotor and stationary shaft
US10284032B2 (en) Reluctance rotor with runup aid
US20070024144A1 (en) Disk alternator
US6833647B2 (en) Discoid machine
JP3207251B2 (ja) アキシャルギャップ回転電機
JP2005094955A (ja) アキシャル型永久磁石モータ
JPWO2008117631A1 (ja) 永久磁石式発電機とそれを用いた風力発電機
JPH08242564A (ja) 回転電機のバインド構造
KR20090004694A (ko) 전기 기계의 영구 자석 회전자의 자화용 조립체 및 방법
US20150171673A1 (en) System and method for retaining rotor structure in synchronous reluctance machine
US7671509B2 (en) Rotor and stator assemblies for permanent magnet electric generator
EP2132857A2 (en) Axial flux electrical machines
JP2004015998A (ja) 軸方向に分割された三相固定子巻線を有する永久磁石型回転機
JP2957346B2 (ja) アキシャルギャップ回転電機
JP2022517881A (ja) フェンス式ステータを有するアウターディスク型モーター
JP2002369477A (ja) 発電機及び電動機並びにこの発電機及び電動機の製造方法
JP7543229B2 (ja) アキシャルギャップ型回転電機のステータコア、アキシャルギャップ型回転電機のステータ製造方法
KR100364705B1 (ko) 동기유도 전동기의 회전자
JP4392417B2 (ja) 回転子側面にコイルを有した永久磁石式回転電機
JP2015532826A (ja) 電気機械変換器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08140130

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): US