JP6242177B2 - 電源装置及び照明装置 - Google Patents

電源装置及び照明装置 Download PDF

Info

Publication number
JP6242177B2
JP6242177B2 JP2013237875A JP2013237875A JP6242177B2 JP 6242177 B2 JP6242177 B2 JP 6242177B2 JP 2013237875 A JP2013237875 A JP 2013237875A JP 2013237875 A JP2013237875 A JP 2013237875A JP 6242177 B2 JP6242177 B2 JP 6242177B2
Authority
JP
Japan
Prior art keywords
voltage
battery
circuit
power supply
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013237875A
Other languages
English (en)
Other versions
JP2015062156A5 (ja
JP2015062156A (ja
Inventor
健吾 篠田
健吾 篠田
ちづる 今▲吉▼
ちづる 今▲吉▼
江口 健太郎
健太郎 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013237875A priority Critical patent/JP6242177B2/ja
Publication of JP2015062156A publication Critical patent/JP2015062156A/ja
Publication of JP2015062156A5 publication Critical patent/JP2015062156A5/ja
Application granted granted Critical
Publication of JP6242177B2 publication Critical patent/JP6242177B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

この発明は、電源装置及び、この電源装置を備えた照明装置に関する。例えば非常用照明装置に関する。
バッテリの充電回路を切り換えて、バッテリを急速充電またはトリクル充電に切り換える技術がある。(例えば、特許文献1参照。)このような非常灯(非常時に点灯する明るさが30%の長時間定格30%非常灯ユニット)は、バッテリの電圧とリレー駆動用電源とはともに12V程度であり、バッテリを充電する定電流回路(特に短絡時)での消費電力は少なかった。
特開2000−268982号公報
しかしながら、非常時に点灯する明るさが50%の長時間定格50%非常灯ユニットでは、バッテリ容量を増加させる必要があるがバッテリセルを増加させるとバッテリ電圧が上昇する。同様に、非常時に点灯する明るさが60%の長時間定格60%非常灯ユニットでは、バッテリ容量を増加させる必要があるがバッテリセルを増加させるとバッテリ電圧が上昇する。この場合、バッテリ電圧が上昇したことで、空バッテリ又は空に近いバッテリを接続又は充電中にバッテリが短絡した場合には、充電回路(定電流回路)で3W程度消費し発熱が大きくなる(特に図2の抵抗R20)という課題があった。さらに、このときにリレーを駆動させておく必要があるため、出力を停止して発熱を防ぐことはできないという課題があった。
本発明は、バッテリの充電電圧に応じて充電回路に印加する電圧を切り替えることにより、充電回路の消費電力を低減することを目的とする。
この発明の電源装置は、
交流電圧を直流電圧に変換し、変換した直流電圧を出力電圧として出力する変換部と、
前記変換部の前記出力電圧に基づいてバッテリを充電する充電部と、
前記充電部によって充電される前記バッテリのバッテリ電圧を検出するバッテリ電圧検出部と、
前記バッテリ電圧検出部によって検出された前記バッテリ電圧の値に応じて、前記変換部の前記出力電圧の大きさを制御する出力制御部と
を備えたことを特徴とする。
本発明によれば、充電回路(充電部)の消費電力を低減することができる。
実施の形態1を示す図で、非常用照明装置1000のブロック図。 実施の形態1を示す図で、非常用照明装置1000の回路図。 実施の形態1を示す図で、図2に続く非常用照明装置1000の回路図。 実施の形態1を示す図で、非常用照明装置1000のタイムチャート。 実施の形態1を示す図で、非常用照明装置1000の動作を示すフロー。 実施の形態2を示す図で、非常用照明装置1000−2のブロック図。 図9との対比のための図で、図9が持つ特徴機能を持たない回路図。 実施の形態2を示す図で、図7の非常用ユニットにおけるオーバーシュート発生の波形図。 実施の形態2を示す図で、非常用ユニット300−2のブロック図。 実施の形態2を示す図で、非常用ユニット300−2におけるオーバーシュート発生の波形図。 実施の形態2を示す図で、フライバック回路320−2の出力電圧V1の大きさの切り替えを示す図。
実施の形態1.
図1〜図5を参照して、実施の形態1の非常用照明装置1000を説明する。図1は非常用照明装置1000のブロック図である。図2、図3は非常用照明装置1000の回路図である。図2のA〜Dが図3のA〜Dにつながる。図4は、非常用照明装置1000のタイムチャートであり、(a)〜(g)の横軸は時間である。
(a)は、バッテリ500の充電電圧を示す。
(b)は、NPNトランジスタQ3のオン、オフを示す。
(c)は、第一電源回路330の出力電圧V1(第一電圧V1ともいう)を示す。
(d)は、第二電源回路340の出力電圧V2(第二電圧V2ともいう)を示す。
(e)は、PNPトランジスタQ1のオン、オフを示す。
(f)は、リレーRY1,RY2に供給される電圧が第一電源回路330の出力電圧V1か、第二電源回路340の出力電圧V2かを示す。
(g)は、充電回路370にかかる電圧である「出力電圧V1−バッテリ電圧」示す。
図5は、非常用照明装置1000の動作を示すフローである。
(非常用照明装置1000の構成)
図1及び図2、図3に示すように、非常用照明装置1000(照明装置)は、点検スイッチ100と、常用ユニット200と、非常用ユニット300(電源装置)と、ランプ400と、バッテリ500とからなる。
(非常用照明装置1000の特徴)
非常用照明装置1000は、常用時、つまり交流電源ACの供給があるときに、充電回路370(充電部)が、フライバック回路320(変換部)の出力電圧に基づいてバッテリ500を充電すると共に、リレーRY1,RY2に所定の電圧(以下、12Vとする)を印加することで、リレーRY1,RY2に、ランプ400と常用ユニット200との接続を維持させ、常用点灯状態を維持する。
(1)この常用時において、非常用照明装置1000の一つの特徴は、電源切替回路350(バッテリ電圧検出部、切替部)が、充電回路370によって充電されるバッテリ500のバッテリ電圧を検出し、フィードバック回路360(出力制御部)が、検出されたバッテリ電圧の値に応じて、フライバック回路320の出力する出力電圧の大きさを制御することにある。この特徴によって、充電回路370は、バッテリ電圧の値に応じて制御された出力電圧に基づき、バッテリ500を充電することとなり、充電回路370の消費電力のロスを低減することができる。以下に説明する実施の形態1では、検出されたバッテリ電圧が12V以下のときは、フィードバック回路360はフライバック回路320により変換され、第一電源回路330により生成される第一電圧V1が12V(一例である)となるように制御し、検出されたバッテリ電圧が12Vを超えるときは、フライバック回路320により変換され、第一電源回路330により生成される第一電圧V1が前記の12Vよりも大きい24V(一例である)となるように制御する。
(2)常用時における非常用照明装置1000のもう一つの特徴として、フライバック回路320は、充電回路370へ供給するための第一電圧V1(第一の直流電圧)を生成する第一電源回路330(第一電源部)と、フライバック回路320の出力電圧から、第一電圧V1よりも小さい電圧値でありリレーRY1,RY2の電源用の第二電圧V2(第二の直流電圧)を生成する第二電源回路340(第二電源部)とを備えている点である。そして、第二電圧V2は第一電圧V1の略半分の電圧値である。よって、第一電源回路330の第一電圧V1が12Vのときは、V1=12V、V2=6Vとなり、第一電源回路330の第一電圧V1が24Vのときは、V1=24V、V2=12Vとなる。ここで、リレーRY1,RY2の接続維持のために必要な所定の電圧は上記のように12Vであるので、フライバック回路320の出力電圧が12VのときはV1=12VをリレーRY1,RY2に印加し、フライバック回路320の出力電圧が24VのときはV2=12VをリレーRY1,RY2に印加する。これによって、リレー電源を停止することなく、充電回路370の発熱を減少させることができる。
以下、図面を参照して具体的に説明する。
常用ユニット200は、商用電源ACが供給されているとき、ランプ400を点灯させる電源である。非常用ユニット300は、商用電源ACが供給されているとき、バッテリ500を充電し、商用電源ACが供給されていないとき、例えば停電時にはバッテリ500からの電力によって動作してランプ400を点灯させる電源である。
(非常用ユニット300の構成)
非常用ユニット300は、
(1)商用電源AC(交流電源)を直流電圧(脈流を含む)に変換する整流回路DBと、(2)整流回路DBに接続される停電検出回路310(交流電圧検出部)と、
(3)整流回路DBから出力される直流電圧を所定の直流電圧に変換(昇圧あるいは降圧)するフライバック回路320と、
(4)フライバック回路320に備えられ、出力電圧として第一電圧V1を生成する第一電源回路330と、
(5)同じくフライバック回路320に備えられ、出力電圧として第一電圧V1よりも低い第二電圧V2を生成する第二電源回路340と、
(6)第一電源回路330と第二電源回路340との接続を切り替える電源切替回路350と、
(7)フィードバック回路360と、
(8)バッテリ500を充電する充電回路370と、
(9)第一電源回路330から所定電圧を生成する第一定電圧回路380と、
(10)バッテリ500の電力によって動作し、ランプ400を点灯させる非常点灯回路390と、
(11)ランプ400との接続を常用ユニット200または非常点灯回路390に切り替えるリレーRY1、RY2と、
を備える。
なお、整流回路DBとフライバック回路320とは交流電圧を直流電圧に変換する変換部320−1を構成する。変換部320−1は交流電源ACから供給される交流電圧を直流電圧に変換し、変換した直流電圧を出力電圧として出力する。なお、ここで出力電圧である直流電圧とは、時間の経過とともに電圧値が一定のもの(狭義の直流)に限らず、時間の経過とともに電圧値が変化しても正負が変化しない広義の直流電圧を意味し、脈流も含む。
整流回路DBは、商用電源AC(交流電圧)を直流電圧に変換する。
(停電検出回路310)
停電検出回路310は、整流回路DBが出力する電圧に基づいて、商用電源ACが供給されているか(停電であるか)を検出する。
(フライバック回路320)
図2に示すように、フライバック回路320は、
(1)トランスT1と、
(2)制御IC(IC2)と、
(3)トランスT1の第一の二次巻線から制御IC(IC2)を駆動するための電圧を生成し、整流する電圧検出回路321と、
(4)トランスT1の第二の二次巻き線の終端(以下、第一タップという。)に接続されるダイオードD3と、ダイオードD3のカソードに接続される電解コンデンサC10とから成る第一電源回路330と、
(5)トランスT1の第二の二次巻き線の中間(以下、第二タップという。)に接続されるダイオードD4と、ダイオードD4のカソードに接続される電解コンデンサC11からなる第二電源回路340、
等を備えている。
(電源切替回路350)
電源切替回路350は、図2に示すように、
(1)第一電源回路330と第二電源回路340との間に接続されるPNPトランジスタQ1と、
(2)PNPトランジスタQ1のベースと第一電源回路330との間に接続される抵抗R6と、
(3)PNPトランジスタQ1のベース端子に接続される抵抗R7と、R7を介して接続されるMOS−FET Q2と、
(4)MOS−FET Q2のゲート端子と第一電源回路330の出力との間に接続される直列接続された抵抗R9、R10と、
(5)抵抗R10にコレクタ端子が接続され、第一電源回路330の電解コンデンサC10の負極にエミッタ端子が接続されるNPNトランジスタQ3と、
(6)NPNトランジスタQ3のベース端子とエミッタ端子に並列に接続されるコンデンサC12及び抵抗R12と、
(7)第一電源回路330の出力端子とNPNトランジスタQ3のベース端子に接続される抵抗R8と、
(8)NPNトランジスタQ3のベース端子とバッテリ500との間に接続される直列接続される抵抗R11、ツェナーダイオードDz4と、
を備える。
(フィードバック回路360)
フィードバック回路360は、図2に示すように、
(1)電源切替回路350の抵抗R9、R10の中点にリファレンス端子が接続され、アノード端子がMOS−FET Q2のソース端子に接続されるシャントレギュレータSRと、
(2)シャントレギュレータSRのカソード端子と第一電源回路330の出力端子に接続される直列接続された抵抗R13、R14と、
(3)抵抗R13、R14の中点とシャントレギュレータSRのカソード端子の間にフォトダイオードが接続されるフォトカプラPCと、
(4)シャントレギュレータSRのリファレンス端子とカソード端子との間に並列に接続されるコンデンサC14及び「直列接続された抵抗R15、コンデンサC13」と、
(5)シャントレギュレータSRのリファレンス端子とアノード端子との間に並列に接続される抵抗R16と
を備える。
(充電回路370)
充電回路370は、図2に示すように、
(1)第一電源回路330の電解コンデンサC10に並列に接続される直列接続されたツェナーダイオードDz6と抵抗R17と、
(2)抵抗R17にベース端子が接続されるPNPトランジスタQ4と、
(3)PNPトランジスタQ4のエミッタとツェナーダイオードのカソード端子と並列に接続される抵抗R18及び直列接続された抵抗R19、発光ダイオードLED(充電表示用LED)と、
(4)PNPトランジスタQ4のエミッタ端子とコレクタ端子に並列に接続される抵抗R20と、
(5)PNPトランジスタQ4のコレクタ端子にアノード端子が接続され、バッテリ500の正極にカソード端子が接続されるダイオードD6
を備える。
(非常点灯回路390)
非常点灯回路390は、図3に示すように、バッテリ500からの電力で動作し、リレーRY1、RY2への電源供給の有無によりインバータ回路393の出力をオン/オフさせるオン/オフ切替回路392により動作し、リレーRY1、RY2を介してランプ400を点灯させるインバータ回路393と、を備える。
(リレーRY1,RY2)
リレーRY1、RY2は、コイル側が第一定電圧回路380の出力及び第二電源回路340の出力端子に接続され、接点側がランプ400、常用ユニット200及び非常用ユニット300に接続されている。リレーRY1、RY2は、商用電源ACが供給されているときは、接点は常用ユニット200がランプ400に接続され、停電時に接点が非常用ユニット300にランプ400が接続されるように切り替わる。
バッテリ500は、例えば定格電圧が18Vのニッケル水素電池などの二次電池である。
(常用時の動作)
次に、商用電源ACが供給されているときの常用時の動作について説明する。なお、商用電源ACが供給されているとき、常用ユニット200は、スイッチSWがオンの場合にランプ400を点灯し、スイッチSWがオフの場合にランプ400を消灯させる動作を行うもので、詳細の説明は省略する。
商用電源ACが供給されると、フライバック回路320は、フィードバック回路360から出力されるフィードバック信号に基づいて動作し、そのフィードバック信号(後述のように2種類ある)によって、トランスT1の第二の二次巻き線の第一タップ(ダイオードD3の接続箇所)の出力電圧として、24Vあるいは12Vを出力する。また、第二タップの出力電圧(ダイオードD4の接続箇所))として、例えば、第一タップの出力電圧の半分の電圧値を出力する。なお、第二タップの出力電圧は、第一タップの出力電圧の半分の電圧値に限らず、第一タップの出力電圧よりも小さい出力電圧となるように、適宜設定される。なお、以下では半分として説明する。第一電源回路330の出力電圧は、トランスT1の第二の二次巻き線の第一タップの出力電圧に等しいので、フィードバック回路360によるフィードバック制御に応じて、24V、12Vとなる。また第二電源回路340の出力電圧は、トランスT1の第二の二次巻き線の第二タップの出力電圧に等しいので、フィードバック回路360によるフィードバック制御に応じて、12V、6Vとなる。
次にこの実施の形態1における特徴部分の詳細について、特に図4、図5を用いて説明する。
<バッテリの充電電圧が閾値電圧12Vを超えているとき>
(1)図5(a)に示すように、バッテリ500の充電電圧が12V(閾値電圧)を超えているとき(図4(a)のT1)、電源切替回路350(ツェナーダイオードDz4)のツェナー電圧を超え、NPNトランジスタQ3がオンし(図4(b))、MOS−FET
Q2はオフする。そのため、MOS−FET Q2のインピーダンスが高くなり、PNPトランジスタQ1のベースに印加される電圧が高くなるので、PNPトランジスタQ1のエミッタ−コレクタ間に電流が流れなくなりPNPトランジスタQ1はオフする(図4(e))。
(NPNトランジスタQ3がオンの場合の充電回路370への供給電圧)
フィードバック回路360では、図5(a)の左列に示すように、NPNトランジスタQ3がオンの場合、第一電源回路330の出力電圧を抵抗R9、R10、R16で分圧し、分圧した電圧をシャントレギュレータSRのリファレンス端子に印加する。シャントレギュレータSRのリファレンス端子が基準電圧(例えば2.5V)となるように制御されている。フィードバック回路360は、リファレンス端子に印加される電圧が基準電圧よりも高いと、フォトカプラPC(フォトダイオード)に電流が流れ、フライバック回路320の出力電圧を低めるように制御し、リファレンス端子に印加される電圧が基準電圧よりも低いと、フォトカプラPC(フォトダイオード)に電流が流れなくなり、フライバック回路320の出力電圧を高めるように制御する。このように、フィードバック回路360のシャントレギュレータSRのリファレンス電圧が基準値と等しくなるように制御することによってフライバック回路320の出力電圧が一定になるように制御される。つまりNPNトランジスタQ3がオンの場合は、フィードバック回路360はフライバック回路320の出力が24V(第二の出力電圧)となるようにフィードバック制御する。従って、第一電源回路330、第二電源回路340のそれぞれの出力電圧V1、V2は、V1=24V、V2=12Vとなる(図4(c)(d))。よって充電回路370へはV1=24Vが供給され、実際に充電回路370にかかる電圧は、「V1−バッテリ電圧Vbat」となる(図4(g))。
(NPNトランジスタQ3がオンの場合のリレーRY1、RY2への供給電圧)
NPNトランジスタQ3がオンの場合(図4(b))、図5(a)の右列に示すように、PNPトランジスタQ1はオフする(図4(e))。PNPトランジスタQ1のオフにより、第二電源回路340から出力される第二電圧V2の12Vが、リレーRY1、RY2と、非常点灯回路390のオン/オフ切替回路に印加される(図4(f))。よって、リレーRY1、RY2は常用ユニット200(電子安定器)とランプ400とを接続状態にし、インバータ回路393を停止させる。
<バッテリの充電電圧が閾値電圧12V以下のとき>
バッテリ500の充電電圧が12V(閾値電圧)以下のとき(図4(a))、電源切替回路350(ツェナーダイオードDz4)のツェナー電圧を超えないので、NPNトランジスタQ3はオフし(図4(b))、MOS−FET Q2はオンする。
(NPNトランジスタQ3がオフの場合の充電回路370への供給電圧)
NPNトランジスタQ3がオフの場合、シャントレギュレータSRのリファレンス端子に接続されている抵抗R10が切り離されて、抵抗R9とR16の分圧によって、リファレンス電圧が決まるので、フライバック回路320の出力電圧は、NPNトランジスタQ3がオンの場合と異なる。つまりNPNトランジスタQ3がオフの場合には、図5(b)の左列に示すように、フィードバック回路360は、フライバック回路320の出力が12V(第一の出力電圧)となるようにフィードバック制御する。従って、第一電源回路330、第二電源回路340のそれぞれの出力電圧である第一電圧V1、第二電圧V2は、V1=12V、V2=6Vとなる(図4(c)(d))。よって充電回路370へはV1=12Vが供給され、実際に充電回路にかかる電圧は、「V1−バッテリ電圧Vbat」となる(図4(g))。
(NPNトランジスタQ3がオフの場合のリレーRY1、RY2への供給電圧)
NPNトランジスタQ3がオフしMOS−FET Q2がオンすると、MOS−FET Q2のインピーダンスが低くなり、PNPトランジスタQ1のベースに印加される電圧が低くなるので、PNPトランジスタQ1のエミッタ−コレクタ間に電流が流れ、図5(b)の右列に示すように、PNPトランジスタQ1がオンする(図4(e))。このとき、第二タップの電圧(第二電源回路340)よりも第一電源回路330の出力電圧のほうが高いため、第一電源回路330の出力電圧V1が優先され、図5(b)の右列に示すように、リレーRY1、RY2にはV1=12Vが印加される(図4(f))。
このように、第一に、バッテリ500の充電電圧に応じて、フライバック回路320の出力電圧を切り替えるようにしているので、バッテリ500の充電電圧とフライバック回路320の出力電圧の差(V1−Vbat)が小さくなり、充電回路370における電力ロスを抑えることができる。また、第二に、バッテリ500の充電電圧によらず、リレーRY1、RY2及びオン/オフ切替回路392には、一定の電圧(図4(f)に示す12V)を印加することができる。
また、第一電源回路330とリレーRY1、RY2及びオン/オフ切替回路392との間に第一定電圧回路380を設けたので、電源切替回路350によって、第一電源回路330から第二電源回路340または第二電源回路340から第一電源回路330に切り替える際や、バッテリ500が接続状態から解放状態になり第一電圧V1にオーバーシュートが発生して制御IC(IC2)が内蔵するOVP機能(Over Voltage Protect機能)によって停止し電圧が下がるような場合であっても、第一定電圧回路380が所定電圧を維持するように機能する。よって、リレーRY1、RY2及びオン/オフ切替回路392には、安定した所定電圧(例えば、12V)を印加し続けることができる。
このように、バッテリ電圧を電源切替回路350(バッテリ電圧検出部)にて監視し、ある電圧(閾値電圧)を下回ったときに、バッテリ500を充電する主電源V1の大きさを、例えば24Vからその半分の値の12Vに切り替えることにより、充電回路370に印加される電圧が下がり、充電回路370での消費電力が低下する。このとき、リレー電源用である第二電源回路340の出力電圧V2も1/2の6Vになるため、リレー電源(12Vが必要)が確保できなくなるが、電源切替回路350が、第二電圧V2のラインに、第一電源回路330の出力電圧V1(1/2となった出力電圧である12V)が印加されるように切り替えるので、リレー電源を確保することができる。
実施の形態2.
図6〜図11を参照して実施の形態2を説明する。
図6は、実施の形態2の非常用照明装置1000−2のブロック図である。
図7は、図9との対比のための図であり、図9の「特徴機能」(後述する)を持たない非常用ユニットの回路図である。
図8は、図7の非常用ユニットでのオーバーシュート発生の波形図である。
図9は、実施の形態2の非常用ユニット300−2の回路図である。
図10は、非常用ユニット300−2の有するフライバック回路320−2の出力電圧V1の切り替えを示す図である。
図11は、図9の非常用ユニット300−2でのオーバーシュート発生における最大値が抑制された波形図である。
実施の形態2の非常用照明装置1000−2は実施の形態1の非常用照明装置1000と同様の構成であるが、非常用照明装置1000−2は、オーバーシュート発生時の最大値抑制の観点の実施形態である。実施の形態2の非常用照明装置1000−2の一次側の具体的な回路構成は、図2と同様である。
非常用ユニットは常用時には外部に接続されたバッテリを充電するが、特開2001−218388号公報によれば、バッテリを充電する際、空バッテリまたは空に近いバッテリなどの充電電流を多く必要とする場合、充電回路の電圧が所定値より低下し、非常と誤判定することを回避するために、充電電流を検出して制御している。
従来では、バッテリを充電するために定電流回路を用いて上記誤判定を回避しているが、定電流回路用の電源は通常、フライバック回路にて生成し、バッテリ満充電時の電圧よりも高い電圧で制御している。非常時の点灯時間が30分(一般定格)、光束比30%の非常灯に用いるバッテリのセル数は6セル(7.2V)であるが、点灯時間が60分(長時間定格)、光束比60%の非常灯においては、バッテリ電圧は倍程度が必要となる。
バッテリ短絡時や空バッテリまたは空に近いなどバッテリ電圧が低い場合に、バッテリを開放すると、フライバック回路の出力にオーバーシュートが発生し、搭載部品にダメージを与えてしまう。特に後者の点灯時間が60分(長時間定格)、光束比60%のような非常灯においては、制御電圧が高い為、より大きなオーバーシュートが発生してしまう。
またPFC(力率改善)機能を動作させるフライバック回路では、フライバック回路のフィードバックの応答速度が遅いため、バッテリ負荷急変時にオーバーシュートが発生してしまう。そこで実施の形態2の非常用ユニット300−2では、バッテリ500の電圧がある電圧(閾値電圧)以下の時には、フライバックトランスT1の出力電圧V1を低下させる。つまり非常用ユニット300−2では、フライバック回路320−2の出力を低い電圧に切り替える。このように出力電圧V1を低下方向に切り替えることにより、バッテリ負荷の急変時に発生するオーバーシュートの最大値を抑える。
非常用ユニット300−2においてバッテリ電圧が閾値電圧以下の時にフライバック回路320−2の出力電圧V1(例えば24V)を、低い出力電圧V1(例えば12V)に切り替える機能を、以下、非常用ユニット300−2の「特徴機能」という。
実施の形態1の非常用照明装置1000の場合、バッテリ電圧検出回路は電源切替回路350に含まれていたが、非常用照明装置1000−2ではバッテリ電圧検出回路351−2を単独の構成要素としている。非常用照明装置1000−2は、図6に示すように、点検スイッチ、常用ユニット200、非常用ユニット300−2、ランプ400、バッテリ500、壁スイッチSW等を備えている。図6の整流回路DB−2とフライバック回路320−2とは、変換部320−3を構成する。この変換部320−3は、力率改善機能を有すると共に、交流電圧を入力して直流電圧に整流し、力率改善機能によって整流後の直流電圧の力率を改善して出力電圧として出力する。力率改善機能は具体的には実施の形態1の図2に示した制御IC(IC2)が有する。
図7の非常用ユニットはPFC機能を持つが、上記の「特徴機能」を持たない。図7ではフライバックトランスT1よりも左側(1次側)ではフライバック回路によりPFC動作をさせているだけであるため、図及び動作の説明は省略する。図7の場合、商用電源(図示していない)からPFC機能を持った絶縁型フライバック回路により生成された電圧V1を定電流回路の電源として供給すると共に、電圧V1をレギュレータIC2で降圧した電圧V2をリレー用電源に使用している。定電流回路の先にバッテリが接続されるが、バッテリが短絡や空バッテリまたは空に近いなど、バッテリ電圧が低い場合にバッテリを接続状態から開放すると、PFC制御がフィードバック信号に比べ遅いため、フライバック回路の出力にオーバーシュートが発生し、構成部品に与えるダメージが大きい。また、リレー用電源は常にレギュレータIC2で降圧した電圧を供給していることから、レギュレータIC2での電力ロスが大きい。
点灯時間が60分(長時間定格)、光束比60%の非常灯においては、点灯時間が30分(一般定格)、光束比30%の非常灯における非常用ユニットに使用するバッテリ電圧よりも高いバッテリ電圧が必要となり、フライバックトランスT1の出力電圧V1も高い電圧で制御する必要がある。バッテリ負荷が大きくなったことで、図7のコンデンサC3の容量を大きくする必要があり、且つ電圧値が増加したため、オーバーシュート電圧の絶対値は大きくなり、構成部品に与えるダメージが大きくなる(図8)。図8の横軸は時間、縦軸は電圧を示し、図8の目盛は後述の図11と同じであるので、図8でのオーバーシュート電圧の絶対値は図11と比べて大きく、回路の構成部品に与えるダメージが大きくなる。この対策としては余裕を持ったディレーティング設計や、部品の定格を上げるなどがあるが、基板実装面積の増大やコストの上昇となる。
図9は、非常用ユニット300−2(電源装置)の主要要素を表した回路図である。フライバックトランスT1の出力が1出力のみであると、前述のように、出力電圧V1から降圧コンバータなどでV2まで降圧し、リレー用電源を確保する必要が生じるので、電力ロス、部品点数、コスト、基板面積の増大となる。このため、V1及びV2の2出力のフライバックトランスT1を使用する。
図9、図10を参照して非常用ユニット300−2の動作を説明する。
(1)例えば、バッテリ電圧検出回路351−2のDZ2のツェナー電圧(閾値電圧)を8Vとする。
(2)バッテリ電圧Vbatが約8V(閾値電圧)を超える場合は、トランジスタQ1はONしている(図10(a),(b))。このため、フィードバック回路360−2のシャントレギュレータIC1の出力目標値を設定する抵抗R3とR6が並列(例えばR3=R6)となる。この場合、フライバック回路320−2の出力V1は、約24Vとなるように設定されている(図10(c))。具体的にはフィードバック回路360−2は、バッテリ電圧検出回路351−2によって検出されたバッテリ電圧の値が、閾値電圧を超えるときには、フライバック回路320−2の出力電圧が予め設定された第二の出力電圧であって第一の出力電圧よりも大きい第二の出力電圧(V1=24V)となるようにフライバック回路320−2を制御する。
(3)バッテリ電圧Vbatが8V(閾値電圧)以下になると、トランジスタQ1がOFFする(図10(b))。このため、シャントレギュレータIC1の出力目標値を設定する抵抗はR3のみとなる。この場合、フライバック回路320−2の出力V1は、約12Vとなるように設定されている(図10(c))。具体的にはフィードバック回路360−2は、バッテリ電圧検出回路351−2によって検出されたバッテリ電圧の値が、閾値電圧(DZ2のツェナー電圧)以下のときには、フライバック回路320−2の出力電圧が予め設定された第一の出力電圧(V1=12V)となるようにフライバック回路320−2を制御する。
(4)上記のようにバッテリ電圧Vbatが8V(閾値電圧)を下回ると出力電圧V1が低くなるため、オーバーシュートの最大値も低くなり構成部品に与えるダメージも低減する(図11)。図11は、図9の非常用ユニット300−2においてオーバーシュートが発生した際の波形図である。図8に比べてオーバーシュート時の最大電圧値が低くなっている。
図10(d)はフライバック回路320−2の出力V2示すが、実施の形態1と同様に、例えばV1=12V、V1=24Vに対応してそれぞれ半分のV2=6V、V2=12Vとなる。この場合、リレーへの供給電圧は実施の形態1と同様にV1=12VのときはV1をリレーへの供給電圧とし、V1=24Vの場合にはV2=12Vをリレーへの供給電圧とすることで、V1の切り替えによらず、一定の電圧をリレーに印加することができる(図10(e))。
1000,1000−2 非常用照明装置、100 点検スイッチ、200 常用ユニット、300,300−2 非常用ユニット、310,310−2 停電検出回路、320,320−2 フライバック回路、320−1 変換部、321 電圧検出回路、330,330−2 第一電源回路、340,340−2 第二電源回路、350,350−2 電源切替回路、351−2 バッテリ電圧検出回路、360,360−2 フィードバック回路、370,370−2 充電回路、380,380−2 第一定電圧回路、390,390−2 非常点灯回路、392 オン/オフ切替回路、393 インバータ回路、400 ランプ、500 バッテリ、DB 整流回路、C1〜C6,C8,C9,C12〜C15 コンデンサ、C7,C10,C11 電解コンデンサ、D1〜D7 ダイオード、Dz1〜Dz7 ツェナーダイオード、Q1,Q4,Q4−1 PNPトランジスタ、Q2 N型MOS−FET、Q3,Q5 NPNトランジスタ、R1〜R21 抵抗、T1 トランス、L1〜L2 インダクタ、IC1,IC2 制御IC、RY1,RY2 リレー、SR シャントレギュレータ、PC フォトカプラ、LED 発光ダイオード。

Claims (4)

  1. 交流電圧を直流電圧に変換し、変換した直流電圧を出力電圧として出力する変換部と、
    前記変換部の前記出力電圧に基づいてバッテリを充電する充電部と、
    前記充電部によって充電される前記バッテリのバッテリ電圧を検出するバッテリ電圧検出部と、
    前記バッテリ電圧検出部によって検出された前記バッテリ電圧の値に応じて、前記変換部の前記出力電圧の大きさを制御する出力制御部と
    を備え
    前記出力制御部は、
    前記バッテリ電圧検出部によって検出された前記バッテリ電圧の値が、予め設定された閾値電圧以下のときには、前記変換部の出力電圧が予め設定された第一の出力電圧となるように前記変換部を制御し、
    前記バッテリ電圧検出部によって検出された前記バッテリ電圧の値が、前記閾値電圧を超えるときには、前記変換部の出力電圧が予め設定された第二の出力電圧であって前記第一の出力電圧よりも大きい第二の出力電圧となるように前記変換部を制御することを特徴とする電源装置。
  2. 前記変換部は、
    前記出力電圧として、第一の直流電圧V1を生成する第一電源部と、
    前記出力電圧として、前記第一の直流電圧V1よりも小さい電圧値の第二の直流電圧V2を生成する第二電源部と
    を備え、
    前記電源装置は、さらに、
    所定の電圧値が印加されているときに接続状態を維持するリレーと、
    前記バッテリ電圧検出部によって検出された前記バッテリ電圧の値が前記閾値電圧以下のときには、前記第一電源部によって生成される前記第一の直流電圧V1を、前記所定の電圧値として前記リレーに印加し、前記バッテリ電圧検出部によって検出された前記バッテリ電圧の値が前記閾値電圧を超えるときには、前記第二電源部によって生成される前記第二の直流電圧V2を、前記所定の電圧値として前記リレーに印加する切替部と
    を備えたことを特徴とする請求項記載の電源装置。
  3. 力率改善機能を有すると共に、交流電圧を入力して直流電圧に整流し、前記力率改善機能によって整流後の直流電圧の力率を改善して出力電圧として出力する変換部と、
    前記変換部の前記出力電圧に基づいてバッテリを充電する充電部と、
    前記充電部によって充電される前記バッテリのバッテリ電圧を検出するバッテリ電圧検出部と、
    前記バッテリ電圧検出部によって検出された前記バッテリ電圧の値に応じて、前記変換部の前記出力電圧の大きさを制御する出力制御部と
    を備え
    前記出力制御部は、
    前記バッテリ電圧検出部によって検出された前記バッテリ電圧の値が、予め設定された閾値電圧以下のときには、前記変換部の出力電圧が予め設定された第一の出力電圧となるように前記変換部を制御し、
    前記バッテリ電圧検出部によって検出された前記バッテリ電圧の値が、前記閾値電圧を超えるときには、前記変換部の出力電圧が予め設定された第二の出力電圧であって前記第一の出力電圧よりも大きい第二の出力電圧となるように前記変換部を制御することを特徴とする電源装置。
  4. 請求項1から請求項3のいずれか一項に記載の電源装置を備えた照明装置。
JP2013237875A 2013-08-22 2013-11-18 電源装置及び照明装置 Active JP6242177B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013237875A JP6242177B2 (ja) 2013-08-22 2013-11-18 電源装置及び照明装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013172524 2013-08-22
JP2013172524 2013-08-22
JP2013237875A JP6242177B2 (ja) 2013-08-22 2013-11-18 電源装置及び照明装置

Publications (3)

Publication Number Publication Date
JP2015062156A JP2015062156A (ja) 2015-04-02
JP2015062156A5 JP2015062156A5 (ja) 2016-09-29
JP6242177B2 true JP6242177B2 (ja) 2017-12-06

Family

ID=52821450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013237875A Active JP6242177B2 (ja) 2013-08-22 2013-11-18 電源装置及び照明装置

Country Status (1)

Country Link
JP (1) JP6242177B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7019989B2 (ja) * 2017-07-28 2022-02-16 三菱電機株式会社 防災灯点灯装置および防災灯

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683257B2 (ja) * 2001-09-18 2011-05-18 東芝ライテック株式会社 誘導灯装置
JP2010041891A (ja) * 2008-08-08 2010-02-18 Yamaha Motor Electronics Co Ltd 充電器
CN104106194B (zh) * 2012-02-08 2016-07-06 三菱电机株式会社 电力变换装置

Also Published As

Publication number Publication date
JP2015062156A (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5554108B2 (ja) 過電流防止式電源装置及びそれを用いた照明器具
JP5319933B2 (ja) 照明装置
US20080291709A1 (en) Switching power supply apparatus
JP2015225825A (ja) Ledランプ、led点灯装置、及びこれらを用いたled照明システム
JP2020036419A (ja) 非常用照明装置
JP5743436B2 (ja) 照明装置、誘導灯及び非常灯
JP6187024B2 (ja) Led電源装置及びled照明装置
US20200304016A1 (en) Ac/dc converter, luminaire and method providing an improved start-up circuit
JP6169329B2 (ja) 電源装置及び照明装置
JP6242177B2 (ja) 電源装置及び照明装置
JP2015088344A (ja) 停電灯用バックアップ電源及び停電灯ユニット
JP5169159B2 (ja) 直流電源装置
JP6273100B2 (ja) 照明装置
WO2006112200A1 (ja) 直流安定化電源装置
US10205336B2 (en) Switched-mode power supply having at least one power circuit and at least one auxiliary power supply unit
JP6173183B2 (ja) 非常用点灯ユニット及び非常灯器具
JP7476642B2 (ja) 非常用装置、照明器具
JP2020166958A (ja) 電源装置、誘導灯および非常灯
JP7552368B2 (ja) 点灯ユニットおよび非常用照明装置
JP7208588B2 (ja) 電源装置および誘導灯
CN217824739U (zh) 一种开关电源的控制电路及空调器
JP7027964B2 (ja) 点灯装置、照明器具および照明システム
JP6354174B2 (ja) 非常用照明装置
JP6721215B2 (ja) 点灯装置
JP2022061081A (ja) 非常用照明装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171107

R150 Certificate of patent or registration of utility model

Ref document number: 6242177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250