JP6211156B2 - 立体自由形状造形法によって金属物体を構築するシステム及び立体自由形状造形法によって金属材料の3次元物体を製造する方法 - Google Patents
立体自由形状造形法によって金属物体を構築するシステム及び立体自由形状造形法によって金属材料の3次元物体を製造する方法 Download PDFInfo
- Publication number
- JP6211156B2 JP6211156B2 JP2016163421A JP2016163421A JP6211156B2 JP 6211156 B2 JP6211156 B2 JP 6211156B2 JP 2016163421 A JP2016163421 A JP 2016163421A JP 2016163421 A JP2016163421 A JP 2016163421A JP 6211156 B2 JP6211156 B2 JP 6211156B2
- Authority
- JP
- Japan
- Prior art keywords
- torch
- pta
- base material
- arc
- power source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 61
- 239000007769 metal material Substances 0.000 title claims description 46
- 229910052751 metal Inorganic materials 0.000 title claims description 33
- 239000002184 metal Substances 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000010100 freeform fabrication Methods 0.000 title description 15
- 239000000463 material Substances 0.000 claims description 49
- 238000000151 deposition Methods 0.000 claims description 43
- 230000008021 deposition Effects 0.000 claims description 40
- 238000012546 transfer Methods 0.000 claims description 32
- 238000003466 welding Methods 0.000 claims description 26
- 239000010936 titanium Substances 0.000 claims description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 17
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 238000010891 electric arc Methods 0.000 claims description 11
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 238000005137 deposition process Methods 0.000 claims description 4
- 230000033001 locomotion Effects 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 4
- 238000010309 melting process Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 29
- 230000008569 process Effects 0.000 description 13
- 239000007789 gas Substances 0.000 description 12
- 238000011960 computer-aided design Methods 0.000 description 10
- 239000000843 powder Substances 0.000 description 9
- 238000010894 electron beam technology Methods 0.000 description 8
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000010953 base metal Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- -1 i.e. Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/02—Plasma welding
- B23K10/027—Welding for purposes other than joining, e.g. build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/167—Arc welding or cutting making use of shielding gas and of a non-consumable electrode
- B23K9/1675—Arc welding or cutting making use of shielding gas and of a non-consumable electrode making use of several electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/22—Direct deposition of molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/362—Process control of energy beam parameters for preheating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/10—Auxiliary heating means
- B22F12/17—Auxiliary heating means to heat the build chamber or platform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/30—Platforms or substrates
- B22F12/33—Platforms or substrates translatory in the deposition plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/46—Radiation means with translatory movement
- B22F12/47—Radiation means with translatory movement parallel to the deposition plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/46—Radiation means with translatory movement
- B22F12/48—Radiation means with translatory movement in height, e.g. perpendicular to the deposition plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/006—Control circuits therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/02—Plasma welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0026—Auxiliary equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0033—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0086—Welding welding for purposes other than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/10—Non-vacuum electron beam-welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
- B23K26/0608—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/346—Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
- B23K26/348—Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/60—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K28/00—Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
- B23K28/02—Combined welding or cutting procedures or apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
- B23K9/042—Built-up welding on planar surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
- B23K9/044—Built-up welding on three-dimensional surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/08—Arrangements or circuits for magnetic control of the arc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/09—Arrangements or circuits for arc welding with pulsed current or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/10—Other electric circuits therefor; Protective circuits; Remote controls
- B23K9/1006—Power supply
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/124—Circuits or methods for feeding welding wire
- B23K9/125—Feeding of electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/133—Means for feeding electrodes, e.g. drums, rolls, motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/167—Arc welding or cutting making use of shielding gas and of a non-consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/173—Arc welding or cutting making use of shielding gas and of a consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/23—Arc welding or cutting taking account of the properties of the materials to be welded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4097—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
- G05B19/4099—Surface or curve machining, making 3D objects, e.g. desktop manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/32—Process control of the atmosphere, e.g. composition or pressure in a building chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/10—Auxiliary heating means
- B22F12/13—Auxiliary heating means to preheat the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
- B22F12/43—Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/14—Titanium or alloys thereof
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35134—3-D cad-cam
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45135—Welding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Automation & Control Theory (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Arc Welding In General (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Coating By Spraying Or Casting (AREA)
- Laser Beam Processing (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Continuous Casting (AREA)
Description
この技法は、コンピューター支援設計ソフトウェア(CAD)を用いて、まず、作製する物体の仮想モデルを構成し、その後、その仮想モデルを、通常水平方向に向けられる薄い平行なスライス又は層に変換する。そして、物理的物体を、液体ペースト、粉末又はシート材の形態で連続した原料の層であって、仮想層の形状に類似する層を物体全体が形成されるまで敷くことによって作製することができる。
それらの層を合わせて溶融して立体稠密物体を形成する。合わせて溶融又は溶接される立体材料を堆積させる場合、この技法はまた、立体自由形状造形法(solid freeform fabrication)とも呼ばれる。
積層造形法の技法は、複数片の構成材料の堆積を含むように、すなわち、並んで置かれたときに層を形成する一組の部片に物体の仮想モデルの各構造層を分割するように拡張することができる。
これにより、物体の仮想積層モデルに従って各層を形成する連続したストライプ状にワイヤを基材の上に溶接し、物理的物体全体が形成されるまで各層に対してプロセスを繰り返すことによって、金属物体を形成することができる。
溶接技法の精度は、通常、許容可能な寸法の物体を直接形成することができないほど粗い。したがって、形成される物体は、通常、許容可能な寸法精度まで機械加工する必要がある未加工物体又は予成形品であるとみなされる。
非特許文献1の図1の複写である図1に、そのプロセスを概略的に示す。
EBFプロセスは、高真空環境において集束電子ビームによって生成され維持される溶融池内に金属ワイヤを供給することを伴う。
電子ビーム及び溶接ワイヤの位置決めは、1つ又は複数の軸(X軸、Y軸、Z軸及び回転軸)に沿って移動可能に電子ビーム銃及び位置決めシステム(支持基材)が蝶番式に取り付けられるようにするとともに、4軸運動制御システムによって電子ビーム銃及び支持基材の位置を調節することによって得られる。
このプロセスは、材料の使用がほぼ100%効率的であり電力消費が95%効果的であると主張されている。この方法は、バルク金属堆積及びより精巧で緻密な堆積の両方に用いることができ、この方法は、金属部品を機械加工する従来の手法に比較して、リードタイムの短縮と材料コスト及び機械加工コストの低減とに対して著しい効果を得ると主張されている。
電子ビーム技術には、堆積チャンバーにおいて10−1Pa以下の高真空に依存するという不都合がある。
1つのこうした方法は、ガスタングステンアーク溶接(gas tungsten arc welding)(GTAW、TIGとも示される)として知られており、そこでは、非消耗型タングステン電極と溶接領域との間にプラズマトランスファーアーク(plasma transfer arc:プラズマ移行アーク)が形成される。プラズマアークは、通常、プラズマトーチを介して供給されているガスによって保護される。プラズマトーチは、アークの周囲に保護カバーを形成している。TIG溶接は、溶接池又はプラズマアーク内に金属ワイヤ又は金属粉末を充填材として供給することを含むことができる。
プラズマ流が所定標的領域に向けられることにより、堆積前の所定標的領域が予熱される。電流が調整されるとともに、プラズマ流内に供給原材料が導入されて、溶融した供給原料が所定標的領域に堆積される。
電流が調整されるとともに、溶融した供給原料が高温(通常は供給原材料の脆性遷移温度ないし延性遷移温度を超える温度)で徐々に冷却されて、冷却段階において材料応力の発生が最小限にされる。
より詳細には以下の通りである。
一態様では、この発明は、合金ワイヤよりコストが低い純チタンワイヤ(CP Ti)を用い、溶接トーチ又は他の高出力エネルギービームの溶融においてCP Tiワイヤと粉末合金化成分とを結合することにより、SFFFプロセスにおいてあるがままの状態で(in-situ)でCP Tiワイヤを粉末合金化成分と結合する。
別の実施形態では、この発明は、合金化元素と混合されるとともにワイヤ状に形成されたチタンスポンジ材料を用いる。そのチタンスポンジ材料は、SFFFプロセスにおいてプラズマ溶接トーチ又は他の高出力エネルギービームと組み合わせて、ニアネットシェイプ(near net shaped)のチタン部品を生成するために使用されることができる。
堆積チャンバーに十分に酸素がないようにすることにより、新たに溶接された領域が周囲雰囲気酸素によって酸化されることを回避する保護手段を用いる必要がもはやなくなる。それにより、溶接部の過度の酸化の危険なしに、溶接ゾーンをより高温にすることが可能になるため、溶接プロセスをより高い速度で進めることができる。例えば、チタン又はチタン合金の物体の製造において、酸化を回避するために溶接ゾーンを400℃未満まで冷却する必要がもはやなくなる。
堆積領域への粉末の集束する流れをもたらす出力粉末ノズルのアレイと、
堆積基材上に複数のビームが集束されるのを可能にする中心オリフィスと、
ノズルと堆積ヘッドアセンブリとの間の作動距離をより長くするために、これらのノズルからの粉末の流れを集中させる、粉末ノズルの各々に対する同軸ガス流と
からなる堆積ヘッドアセンブリが開示されている。
作動距離をより長くすることは、溶融金属粒子が処理中に堆積装置に付着しないことを確実にするために重要である。特に、この発明は、堆積プロセスに関して同時に2つ以上のレーザービームを使用することができる堆積ヘッドアセンブリ内に設計されたマニホルドシステムを含む。堆積ヘッドアセンブリは、材料利用効率を向上させるように各オリフィスからの粉末の流れを能動的に集中させる手段も組み込んでいる。
ガスメタルアーク技法(techniques)には、それらの適用をTiの堆積に厳密に制限する幾つかの不都合がある。これらの欠点には、金属転移の不安定性と、過度のスパッターと、堆積層形状の不十分な制御と、堆積中に薄い部分の歪みをもたらす高い入熱(high heat input)とが挙げられる。また、堆積中に発生するカソードスポットのゆらぎ(wandering)のために、生産性の向上は不可能である。
特許文献5によるこれらの問題に対する解決法は、基材を準備するステップと、基材の上に金属供給原料から金属を堆積させるステップとを含む、直接金属堆積プロセスに対するものである。金属供給原料と基材との間に電気アークが生成され、アークがレーザー放射線に露出することにより、基材の上に溶融金属池が形成される。溶融金属池が冷却されて、基材の上に第1の立体金属層が形成される。
ワイヤの形態で金属供給材料を供給するとともに、
母材上の堆積領域を加熱する1つのプラズマトランスファーアークと、供給ワイヤを加熱するとともに溶融する1つのプラズマトランスファーアークとの2つのガストランスファーアークを用いることにより、
堆積速度を上昇させることができる、という理解に基づく。
立体自由形状造形法によって金属材料の3次元物体を製造する方法であって、前記物体は保持基材上の前記金属材料の連続した堆積物を合わせて溶融することによって作製され、
該方法は、
前記物体が作製される金属材料と同様の金属材料から作製される保持基材を用いることと、
各連続した堆積物を、
i)第1のプラズマトランスファーアーク(PTA)を用いて、前記金属材料が堆積することになる位置において母材を予熱し該母材に溶融池を形成し、
ii)ワイヤの形態で堆積することになる前記金属材料を、前記溶融池の上方の位置に供給し、
iii)溶融金属材料が前記溶融池内に滴下するように、第2のプラズマトランスファーアーク(PTA)を用いて前記ワイヤを加熱溶融し、
iv)前記溶融金属材料の連続した堆積物が固化して前記3次元物体を形成するように所定のパターンで、前記第1のPTA及び前記第2のPTAの位置に対して前記保持基材を移動させる、
ことによって得ることと、
を含むことを特徴とする、金属材料の3次元物体を製造する方法に関する。
該装置は、
前記金属材料のワイヤを供給するワイヤ供給器が組み込まれた溶接トーチと、
前記溶接トーチに対して保持基材を位置決めし移動させるシステムと、
形成されることになる前記物体のコンピューター支援設計(CAD)モデルを読み、該CADモデルを用いて、前記保持基材を位置決めし移動させるように前記システムの位置及び移動を調節し、前記保持基材上の前記金属材料の連続した堆積物を溶融することにより、物理的物体が構築されるように、ワイヤ供給器が組み込まれた前記溶接トーチを動作させることができる制御システムと、
を具備し、
前記保持基材は、作製されることになる前記物体と同様の金属材料から作製され、
前記溶接トーチは、
i)前記母材に電気的に接続された第1のプラズマトランスファーアーク(PTA)トーチと、
ii)前記金属材料の供給ワイヤに電気的に接続された第2のプラズマトランスファーアーク(PTA)トーチと、
を備え、
前記制御システムは、前記金属材料が堆積することになる位置で前記母材に溶融池を形成し維持するように、前記第1のPTAトーチを別個に動作させ調節することができ、
前記制御システムは、溶融金属材料が前記溶融池内に滴下するような位置で前記金属材料供給材料を溶融するように、前記ワイヤ供給器及び前記第2のPTAトーチを別個に動作させ調節することができる
ことを特徴とする、金属材料の3次元物体を製造する装置に関する。
電極及びターゲット領域は、PTAトーチの電極がカソードになり、ターゲット領域がアノードになるように、直流電源に電気的に接続される。これにより、電気アークを含むプラズマプルームが、PTAトーチから供給されている熱流束の面積の広がり及び大きさの優れた制御により、ターゲット領域の小さい表面積に非常に集中した熱流を送達していることが確実になる。
プラズマトランスファーアークには、ゆらぎがほとんどなく、カソードとアノードとの間の長さのずれに対して優れた耐性で、安定し一貫したアークを提供するという利点がある。したがって、PTAトーチは、母材に溶融池を形成することと、金属ワイヤ供給材料を加熱し溶融することとの両方に適している。
PTAトーチは、有利には、タングステン製の電極と銅製のノズルとを有することができる。しかしながら、本発明は、PTAトーチのいかなる特定の選択又はタイプにも拘束されない。PTAトーチとして機能することができる任意の既知の又は考えられる装置を適用することができる。
したがって、基材を同時に過熱することなく、かつスパッター又は過剰な溶融池の形成の危険なしに(したがって堆積材料の固化の厳密でない制御の危険なしに)、溶融金属供給材料の堆積速度を上昇させることができる。
この特徴は、
第1のPTAトーチの電極が負極性になり母材が正極性になって、第1のPTAトーチの電極と母材との間のアーク放電により電荷が移送される電気回路を規定するように、直流電源を接続することにより、かつ
第2のPTAトーチの電極を直流電源の負極に接続し金属材料の供給ワイヤを正極に接続して、第2のPTAトーチの電極と金属材料の供給ワイヤとの間のアーク放電により電荷が移送される電気回路を形成することにより、
得られる。
電力を調節する手段は、有利には、母材の堆積領域の温度を監視する手段と、アークの幅及び位置を調節する手段、すなわち磁気アーク偏向手段等の手段とを含むことができる。
また、母材に溶融池を形成するように用いられる第1のPTAトーチは、有利には、広いアークを形成する、すなわち、ガスタングステンアーク溶接トーチ(GTAWトーチ、文献ではTIGトーチとも示される)によって形成されるようなアークを形成することにより、母材の表面のより広い面積に溶融池を形成することができる。
本発明の第2の態様による装置の制御システムにおいて用いることができる、形成されることになる物体の任意の既知又は考えられる仮想3次元表現であって、
保持基材の位置及び移動を調節するように、かつ、
物理的物体が、物体の仮想3次元モデルに従って物理的物体を構築する際に結果として得られるパターンで保持基材の上の金属材料の連続した堆積物を溶融することによって製造されるように、ワイヤ供給器が組み込まれた溶接トーチを動作させるように用いることができる、
仮想3次元表現を意味する。
これは、例えば、まず仮想3次元モデルを一組の仮想平行層に分割し、その後、平行層の各々を一組の仮想準一次元切片に分割することにより、3次元モデルの仮想ベクトル化積層モデルを形成することで得ることができる。
そして、物理的物体は、物体の仮想ベクトル化積層モデルの第1の層に従うパターンで、金属材料供給材料の一連の準一次元切片を支持基材の上に堆積させ溶融させるように、制御システムを関与させることによって形成することができる。
そして、物体の仮想ベクトル化積層モデルの第2の層に従うパターンで、先に堆積した層の上に溶接可能材料の一連の準一次元切片を堆積させ溶融させることにより、物体の第2の層に対するシーケンスを繰り返す。
物体全体が形成されるまで、物体の仮想ベクトル化積層モデルの各連続した層に対して、層ごとに堆積及び溶融プロセスを繰り返し続ける。
しかしながら、本発明は、本発明による装置の制御システムを実行するいかなる特定のCADモデル及び/又はコンピューターソフトウェアにも拘束されず、本発明は、いかなる特定のタイプの制御システムにも拘束されない。
1つの第1のPTAトーチに対して溶融池を形成するように、かつ第2のPTAトーチに対して溶融池内への金属材料の供給ワイヤを溶融するように別個に動作させるように制御システムが調整される限り、立体自由形状造形法によって金属3次元物体を構築することができる任意の既知又は考えられる制御システム(CADモデル、コンピューターソフトウェア、コンピューターハードウェア及びアクチュエーター等)を用いることができる。
これは、従来のガスメタルアーク溶接トーチ(GMAWトーチ、MIGトーチとも示される)を、MIGトーチにアークを形成することなくワイヤ供給器として使用することによって得ることができる。
ワイヤ供給器のこの実施形態には、ワイヤを第2のPTAトーチのDC電源に電気的に接続することができるとともに、ワイヤを非常に正確に位置決めすることもできるという利点がある。
金属材料の供給ワイヤは、任意の実際的に実施可能な寸法、すなわち1.0mm、1.6mm、2.4mm等のような寸法を有することができる。
したがって、本発明は、いかなる特定の電源の枠にも拘束されず、第1のPTAトーチ及び第2のPTAトーチの機能動作をもたらす任意の実際に機能する電位差及び電流を用いることができる。当業者は、試行錯誤試験によってこれらのパラメーターを見つけることができるであろう。
本出願人が行った実験により、等級5チタン合金製の直径1.6mmのワイヤを用いることにより、第1のPTAトーチに約150Aが供給され第2のPTAトーチに約250Aが供給されるとき、3.7kg/時から3.8kg/時の堆積速度で、従来のチタン体と同様の機械特性の3次元物体を製造することができることが分かった。
効果的に保護された雰囲気、すなわち特許文献3に開示されている反応チャンバー等において、本発明の第1の態様及び第2の態様によりSFFF堆積を行うことにより、最大10kg/時の堆積速度を得ることができると考えられる。
これは、ワイヤ径2.4mm、等級5チタンを用いて本出願人が行った別の実験によって確認されており、第1のPTAトーチに約250Aの電流を供給し第2のPTAトーチに約300Aの電流を供給したときに9.7kg/時の堆積速度をもたらした。
熱パルス化は、
脈動する(pulsating)DC電位を送達する第3のDC発電機を用い、
DC発電機の負極を第2のPTAトーチの電極に接続するとともに、正極を母材に接続して、第2のPTAトーチの電極と母材との間の脈動するアーク放電によって電荷が移送される電気回路を形成する
ことによって得ることができる。
第2のPTAトーチの電極と母材との間のアーク放電は、印加される脈動するDC電位に従ってオンオフされ、したがって、母材の溶融池内への脈動する熱流束を形成する。パルス化の周波数は、1Hzから数kHz以上例えば10kHzの範囲とすることができる。
本発明の第2の態様による装置の第1の実施形態例を、図3に概略的に示す。この図は、矩形立方体として成形されたTi−6Al−4V合金製の保持基材1を示し、その上に、同じTi−6Al−4V合金製の3次元物体が立体自由形状造形法によって形成されることになる。この図は、Ti−6Al−4V合金の第1の溶接ストライプ2が堆積している堆積プロセスの初期部分を示す。
DC電源9の影響(effect)は、制御システム(図示せず)によって一定のサイズ及び広がりの溶融池5を維持するように調節される。PTAトーチ8は、アーク8のサイズ及び位置を制御するように磁気アーク偏向器(図示せず)が備えられたガスタングステンアーク溶接(GTAW)トーチである。
DC電源13の影響は、液滴6の形成のタイミングを取り溶融池5内への溶融ワイヤの連続的な滴下を維持するように、ワイヤの供給速度に従って加熱及び溶融速度を維持するように調節される。
DC電源13によって提供される影響と、ワイヤ供給器4から出るワイヤ3の供給速度とは、Ti−6Al−4V合金の意図された堆積速度を提供する速度で溶融ワイヤが溶融池5に供給されるように、制御システムによって常に調節され制御される。
制御システムは、アクチュエーター(図示せず)の動作と、そのアクチュエーターの関与の調節とに同時に関与される。アクチュエーターは、形成される物体のCADモデルによって与えられるように意図された堆積スポットに溶融池が位置するように、保持基材1を常に位置決めし移動させる。
SFFFプロセスのこの段階では、下部矢印に示すように、保持基材1が移動している。
本発明の第2の実施形態例は、溶融池5に熱パルスを生成する追加の手段を備える、上述した第1の実施形態例である。
さらに、DC電源15によって送達される電力をパルス化するための手段16がある。手段16のパルス化により、アーク11は、ワイヤ3を加熱し溶融することに加えて、パルス化電源と同じ周波数で溶融池5内に入り、脈動する熱流束を溶融池に送達するようになる。手段16は、制御システムによって調節されることができ、1kHの周波数で溶融池内にパルス化アーク放電を提供する。
1. Taminger, K. M. and Hafley, R. A., "Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing", NATO/RTOAVT-139
Specialists' Meeting on Cost Effective Manufacture via Net Shape Processing (Amsterdam, the Netherlands, 2006) (NATO), pp 9-25,
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080013538_2008013396.pdf
Claims (33)
- 立体自由形状造形法によって金属物体を構築するシステムであって、
母材に電気的に接続された第1のPTAトーチ及び供給ワイヤに電気的に接続された第2のPTAトーチと、
前記第1のPTAトーチ、前記第2のPTAトーチ及び前記供給ワイヤを制御して、前記母材上の金属材料の連続した堆積物を溶融することにより物体を形成する制御システムと
を備えている、システム。 - 前記第1のPTAトーチと前記母材との間の前記電気的な接続は第1の電源によって達成され、前記第2のPTAトーチと前記供給ワイヤとの間の前記電気的な接続は第2の電源によって達成される、請求項1記載のシステム。
- 前記第1及び第2の電源は直流電源である、請求項2記載のシステム。
- 前記第1及び第2の電源は独立した制御を含む、請求項3記載のシステム。
- 前記第1のPTAトーチは前記金属材料が堆積することになる位置において母材を予熱する、請求項1記載のシステム。
- 前記第2のPTAトーチは前記供給ワイヤを溶融する、請求項1記載のシステム。
- 前記第1及び第2のPTAトーチの少なくとも1つはアーク偏向制御を含む、請求項1記載のシステム。
- 前記第1のPTAトーチはガスタングステンアーク溶接トーチである、請求項1記載のシステム。
- 前記第1及び第2のPTAトーチの少なくとも1つはガスメタルアーク溶接トーチである、請求項1記載のシステム。
- 前記第2のPTAトーチと前記母材との間の電気的な接続をさらに備えている、請求項1記載のシステム。
- 前記第2のPTAトーチと前記母材との間の前記電気的な接続は、前記第1及び第2のPTAトーチの電源から独立した電源によって達成される、請求項10記載のシステム。
- 前記独立した電源は直流電源である、請求項11記載のシステム。
- 前記独立した電源は、前記第1及び第2のPTAトーチの電源から独立した制御を含む、請求項12記載のシステム。
- 前記独立した制御は、前記第2のPTAトーチと前記母材との間のパルス化アーク放電のための制御を含む、請求項13記載のシステム。
- 前記パルス化アークは1Hzから10kHzまでの範囲の周波数でパルス化される、請求項14記載のシステム。
- 前記第1のPTAトーチは、前記第1のPTAトーチの電極がカソードになり、前記母材がアノードになるように、第1の電源に電気的に接続される、請求項1記載のシステム。
- 前記第2のPTAトーチは、前記第2のPTAの電極がカソードになり、金属材料の前記供給ワイヤがアノードになるように、第2の電源に電気的に接続される、請求項1記載のシステム。
- 前記第2のPTAトーチは、前記第2のPTAトーチの電極が、対応するアノードとしての前記母材に対するカソードにもなるように、第3の電源に更に電気的に接続されている、請求項17記載のシステム。
- 立体自由形状造形法によって金属材料の3次元物体を製造する方法であって、
第1のプラズマトランスファーアークを用いて、母材の堆積領域を予熱すること、
前記母材の前記予熱された堆積エリアの上方の位置に供給ワイヤを供給すること、及び
前記母材の前記予熱された堆積エリアに溶融金属材料が堆積するように、第2のプラズマトランスファーアークを用いて前記供給ワイヤの遠位端を溶融すること
を含む、方法。 - 前記第1及び第2のプラズマトランスファーアークを独立して制御することをさらに含む、請求項19記載の方法。
- 前記母材の前記堆積領域を予熱することは、前記母材に溶融池を形成することを含む、請求項19記載の方法。
- 前記溶融金属材料の連続した堆積物が前記予熱された堆積領域に滴下するように所定のパターンで前記第1及び第2のプラズマトランスファーアークの位置に対して前記母材を移動させることをさらに含む、請求項19記載の方法。
- 第1の電源によって前記母材に電気的に接続された第1のPTAトーチを用いて前記第1のプラズマトランスファーアークを供給すること、及び第2の電源に電気的に接続された第2のPTAトーチを用いて前記第2のプラズマトランスファーアークを供給することをさらに含む、請求項19の方法。
- 前記第1及び第2の電源は直流電源である、請求項23記載の方法。
- 前記第1及び第2のプラズマトランスファーアークの少なくとも1つの偏向を制御することをさらに含む、請求項19記載の方法。
- 前記第1のプラズマトランスファーアークはガスタングステンアーク溶接トーチによって生成される、請求項19記載の方法。
- 前記第1及び第2のプラズマトランスファーアークの少なくとも1つはガスメタルアーク溶接トーチによって生成される、請求項19記載の方法。
- 第3のプラズマトランスファーアークを用いて前記母材の前記堆積エリアを予熱することさらに含み、
前記第2のプラズマトランスファーアーク及び前記第3のプラズマトランスファーアークは、ともに1つのPTAトーチによって提供され、
前記1つのPTAトーチは、電源を介して前記ワイヤに電気的に接続されるとともに、もう一つの電源を介して前記母材に電気的に接続されている、請求項19記載の方法。 - 前記PTAトーチと前記ワイヤとの間及び前記PTAトーチと前記母材との間の独立したパルス化アーク放電をさらに含む、請求項28記載の方法。
- 前記PTAトーチに接続された各電源は、1Hzから10kHzまでの範囲の周波数でパルス化される直流電源である、請求項29記載の方法。
- 前記第3のプラズマトランスファーアークによる前記予熱は前記母材に溶融池を形成する、請求項28記載の方法。
- 前記金属材料はチタン又は合金チタンである、請求項19記載の方法。
- 前記物体の仮想3次元モデルを形成すること、
前記モデルを一組の仮想平行層に分割するとともに、各平行層を一組の仮想準一次元切片に更に分割して、前記物体の仮想ベクトル化積層モデルを形成すること、
前記母材の位置及び移動、及び前記第1プラズマトランスファーアークトーチ及び前記第2プラズマトランスファーアークトーチの起動を調節することができる制御システムに、前記物体の前記仮想ベクトル化積層モデルをロードすること、
前記物体の前記仮想ベクトル化積層モデルの第1の層に従うパターンで、前記金属材料の供給ワイヤの一連の準一次元切片を前記母材の上に堆積させかつ溶融させるように前記制御システムを関与させること、
前記物体の前記仮想ベクトル化積層モデルの第2の層に従うパターンで、前記金属材料の供給ワイヤの一連の準一次元切片を先の堆積層の上に堆積させかつ溶融させることにより、前記物体の第2の層を形成すること、並びに
前記物体全体が形成されるまで、該物体の前記仮想ベクトル化積層モデルの各連続した層に対して層ごとに前記堆積及び溶融プロセスを繰り返すこと
をさらに含む、請求項19記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1105433.5 | 2011-03-31 | ||
GB1105433.5A GB2489493B (en) | 2011-03-31 | 2011-03-31 | Method and arrangement for building metallic objects by solid freeform fabrication |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014502502A Division JP5996627B2 (ja) | 2011-03-31 | 2012-03-30 | 立体自由形状造形法によって金属物体を構築する方法及び装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016193457A JP2016193457A (ja) | 2016-11-17 |
JP6211156B2 true JP6211156B2 (ja) | 2017-10-11 |
Family
ID=44071711
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014502502A Active JP5996627B2 (ja) | 2011-03-31 | 2012-03-30 | 立体自由形状造形法によって金属物体を構築する方法及び装置 |
JP2016163421A Active JP6211156B2 (ja) | 2011-03-31 | 2016-08-24 | 立体自由形状造形法によって金属物体を構築するシステム及び立体自由形状造形法によって金属材料の3次元物体を製造する方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014502502A Active JP5996627B2 (ja) | 2011-03-31 | 2012-03-30 | 立体自由形状造形法によって金属物体を構築する方法及び装置 |
Country Status (13)
Country | Link |
---|---|
US (3) | US9481931B2 (ja) |
EP (1) | EP2691197B1 (ja) |
JP (2) | JP5996627B2 (ja) |
KR (1) | KR101984142B1 (ja) |
CN (1) | CN103476523B (ja) |
AU (1) | AU2012233752B2 (ja) |
BR (1) | BR112013025043B8 (ja) |
CA (1) | CA2831221C (ja) |
EA (1) | EA024135B1 (ja) |
ES (1) | ES2564850T3 (ja) |
GB (1) | GB2489493B (ja) |
SG (1) | SG193965A1 (ja) |
WO (1) | WO2012134299A2 (ja) |
Families Citing this family (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9776274B2 (en) * | 2007-10-26 | 2017-10-03 | Ariel Andre Waitzman | Automated welding of moulds and stamping tools |
EP3479933A1 (en) | 2009-09-17 | 2019-05-08 | Sciaky Inc. | Electron beam layer manufacturing apparatus |
AU2011233678B2 (en) | 2010-03-31 | 2015-01-22 | Sciaky, Inc. | Raster methodology, apparatus and system for electron beam layer manufacturing using closed loop control |
GB2489493B (en) | 2011-03-31 | 2013-03-13 | Norsk Titanium Components As | Method and arrangement for building metallic objects by solid freeform fabrication |
WO2013174449A1 (en) * | 2012-05-25 | 2013-11-28 | European Space Agency | Multi-wire feeder method and system for alloy sample formation and additive manufacturing |
US20140065320A1 (en) * | 2012-08-30 | 2014-03-06 | Dechao Lin | Hybrid coating systems and methods |
WO2014094882A1 (en) * | 2012-12-21 | 2014-06-26 | European Space Agency | Additive manufacturing method using focused light heating source |
US20150042017A1 (en) * | 2013-08-06 | 2015-02-12 | Applied Materials, Inc. | Three-dimensional (3d) processing and printing with plasma sources |
WO2015058182A1 (en) | 2013-10-18 | 2015-04-23 | +Mfg, LLC | Method and apparatus for fabrication of articles by molten and semi-molten deposition |
CN103567442B (zh) * | 2013-10-26 | 2015-06-17 | 山西平阳重工机械有限责任公司 | 重金属三维熔融快速成型方法 |
CA2936412A1 (en) * | 2014-02-11 | 2015-08-20 | Magna International Inc. | Method of joining dissimilar materials |
WO2015127555A1 (en) * | 2014-02-26 | 2015-09-03 | Freespace Composites Inc. | Manufacturing system using topology optimization design software, three-dimensional printing mechanisms and structural composite materials |
CN104001918B (zh) * | 2014-05-28 | 2017-01-18 | 赵晴堂 | 电阻式双熔层叠三维金属构件制造成形系统 |
WO2016007672A1 (en) * | 2014-07-09 | 2016-01-14 | Applied Materials, Inc. | Layerwise heating, linewise heating, plasma heating and multiple feed materials in additive manufacturing |
AU2015321408A1 (en) * | 2014-09-09 | 2017-03-23 | Aurora Labs Ltd | 3D printing method and apparatus |
US20160096234A1 (en) * | 2014-10-07 | 2016-04-07 | Siemens Energy, Inc. | Laser deposition and repair of reactive metals |
MX2017007479A (es) | 2014-12-12 | 2018-05-07 | Digital Alloys Incorporated | Fabricación por capas de estructuras de metal. |
EP3034225B1 (en) * | 2014-12-17 | 2018-10-17 | Airbus Defence and Space GmbH | Method and apparatus for distortion control on additively manufactured parts using wire and magnetic pulses |
KR102306601B1 (ko) * | 2014-12-23 | 2021-09-29 | 주식회사 케이티 | 슬라이싱 단면의 복잡도에 따라 슬라이싱 두께를 변경하는 가변형 슬라이싱 방법, 슬라이서 및 컴퓨팅 장치 |
US9951405B2 (en) * | 2015-02-04 | 2018-04-24 | Spirit Aerosystems, Inc. | Localized heat treating of net shape titanium parts |
US20160271732A1 (en) * | 2015-03-19 | 2016-09-22 | Dm3D Technology, Llc | Method of high rate direct material deposition |
FR3034691A1 (fr) * | 2015-04-07 | 2016-10-14 | Soc Eder | Dispositif d'impression en trois dimensions utilisant des dispositifs inductifs et resistifs |
FR3036302B1 (fr) * | 2015-05-20 | 2017-06-02 | Commissariat A L`Energie Atomique Et Aux Energies Alternatives | Procede de soudage manuel teleopere et robot de soudage mettant en oeuvre un tel procede |
CN107848208A (zh) * | 2015-06-19 | 2018-03-27 | 应用材料公司 | 利用静电压实的增材制造 |
GB201515386D0 (en) * | 2015-08-28 | 2015-10-14 | Materials Solutions Ltd | Additive manufacturing |
DE102015117238A1 (de) * | 2015-10-09 | 2017-04-13 | GEFERTEC GmbH | Bearbeitungsmodul für eine Vorrichtung zur additiven Fertigung |
KR101614860B1 (ko) * | 2015-10-26 | 2016-04-25 | 비즈 주식회사 | 아크 및 합금금속분말 코어 와이어를 이용한 ded 아크 3차원 합금금속분말 프린팅 방법 및 그 장치 |
EP3165314A1 (de) * | 2015-11-06 | 2017-05-10 | Siegfried Plasch | Auftragsschweissverfahren |
US10471543B2 (en) * | 2015-12-15 | 2019-11-12 | Lawrence Livermore National Security, Llc | Laser-assisted additive manufacturing |
EP3389982A4 (en) | 2015-12-16 | 2019-05-22 | Desktop Metal, Inc. | METHODS AND SYSTEMS FOR ADDITIVE MANUFACTURING |
CN105458470A (zh) * | 2016-01-04 | 2016-04-06 | 江苏科技大学 | 一种钛合金形件双电弧复合热源增材制造方法 |
JP6887755B2 (ja) * | 2016-02-16 | 2021-06-16 | 株式会社神戸製鋼所 | 積層制御装置、積層制御方法及びプログラム |
US10099267B2 (en) | 2016-03-03 | 2018-10-16 | H.C. Starck Inc. | High-density, crack-free metallic parts |
EP3423214A4 (en) * | 2016-03-03 | 2019-08-14 | Desktop Metal, Inc. | GENERATIVE MANUFACTURE WITH METALLIC BUILDING MATERIALS |
US10995406B2 (en) * | 2016-04-01 | 2021-05-04 | Universities Space Research Association | In situ tailoring of material properties in 3D printed electronics |
US10328637B2 (en) * | 2016-05-17 | 2019-06-25 | Xerox Corporation | Interlayer adhesion in a part printed by additive manufacturing |
DE102016209094A1 (de) * | 2016-05-25 | 2017-11-30 | Robert Bosch Gmbh | Schichtweise erzeugter Formkörper |
US10709006B2 (en) | 2016-07-08 | 2020-07-07 | Norsk Titanium As | Fluid-cooled contact tip assembly for metal welding |
US9821399B1 (en) * | 2016-07-08 | 2017-11-21 | Norsk Titanium As | Wire arc accuracy adjustment system |
US10549375B2 (en) | 2016-07-08 | 2020-02-04 | Norsk Titanium As | Metal wire feeding system |
US11241753B2 (en) * | 2016-07-08 | 2022-02-08 | Norsk Titanium As | Contact tip contact arrangement for metal welding |
CN106180710B (zh) * | 2016-07-14 | 2018-07-24 | 武汉鑫双易科技开发有限公司 | 基于等离子体电弧熔覆的3d金属增材制造装置及方法 |
CN106271411B (zh) * | 2016-08-19 | 2018-08-14 | 赵晴堂 | 金属材料三维成形系统复合铣削方法 |
CN106238731B (zh) * | 2016-09-28 | 2018-07-13 | 深圳市首熙机械设备有限公司 | 一种混合金属3d立体打印装置 |
CN110573275A (zh) * | 2017-02-13 | 2019-12-13 | 欧瑞康表面处理解决方案股份公司普费菲孔 | 通过增材制造途径合成原位金属基质纳米复合物 |
CN106925787B (zh) * | 2017-03-30 | 2019-04-16 | 西安交通大学 | 一种铝合金电弧辅助涂覆增材制造系统及方法 |
US11181886B2 (en) * | 2017-04-24 | 2021-11-23 | Autodesk, Inc. | Closed-loop robotic deposition of material |
US10898968B2 (en) * | 2017-04-28 | 2021-01-26 | Divergent Technologies, Inc. | Scatter reduction in additive manufacturing |
US10234848B2 (en) | 2017-05-24 | 2019-03-19 | Relativity Space, Inc. | Real-time adaptive control of additive manufacturing processes using machine learning |
CN107225314B (zh) * | 2017-06-22 | 2022-07-26 | 华南理工大学 | 反极性等离子弧机器人增材制造系统及其实现方法 |
WO2019002563A2 (en) * | 2017-06-30 | 2019-01-03 | Norsk Titanium As | IN-SOLIDIFICATION REFINING AND GENERAL PHASE TRANSFORMATION CONTROL BY APPLYING IN SITU GAS IMPACT IMPACT IN THE ADDITIVE MANUFACTURE OF METALLIC PRODUCTS |
WO2019002493A1 (en) | 2017-06-30 | 2019-01-03 | Norsk Titanium As | PROGRAMMING TECHNOLOGIES OF MANUFACTURING AND CONTROL MACHINES FOR ADDITIONAL MANUFACTURING SYSTEMS |
US11134559B2 (en) | 2017-07-04 | 2021-09-28 | Norsk Titanium As | Plasma torch system |
US20190039191A1 (en) * | 2017-08-07 | 2019-02-07 | United Technologies Corporation | Laser deposition weld repair |
CN107442941A (zh) * | 2017-09-04 | 2017-12-08 | 南京理工大学 | 一种铝合金双丝激光增材制造方法 |
CZ307844B6 (cs) * | 2017-09-05 | 2019-06-19 | ARMEX Technologies, s. r. o. | Způsob lokálního legování výrobků svařovacím 3D tiskem pomocí elektrického oblouku |
WO2019068070A1 (en) | 2017-10-01 | 2019-04-04 | Space Foundry Inc. | MODULAR PRINT HEAD ASSEMBLY FOR PLASMA JET PRINTING |
US11383316B2 (en) * | 2017-10-16 | 2022-07-12 | Karl F. HRANKA | Wire arc hybrid manufacturing |
DE102017124124A1 (de) * | 2017-10-17 | 2019-04-18 | Hochschule Für Technik Und Wirtschaft Berlin | Verfahren zur additiven Fertigung eines Bauteils sowie Vorrichtung zur Durchführung des Verfahrens |
CN113369695B (zh) | 2017-11-15 | 2024-01-23 | 格拉纳特研究有限公司 | 金属熔滴喷射系统 |
US11980968B2 (en) * | 2017-11-29 | 2024-05-14 | Lincoln Global, Inc. | Methods and systems for additive tool manufacturing |
US10814428B2 (en) | 2018-01-10 | 2020-10-27 | General Electric Company | Direct print additive wall |
DE102018202203B4 (de) | 2018-02-13 | 2022-06-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Anordnung zur Justierung einer Pulverströmung in Bezug zur mittleren Längsachse eines Energiestrahls |
EP3533537A1 (en) * | 2018-02-28 | 2019-09-04 | Valcun bvba | Metal 3d printing with local pre-heating |
CN110446581B (zh) * | 2018-03-02 | 2020-11-20 | 三菱电机株式会社 | 附加制造装置及附加制造方法 |
US10793943B2 (en) | 2018-03-15 | 2020-10-06 | Raytheon Technologies Corporation | Method of producing a gas turbine engine component |
CN108607992B (zh) * | 2018-05-23 | 2020-12-01 | 哈尔滨工业大学 | 基于预置金属粉末的微束电弧选择性熔凝增材制造方法 |
KR102143880B1 (ko) * | 2018-05-30 | 2020-08-12 | 비즈 주식회사 | 이형 용가재를 사용하는 고적층율 금속 3d 아크 프린터 |
WO2019246308A1 (en) * | 2018-06-20 | 2019-12-26 | Digital Alloys Incorporated | Multi-diameter wire feeder |
ES2952997T3 (es) * | 2018-06-22 | 2023-11-07 | Molecular Plasma Group Sa | Método y aparato mejorados para la deposición de revestimiento por chorro de plasma a presión atmosférica sobre un sustrato |
CN108856966A (zh) * | 2018-07-20 | 2018-11-23 | 北京星航机电装备有限公司 | 一种1.5mm钛合金不加丝自动TIG焊接方法 |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
GB2569673B (en) * | 2018-08-24 | 2020-01-08 | Univ Cranfield | Additive Manufacture |
US11504801B2 (en) * | 2018-08-24 | 2022-11-22 | Phoenix Laser Solutions | Bimetallic joining with powdered metal fillers |
WO2020046160A1 (en) * | 2018-08-31 | 2020-03-05 | The Boeing Company | High-strength titanium alloy for additive manufacturing |
EP3626381A1 (de) * | 2018-09-20 | 2020-03-25 | FRONIUS INTERNATIONAL GmbH | Verfahren zum herstellen metallischer strukturen |
CN108994459B (zh) * | 2018-09-21 | 2020-10-20 | 盐城工学院 | 齿轮油泵激光-电弧复合异质增材制造系统及方法 |
KR102024119B1 (ko) * | 2018-11-27 | 2019-09-24 | 부경대학교 산학협력단 | 직렬 배치 방식의 티그 용접 장치 및 방법 |
CN109483022B (zh) * | 2018-11-28 | 2021-04-23 | 江苏科技大学 | 一种气-磁联合调控双钨极toptig焊焊接方法 |
EP3941675A1 (en) | 2019-03-22 | 2022-01-26 | DMC Global Inc. | Cladded article with clad layer having varying thickness |
CN113677475B (zh) * | 2019-04-16 | 2023-04-18 | 三菱电机株式会社 | 金属造形用保护气体喷嘴及激光金属造形装置 |
CN110039156B (zh) * | 2019-06-03 | 2021-04-09 | 西南交通大学 | 辅丝作用下钨-丝电弧增材制造装置与方法 |
JP7359877B2 (ja) * | 2019-06-19 | 2023-10-11 | ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド | 技術的及び/又は装飾的機能を有する機械部品のレーザビーム付加製造の方法、並びに技術的及び/又は装飾的機能を有する機械部品 |
AU2020298772A1 (en) * | 2019-07-03 | 2022-01-20 | Norsk Titanium As | Standoff distance monitoring and control for directed energy deposition additive manufacturing systems |
JP6719691B1 (ja) * | 2019-07-08 | 2020-07-08 | 三菱電機株式会社 | 付加製造装置 |
CN110434498A (zh) * | 2019-07-24 | 2019-11-12 | 昆山华恒焊接股份有限公司 | 旁轴式复合焊炬 |
US11853033B1 (en) | 2019-07-26 | 2023-12-26 | Relativity Space, Inc. | Systems and methods for using wire printing process data to predict material properties and part quality |
US10730239B1 (en) * | 2019-11-10 | 2020-08-04 | Yuri Glukhoy | 3D printing apparatus using a beam of an atmospheric pressure inductively coupled plasma generator |
US20210162493A1 (en) * | 2019-12-02 | 2021-06-03 | Xerox Corporation | Method of three-dimensional printing and a conductive liquid three-dimensional printing system |
CN113276409A (zh) | 2020-02-18 | 2021-08-20 | 空客(北京)工程技术中心有限公司 | 增材制造方法、增材制造设备和计算机可读介质 |
CN113275754A (zh) * | 2020-02-18 | 2021-08-20 | 空客(北京)工程技术中心有限公司 | 增材制造系统和增材制造方法 |
TWI845820B (zh) * | 2020-04-10 | 2024-06-21 | 大陸商東莞東陽光科研發有限公司 | 電極結構材料及製備電極結構材料的方法、電解電容器 |
CN111482608A (zh) * | 2020-04-20 | 2020-08-04 | 武汉理工大学 | 提高增材制造钛合金薄壁件硬度的实验方法 |
CN111515501B (zh) * | 2020-04-21 | 2022-05-31 | 华北水利水电大学 | 一种低电阻率材料的tig熔丝焊装置及焊接方法 |
TW202202320A (zh) * | 2020-05-01 | 2022-01-16 | 美商埃森提姆公司 | 材料電漿融合的發射器及方法 |
US20210362264A1 (en) * | 2020-05-20 | 2021-11-25 | The Boeing Company | Fabrication with regulated grain formation |
CN111687414A (zh) * | 2020-06-15 | 2020-09-22 | 上海理工大学 | 多束流电子束成型方法 |
CN111673283B (zh) * | 2020-06-23 | 2022-05-24 | 华北水利水电大学 | 一种铝合金厚板多层激光-tig复合焊接装置及方法 |
CN111843215B (zh) * | 2020-07-03 | 2021-11-09 | 武汉大学 | 一种高强铝合金构件的电弧增材制造方法、设备及产品 |
US11731366B2 (en) * | 2020-07-31 | 2023-08-22 | Xerox Corporation | Method and system for operating a metal drop ejecting three-dimensional (3D) object printer to form electrical circuits on substrates |
RU2763703C1 (ru) * | 2020-08-17 | 2021-12-30 | Общество с ограниченной ответственностью «Термолазер» | Устройство для лазерной сварки |
US20220143730A1 (en) * | 2020-11-10 | 2022-05-12 | Illinois Tool Works Inc. | Systems and Methods to Control Welding Processes Using Weld Pool Attributes |
US11518086B2 (en) | 2020-12-08 | 2022-12-06 | Palo Alto Research Center Incorporated | Additive manufacturing systems and methods for the same |
US11679556B2 (en) | 2020-12-08 | 2023-06-20 | Palo Alto Research Center Incorporated | Additive manufacturing systems and methods for the same |
JP7376466B2 (ja) * | 2020-12-23 | 2023-11-08 | 株式会社神戸製鋼所 | 積層造形物の製造方法及び製造装置 |
US11737216B2 (en) * | 2021-01-22 | 2023-08-22 | Xerox Corporation | Metal drop ejecting three-dimensional (3D) object printer |
US20220288779A1 (en) * | 2021-03-09 | 2022-09-15 | Hypertherm, Inc. | Integration of plasma processing and robotic path planning |
CN113118603B (zh) * | 2021-04-07 | 2022-09-20 | 南京理工大学 | 一种利用丝材多热源加热制造高硬抗冲击结构的方法 |
KR102477652B1 (ko) | 2021-08-25 | 2022-12-14 | 창원대학교 산학협력단 | 아크 플라즈마 기반의 금속 연속 적층 제조방법 및 그것에 의해 제조된 금속 연속 적층물 |
CN114714016A (zh) * | 2022-04-26 | 2022-07-08 | 唐山松下产业机器有限公司 | 等离子复合焊接装置 |
WO2023225057A1 (en) * | 2022-05-20 | 2023-11-23 | American Lightweight Materials Manufacturing Innovation Institute dba LIFT | Additive manufacturing system and method |
CN115156551B (zh) * | 2022-06-25 | 2024-05-07 | 北京航空航天大学 | 一种颗粒增强铝基复合材料电弧增材制造方法及系统 |
CN115958299A (zh) * | 2022-12-26 | 2023-04-14 | 哈尔滨工业大学 | 一种点环激光-mag复合焊接超高强钢的方法 |
Family Cites Families (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3187216A (en) | 1961-05-12 | 1965-06-01 | Welding Research Inc | Electron gun having a releasably clamped electron emitting element |
NL290719A (ja) | 1962-03-28 | |||
US3535489A (en) | 1968-05-03 | 1970-10-20 | Smith Corp A O | Electron beam welding apparatus |
US3592995A (en) | 1968-11-18 | 1971-07-13 | Smith Corp A O | Automated electron beam welding |
US3766355A (en) | 1971-08-23 | 1973-10-16 | E Kottkamp | Apparatus for use with electron beam welding machines |
AT312121B (de) | 1972-10-09 | 1973-12-27 | Boris Grigorievich Sokolov | Elektronenstrahlanlage zur Warmbehandlung von Objekten durch Elektronenbeschuß |
US4104505A (en) | 1976-10-28 | 1978-08-01 | Eaton Corporation | Method of hard surfacing by plasma torch |
JPS551939A (en) * | 1978-06-19 | 1980-01-09 | Mitsubishi Electric Corp | Steel material surface repair device |
US4327273A (en) | 1979-03-23 | 1982-04-27 | Hitachi, Ltd. | Method of treating a workpiece with electron beams and apparatus therefor |
US5149940A (en) * | 1983-02-24 | 1992-09-22 | Beckworth Davis International Inc. | Method for controlling and synchronizing a welding power supply |
JPS6075792A (ja) | 1983-10-03 | 1985-04-30 | Hitachi Ltd | スクロ−ル圧縮機 |
DE3485897T2 (de) | 1983-12-20 | 1993-01-07 | Eev Ltd | Elektronenstrahlerzeuger. |
JPS6186075A (ja) | 1984-10-03 | 1986-05-01 | Tokushu Denkyoku Kk | 複合合金の肉盛溶接方法および溶接ト−チ |
JPS61296976A (ja) | 1985-06-24 | 1986-12-27 | Toyota Motor Corp | 炭化物系セラミツク粒子分散金属複合層の形成方法 |
JPS62101392A (ja) | 1985-10-29 | 1987-05-11 | Toyota Motor Corp | 高密度エネルギ源を利用した鋳鉄材料に対する盛金法 |
US4677273A (en) | 1986-02-12 | 1987-06-30 | Leybold-Heraeus Gmbh | Electron beam welding apparatus |
CA2025254A1 (en) * | 1989-12-18 | 1991-06-19 | Sudhir D. Savkar | Method and apparatus for producing tape superconductors |
CA2037660C (en) * | 1990-03-07 | 1997-08-19 | Tadashi Kamimura | Methods of modifying surface qualities of metallic articles and apparatuses therefor |
JP2943245B2 (ja) | 1990-03-07 | 1999-08-30 | いすゞ自動車株式会社 | 金属系部品の表面改質方法及びその装置 |
JP2729247B2 (ja) * | 1990-06-26 | 1998-03-18 | フジオーゼックス株式会社 | エンジンバルブ等への盛金材料の肉盛溶接方法 |
JPH0675792B2 (ja) | 1990-06-29 | 1994-09-28 | 特殊電極株式会社 | プラズマアーク溶接法 |
US5207371A (en) | 1991-07-29 | 1993-05-04 | Prinz Fritz B | Method and apparatus for fabrication of three-dimensional metal articles by weld deposition |
JPH0675792A (ja) | 1992-08-27 | 1994-03-18 | Hudson Soft Co Ltd | コンピュータゲーム装置における管理システム |
US5278390A (en) * | 1993-03-18 | 1994-01-11 | The Lincoln Electric Company | System and method for controlling a welding process for an arc welder |
US5486676A (en) | 1994-11-14 | 1996-01-23 | General Electric Company | Coaxial single point powder feed nozzle |
US5714735A (en) * | 1996-06-20 | 1998-02-03 | General Electric Company | Method and apparatus for joining components with multiple filler materials |
US6046426A (en) | 1996-07-08 | 2000-04-04 | Sandia Corporation | Method and system for producing complex-shape objects |
US5808270A (en) * | 1997-02-14 | 1998-09-15 | Ford Global Technologies, Inc. | Plasma transferred wire arc thermal spray apparatus and method |
US5993554A (en) | 1998-01-22 | 1999-11-30 | Optemec Design Company | Multiple beams and nozzles to increase deposition rate |
US6545398B1 (en) | 1998-12-10 | 2003-04-08 | Advanced Electron Beams, Inc. | Electron accelerator having a wide electron beam that extends further out and is wider than the outer periphery of the device |
US6215092B1 (en) | 1999-06-08 | 2001-04-10 | Alcatel | Plasma overcladding process and apparatus having multiple plasma torches |
JP3686317B2 (ja) | 2000-08-10 | 2005-08-24 | 三菱重工業株式会社 | レーザ加工ヘッド及びこれを備えたレーザ加工装置 |
US6593540B1 (en) | 2002-02-08 | 2003-07-15 | Honeywell International, Inc. | Hand held powder-fed laser fusion welding torch |
US6693252B2 (en) | 2002-04-01 | 2004-02-17 | Illinois Tool Works Inc. | Plasma MIG welding with plasma torch and MIG torch |
US7168935B1 (en) * | 2002-08-02 | 2007-01-30 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Solid freeform fabrication apparatus and methods |
US6914210B2 (en) * | 2002-10-30 | 2005-07-05 | General Electric Company | Method of repairing a stationary shroud of a gas turbine engine using plasma transferred arc welding |
US6706993B1 (en) * | 2002-12-19 | 2004-03-16 | Ford Motor Company | Small bore PTWA thermal spraygun |
US20050056628A1 (en) | 2003-09-16 | 2005-03-17 | Yiping Hu | Coaxial nozzle design for laser cladding/welding process |
US20050173380A1 (en) | 2004-02-09 | 2005-08-11 | Carbone Frank L. | Directed energy net shape method and apparatus |
GB0402951D0 (en) | 2004-02-11 | 2004-03-17 | Rolls Royce Plc | A welding torch and shield |
US6972390B2 (en) | 2004-03-04 | 2005-12-06 | Honeywell International, Inc. | Multi-laser beam welding high strength superalloys |
CN1298486C (zh) | 2004-07-15 | 2007-02-07 | 北京航空航天大学 | 旋转双焦点激光-mig电弧复合焊接头 |
GB0420578D0 (en) | 2004-09-16 | 2004-10-20 | Rolls Royce Plc | Forming structures by laser deposition |
US7259353B2 (en) | 2004-09-30 | 2007-08-21 | Honeywell International, Inc. | Compact coaxial nozzle for laser cladding |
JP3687677B1 (ja) * | 2004-10-26 | 2005-08-24 | 松下電工株式会社 | 光造形方法と光造形システム並びに光造形用プログラム |
US7073561B1 (en) * | 2004-11-15 | 2006-07-11 | Henn David S | Solid freeform fabrication system and method |
SE0403139D0 (sv) * | 2004-12-23 | 2004-12-23 | Nanoxis Ab | Device and use thereof |
AU2006336328B2 (en) * | 2005-01-31 | 2010-07-01 | Ats Mer, Llc | Process for the manufacture of titanium alloy structures |
US7339712B2 (en) * | 2005-03-22 | 2008-03-04 | 3D Systems, Inc. | Laser scanning and power control in a rapid prototyping system |
WO2006133034A1 (en) | 2005-06-06 | 2006-12-14 | Mts Systems Corporation | Direct metal deposition using laser radiation and electric arc |
AU2007229309A1 (en) | 2006-03-21 | 2007-09-27 | Boc Limited | Apparatus and method for welding |
US8203095B2 (en) | 2006-04-20 | 2012-06-19 | Materials & Electrochemical Research Corp. | Method of using a thermal plasma to produce a functionally graded composite surface layer on metals |
US7777155B2 (en) * | 2007-02-21 | 2010-08-17 | United Technologies Corporation | System and method for an integrated additive manufacturing cell for complex components |
CN101024482A (zh) | 2007-03-27 | 2007-08-29 | 吉林大学 | 一种构筑三维微结构的方法 |
US9662733B2 (en) * | 2007-08-03 | 2017-05-30 | Baker Hughes Incorporated | Methods for reparing particle-matrix composite bodies |
DE102007043146B4 (de) * | 2007-09-05 | 2013-06-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Bearbeitungskopf mit integrierter Pulverzuführung zum Auftragsschweißen mit Laserstrahlung |
US20090283501A1 (en) | 2008-05-15 | 2009-11-19 | General Electric Company | Preheating using a laser beam |
DE102008031925B4 (de) * | 2008-07-08 | 2018-01-18 | Bego Medical Gmbh | Duales Herstellungsverfahren für Kleinserienprodukte |
US8653417B2 (en) * | 2009-01-13 | 2014-02-18 | Lincoln Global, Inc. | Method and system to start and use a combination filler wire feed and high intensity energy source |
US20100193480A1 (en) | 2009-01-30 | 2010-08-05 | Honeywell International Inc. | Deposition of materials with low ductility using solid free-form fabrication |
US8452073B2 (en) | 2009-04-08 | 2013-05-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Closed-loop process control for electron beam freeform fabrication and deposition processes |
US8344281B2 (en) | 2009-04-28 | 2013-01-01 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Use of beam deflection to control an electron beam wire deposition process |
JP5322859B2 (ja) * | 2009-09-01 | 2013-10-23 | 日鐵住金溶接工業株式会社 | プラズマトーチのインサートチップ,プラズマトーチおよびプラズマ溶接装置 |
US8008176B2 (en) | 2009-08-11 | 2011-08-30 | Varian Semiconductor Equipment Associates, Inc. | Masked ion implant with fast-slow scan |
GB2472783B (en) * | 2009-08-14 | 2012-05-23 | Norsk Titanium Components As | Device for manufacturing titanium objects |
FR2963899B1 (fr) | 2010-08-17 | 2013-05-03 | Air Liquide | Procede et dispositif de soudage a l'arc avec une torche mig /mag associee a une torche tig |
JP5611757B2 (ja) | 2010-10-18 | 2014-10-22 | 株式会社東芝 | 加熱補修装置および加熱補修方法 |
DE102011050832B4 (de) | 2010-11-09 | 2015-06-25 | Scansonic Mi Gmbh | Vorrichtung und Verfahren zum Fügen von Werkstücken mittels Laserstrahls |
FR2970900B1 (fr) | 2011-01-31 | 2013-10-18 | Aircelle Sa | Procede de reparation d'un panneau d'attenuation acoustique |
GB2489493B (en) | 2011-03-31 | 2013-03-13 | Norsk Titanium Components As | Method and arrangement for building metallic objects by solid freeform fabrication |
CN202344111U (zh) * | 2011-10-28 | 2012-07-25 | 安徽伟宏钢结构有限公司 | 埋弧焊预热焊接装置 |
WO2014025432A2 (en) | 2012-05-11 | 2014-02-13 | Siemens Energy, Inc. | Laser additive repairing of nickel base superalloy components |
WO2015120168A1 (en) | 2014-02-06 | 2015-08-13 | United Technologies Corporation | An additive manufacturing system with a multi-energy beam gun and method of operation |
JP6075792B2 (ja) * | 2014-03-19 | 2017-02-08 | Necプラットフォームズ株式会社 | 無線通信装置、無線通信方法、及びプログラム |
JP6015709B2 (ja) | 2014-05-14 | 2016-10-26 | トヨタ自動車株式会社 | 肉盛加工における粉体供給方法 |
CN104400188B (zh) | 2014-10-27 | 2017-04-12 | 南京理工大学泰州科技学院 | 一种三维自动焊接系统及其焊接控制方法 |
CN104625412B (zh) | 2014-12-24 | 2017-02-01 | 江苏科技大学 | 一种铜合金激光‑冷金属过渡复合热源增材制造的方法 |
CN105414764B (zh) | 2015-12-30 | 2017-07-28 | 哈尔滨工业大学 | 一种tig电弧同步预热辅助的基于激光増材制造的连接方法 |
CN105458470A (zh) | 2016-01-04 | 2016-04-06 | 江苏科技大学 | 一种钛合金形件双电弧复合热源增材制造方法 |
-
2011
- 2011-03-31 GB GB1105433.5A patent/GB2489493B/en active Active
-
2012
- 2012-03-30 WO PCT/NO2012/000033 patent/WO2012134299A2/en active Application Filing
- 2012-03-30 CA CA2831221A patent/CA2831221C/en active Active
- 2012-03-30 EP EP12719468.6A patent/EP2691197B1/en active Active
- 2012-03-30 ES ES12719468.6T patent/ES2564850T3/es active Active
- 2012-03-30 BR BR112013025043A patent/BR112013025043B8/pt active IP Right Grant
- 2012-03-30 US US14/008,307 patent/US9481931B2/en active Active
- 2012-03-30 AU AU2012233752A patent/AU2012233752B2/en active Active
- 2012-03-30 EA EA201391415A patent/EA024135B1/ru unknown
- 2012-03-30 KR KR1020137028946A patent/KR101984142B1/ko active IP Right Grant
- 2012-03-30 CN CN201280016671.6A patent/CN103476523B/zh active Active
- 2012-03-30 SG SG2013072442A patent/SG193965A1/en unknown
- 2012-03-30 JP JP2014502502A patent/JP5996627B2/ja active Active
-
2016
- 2016-07-08 US US15/206,154 patent/US11213920B2/en active Active
- 2016-08-24 JP JP2016163421A patent/JP6211156B2/ja active Active
- 2016-09-15 US US15/267,027 patent/US10421142B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2012134299A3 (en) | 2013-01-03 |
AU2012233752A1 (en) | 2013-10-17 |
KR20140038958A (ko) | 2014-03-31 |
EP2691197B1 (en) | 2015-12-30 |
GB201105433D0 (en) | 2011-05-18 |
GB2489493B (en) | 2013-03-13 |
US20170001253A1 (en) | 2017-01-05 |
US10421142B2 (en) | 2019-09-24 |
US11213920B2 (en) | 2022-01-04 |
BR112013025043B8 (pt) | 2020-05-19 |
ES2564850T3 (es) | 2016-03-29 |
CA2831221A1 (en) | 2012-10-04 |
CN103476523A (zh) | 2013-12-25 |
EA201391415A1 (ru) | 2014-03-31 |
JP2016193457A (ja) | 2016-11-17 |
GB2489493A (en) | 2012-10-03 |
BR112013025043B1 (pt) | 2019-04-02 |
US20140061165A1 (en) | 2014-03-06 |
KR101984142B1 (ko) | 2019-09-03 |
JP2014512961A (ja) | 2014-05-29 |
EA024135B1 (ru) | 2016-08-31 |
US20160318130A1 (en) | 2016-11-03 |
SG193965A1 (en) | 2013-11-29 |
EP2691197A2 (en) | 2014-02-05 |
AU2012233752B2 (en) | 2017-04-06 |
WO2012134299A2 (en) | 2012-10-04 |
US9481931B2 (en) | 2016-11-01 |
JP5996627B2 (ja) | 2016-09-21 |
CA2831221C (en) | 2021-01-12 |
CN103476523B (zh) | 2016-04-20 |
BR112013025043A2 (pt) | 2016-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6211156B2 (ja) | 立体自由形状造形法によって金属物体を構築するシステム及び立体自由形状造形法によって金属材料の3次元物体を製造する方法 | |
CN109689267B (zh) | 用于由两个焊枪通过固体自由成形制造来构建金属物体的方法和设备 | |
EP3380265B1 (en) | System and method for single crystal growth with additive manufacturing | |
US20100193480A1 (en) | Deposition of materials with low ductility using solid free-form fabrication | |
US20220176484A1 (en) | Method and arrangement for building metallic objects by solid freeform fabrication | |
EP3481578B1 (en) | Fluid-cooled contact tip assembly for metal welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170815 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170912 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6211156 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |