JP6279506B2 - サイクロン装置 - Google Patents

サイクロン装置 Download PDF

Info

Publication number
JP6279506B2
JP6279506B2 JP2015075490A JP2015075490A JP6279506B2 JP 6279506 B2 JP6279506 B2 JP 6279506B2 JP 2015075490 A JP2015075490 A JP 2015075490A JP 2015075490 A JP2015075490 A JP 2015075490A JP 6279506 B2 JP6279506 B2 JP 6279506B2
Authority
JP
Japan
Prior art keywords
airflow
section
powder
conical
conical section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015075490A
Other languages
English (en)
Other versions
JP2015142923A (ja
Inventor
戸田 泰寛
泰寛 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIZUOKA PLANT CO., LTD.
Original Assignee
SHIZUOKA PLANT CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIZUOKA PLANT CO., LTD. filed Critical SHIZUOKA PLANT CO., LTD.
Priority to JP2015075490A priority Critical patent/JP6279506B2/ja
Publication of JP2015142923A publication Critical patent/JP2015142923A/ja
Application granted granted Critical
Publication of JP6279506B2 publication Critical patent/JP6279506B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/081Shapes or dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/20Combinations of devices covered by groups B01D45/00 and B01D46/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Cyclones (AREA)

Description

本発明は、気流中の微粉体を高い捕集率で捕集することができるサイクロン装置に関する。
従来、気流中の粉体を分級する装置として用いられるサイクロン装置20は、図9に示すように、円筒状の上部構造(サイクロンボディ21)と逆円錐状の下部構造(コニカルセクション22)を有する接線入口式サイクロン装置が知られている。
このサイクロン装置においては、粉体の混じった気流が、気流導入部23からサイクロンボディ21の接線方向に渦を描く様にして導入される。そして、気流中に混じった粉体は、遠心力で気流中から分離されてサイクロンボディ21の内壁面に衝突して速度が低下する。
その後、サイクロンボディ21の内壁面に衝突して減速した粉体は、重力によりサイクロンボディ21の下端に接続する逆円錐状のコニカルセクション22の内壁面に沿って落下し、コニカルセクション22の下方部の粉体捕集部24に落下して捕集される。
一方、気流はサイクロンボディ21の中心の気流排出部25から外部へ排出されるようになっている。
このようなサイクロン装置の改良技術に関連して、例えば特許文献1(特公平7−22722号公報)にはサイクロンの本体を球形状に形成した球形サイクロンが記載されている。また、特許文献2(特許2609537号公報)には球形内面に沿って渦巻き状に液体を回転通過させることによって、懸濁・分散液から固体粒子を分離させる固液分離方法が記載されている。
特公平7−22722号公報 特許2609537号公報
しかしながら、図9に示すような従来の接線入口式サイクロン装置20は、サイクロンボディ21の気流導入部23付近の気流の角速度を速くして気流中に混じった粉体を遠心力で分離するともに、サイクロンボディ21の内壁面に衝突させて速度を低下させ、下部の逆円錐状のコニカルセクション22により捕集しているが、その捕集する粉体の粒径は主として1μm以上であり、このようなサブミクロンサイズの微粉体の捕集には、別途バグフィルターのようなフィルターを設けて捕集していた。
また、前記特許文献1や特許文献2に記載されたサイクロン技術は、サイクロンボディを球形化することによって装置自体をコンパクトにするものではあるが、粉体の捕集位置と気流の排出位置が近接するために、分離捕集した粉体と気流とが粉体捕集位置で混在しやすく、サブミクロンサイズの微粉体の分離捕集効率を高めるには限界があった。
本発明は、前記従来の問題点に鑑みて、バグフィルターなどを用いることなくサブミクロンサイズの微粉体の捕集効率を高めることができるサイクロン装置を提供することを目的とする。
本発明のサイクロン装置は、
気流中に混合された粉体を旋回気流から分離し捕集するサイクロン装置であって、
気流導入セクションと、
前記気流導入セクションに接続したコニカルセクションと、
前記コニカルセクションの下端に接続した開口部を有し、旋回気流から分離された粉体を捕集するための粉体捕集セクションとを備え、
前記気流導入セクションは、前記コニカルセクションに向かって漸次拡径した球面部と、該球面部に設けられ粉体混合気流を接線方向から導入する気流導入部とを有するものであり、
前記コニカルセクションが、前記球面部に接続し、該球面部から離れるにつれて漸次縮径する逆円錐状のものであって、
前記気流導入セクションの全長Haと前記コニカルセクションの全長Hbの比Ha/Hbが1/5以上1/3以下であり、
前記粉体捕集セクションにおける、前記コニカルセクションと連通する開口部側と対面側の端部の内径が、前記気流導入セクションと前記コニカルセクションとの接続部の内径に対して1.2倍以上2倍以下の値に設定されていることを特徴とする。
本発明のサイクロン装置は、サブミクロンサイズの微粉体の捕集効率を高めることができる。
本発明の第1実施例に係るサイクロン装置の正面図である。 上記第1実施例のサイクロン装置の平面図である。 上記第1実施例のサイクロン装置の変形例を示す正面図である。 従来の接線入口式サイクロン装置により捕集された粉体の粒度分布を示すグラフである。 上記第1実施例のサイクロン装置により捕集された粉体の粒度分布を示すグラフである。 本発明の第2実施例に係るサイクロン装置の正面断面図である。 上記第2実施例のサイクロン装置の平面図である。 上記第2実施例のサイクロン装置において、粉体を含む気流が装置内を流れる様子を示す、図6と同様の図である。 従来の接線入口式サイクロン装置の構造を示す概略説明図である。
本実施形態に係るサイクロン装置は、気流中に混合された粉体を旋回気流から分離し捕集するサイクロン装置であって、粉体混合気流を接線方向から導入する気流導入部を有して下方に漸次拡径する半球状の気流導入セクションと、この半球状の気流導入セクションの下端に接続して下方に漸次縮径する逆円錐状のコニカルセクションを設けて構成されている。
これによって、従来の接線入口式サイクロン装置で捕集する粉体の限界粒径が1μm以上とされていたが、本発明のサイクロン装置ではサブミクロンサイズの微粉体の捕集も可能とした。
本実施形態に係るサイクロン装置の上部構造の気流導入セクションは、粉体を混合した気流を気流導入部から導入してその内壁面に沿って接線方向に旋回させる部位であり、コニカルセクションの上端に接続して、半球状に突出してお椀を伏せたような構造を呈している。
なお、気流導入セクションは、下方向が漸次拡径状態の内部構造になっていればよく、半球状の構造の他、円錐状(直線状のテーパを有する)の構造でもよい(図3参照)。
このように気流導入セクションを、下方に漸次拡径した状態(下方広がり)とすることによって、勢いよく導入される気流の角速度を一旦低下させることができ、1μm以下の粒径の微粉体であっても分離捕集できるようにした(後述する図4,図5参照)。
本実施形態のサイクロン装置の下部構造のコニカルセクションは、気流導入セクションの下端に接続して逆円錐状(下方に漸次縮径する)の形状をなした部位であり、旋回気流に混合した粉体を遠心分離するともに、逆円錐状の内壁面に衝突させて落下させることで、サブミクロンサイズの微粉体を気流中から分離捕集するようにしている。
また、本実施形態のサイクロン装置においては、気流導入セクションの高さHaとコニカルセクションの高さHbを、Ha<Hbの範囲に設定することができる。
これによって、気流中に含まれるサブミクロンサイズの微粉体あるいはミクロンオーダーの粉体をさらに効率的に分離捕集することが可能になる。
ここで、気流導入セクションの高さHa≧コニカルセクションの高さHbであると、気流導入セクションの内壁面に沿って接線状に導入される粉体を含む気流を十分な角速度を有した旋回状態にするためのコニカルセクションのスペースが相対的に少なくなるために、分離効率が極端に低下する傾向が生じる。
また、気流導入セクションとコニカルセクションとのそれぞれの高さの比率(Ha/Hb)は、1/10〜1/5の範囲に設定することがより好ましい。高さの比率(Ha/Hb)が1/10より小さくなると、コニカルセクションが長くなるので、粉体を含む気流が粉体捕集セクションまで届かなくなり、分離効率が低下する。
逆に比率(Ha/Hb)が1/5より大きくなると、気流導入部と捕集粉体の捕集位置とが近接するために、気流が速すぎて粉体捕集セクションや捕集箱の中の粉体を巻き上げてしまい、分離効率が低下する傾向が生じる。
なお、実施形態において、気流導入セクションとコニカルセクションとの接続する部分の内径を200〜250mmとし、気流導入セクションの高さHaを70〜100mmとし、コニカルセクションの高さHbを200〜1000mmの範囲とするとともに、気流導入セクションの高さHa<コニカルセクションの高さHbとした。
<第1実施例>
以下、本発明の第1実施例に係るサイクロン装置について図面を参照しながら説明する。
図1及び図2に示すように、本実施例のサイクロン装置10は、上部構造の気流導入セクション12と、下部構造のコニカルセクション13とから構成されている。
気流導入セクション12は、下方に漸次拡径した半球状の内部構造を呈しており、粉体を含む気流が、気流導入セクション12の一端に設けられた気流導入部14から気流導入セクション12の接線方向に導入され、その内壁面に沿って旋回気流を生成するようになっている。
下部構造のコニカルセクション13は、この半球状の気流導入セクション12の下端に接続して下方に漸次縮径するテーパ状の逆円錐状の内部構造を呈しており、上部構造の気流導入セクション12内で減速させられた気流の角速度を増速させるようになっている。
また、気流導入セクション12の中心位置には、気流排出部15が上下方向に貫通して設けられており、粉体の分離を終えた気流を外部に排出させるようになっている。
なお、下部構造のコニカルセクション13の下端には、分離された粉体を捕集する粉体捕集セクション16が設けられている。
本実施例において、半球状の気流導入セクション12とコニカルセクション13の接続部の内径を215mmとし、高さHaは85mmとし、コニカルセクション13の高さHbは515mmとした。すなわち、気流導入セクション12とコニカルセクション13との高さの比率(Ha/Hb)を1/6に設定し、所定のテーパがコニカルセクション13に形成されるようにした。なお、粉体捕集セクション16の口径を約50mmとした。
気流導入部14から気流導入セクション12内に導入された粉体を含む気流は、気流導入セクション12の内壁面に沿って旋回気流を形成し、この間に、気流中の粉体に遠心力が作用して、粉体は気流導入セクション12の内壁面に衝突し気流中から分離させられる。
旋回気流は、気流導入セクション12が下方へ漸次拡径した内部構造となっているため、気流導入セクション12内において気流の角速度は低下させられる。
このため、気流導入セクション12内において気流中から分離された粉体は、角速度が低下した気流中を落下しやすくなり、気流導入セクション12の下端に接続された逆円錐状のコニカルセクション13のテーパ内壁面に沿って下降し、粉体捕集セクション16に捕集されるようになる。
一方、粉体を分離した気流は、コニカルセクション13の下部で旋回流径が小さくなるとともにコニカルセクション13の中央部において上昇気流となり、気流導入セクション12の上方中心部に設けられた気流排出部15から外部へ排出されるようになっている。
本実施例におけるサイクロン装置の粉体捕集効果を検証するために行った従来装置との比較試験の結果を以下に示す。図4及び図5は、この比較試験において捕集された粉体の粒度分布を示すグラフである。
試験条件
(a)天候:曇り
(b)気温:14℃
(c)湿度:56.0%
(d)試験原料:カーボン
(e)試験機:サイクロンミル150BMS型
(f)粉砕機モーター回転数:15,000rpm
(g)粉体捕集用プロワー周波数:50hz
(h)導入機スクリュウ周波数:50hz
(i)原料投入量:500g
試験結果
(イ)捕集率の比較
装置A(従来型サイクロン装置):捕集率81.3%
装置B(本実施例のサイクロン装置):捕集率94.0%
カーボン投入量500gとする同一条件のもと、サイクロン装置上部構造のサイクロンボディ(本実施例の気流導入セクション)の形状と直径、長さを変えることで捕集率の変化を測定した。
図1に示す本実施例のサイクロン装置の捕集率は、従来型サイクロン装置の捕集率よりも1.16倍高くなることが分かる。
(ロ)粒度分布の比較
図4及び図5は、従来型サイクロン装置及び本実施例のサイクロン装置により、それぞれ捕集された微粉体の粒度分布を示すグラフである。同一条件のもと粒度分布に変化を測定した。
本実施例のサイクロン装置は、従来型サイクロン装置が捕集できなかった、粒径1.060μm未満から粒径0.630μm以上の粉体を捕集することができた。
従って、本実施例のサイクロン装置で捕集した粉体の粒径のピークである平均粒径(D50)は、従来型サイクロン装置で捕集した粉体の粒径のピークである平均粒径よりも、1.66μm小さいことが分かる。
また、本実施例のサイクロン装置で捕集された粉体の粒径は、累積値10%(D10)でも、従来型サイクロン装置よりも0.85μm小さく、累積値90%(D90)でも、従来型サイクロン装置よりも6.3μm小さいことが明らかである。
以上説明したように、本実施例のサイクロン装置10は、バグフィルターなどを用いることなく、サブミクロンサイズの微粉体の分離捕集効率を高めることができる。
このように分離捕集効率がよくなるのは以下の理由によるものと推定される。
すなわち、気流導入セクション12が下方に漸次拡径内部構造を有しているため、気流導入セクション12の接線方向に入ってきた気流は、半球の中を回る間に、角速度が落ちる。そして、下部構造のコニカルセクション13は下方に漸次縮径する構造であるので回転径が小さくなって角速度が上昇する。
このように、角速度の差を大きくすることによって、サブミクロンサイズの微粉体が遠心作用で気流から分離されやすくなり捕集されやすくなる。
また、サイクロン装置10では、バグフィルターに起因する異物混入の恐れがなく、バグフィルターで発生する目詰まりも発生しないので、メンテナンスが容易で長時間の連続運転が可能である。
さらに、円筒状の上部で旋回流を形成させて粉体を遠心分離させる従来型のサイクロン装置では、圧力損失が大きいため風量の大きなブロア等が必要である。
しかし、本実施例のサイクロン装置10は、円筒状のものに比べてコンパクト化が可能であり、しかも圧力損失が小さく、風量の小さいブロア等で装置を駆動させることができ、省エネ性に優れる。
本実施例のサイクロン装置10は、その気流導入セクション12が上部に平面部を有する半球状の内部構造を有する構成となっているが、その変形例として、図3に示すように、その気流導入セクション12が上部に平面部を有する円錐状の内部構造を有する構成とすることも可能である。
<第2実施例>
次に、本発明の第2実施例について説明する。
図6は、本実施例に係るサイクロン装置110を示す正面断面図であり、図7は、その平面図である。
これらの図に示すように、本実施例のサイクロン装置110は、下方に漸次拡径する半球状の気流導入セクション112と、この気流導入セクションの下端に接続して下方に漸次縮径する逆円錐状のコニカルセクション113と、このコニカルセクション113の下端部に接続された粉体捕集セクション116とを備えている。
本実施例においても、気流導入セクション112には、粉体を含む気流を装置内に導入するための気流導入部114と、粉体の分離を終えた気流を外部に排出するための気流排出部115とが設けられている。これらの具体的な構成については後述する。
気流導入セクション112は、内壁面の全域が球面に沿って半球状に形成された球面部112Aと、この球面部112Aの上端位置(平面視では球面部112Aの中心位置)において上向きに開口する筒状開口部112Bと、球面部112Aの下端位置(平面視では外周縁の位置)において水平に延びる外周フランジ部112Cとからなっている。
このように球面部112Aの上端位置に筒状開口部112Bが形成されていることにより、気流導入セクション112の高さ(正確には球面部112Aの内壁面の高さ)Haは、その下端位置の内径D1の半分よりも僅かに小さい値になっている。
コニカルセクション113は、逆円錐状に形成された筒状の本体部113Aと、この本体部113Aの上下両端においてそれぞれ水平に延びる上端フランジ部113Bおよび下端フランジ部113Cとからなっている。
コニカルセクションの高さHbは、気流導入セクションの高さHaの2倍以上の値(すなわちHa/Hb≦1/2)(より好ましくはHa/Hb≦1/3)に設定されている。具体的には、Ha/Hb=1/6程度の値に設定されている。
このコニカルセクション113の上端位置の内径は、気流導入セクション112の球面部112Aの下端位置の内径D1と同じ値に設定されている。また、このコニカルセクション113の下端位置の内径D2は、その上端位置の内径D1に対して、D2=1/6〜1/4×D1程度の値に設定されている。
このコニカルセクション113は気流導入セクション112に固定されているが、この固定はリング状固定具120の着脱によって分離可能な態様で行われている。
このリング状固定具120は、図7に示すように、1対の半割リング120A、120Bがピン120Cを中心にして相対回動し得るように構成されている。そして、このリング状固定具120は、気流導入セクション112の外周フランジ部112Cとコニカルセクション113の上端フランジ部113Bとを上下に重ね合わせた状態で、その外周側から1対の半割リング120A、120Bをこれらに嵌め込んでバックル120Dを締め付けることにより、その装着が行われるように構成されている。
粉体捕集セクション116は、円筒状の密閉容器として構成されており、その上面中心位置には円形の開口部116aが形成されている。この開口部116aの内径は、コニカルセクション113の下端位置の内径D2と同じ値に設定されている。
この粉体捕集セクション116の内径D3は、気流導入セクション112の球面部112Aの下端位置の内径D1よりも大きい値に設定されている。具体的には、D3/D1=1.2〜2程度の範囲内の値に設定されている。
この粉体捕集セクション116は、その開口部116aの外周縁部においてコニカルセクション113の下端フランジ部113Cに固定されている。この固定は、例えば溶接やボルト締め等によって行われている。
次に、気流導入部114および気流排出部115の構成について説明する。
気流導入部114は、円筒状に形成されており、平面視において気流導入セクション112の中心位置から外れた位置において接線方向に水平に延びている。そして、この気流導入部114は、その一端部において気流導入セクション112の球面部112Aに固定されている。この固定は、例えば溶接やボルト締め等によって行われている。
気流導入セクション112の球面部112Aには、気流導入部114と連通する開口部112Aaが形成されている。
一方、気流排出部115は、円筒状に形成されており、気流導入セクション112をその中心位置において上下方向に貫通している。その際、この気流排出部115は、気流導入セクション112の筒状開口部112Bに嵌め込まれた状態で、その上端部において筒状開口部112Bに固定されている。この固定は、例えば溶接やボルト締め等によって行われている。
本実施例のサイクロン装置110において、気流導入部114は、粉体混合気流を気流導入セクション116に対して気流排出部115の外周面に沿って導入する位置に形成されている。
すなわち、この気流導入部114は、その内周面の仮想延長面が気流排出部115の外周面と点接触するような位置関係またはこれに近い位置関係で配置されている。気流導入部114がこのような位置関係で配置されていることにより、気流導入セクション112の開口部112Aaは、その球面部112Aの上端部に位置することとなる。
この気流導入部114の内径D4は、気流導入セクションの下端位置の内径D1に対して1/5以下の値に設定されている。具体的には、D4/D1=1/7〜1/5程度の範囲内の値(例えばD4/D1=1/6程度の値)に設定されている。
気流排出部115は、その下端位置が気流導入セクション112の下端位置よりも下方側でかつコニカルセクション113の上下方向中心位置よりも上方側の位置に設定されている。すなわち、この気流排出部115の下端位置から気流導入セクション112の下端位置までの高さHcは、コニカルセクションの高さHbに対して、Hc<1/2×Hb(より好ましくはHc<1/4×Hb)の値(例えばHc=1/7×Hb程度の値)に設定されている。
また、この気流排出部115の内径D5は、気流導入部114の内径D4に対して、D5≧D4に設定されている。具体的には、D5/D4=1〜1.5程度の範囲内の値に設定されている。
図8は、本実施例のサイクロン装置110において、粉体混合気流(すなわち粉体を含む気流)が装置内を流れる様子を示す、図6と同様の図である。
同図において、太線で示す矢印付きの曲線Aは、粉体混合気流の典型的な流れの状態を示している。また、この曲線Aに沿って直列状に配置された複数の矢印Bは、粉体混合気流の流速を示しており、長い矢印ほど流速が大きいことを示している。
同図に示すように、本実施例においても、気流導入部114から気流導入セクション112に対して接線方向に導入された粉体混合気流は、その球面部112Aの内壁面に沿って旋回する気流となる。
その際、球面部112Aは、その内壁面の全域が球面に沿って半球状に形成されており、その上端部に形成された開口部112Aaから粉体混合気流が導入されるので、この粉体混合気流は球面部112Aの内壁面に沿って滑らかに旋回しながらその向きを下向きに大きく変化させることとなる。しかも、この粉体混合気流は、球面部112Aの内部においてその旋回半径が急激に増大するので、その流速は急激に減少し、球面部112Aの下端位置に到達した時点ではかなり緩やかな流れとなり、この状態でコニカルセクション113に移行することとなる。このため、気流中に含まれている粉体がたとえサブミクロンサイズの微粉体であっても気流中から容易に分離され、コニカルセクション113の本体部113Aの内壁面に沿って落下することとなる。
コニカルセクション113の内部に移行した直後の気流は、かなり下向きで緩やかに旋回する渦状の流れとなっているが、このコニカルセクション113の本体部113Aは逆円錐状に形成されているので、この本体部113Aの内部を下降するに従って旋回半径が徐々に減少し、これに伴って流速が徐々に増大する。このため、この渦状の気流は、その下端位置に到達した時点ではある程度速い流れとなる。
そして、この渦状の気流は、本体部113Aの内壁面に沿って落下する粉体と共にある程度速い流れのまま粉体捕集セクション116に流入する。その際、この粉体捕集セクション116の内径はその開口部116aの内径に比してかなり大きいので、渦状の気流は開口部116aを通過した直後にその流速が急激に減少する。このため、粉体捕集セクション116に流入した気流に含まれるサブミクロンサイズの微粉体が分離して、その内部に滞留しやすくなる。
一方、粉体捕集セクション116に流入してサブミクロンサイズの微粉体を分離した気流は、その開口部116aを介してコニカルセクション113に戻る。その際、コニカルセクション113から粉体捕集セクション116に流入する渦状の気流は、この開口部116aにおける外周縁寄りの環状領域を通過するので、コニカルセクション113に戻る上向きの気流は開口部116aの中心領域を通過する。
そして、このコニカルセクション113に戻った上向きの気流は、その本体部113Aの内壁面に沿って下向きに流れる渦状の気流の中心を上昇し、気流排出部115を介して装置の外部に排出される。
次に本実施例の作用効果について説明する。
本実施例のサイクロン装置110は、その気流導入セクション112の球面部112Aにおける内壁面の全域が球面に沿って半球状に形成されており、この球面部112Aの開口部112Aaから粉体混合気流が気流排出部115の外周面に沿って導入される構成となっているので、気流排出部115への衝突により粉体混合気流の向きが変わってしまうのを未然に防止した上で、球面部112Aの最も内周側でかつ最も上方側において粉体混合気流の導入を行うことができる。
したがって、球面部112Aの内部において粉体混合気流の流速を急激に減少させることができ、これにより気流中に含まれている粉体がたとえサブミクロンサイズの微粉体であっても容易にこれを分離することができる。
また本実施例においては、気流導入セクション112とコニカルセクション113の高さの比Ha/Hbが、Ha/Hb≦1/2に設定されているので、コニカルセクション113において渦状に下降する気流の速度を過度に増大させないようにすることができる。したがって、サブミクロンサイズの微粉体を気流に乗せて粉体捕集セクション116まで運ぶことができる。また、コニカルセクション113での上昇気流の速度も過度に大きくはならないので、サブミクロンサイズの微粉体が上に上がって行きにくくすることができる。さらに、コニカルセクション113を上昇する気流中にサブミクロンサイズの微粉体が残留していても、その周囲において渦状に下降する気流によってサブミクロンサイズの微粉体を下方へ押し戻して粉体捕集セクション116まで運ぶことができる。
このような効果は、粉体の種類にかかわらず得ることが可能であり、その際、Ha/Hb≦1/3とすることがより効果的である。なお、粉体がカーボンの場合には、Ha/Hb=1/10〜1/5とすることがより一層効果的であり、粉体がお茶の炭である場合には、Ha/Hb=1/3〜1/5とすることがより一層効果的である。
さらに本実施例においては、気流排出部115の下端位置が、気流導入セクション112の下端位置よりも下方側でかつコニカルセクション113の上下方向中心位置よりも上方側の位置に設定されているので、粉体の捕集位置(すなわち粉体捕集セクション116の開口部116aの位置)とコニカルセクション113からの気流の排出位置とを十分に離すことができる。したがって、分離捕集した粉体と気流とが粉体の捕集位置で混在しにくくなり、これによりサブミクロンサイズの微粉体の分離捕集効率をさらに高めることができる。その際、流排出部115の下端位置から気流導入セクション112の下端位置までの高さHcは、コニカルセクションの高さHbに対して、Hc<1/4×Hbとすることがより効果的である。
また本実施例においては、気流導入セクション112の下端位置の内径D1が、気流導入部114の内径D4に対して5倍以上の値に設定されているので、気流導入セクション112における粉体混合気流の角速度低減効果を十分に高めることができる。
すなわち、図9に示す従来のサイクロン装置20においては、円筒状のサイクロンボディ21に流入する粉体混合気流の角速度を大きくして気流中の粉体を遠心力で分離する必要があるので、気流導入部23の内径に対してサイクロンボディ21の内径をあまり大きくすることができない。これに対し、本実施例においては、気流導入セクション112の球面部112Aの内壁面に沿って粉体混合気流を滑らかに旋回させてその向きを下向きに大きく変化させるとともにその角速度を急激に小さくすることにより、気流中の粉体を分離する構成となっているので、気流導入セクション112の下端位置の内径D1をある程度大きくすることがむしろ効果的である。
そこで、本実施例のようにD1≧5×D4として、気流導入セクション112における粉体混合気流の角速度低減効果を十分に高めるようにすれば、気流中からの粉体の分離機能を高めることができる。その際、たとえサブミクロンサイズの微粉体であっても分離機能を高めることができる。
さらに本実施例においては、円筒状に形成された粉体捕集セクション116の内径D3が、気流導入セクション112とコニカルセクション113との接続部の内径D1よりも大きい内径を有しているので、粉体捕集セクション116に捕集された粉体の撹拌速度を十分低下させることができ、これにより粉体捕集セクション116に捕集された粉体を、粉体捕集セクション116に流入した気流によって巻き上げられてしまうのを未然に防止することができる。したがって、たとえサブミクロンサイズの微粉体であっても、粉体捕集セクション116に一旦捕集された後は、粉体捕集セクション116に滞留させておくことが容易に可能となる。
なお、本実施例においては、粉体捕集セクション116が円筒状の密閉容器として構成されているものとして説明したが、これ以外の形状を有する構成とすることも可能である。このようにした場合においても、粉体捕集セクション116の上端部が、気流導入セクション112とコニカルセクション113との接続部の内径D1よりも大きい内径を有する構成(例えば、逆円錐状の構成)とすれば、本実施例と同様の作用効果を得ることができる。
以上、本発明に係るサイクロン装置の形態に関して第1および第2実施例を説明した。
本発明に係るサイクロン装置の構成部材や、導入される粉体混合気流の量などの各設定値は、第1および第2実施例のものに限定されるものではなく、本発明の技術的思想の範囲内で当業者により随時変更が可能であることは言うまでもない。
本発明に係るサイクロン装置の用途として、例えば、掃除機において吸引ブロワーと組み合わせて用いたり、燃料電池車や燃料電池発電機においてエアークリーナーの吸引口に取り付けた状態で用いたりすることも可能である。
以上説明したサイクロン装置は、
気流中に混合された粉体を旋回気流から分離し捕集するサイクロン装置であって、
粉体混合気流を接線方向から導入する気流導入部を有して下方に漸次拡径する気流導入セクションと、
この気流導入セクションの下端に接続して下方に漸次縮径する逆円錐状のコニカルセクションを設けたことを特徴とする。
上記「気流導入セクション」は、下方に漸次拡径する内部構造を有していれば、その具体的な構成は特に限定されるものではなく、例えば、半球状の内部構造を有する構成や円錐状の内部構造を有する構成等が採用可能である。
その際、半球状の内部構造を有する構成の態様としては、気流導入セクションの内壁面全体が球面形状を有する構成や、気流導入セクションの内壁面の上部が球面以外(例えば平面等)の形状を有する構成等が採用可能である。
以上説明したサイクロン装置は、気流中に混合された粉体を旋回気流中から分離し捕集するサイクロン装置であって、粉体混合気流を接線方向から導入する気流導入部を有して下方に漸次拡径する気流導入セクションと、この半球状の気流導入セクションの下端に接続して下方に漸次縮径する逆円錐状のコニカルセクションを設けているので、気流中に混合されたサブミクロンサイズの微粉体の分離捕集を可能とするとともに、粉体捕集効率を飛躍的に高めることができる。
すなわち、従来の接線入口式サイクロン装置では、粉体の混じった気流を気流導入セクションの接線方向から渦を描く様に導入し、気流中に混じった粉体を、遠心力で気流から分離して気流導入セクションの内壁面に衝突させて速度を低下させ、粉体を重力により気流導入セクションの下方(粉体捕集部)に落下させることで捕集しているが、以上説明したサイクロン装置においては、気流導入セクションの気流導入部よりその接線方向から導入された粉体を混合した気流は、気流導入セクションが下方に漸次拡径するような内部構造になっているので、気流中の粉体は遠心力で分離させられる一方、気流は気流導入セクション内に導入された途端にその旋回流の角速度が急速に低下させられる。
そのため、気流中から分離した粉体は気流導入セクション内において落下しやすく、その後の逆円錐状のコニカルセクションで角速度を上げられテーパ状の内壁面に衝突して捕集効率が向上する。
このように、従来方式よりもサイクロン装置内での気流の角速度の差を大きくすることにより、サブミクロンサイズの微粉体の捕集効率を上げることができる。
上記構成において、気流導入セクションの高さHa<逆円錐状のコニカルセクションの高さHbの範囲に設定すれば、コニカルセクションにおいて渦状に下降する気流の速度を過度に増大させないようにすることが可能となり、これによりサブミクロンサイズの微粉体を気流に乗せて粉体捕集セクション(捕集箱)まで運ぶことが可能となる。また、コニカルセクションでの上昇気流の速度も過度に大きくはならないので、サブミクロンサイズの微粉体が上に上がって行きにくくすることが可能となる。さらに、コニカルセクションを上昇する気流中にサブミクロンサイズの微粉体が残留していても、その周囲において渦状に下降する気流によってサブミクロンサイズの微粉体を下方へ押し戻して粉体捕集セクションまで運ぶことが可能となる。
以下、これまで説明したことについて付記する。
(付記1)
気流中に混合された粉体を旋回気流から分離し捕集するサイクロン装置であって、
気流導入セクションと、
前記気流導入セクションに接続したコニカルセクションとを備え、
前記気流導入セクションは、前記コニカルセクションに向かって漸次拡径した球面部と、該球面部に設けられ粉体混合気流を接線方向から導入する気流導入部とを有するものであり、
前記コニカルセクションが、前記球面部に接続し、該球面部から離れるにつれて漸次縮径する逆円錐状のものであり、
前記気流導入セクションの全長Haと前記コニカルセクションの全長Hbの比Ha/Hbが1/10以上1/5以下であることを特徴とするサイクロン装置。
(付記2)
前記気流導入セクションが、半球状の内部構造を有するように構成されたことを特徴とする付記1に記載のサイクロン装置。
(付記3)
粉体の分離を終えた気流を外部に排出するための気流排出部が設けられており、
前記気流排出部が、前記コニカルセクション内における、該コニカルセクションの長さ方向中心位置よりも前記気流導入セクション側の位置から、該気流導入セクションの中心軸に沿って該気流導入セクションを貫通するようにして設けられたものであることを特徴とする付記1乃至2のいずれか1項に記載のサイクロン装置。
(付記4)
前記気流導入部が、粉体混合気流を前記気流導入セクションに対して前記気流排出部の外周面に沿って導入する位置に形成されていることを特徴とする付記3に記載のサイクロン装置。
(付記5)
前記気流導入セクションと前記コニカルセクションとの接続部の内径が、前記気流導入部の内径に対して5倍以上の値に設定されていることを特徴とする付記1乃至4のいずれか1に記載のサイクロン装置。
(付記6)
前記コニカルセクションにおける、前記気流導入セクション側とは反対側の端部の内径
が、このコニカルセクションと前記気流導入セクションとの接続部の内径に対して1/6以上1/4以下の値に設定されていることを特徴とする付記1乃至5のいずれか1に記載のサイクロン装置。
近年、粉体の付加価値を高めるために1μm以下の粒径でかつ粒径分布が制御された微粉体を要求する傾向が強くなっていることから、本発明のサイクロン装置は、微粉体を対象とした分級および粉砕操作などの粉体を扱う工業プロセスに広く応用することが期待でき、産業上の利用可能性が極めて高い。
10 第1実施例のサイクロン装置
12 気流導入セクション
13 コニカルセクション
14 気流導入部
15 気流排出部
16 粉体捕集セクション
20 従来型のサイクロン装置
21 サイクロンボディ
22 コニカルセクション
23 気流導入部
24 粉体捕集部
25 気流排出部
110 第2実施例のサイクロン装置
112 気流導入セクション
112A 球面部
112Aa 開口部
112B 筒状開口部
112C 外周フランジ部
113 コニカルセクション
113A 本体部
113B 上端フランジ部
113C 下端フランジ部
114 気流導入部
115 気流排出部
116 粉体捕集セクション
116a 開口部
120 リング状固定具
120A、120B 半割リング
120C ピン
120D バックル
D1 気流導入セクションの下端位置の内径
D2 コニカルセクションの下端位置の内径
D3 粉体捕集セクションの内径
D4 気流導入部の内径
D5 気流排出部の内径
Ha 気流導入セクションの高さ
Hb コニカルセクションの高さ
Hc 気流排出部の下端位置から気流導入セクションの下端位置までの高さ

Claims (1)

  1. 気流中に混合された粉体を旋回気流から分離し捕集するサイクロン装置であって、
    気流導入セクションと、
    前記気流導入セクションに接続したコニカルセクションと、
    前記コニカルセクションの下端に接続した開口部を有し、旋回気流から分離された粉体を捕集するための粉体捕集セクションとを備え、
    前記気流導入セクションは、前記コニカルセクションに向かって漸次拡径した球面部と、該球面部に設けられ粉体混合気流を接線方向から導入する気流導入部とを有するものであり、
    前記コニカルセクションが、前記球面部に接続し、該球面部から離れるにつれて漸次縮径する逆円錐状のものであって、
    前記気流導入セクションの全長Haと前記コニカルセクションの全長Hbの比Ha/Hbが1/5以上1/3以下であり、
    前記粉体捕集セクションにおける、前記コニカルセクションと連通する開口部側と対面側の端部の内径が、前記気流導入セクションと前記コニカルセクションとの接続部の内径に対して1.2倍以上2倍以下の値に設定されていることを特徴とするサイクロン装置。
JP2015075490A 2013-04-23 2015-04-01 サイクロン装置 Active JP6279506B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015075490A JP6279506B2 (ja) 2013-04-23 2015-04-01 サイクロン装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013090579 2013-04-23
JP2013090579 2013-04-23
JP2015075490A JP6279506B2 (ja) 2013-04-23 2015-04-01 サイクロン装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014549844A Division JP5727108B2 (ja) 2013-04-23 2014-04-11 サイクロン装置

Publications (2)

Publication Number Publication Date
JP2015142923A JP2015142923A (ja) 2015-08-06
JP6279506B2 true JP6279506B2 (ja) 2018-02-14

Family

ID=51791663

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014549844A Active JP5727108B2 (ja) 2013-04-23 2014-04-11 サイクロン装置
JP2015075490A Active JP6279506B2 (ja) 2013-04-23 2015-04-01 サイクロン装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014549844A Active JP5727108B2 (ja) 2013-04-23 2014-04-11 サイクロン装置

Country Status (6)

Country Link
US (1) US20160051994A1 (ja)
EP (1) EP2990123B1 (ja)
JP (2) JP5727108B2 (ja)
KR (1) KR101655132B1 (ja)
CN (1) CN105142794A (ja)
WO (1) WO2014175083A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9795898B2 (en) * 2015-03-31 2017-10-24 Jci Cyclonics Ltd. Cyclonic separator system
CN107042164A (zh) * 2016-03-15 2017-08-15 安徽胜方信息科技服务有限公司 一种半球体旋流器
CN106000666A (zh) * 2016-07-23 2016-10-12 肇东市西八里康盛米业有限公司 一种旋风分离盒子
US11458486B2 (en) * 2016-08-03 2022-10-04 Jci Cyclonics Ltd. Dual cyclone separator
CN106238233A (zh) * 2016-08-17 2016-12-21 合肥耀贝软件开发有限公司 一种半球体旋流器
BE1024631B9 (nl) * 2016-10-11 2019-05-13 Atlas Copco Airpower Nv Vloeistofafscheider
FR3058074A1 (fr) * 2016-11-02 2018-05-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de separation de particules solides en suspension dans un liquide et/ou de liquides de densites differentes, comprenant chacun au moins un moyen de creation et de maintien de vortex
FR3058073A1 (fr) * 2016-11-02 2018-05-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de precipitation et separation de particules solides dissoutes dans un liquide comprenant un moyen de creation et de maintien de vortex, application au dessalement de l'eau de mer ou de l'eau saumatre
KR20180085837A (ko) 2017-01-19 2018-07-30 주식회사 전진엠엔에프 기류 분쇄기용 포집장치
CN106622617B (zh) * 2017-02-27 2018-08-07 中国华电集团科学技术研究总院有限公司 双通道旋惯粗粉分离器
CN107309100B (zh) * 2017-07-27 2023-01-24 广东盛达穗南环保科技有限公司 具有除尘功能的储罐式分级选料系统
WO2020061096A1 (en) 2018-09-19 2020-03-26 Haven Technology Solutions Llc Method and device for separating a lighter density fluid from a heavier density fluid
JP6586619B1 (ja) * 2018-11-29 2019-10-09 株式会社フクハラ サイクロン分離器
KR102183542B1 (ko) * 2019-08-27 2020-11-26 (주)대주기계 사이클론 분리기
JP7327003B2 (ja) * 2019-08-30 2023-08-16 株式会社プロテリアル サイクロン捕集装置、希土類磁石合金粉砕システム、及びr-t-b系焼結磁石の製造方法
CN110538728A (zh) * 2019-09-04 2019-12-06 厦门理工学院 一种旋风式选粉机
CA3184768A1 (en) * 2020-05-27 2021-12-02 Bioactive Materials Pty Ltd Devices and methods for the isolation of particles
GB2620997A (en) * 2022-10-14 2024-01-31 Hunting Energy Services Ltd Apparatus for separating solid particles from a flow or fluid

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1393554A (en) * 1921-03-03 1921-10-11 Martin W Leonhardt Adjustable dust-collector
US1393553A (en) * 1921-03-03 1921-10-11 Martin W Leonhardt Adjustable dust-collector
US2259919A (en) * 1939-01-23 1941-10-21 Northern Blower Company Dust collector
BE473052A (ja) * 1945-07-23
US2692026A (en) * 1950-11-13 1954-10-19 Apex Electrical Mfg Co Self-unloading centrifugal separator
US2726767A (en) * 1951-08-14 1955-12-13 Rakowsky Victor Densifying of solids-liquid mixtures
US2756878A (en) * 1952-06-10 1956-07-31 Erie Mining Co Three product wet cyclone
JPS5131960A (ja) * 1974-09-11 1976-03-18 Midori Hirohashi Sangenbunriryutaisaikuron
JPS5614648U (ja) * 1979-07-10 1981-02-07
MX149498A (es) * 1979-10-05 1983-11-15 Salete Garces Felipe Mejoras a un separador ciclonico operado a succion para materiales solidos pegajosos arrastrados por una corriente gaseosa
JPS57117360A (en) * 1981-01-12 1982-07-21 Mitsubishi Mining & Cement Co Ltd Cyclone
JPS58151457U (ja) * 1982-04-02 1983-10-11 三菱重工業株式会社 サイクロン分離器
JPS6327799Y2 (ja) * 1984-10-03 1988-07-27
GB8516335D0 (en) * 1985-06-28 1985-07-31 Shell Int Research Process for solids-fluid separation
MY102517A (en) * 1986-08-27 1992-07-31 Conoco Specialty Prod Cyclone separator
JPS6448157U (ja) * 1987-09-17 1989-03-24
DK163745C (da) * 1988-03-08 1992-09-07 Smidth & Co As F L Varmeveksler
WO1989008503A1 (en) * 1988-03-17 1989-09-21 Conoco Specialty Products Inc. Cyclone separator
JP2609537B2 (ja) * 1988-06-02 1997-05-14 康伸 吉田 球形サイクロンによる固液分離方法および装置
JPH059084Y2 (ja) * 1988-07-05 1993-03-05
JPH0746357Y2 (ja) * 1990-08-30 1995-10-25 丸尾カルシウム株式会社 サイクロン
JP3106368B2 (ja) * 1991-02-28 2000-11-06 吉田 康伸 空気清浄機
JPH0722722B2 (ja) * 1991-03-13 1995-03-15 康伸 吉田 球形サイクロン
DE9207991U1 (de) * 1992-06-13 1992-09-03 Eckert, Otto, 6970 Lauda-Königshofen Fliehkraftabscheider für ein Gas-Flüssigkeitsgemisch
JPH0722722A (ja) 1993-07-05 1995-01-24 Mitsubishi Electric Corp 樹脂成形タイプの電子回路装置
DE19612059A1 (de) * 1996-03-27 1997-10-02 Fraunhofer Ges Forschung Vorrichtung zum Abscheiden von Feststoffen aus Fluiden
US5771844A (en) * 1996-04-04 1998-06-30 Foster Wheeler Development Corp. Cyclone separator having increased gas flow capacity
GB2337009B (en) * 1996-10-16 2001-04-11 Yoshida Yasunobu Method and apparatus for manufacturing chemical sub-substance by catalytic reaction and the like of reactive fluid
JPH10151371A (ja) * 1996-11-26 1998-06-09 Ube Ind Ltd サイクロン
KR200163505Y1 (ko) * 1997-12-31 2000-01-15 김덕중 사이클론 집진기
US6129775A (en) * 1998-08-19 2000-10-10 G.B.D. Corp. Terminal insert for a cyclone separator
US6238451B1 (en) * 1999-01-08 2001-05-29 Fantom Technologies Inc. Vacuum cleaner
GB9930298D0 (en) * 1999-12-23 2000-02-09 Agfa Gevaert Ltd Imaging method
US6331196B1 (en) * 2000-06-01 2001-12-18 Negev Tornado Ltd. Low turbulence co-current cyclone separator
KR100916732B1 (ko) * 2002-03-19 2009-09-14 이네오스 유럽 리미티드 사이클론을 사용한 가스 및 고형물의 분리
US6752858B1 (en) * 2002-12-13 2004-06-22 Kerr-Mcgee Chemical, Llc Circumferential air knife and applications
JP4422972B2 (ja) * 2003-03-20 2010-03-03 株式会社日清製粉グループ本社 サイクロン装置
JP4635180B2 (ja) * 2004-10-06 2011-02-16 英人 吉田 粉体捕集用サイクロン装置
KR100636021B1 (ko) * 2005-02-04 2006-10-18 삼성전자주식회사 사이클론, 이를 갖는 슬러리 분류 장치, 이 장치를 이용한슬러리 공급 시스템 및 방법
JP2007038189A (ja) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd 分別装置
GB2440726B (en) * 2006-08-12 2011-05-18 Caltec Ltd Cyclonic separator and a method of separating fluids
US7931740B2 (en) * 2008-06-20 2011-04-26 The Boeing Company Cyclone separator
JP4834713B2 (ja) * 2008-10-15 2011-12-14 株式会社東芝 固液分離装置
DE102008057339A1 (de) * 2008-11-14 2010-05-20 Voith Patent Gmbh Hydrozyklon
EA021685B1 (ru) * 2009-04-20 2015-08-31 Сорбуотер Текнолоджи Ас Устройство и способ разделения фаз в многофазном потоке
US9446342B2 (en) * 2010-06-25 2016-09-20 Abbas Motakef Cyclone induced sweeping flow separator
EP2431096B1 (en) * 2010-09-17 2013-12-25 Alstom Technology Ltd Cyclone separator
JP6220109B2 (ja) * 2011-08-03 2017-10-25 株式会社デュコル サイクロン集塵機
JP2014085320A (ja) * 2012-10-26 2014-05-12 Azbil Corp 粒子濃縮装置及び粒子検出装置

Also Published As

Publication number Publication date
JP5727108B2 (ja) 2015-06-03
EP2990123A4 (en) 2017-01-25
US20160051994A1 (en) 2016-02-25
WO2014175083A1 (ja) 2014-10-30
KR101655132B1 (ko) 2016-09-07
EP2990123A1 (en) 2016-03-02
JPWO2014175083A1 (ja) 2017-02-23
KR20150121263A (ko) 2015-10-28
EP2990123B1 (en) 2018-07-04
JP2015142923A (ja) 2015-08-06
CN105142794A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6279506B2 (ja) サイクロン装置
CN105902240A (zh) 旋风分离器与吸尘器尘杯
CN110787597A (zh) 气液分离设备
JPH04215875A (ja) 空気圧遠心分離装置
CN209735164U (zh) 一种除尘器
CN211706363U (zh) 气液分离设备
CN2597086Y (zh) 螺旋导流式旋风分离器
JP2016041398A (ja) サイクロン装置
US20220274137A1 (en) Cyclone with rotating rod basket
US3042202A (en) Cyclone classifier
JP6124356B2 (ja) サイクロン式集塵装置
CN214077294U (zh) 一种气相粉体分级设备
CN101912828B (zh) 一种粉粒物料输送用的旋风式分离装置
CN201384991Y (zh) 旋风分离器及装有旋风分离器的纳米材料收集装置
CN207857151U (zh) 一种高效低压降旋风分离器
CN206081911U (zh) 一种改进的气固分离装置
CN201702040U (zh) 旋风分离器
CN206168589U (zh) 一种旋风式气固分离器
RU2389560C1 (ru) Воздушно-центробежный классификатор
CN112337663A (zh) 二级旋风分离器和分离设备
CN105964425B (zh) 一种带有双隔离室的旋风惯性除尘器
CN109985736A (zh) 倒置旋转旋风分离器和分离设备
CN107073486B (zh) 包括由优化的管单元相连的两个气旋分离器的气旋分离装置
CN202343339U (zh) 一种新型分离装置
JPH0222060Y2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180117

R150 Certificate of patent or registration of utility model

Ref document number: 6279506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250