JP6229372B2 - セラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプ - Google Patents

セラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプ Download PDF

Info

Publication number
JP6229372B2
JP6229372B2 JP2013177646A JP2013177646A JP6229372B2 JP 6229372 B2 JP6229372 B2 JP 6229372B2 JP 2013177646 A JP2013177646 A JP 2013177646A JP 2013177646 A JP2013177646 A JP 2013177646A JP 6229372 B2 JP6229372 B2 JP 6229372B2
Authority
JP
Japan
Prior art keywords
frit
metal halide
halide lamp
ceramic metal
tube portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013177646A
Other languages
English (en)
Other versions
JP2015046339A (ja
Inventor
佳真 小荷田
佳真 小荷田
将満 村岡
将満 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2013177646A priority Critical patent/JP6229372B2/ja
Publication of JP2015046339A publication Critical patent/JP2015046339A/ja
Application granted granted Critical
Publication of JP6229372B2 publication Critical patent/JP6229372B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、セラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプに関し、特に、放電容器の両端をシールする技術に関する。
近年、石英ガラス製の放電容器を用いるメタルハライドランプの代わりに、セラミック製の放電容器を用いるセラミックメタルハライドランプが広く普及している。セラミックメタルハライドランプでは、放電容器が透光性アルミナ等のセラミックによって形成されているため、封入物質との反応に起因した放電容器の劣化が少なく、ランプ寿命を改善することができる。
セラミックメタルハライドランプの放電容器は、典型的には、略回転楕円体形状の発光部とその両側の細管部からなる。細管部に、電極、電流供給導体、及び、リード線を有する電極システムをそれぞれ挿入し、細管部と電極システムの間の隙間を封止材によって封止することにより、シール部を形成する。こうして細管部に形成されたシール部によって、放電容器の内部は密閉され、アルゴン等の不活性ガスと発光物質が封止される。
封止材の原材料として、酸化ジスプロシウム(ディスプロシア)Dy23、酸化アルミニウム(アルミナ)Al23、及び、酸化ケイ素(シリカ)SiO2を含むフリットが用いられる。尚、酸化ジスプロシウムDy23の代わりに、又は、酸化ジスプロシウムDy23に加えて、酸化イットリウム、酸化モリブデン等も用いられる。
シール部に形成される封止材は、溶融したフリットが非結晶化(非晶質化又はガラス化)したタイプと、溶融したフリットが結晶化したタイプとに分けられる。一般に、非結晶化タイプの封止材は、全体が均質な非晶質によって構成されるため、ランプが点滅する際に熱膨張及び熱収縮してもそれに追従して変化し、封止材の内部にクラックが発生する可能性が少ないという特徴がある。一方、結晶化タイプの封止材は、放電容器の細管部のシール部の機械的強度を高くすることができ、且つ、金属ハロゲン化物等の発光物質に対する耐浸食性が良好であると言われている。
特開昭56-44025号公報 特開平07-21990号公報 特開2008-108690号公報 特開2009-259602号公報 特開2004-355888号公報
近年、ランプの長寿命化の要請が益々高くなっている。そのため、シール部の機械的強度を高めると同時に、金属ハロゲン化物等の発光物質に対する耐浸食性を更に高める必要性が高まっている。
本発明の目的は、放電容器の細管部のシール部の機械的強度を高めると同時にシール部の耐侵食性を更に高めることができるセラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプを提供することにある。
本願の発明者は、シール部の機械的強度を確保し、且つ、耐侵食性の更なる向上を図るための技術を鋭意考察した。本願の発明者は、様々な種類のフリットを試作し、それを用いて放電容器の細管部にシール部を形成する実験を行った。シール部に形成された封止材を走査電子顕微鏡(SEM)で観察した。本願の発明者は以下の知見を得た。
結晶化タイプの封止材では、非晶質(ガラス質)の中に多数の粒状の結晶が析出していることが観察される。粒状の結晶はコンクリートの骨材に相当する役割を有し、シール部の機械的強度を高める機能を提供する。一方、非晶質は、結晶質と比較して、金属ハロゲン化物等の発光物質によって浸食され易い。そこで、本願の発明者は、放電容器の細管部のシール部において、封止材を非粒状の結晶化、即ち、樹枝状結晶化させることとした。
封止材を樹枝状結晶化させた場合も、樹枝状結晶の間の空間は非晶質(ガラス質)によって占められる。樹枝状結晶は、粒状の結晶と同様に、シール部の機械的強度を高める機能を提供する。非晶質(ガラス質)は、上述のように発光物質によって浸食され易いが、樹枝状結晶では狭い迷路のように複雑な形状を有するため、侵食の進行が妨げられることが観測された。即ち、樹枝状結晶は、発光物質に対する耐浸食性を高める機能を提供する。
更に、本願の発明者が行った実験では、電流供給導体を構成する導電性サーメットと封止材の界面に反応生成物が形成され、それによって、シール部の機械的強度及び密閉性を高めることができた。
本発明の実施形態によると、発光部と細管部を有する放電容器を備えたセラミックメタルハライドランプの製造方法において、
酸化ケイ素の含有量をX(SiO2)mol%、酸化ジスプロシウムの含有量をX(Dy2O3)mol%、酸化アルミニウムの含有量をX(Al2O3)mol%とするとき、前記酸化ケイ素の含有量をX(SiO2)=37〜51mol%とし、X(SiO2)+X(Dy2O3)+X(Al2O3)=100mol%(ただしX(Dy2O3)≧5mol%かつX(Al2O3)≧10mol%)となるように、酸化ケイ素、酸化ジスプロシウム、及び、酸化アルミニウムを混合してスラリーを生成する工程と、
該スラリーをスプレードライヤによって造粒し、粒径分布の最頻値が106〜180μmの間にあり、且つ、粒子径63μm以下の粒子の含有比率が16重量%以下となるように、酸化ケイ素、酸化ジスプロシウム、及び、酸化アルミニウムを含むフリットを形成する工程と、
前記フリットを成形し、焼成することによってフリット成形体を形成する工程と、
電極システムを放電容器の細管部に挿入し、前記細管部の端面に前記フリット成形体を装着する工程と、
前記フリット成形体を加熱することによって前記フリットを溶融させて前記細管部と前記電極システムの間の隙間に侵入させる加熱工程と、
前記溶融したフリットを冷却することによって固化させて前記細管部と前記電極システムの間に樹枝状結晶を含む封止材によるシール部を形成する冷却工程と、
を有する。
本実施形態によると前記セラミックメタルハライドランプの製造方法において、前記酸化ジスプロシウムの含有量はX(Dy2O3)=28〜37mol%であってよい。
本実施形態によると前記セラミックメタルハライドランプの製造方法において、前記酸化アルミニウムの含有量はX(Al2O3)=38〜47mol%であってよい。
本実施形態によると前記セラミックメタルハライドランプの製造方法において、前記冷却工程では、前記加熱工程の設定温度から1100℃まで8.3℃/sec以下の冷却速度にて温度下降させてよい。
本発明の実施形態によると、透光性外管と、該外管の内部に配置され発光部と該発光部の両側の細管部を有する放電容器と、該放電容器の細管部の各々に装着された電極システムと、を有し、前記電極システムは、タングステン電極、電流供給導体、及び、リード線を有するように構成されたメタルハライドランプにおいて、
前記細管部には前記放電容器を密封するためにシール部が形成されており、該シール部は、前記細管部と前記電流供給導体の間の隙間に装填された封止材を有し、該封止材は樹枝状結晶を含む。
本発明の実施形態によると、前記メタルハライドランプは、前記セラミックメタルハライドランプの製造方法によって製造されてよい。
本実施形態によると前記セラミックメタルハライドランプにおいて、
前記電流供給導体は耐ハロゲン性中間材と導電性サーメット棒を含み、前記シール部の長さは、前記細管部内に挿入された前記導電性サーメット棒の長さより長くてよい。
本実施形態によると前記セラミックメタルハライドランプにおいて、
前記電流供給導体は導電性サーメット棒を含み、前記シール部において、前記導電性サーメット棒と前記封止材の界面に反応生成物層が形成されてよい。
本発明によれば、放電容器の細管部のシール部の機械的強度を高めると同時にシール部の耐侵食性を更に高めることができるセラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプを提供することができる。
図1Aは、本実施形態に係るセラミックメタルハライドランプの構成例を説明する図である。 図1Bは、本実施形態に係るセラミックメタルハライドランプの放電容器の構成例を説明する図である。 図2Aは、本実施形態に係るセラミックメタルハライドランプの放電容器の細管部に電極システムを挿入する方法を説明する説明図である。 図2Bは、本実施形態に係るセラミックメタルハライドランプの放電容器の細管部に電極システムが挿入された状態を説明する説明図である。 図3は、本実施形態に係るセラミックメタルハライドランプの放電容器の細管部のシール部の構成例を説明する図である。 図4は、本実施形態に係るセラミックメタルハライドランプの放電容器の細管部のシール部に用いるフリット成形体の構造の例を示す図である。 図5は、本実施形態に係るセラミックメタルハライドランプの放電容器の細管部のシール部に用いるフリット成形体の製造工程の例を説明する説明図である。 図6は、本実施形態に係るセラミックメタルハライドランプの放電容器の細管部のシール部を形成するときの温度曲線の例を説明する図である。 図7Aは、本願発明者が行ったセラミックメタルハライドランプの放電容器の製造方法の実験において、シール部に形成された封止材の走査電子顕微鏡(SEM)画像の例を示す図である。 図7Bは、本願発明者が行ったセラミックメタルハライドランプの放電容器の製造方法の実験において、シール部に形成された封止材の走査電子顕微鏡(SEM)画像の例を示す図である。 図8Aは、本願発明者が行ったセラミックメタルハライドランプの放電容器の製造方法の実験において、シール部における走査電子顕微鏡(SEM)画像の撮像位置を説明する図である。 図8Bは、本願発明者が行ったセラミックメタルハライドランプの放電容器の製造方法の実験において、シール部の各位置における封止材の走査電子顕微鏡(SEM)画像の例を示す図である。 図9Aは、本願発明者が行ったセラミックメタルハライドランプの放電容器の製造方法の実験において、スプレードライヤーによって形成されたフリットの粒径分布を説明する説明図である。 図9Bは、本実施形態に係るセラミックメタルハライドランプの放電容器の製造方法の実験において、スプレードライヤーによって形成されたフリットの粒径分布を説明する説明図である。
以下、本発明に係るセラミックメタルハライドランプの実施形態に関して、添付の図面を参照しながら詳細に説明する。なお、図中、同一の要素に対しては同一の参照符号を付して、重複した説明を省略する。
図1Aを参照して本実施形態に係るセラミックメタルハライドランプの一例を説明する。セラミックメタルハライドランプ100は、透光性外管111と、端部の口金112と、透光性外管111の内部のほぼ中央に配置された放電容器130を有する。透光性外管111の内部は圧力10Pa以下の高真空に保持される。セラミックメタルハライドランプ100は、図示のように口金112を上にして垂直に装着される。
放電容器130の周囲に透光性スリーブ108が設けられ、その外側に、金属製のフレーム109が設けられている。放電容器130の上側には、始動器110が設けられている。フレーム109の上端には、ゲッタ113が装着されている。
フレーム109は、下端のマウント支持板114と上端のステム115の導入線と接続しており、それによって、位置固定される。フレーム109は位置固定用の部材であると同時に電気的接続用の部材を兼ねており、図示しない外部給電システムからの電力をステム115の導入線を介して放電容器130に供給する。
図1Bを参照して放電容器130の構造を説明する。放電容器130は中央の発光部130Cとその両側の細管部130A、130Bを有する。本例の放電容器130は、略回転楕円体形状の発光部130Cとその両側の細管部130A、130Bが一体的に形成された、所謂一体型である。
細管部130A、130Bには、電極システム120a、120bがそれぞれ装着されている。電極システム120a、120bは、タングステン電極123、電流供給導体122、及び、リード線121を有する。タングステン電極123の先端は放電容器130の発光部130Cに配置されている。電流供給導体122は、耐ハロゲン性中間材122aと導電性サーメット棒122bを含む。
リード線121は導電性サーメット棒122bの先端に接続されている。リード線121と導電性サーメット棒122bの接続部は補強材131によって囲まれている。リード線121は細管部130A、130Bの先端より突出している。
放電容器130の内部には、発光物質と、水銀および不活性ガスが封入されている。不活性ガスは例えば希ガスであるが本実施例ではアルゴンである。セラミックメタルハライドランプを点灯させると、放電容器130内における放電により、発光物質が加熱され、その一部が蒸発して放電により励起され、発光する。発光物質の残りの部分は、放電容器130の底部の最冷部に液相状態でプールされる。液相の発光物質の一部は蒸発し、放電容器130の内部を対流により循環し、底部の最冷部に戻る。ランプの点灯中はこのようなサイクルが繰り返される。
図2A及び図2Bを参照して、放電容器130の細管部130Aに電極システム120aを挿入する方法を説明する。図2Aに示すように、補強材131、フリット成形体132及び電極システム120aを用意する。補強材131はアルミナ製のリング部材によって構成される。フリット成形体132の原材料及び製造方法は後に説明する。電極システム120aは、タングステン電極123、耐ハロゲン性中間材122a、導電性サーメット棒122b、及び、リード線121を有する。タングステン電極123、耐ハロゲン性中間材122a及び導電性サーメット棒122bは突き合わせ溶接によって接続される。タングステン電極123の先端にはタングステンコイルが装着されている。
耐ハロゲン性中間材122aは、放電容器130内に封入された金属ハロゲン化物によって浸食されない耐ハロゲン性材料によって形成される。耐ハロゲン性材料として、例えば、モリブデンが用いられてよい。耐ハロゲン性中間材122aの構造として、様々な形状が知られている。例えば、耐ハロゲン性中間材122aを、モリブデン棒、モリブデン棒とその周り巻かれたモリブデンコイル、モリブデン棒とそれを囲むモリブデンパイプによって形成してよい。更に、耐ハロゲン性中間材22aを省略して、タングステン電極123の一部を、モリブデンコイル、又は、モリブデンパイプによって覆ってもよい。
導電性サーメット棒122bはアルミナとモリブデンを混合焼結することによって形成される。
電極システム120aを細管部130Aに挿入し、細管部130Aから突出した電極システム120aに、フリット成形体132及び補強部材131を装着する。
図2Bに示すように、タングステン電極123の先端は、放電容器130の発光部130Cに配置される。導電性サーメット棒122bの一部と耐ハロゲン性中間材122aは放電容器130の細管部130Aに配置され、導電性サーメット棒122bの一部とリード線121は細管部130Aより突出する。放電容器130の両端の細管部130A、130Bに電極システム120aが装着されると、それをシール装置(図示なし)に装着する。シール装置は、典型的には、密閉空間を形成するチャンバとその内部に設けられたヒータを有し、ヒータは放電容器130の細管部130Aのシール部を局部的に加熱するように構成されている。シール装置の詳細な説明は省略する。
図3はシール装置(図示なし)に保持された放電容器130の上側の細管部130Aを示す。放電容器130は、その中心軸線が垂直になるように、シール装置によって保持される。上側の細管部130Aには、耐ハロゲン性中間材122aと導電性サーメット棒122bが挿入されている。導電性サーメット棒122bの一部は細管部130A内に配置され、残りの部分は細管部130Aより突出している。突出した導電性サーメット棒122bとリード線121の接続部は、補強部材131によって囲まれている。細管部130Aと補強部材31の間にフリット成形体132が配置されている。尚、導電性サーメット棒122bに、電極システムを細管部130Aの位置決めするためのストッパーを設けてもよい。ストッパーは、例えば、導電性サーメット棒122bの表面の所定の位置にニオブ金属ロッドを溶接することにより形成してよい。
導電性サーメット棒122bの外径は、耐ハロゲン性中間材122aの外径より僅かに小さい。従って、細管部130Aと導電性サーメット棒122bの間の隙間は、細管部130Aと耐ハロゲン性中間材122aの間の隙間より僅かに大きい。
導電性サーメット棒122bの周囲に配置されたヒータを作動させると、フリット成形体132が溶融する。溶融したフリットは、重力と毛管現象によって、細管部130Aと導電性サーメット棒122bの間の隙間に侵入する。溶融したフリットは、細管部130Aと耐ハロゲン性中間材122aの間の隙間に僅かの距離だけ侵入した位置まで入り込む。こうして、細管部130Aと導電性サーメット棒122b及び耐ハロゲン性中間材122aの間の隙間に侵入した溶融フリットによってシール部が形成される。
放電容器130の細管部130Aはシール部(封止部)と非シール部(非封止部)からなる。細管部130Aの全長をL、シール部の長さ、即ち、シール長をL1、非シール部の長さをL2とする。L=L1+L2である。導電性サーメット棒122bのうち、細管部130A内に挿入された部分の寸法をLsとする。
シール部の長さL1が短いと、シール不足又はシール不良となる。本実施形態では、シール部の長さL1は、この導電性サーメット棒122bの挿入長さLsに等しいか又はそれより大きい。即ち、L1≧Lsである。シール部のうち、耐ハロゲン性中間材122aの部分に形成された部分の長さをLmとする。L1=Ls+Lmである。
例えば、細管部130Aの外径を3mm、導電性サーメット棒122bの挿入長さをLs=5mmとする。この場合には、シール長L1は5mmに等しいか又はそれより大きくする。即ち、L1=5.0〜6.5mmである。耐ハロゲン性中間材122aの部分に形成されたシール部の寸法は、Lm=0〜1.5mmである。
耐ハロゲン性中間材122aの部分に形成されたシール部の寸法Lmが長すぎると、耐ハロゲン性中間材122aと細管部130Aの熱膨張率の差により、細管部130Aにクラックが発生する可能性がある。そこで、この寸法Lmは精々1.5mm程度である。
図4は、本実施形態によるフリット成形体の形状の例を示す。本実施形態ではフリット成形体はリング状に形成される。内径をD1、外径をD2、厚さをt、重量をGとする。例えば、D1=1.5mm、D2=3.5mm、又は、4.3mm、t=0.9mm、1.4mm、又は、2.1mm、G=23〜85mgであってよい。
Figure 0006229372
図5を参照して本実施形態によるフリット成形体の製造方法の例を説明する。ステップ101にて、原材料として、酸化ジスプロシウム(ディスプロシア)Dy23、酸化アルミニウム(アルミナ)Al23、及び、酸化ケイ素(シリカ)SiO2の粉末を秤量する。Dy23−Al23−SiO2系封止材は、発光物質に対する耐侵食性に優れている。更に、酸化ジスプロシウムDy23、酸化アルミニウムAl23、及び、酸化ケイ素SiO2の比率を所望の値に設定することにより、フリットの溶融温度を所望の値に設定することができる。通常、封止温度は1500〜1700℃であるが、フリットは、1600℃程度の封止温度で十分な流動性を有することが望ましい。
ステップ102にて、スラリーを生成する。ディスプロシア、アルミナ、及び、シリカの粉末に、バインダー、分散剤、及び、純水を加え、混合してスラリーを生成する。混合にはアトライター(混合機)を用いてよい。ステップ103にて、造粒する。造粒にはスプレードライヤを用いてよい。スプレードライヤは、典型的には、アトマイザと乾燥室と回収器を有する。アトマイザによって形成され噴霧を乾燥室にて乾燥させることにより、フリットが生成される。フリットをサイクロン又はバグフィルターによって回収する。アトマイザはモータによって回転するディスクを有する。ディスクの回転数を変化させることによって、フリットの粒子径を調整することができる。
ステップ104にて、整粒する。例えば、目開き355μmの篩を通過したものを合格とする。ステップ105にて、フリットを加圧成形し、リング状の成形体を得る。ステップ106にて、成形体を、空気中で加熱して脱バインダーする。例えば、1100℃で約2時間保持する。ステップ107にて、成形体を、アルゴン気流中で焼成する。例えば、1200℃で約2時間保持する。ステップ108にて、成形体を、水素気流中で焼成する。例えば、1200℃で約2時間保持する。こうして、リング状のフリット成形体132が得られる。
図2Aに示したように、フリット成形体132を用いて、放電容器の細管部のシール部が形成される。放電容器130の細管部130Aに電極システム120aを挿入し、その先端にフリット成形体132及び補強部材131を装着する。これをシール装置に装填し、細管部130Aをヒータによって加熱し、フリットを溶融させる。溶融したフリットが放電容器の細管部の内壁と電極システムの導電性サーメット棒との間に侵入し、固化することによって封止材が形成される。シールの状態を判定するには、シール装置より放電容器を取り出し、細管部130Aを研磨し、シール部の封止材を露出させ、走査電子顕微鏡(SEM)によって撮像すればよい。
図6は、本実施形態によるシール装置の温度曲線の例を示す。横軸は時間(秒)、縦軸は温度(℃)である。シール装置には、放電容器の細管部のシール部を局部的に加熱するヒータと、シール部の温度を測定する温度センサと、この温度センサの出力をヒータにフィードバックするヒータ出力制御装置が設けられている。ヒータ出力制御装置は、予めプログラムされた温度曲線に沿ってヒータの出力をフィードバック制御する。
温度センサは、シール装置の炉内にて、放電容器の細管部のシール部の近傍にて細管部に非接触で設置されている。温度センサの出力値は、シール部の実際の温度とは異なる。そこで、温度センサ校正実験を行なって、温度センサの出力値と、他の手段により測定したシール部の実際の温度を比較し、両者の間の補正係数を求める。温度センサの出力値に補正係数を乗算することによって、シール部の温度が得られる。ヒータ出力制御装置は、予め設定された温度曲線と補正係数によって補正されたシール部の温度を用いて、ヒータの出力を制御する。
封止温度は通常1500〜1700℃であるが、シール部におけるシール不良又はシール不足を回避するために、フリットが十分な流動性を有する1600℃とした。開始から時点t4までが加熱期間(加熱工程)であり、時点t4以後が冷却期間(冷却工程)である。
加熱開始から40秒後の時点t1では、温度が1200℃となり、時点t1から30秒後の時点t2まで、温度1200℃を保持する。加熱開始から70秒後の時点t2にて加熱温度を上昇させ、時点t2から15秒後の時点t3にて温度が1600℃となる。フリットは溶融し、細管部130Aと導電性サーメット棒122bの間の隙間に侵入する。時点t3から20秒後の時点t4まで、封止温度1600℃を保持する。加熱開始から105秒後の時点t4では、溶融したフリットによって、細管部130Aと導電性サーメット棒122bの間の隙間は完全に塞がれる。
時点t4から時点t5までは温度下降工程である。1600℃から1100℃まで温度下降させることにより、溶融したフリットが固化し、封止材が形成される。本実施形態では、少なくとも60秒の時間で1600℃から1100℃まで温度下降させた。即ち、冷却工程では、加熱工程の設定温度から1100℃まで8.3℃/sec以下の冷却速度にて温度下降させた。それによって、後に説明するように樹枝状結晶の封止材が形成された。
温度下降工程において、60秒未満で温度を1600℃から1100℃まで下降させると、結晶が析出する前に溶融フリットが固化してガラス状になることがある。また温度下降工程が長すぎると、例えば、120秒以上の時間をかけると、溶融フリットが電極システムの導電性サーメット122bから耐ハロゲン性中間体122aの内部の位置まで侵入する。この場合には、ランプ点滅時の熱膨張及び収縮に起因して細管部にクラックが生じ易くなる。
以下に本願の発明者が実験と検討と考察を繰り返すことにより、本発明に至った経緯を説明する。本願の発明者は、先ず、金属ハロゲン化物等の発光物質に対する耐浸食性を向上させることができるフリットの原材料を鋭意検討した。そこで、フリットの原材料として、酸化ジスプロシウムDy23、酸化アルミニウムAl23、及び、酸化ケイ素SiO2を選択した。これらの原材料によって形成された封止材は金属ハロゲン化物等の発光物質に対する耐浸食性が高いことが知られている。
次に、酸化ジスプロシウムDy23、酸化アルミニウムAl23、及び、酸化ケイ素SiO2の各含有量を選定した。封止温度は通常1500〜1700℃であるが、図6に示したように、本実施形態では、シール部におけるシール不良又はシール不足を回避するために、1600℃とした。そこで、本願の発明者は、少なくとも1400℃で溶融するフリットを開発した。酸化ジスプロシウムDy23、酸化アルミニウムAl23、及び、酸化ケイ素SiO2の融点を表2に示す。
Figure 0006229372
表2に示すように、酸化ケイ素SiO2の融点は、酸化ジスプロシウムDy23、及び、酸化アルミニウムAl23の融点より低い。従って、フリットの融点を下げるには酸化ケイ素SiO2の含有量を比較的多くすればよい。本願の発明者は、酸化ケイ素SiO2の含有量が比較的大きくなるように、3つの原材料の含有量を変化させて、複数の種類のフリットを作成した。これらのフリットを用いて、図5のステップS102〜S108の各工程によって、複数の種類のフリット成形体を作成した。これらのフリット成形体を用いて、放電容器の細管部にシール部を形成した。シール部の封止材の走査電子顕微鏡(SEM)画像を観察した。その結果、結晶化タイプの封止材、及び、非結晶化(ガラス化)タイプの封止材の他に、樹枝状結晶化した封止材が観測された。
一般に、樹枝状結晶は、金属や合金などの溶融液が凝固する場合に生ずる結晶の形状の一つで、デンドライトとも称される。デンドライトは、過冷却状態あるいは過飽和状態の液体から固体が析出した場合に生じやすい。
本願の発明者は、封止材が樹枝状結晶化したシール部を鋭意検討した。その結果、封止材を樹枝状結晶化することによって、シール部の機械的強度を確保することができると同時に、発光物質に対する耐侵食性が高くなることが判った。
図7Aは結晶化タイプの封止材の走査電子顕微鏡(SEM)画像の例を示す。この画像には、上側のアルミナ製の細管部と、下側の導電性サーメット棒122bと、両者の間に形成された結晶化タイプの封止材が示されている。結晶化タイプの封止材では、非晶質(ガラス質)の中に多数の粒状の結晶が析出していることが観察される。
本願の発明者は、封止材が粒状に結晶化した場合について、過負荷状態でのライフテストを行ない、封止材に対する発光物質の侵食状態を観察した。その結果、金属ハロゲン化物は、主として封止材の非晶質の部分を侵食し、粒状結晶の間を縫って侵食が進行することが観察された。粒状の結晶はコンクリートの骨材に相当する役割を有し、シール部の機械的強度を高める機能を提供する。一方、非晶質は、結晶質と比較して、金属ハロゲン化物等の発光物質によって浸食され易いことが判った。
図7Bは樹枝状結晶化した封止材の走査電子顕微鏡(SEM)画像の例を示す。この画像には、上側右半分のアルミナ製の細管部と、その下側に形成された樹枝状結晶化した封止材と、その下側に形成された反応生成物層と、更に下側の導電性サーメット棒122bが示されている。
樹枝状結晶化させた場合も、樹枝状結晶の間の空間は非晶質(ガラス質)によって占められることが観察される。樹枝状結晶は、粒状の結晶と同様に、シール部の機械的強度を高める機能を提供する。非晶質(ガラス質)は、上述のように、発光物質によって浸食され易いが、樹枝状結晶では狭い迷路のように複雑な形状を有するため、侵食の進行が妨げられることが観測された。即ち、樹枝状結晶は、発光物質に対する耐浸食性を高める機能を提供する。従って、封止材を非粒状の結晶化、即ち、樹枝状結晶化させることによって、シール部の機械的強度を高めると同時に、発光物質に対する耐浸食性を高めることができる。
図示のように、封止材が樹枝状結晶化すると、封止材と導電性サーメット棒122bの界面にて、反応生成物層が形成される。反応生成物層によって、封止材と導電性サーメット棒122bの界面における密着性が高くなる。従って、封止材を樹枝状結晶化する場合には、導電性サーメット棒122bとの間の界面に反応生成物層が形成させることが好ましい。
本願の発明者は、封止材を樹枝状結晶化させるための条件を鋭意検討した。先ず、本願の発明者が行った実験の結果の中から、代表的な例を抽出して説明する。表3は、本願の発明者が行った実験によるフリットの融点とシール部のシール状態を示す。
Figure 0006229372
表3にて、実施例1、2及び比較例1、2のフリットの融点は本願発明者が測定したものである。実施例1、2及び比較例1のフリットの融点は1400℃より低いが、比較例2のフリットの融点は1500℃より高い。表3の結果から判るように、実施例1、2の場合、封止材に樹枝状結晶が生成された。比較例1の場合、封止材は結晶化しなかった。比較例2の場合、封止材によるシールができなかった。これは、フリット自体の融点が1500℃以上と高いため、封止温度1600℃ではフリットが放電容器の細管部内壁と電極システムの導電性サーメット棒との間に十分侵入しなかったためと考えられる。実施例1、2及び比較例1、2のフリットの原材料の組成を表4に示す。
Figure 0006229372
以上の実験結果を含む多数の実験結果から次のことが判った。フリットの融点を1400℃より低くし、且つ、封止材に樹枝状結晶を生成するには、酸化ケイ素SiO2の含有量X(SiO2)を、少なくとも30mol%より大きく、且つ、60mol%より小さくする必要がある。そこで、本願の発明者は、酸化ケイ素SiO2の含有量X(SiO2)を37〜51mol%とした。従って、残余の酸化ジスプロシウムの含有量X(Dy2O3)と酸化アルミニウムの含有量X(Al2O3)mol%の合計は、49〜63mol%となる。
さらに好ましくは、酸化ジスプロシウムの含有量X(Dy2O3)を28〜37mol%とし、残余を酸化アルミニウムAl23とするか、酸化アルミニウムAl23の含有量X(Al2O3)を38〜47mol%とし、残余を酸化ジスプロシウムDy23とするのがよい。
また特許文献1などの先行技術を参照した考察により、酸化ジスプロシウムの含有量X(Dy2O3)は5mol%以上、酸化アルミニウムの含有量X(Al2O3)は10mol%以上であれば良いことがわかった。酸化ジスプロシウムの含有量X(Dy2O3)が5mol%未満ではフリットの融点が1400℃以下にならず、酸化アルミニウムの含有量X(Al2O3)が10mol%未満では、フリットを溶融しても結晶化できない。
次に、本願の発明者は、封止材に樹枝状結晶を生成するために好ましいフリットの粒子径を鋭意考察した。本願の発明者は、実施例1の原材料を用いて異なる粒子径のフリットを形成した。ステップS103にて、アトマイザの回転数を変化させて、多数の粒子径のフリットを生成した。アトマイザの回転数を大きくすると、粒子径が比較的小さいフリットが生成され、アトマイザの回転数を小さくすると、粒子径が比較的大きいフリットが生成される。2つの代表的な粒径分布のデータの例を図9A及び図9Bに示す。
本願の発明者は、アトマイザの回転数比較的大きくすることによって、粒子径が比較的小さい第1のフリットを生成し、アトマイザの回転数を比較的小さくすることによって、粒子径が比較的大きい第2のフリットを生成した。第1及び第2のフリットの粒子径については後に説明する。第1のフリットと第2のフリットについてそれぞれ2サンプル生成した。第1のフリットと第2のフリットを用いて、フリット成形体を作成した。更に、これらのフリット成形体を用いて、放電容器の細管部のシール部を形成し、シール部における封止材を観察した。
図8A及び図8Bを参照して実験結果を説明する。図8Aは、放電容器の細管部のシール部における走査電子顕微鏡(SEM)画像の撮像位置P101〜P104を示す。図示のように細管部130Aと耐ハロゲン性中間材122a及び導電性サーメット122bの間の隙間に形成された封止材を撮像した。本実施形態では、耐ハロゲン性中間材122aは、モリブデン棒122cとその周囲に巻かれたモリブデンコイル122dによって形成されている。位置P101では、細管部130Aの先端における封止材の状態を観察することができる。位置P102では、細管部130Aと導電性サーメット122bの間の封止材の状態を観察することができる。位置P103では、耐ハロゲン性中間材122aの端部における封止材の状態を観察することができる。位置P104では、細管部130Aとモリブデンコイル122dの間の封止材の状態を観察することができる。
図8Bは、位置P101〜P104における走査電子顕微鏡(SEM)画像の例を示す。第1のフリットの粒子径の最頻値は64〜105μmの範囲にあり、第2のフリットの粒子径の最頻値は106〜180μmの範囲にあった。上述のように、第1のフリットと第2のフリットを用いてフリット成形体を形成した。第1のフリットを用いて形成した成形体(図5のステップS105)の厚さは、2.17mmであった。第2のフリットを用いて形成した成形体(図5のステップS105)の厚さは、2.09mmであった。図示のように、第1のフリットによって形成したフリット成形体を用いた場合には、封止材は樹枝状結晶化しなかった。第2のフリットによって形成したフリット成形体を用いた場合には、封止材は樹枝状結晶化した。
以上より、シール部の封止材に樹枝状結晶を形成するには、粒子径の最頻値が約106〜180μmのフリットを用いて形成したフリット成形体を用いるとよい。
図9A及び図9Bは、粒子径が比較的小さい第1のフリットと、粒子径が比較的大きい第2のフリットの粒径分布を示す。図9Aは、レーザ回折式粒子径分布測定装置を使用して測定した結果を示す。図9Aの横軸は粒子径(μm)、縦軸は重量百分率(wt%)である。図9Bは、5種類の目開きの篩を使用して分級した結果を示す。図9Bの横軸は、5種類の目開きに対応して6つの領域に分けた粒子径の範囲を示す。縦軸は重量百分率(wt%)である。第1及び第2のフリットの各々について2サンプルを取り出して、粒径分布を測定した。
図9Aのグラフでは、第1のフリットの粒子径の最頻値は約86μmであり、第2のフリットの粒子径の最頻値は約110μmである。図9Bのグラフでは、第1のフリットの粒子径の最頻値は約64〜105μmの間にあり、第2のフリットの粒子径の最頻値は約106〜180μmの間にある。図9Aのグラフでは、2つの曲線の形状が略同一であるが、最頻値が異なる。図9Bのグラフでは、2つの曲線の形状が略同一であるとは言えないが、粒子径63μm以下の粒子の含有比率が異なることが明瞭である。尚、粒子径63μmは3番目の篩の目開きに対応する。粒子径63μ以下の粒子の重量比率は、第1のフリットでは22%以上であるが、第2のフリットでは16%以下である。第1のフリットでは単一の粒子の重量が小さいため、重量比率を粒子数の比率に変換すると、両者の差は更に大きくなる。このような相違は封止材が樹枝状結晶化するか否かの要因の1つであると考えられる。
、第1のフリットと第2のフリットの粒径分布の差は、高価なレーザ回折式粒子径分布測定装置を用いなくても、適切な見開きの篩を選択することによって、容易に判別することができる。
本願の発明者は、以上の実験及び検討から、放電容器の細管部のシール部の機械的強度を確保し、且つ、発光物質に対する耐侵食性を向上させる条件を考察した。
(1)封止材の原材料として、金属ハロゲン化物等の発光物質に対する耐浸食性に優れている物質を選択する。Dy23−Al23−SiO2系封止材は、発光物質に対する耐侵食性に優れている。従って、本発明では、封止材の原材料として、酸化ジスプロシウムDy23、酸化アルミニウムAl23及び酸化ケイ素SiO2を選択する。封止材の原材料として、3つの成分のみでよく、従来技術のように、酸化イットリウム、酸化モリブデン等を添加する必要が無い。
ここで、酸化ケイ素の含有量をX(SiO2)mol%、酸化ジスプロシウムの含有量をX(Dy2O3)mol%、酸化アルミニウムの含有量をX(Al2O3)mol%とする。但し、X(SiO2)+X(Dy2O3)+X(Al2O3)=100mol%である。
(2)封止材を樹枝状化する。封止材を樹枝状化するための条件を考察した。
(a)通常、封止温度は1500から1700℃であるが、シール部におけるシール不良又はシール不足を回避するために、封止温度を1600℃に設定する。少なくとも、1600℃で十分な流動性を確保するには、フリット単体の融点を1400℃程度にする必要がある。そこで、酸化ケイ素SiO2の含有量X(SiO2)を37〜51mol%とした。
(b)従って、残余の酸化ジスプロシウムの含有量X(Dy2O3)と酸化アルミニウムの含有量X(Al2O3)mol%の合計は、49〜63mol%となる。そこで、酸化ジスプロシウムの含有量X(Dy2O3)を28〜37mol%としてよい。また、酸化アルミニウムAl23の含有量X(Al2O3)を38〜47mol%としてよい。更に、先行技術による知見から、フリットの融点を1400℃程度にするには、酸化ジスプロシウムの含有量X(Dy2O3)を5mol%以上とし、溶融したフリットを結晶化するには、酸化アルミニウムの含有量X(Al2O3)を10mol%以上とする必要がある。
(c)フリットは、粒径分布の最頻値が106〜180μmの間にあり、且つ粒子径63μm以下の粒子の含有比率が16重量%以下となるように形成する。このようなフリットの粒径分布によって封止材を樹枝状化することができる。
(d)更に、所定の温度曲線によってシール部を加熱及び冷却する。即ち、加熱工程では、封止温度をフリットが十分な流動性を有する温度に設定し、冷却工程では、加熱工程の設定温度から1100℃まで8.3℃/sec以下の冷却速度にて温度下降させる。それによって封止材を樹枝状結晶化し、封止材と導電性サーメット棒との間の界面に反応生成物層が生成される。それによって、シール部の機械的強度及び密閉性を高めることができる。
以上、本実施形態に係るセラミックメタルハライドランプの放電容器のシール部の形成方法について説明したが、これらは例示であって、本発明の範囲を制限するものではない。当業者が、本実施形態に対して容易になしえる追加・削除・変更・改良等は、本発明の範囲内である。本発明の技術的範囲は、添付の特許請求の記載によって定められる。
100…セラミックメタルハライドランプ、108…透光性スリーブ、109…フレーム、110…始動器、111…透光性外管、112…口金、113…ゲッタ、114…マウント支持板、115…ステム、120a、120b…電極システム、121…リード線、122…電流供給導体、122a…耐ハロゲン性中間材、122b…導電性サーメット、123…タングステン電極、130…放電容器、130A、130B…細管部、130C…発光部、131…補強材、132…フリット成形体

Claims (6)

  1. 発光部と細管部を有する放電容器を備えたセラミックメタルハライドランプの製造方法において、
    酸化ケイ素の含有量をX(SiO2)mol%、酸化ジスプロシウムの含有量をX(Dy2O3)mol%、酸化アルミニウムの含有量をX(Al2O3)mol%とするとき、前記酸化ケイ素の含有量をX(SiO2)=37〜51mol%とし、X(SiO2)+X(Dy2O3)+X(Al2O3)=100mol%(ただしX(Dy2O3)≧5mol%かつX(Al2O3)≧10mol%)となるように、酸化ケイ素、酸化ジスプロシウム、及び、酸化アルミニウムを混合してスラリーを生成する工程と、
    該スラリーをスプレードライヤによって造粒し、粒径分布の最頻値が106〜180μmの間にあり、且つ、粒子径63μm以下の粒子の含有比率が16重量%以下となるように、酸化ケイ素、酸化ジスプロシウム、及び、酸化アルミニウムを含むフリットを形成する工程と、
    前記フリットを成形し、焼成することによってフリット成形体を形成する工程と、
    電極システムを放電容器の細管部に挿入し、前記細管部の端面に前記フリット成形体を装着する工程と、
    前記フリット成形体を加熱することによって前記フリットを溶融させて前記細管部と前記電極システムの間の隙間に侵入させる加熱工程と、
    前記溶融したフリットを冷却することによって固化させて前記細管部と前記電極システムの間に樹枝状結晶を含む封止材によるシール部を形成する冷却工程と、
    を有するセラミックメタルハライドランプの製造方法。
  2. 請求項1記載のセラミックメタルハライドランプの製造方法において、
    前記酸化ジスプロシウムの含有量はX(Dy2O3)=28〜37mol%であることを特徴とするセラミックメタルハライドランプの製造方法。
  3. 請求項記載のセラミックメタルハライドランプの製造方法において、
    前記酸化アルミニウムの含有量はX(Al2O3)=38〜47mol%であることを特徴とするセラミックメタルハライドランプの製造方法。
  4. 請求項1〜3のいずれか1項記載のセラミックメタルハライドランプの製造方法において、
    前記冷却工程では、前記加熱工程の設定温度から1100℃まで8.3℃/sec以下の冷却速度にて温度下降させることを特徴とするセラミックメタルハライドランプの製造方法。
  5. 透光性外管と、該外管の内部に配置され発光部と該発光部の両側の細管部を有する放電容器と、該放電容器の細管部の各々に装着された電極システムと、を有し、前記電極システムは、タングステン電極、電流供給導体、及び、リード線を有するように構成されたメタルハライドランプにおいて、
    請求項1から4のいずれか1項の方法によって形成されたことを特徴とするセラミックメタルハライドランプ。
  6. 請求項5記載のセラミックメタルハライドランプにおいて、
    前記電流供給導体は耐ハロゲン性中間材と導電性サーメット棒を含み、前記シール部の長さは、前記細管部内に挿入された前記導電性サーメット棒の長さより長いことを特徴とすセラミックメタルハライドランプ。
JP2013177646A 2013-08-29 2013-08-29 セラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプ Expired - Fee Related JP6229372B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177646A JP6229372B2 (ja) 2013-08-29 2013-08-29 セラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177646A JP6229372B2 (ja) 2013-08-29 2013-08-29 セラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプ

Publications (2)

Publication Number Publication Date
JP2015046339A JP2015046339A (ja) 2015-03-12
JP6229372B2 true JP6229372B2 (ja) 2017-11-15

Family

ID=52671680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177646A Expired - Fee Related JP6229372B2 (ja) 2013-08-29 2013-08-29 セラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプ

Country Status (1)

Country Link
JP (1) JP6229372B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986959A (ja) * 1995-07-20 1997-03-31 Toto Ltd 赤外線加熱溶融用封着ガラス
JP2008108690A (ja) * 2006-09-29 2008-05-08 Toto Ltd セラミック発光管用封止ガラス及びそれを用いたセラミック放電ランプ
JP2009259602A (ja) * 2008-04-16 2009-11-05 Toto Ltd 放電ランプ、封止材および製造方法

Also Published As

Publication number Publication date
JP2015046339A (ja) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5020806B2 (ja) 最適な形状のセラミック・メタルハライド・ランプ
US20060279218A1 (en) High-pressure discharge lamp, high-pressure discharge lamp operating apparatus, and illuminating apparatus
JP2010140916A (ja) 色安定性を向上させるトリウムフリー電極
KR20030019167A (ko) 고압방전 램프 및 그 제조방법
JP6229372B2 (ja) セラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプ
KR20220013899A (ko) 쇼트 아크형 방전 램프
JP3960796B2 (ja) 接合体、高圧放電灯用組み立て体および高圧放電灯
US7132798B2 (en) Joined bodies, high pressure discharge lamps and assemblies therefor
JP5406028B2 (ja) メタルハライドランプ
JP5303923B2 (ja) 放電ランプ
JP2015046353A (ja) セラミックメタルハライドランプの製造方法及びセラミックメタルハライドランプ
JPH10223180A (ja) ショートアーク型水銀ランプ
JP4510670B2 (ja) 高圧放電ランプ
JP2002527855A (ja) 電子ビーム装置の陰極物質及びその製造方法
CN1148334C (zh) 连接体与高压放电灯
JP3565137B2 (ja) 放電ランプの製造方法および放電ランプ並びにハロゲン導入用担体
JP2008108690A (ja) セラミック発光管用封止ガラス及びそれを用いたセラミック放電ランプ
JP2009259602A (ja) 放電ランプ、封止材および製造方法
JP2005315642A (ja) 温度定点セル、温度定点装置および温度計校正方法
JP2006244735A (ja) 高圧放電ランプおよび光学機器
JPH0877967A (ja) 水銀放電ランプ
CN101887838B (zh) 高压放电灯
KR20080077590A (ko) 냉음극 형광 램프 및 냉음극 형광 램프의 제조 방법
CN104178675B (zh) 陶瓷金卤灯的发射材料、其制备方法及应用
JP2008177151A (ja) 高圧放電ランプ、高圧放電ランプ点灯装置および照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6229372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees