CN110573275A - 通过增材制造途径合成原位金属基质纳米复合物 - Google Patents

通过增材制造途径合成原位金属基质纳米复合物 Download PDF

Info

Publication number
CN110573275A
CN110573275A CN201880020279.6A CN201880020279A CN110573275A CN 110573275 A CN110573275 A CN 110573275A CN 201880020279 A CN201880020279 A CN 201880020279A CN 110573275 A CN110573275 A CN 110573275A
Authority
CN
China
Prior art keywords
metal matrix
additive manufacturing
powder
reactive gas
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880020279.6A
Other languages
English (en)
Inventor
西瓦·法尼·库玛·亚拉曼奇里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Surface Solutions AG Pfaeffikon
Original Assignee
Oerlikon Surface Solutions AG Truebbach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Surface Solutions AG Truebbach filed Critical Oerlikon Surface Solutions AG Truebbach
Publication of CN110573275A publication Critical patent/CN110573275A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/18Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0078Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

提出了一种独特且新颖的增材制造途径,通过在选择性激光熔化工艺室中接入反应性等离子体来形成热稳定的原位金属基质纳米复合物。所提出的途径提供非常高的组成自由度,即,具有不同化学计量比的氮化物、碳化物、氧化物、硅化物和其他陶瓷可以在纳米级上掺入任何金属基质中。具有这种纳米复合结构的部件展现出优异的高温结构性能。

Description

通过增材制造途径合成原位金属基质纳米复合物
技术领域
本发明涉及通过增材制造形成原位金属基质纳米复合物的方法。示例是在原料材料的金属基质中的碳化物、氮化物、氧化物、硼化物或它们的组合。
背景技术
选择性激光熔化(SLM)是用于金属部件的增材制造的主力。该过程被透彻地研究并发表在研究文章中,例如C.Y.Yap等人的文章Review of selective laser melting:Materials and applications,Appl.Phys.Rev.2,041101(2015)041101。此项现有技术的工艺示意性地示出在图1中。简而言之,该工艺包括:铺散粉末(优选原子化的粉末),然后进行激光光栅扫描以引起选择性熔化(图1a)。重复进行粉末铺散和激光光栅扫描,直到获得所需的形状(图1b)。虽然该现有技术声称在工业规模上大规模生产冶金性优良的复杂几何设计,但现有技术受到有限的组成和微结构自由度的影响,即,打印部件的相组成基本上由原料材料限定。最终的微观结构通常是来自原料的成分的亚稳相混合物和平衡。
与该现有技术相比,在根据本发明的所提出的方法中,在原料材料的金属基质中形成了如例如图2所示的独特设计工艺构造的原位纳米级沉淀物结构。所提出的工艺包括以下步骤:在反应性等离子体环境中在粉末床上进行激光光栅扫描;以及对构建平台施加静电势(偏置)。通过适当地接入激光光栅扫描、反应性等离子体和偏置电压,在金属基质中原位形成纳米复合物,如图2中示意性所示。所提出的方法具有非常高的组成自由度,即,具有各种化学计量比的氮化物、氧化物、碳化物和硅化物的纳米颗粒可以掺入几乎任何金属基质中。更有趣的是,这种纳米复合物是热稳定的,因为通过奥斯特瓦尔德熟化过程的颗粒生长在实验上可忽略不计,因为颗粒和基质之间的相互固体溶解度相对较低。
从现有文献中已知,金属基质中氮化物、碳化物、硼化物或氧化物的纳米颗粒的均匀分布将通过阻碍塑性流动而显著地增强高温结构性质,即使体积部分低至5%,例如参见:
(a)GJ.Zhang等人的文献:Microstructure and strengthening mechanism ofOxide lathanum dispersion strengthened molybdenum alloy,Adv.Eng.Mater.2004,6,No.12;
(b)http://www.ifam.fraunhofer.de/content/dam/ifam/en/documents/dd/lnfobl%C3%A4tter/dispersion-strengthened_materials_fraunhofer_ifam_dresden.pdf)
总之,所提出的构造中的3D打印部件的特征在于均匀分布在原料基质中的纳米级陶瓷颗粒的热稳定非平衡混合。这种纳米级颗粒增强3D打印部件在室温和升高到0.7Tm的温度下展现出显著优异的结构性能(Tm是基质合金的熔融温度)。
目标是提供增材制造合成途径以对几乎任何金属原料原位形成金属基质纳米复合物。所提出的合成途径的示意图随附于图3。
根据本发明的方法包括6个步骤:
步骤1:在腔室中优先地在粉末床上、优选地在Me粉末床上点燃反应性等离子体,其中,Me粉末是包含金属的粉末,同时通过构建平台在熔融区域中施加几个100eV的静电势。
步骤2:粉末床上的激光光栅扫描非常局部地引起熔池形成。
步骤3:以几个100eV的能量静电驱动反应性气体离子(N+)进入熔池。
步骤4:熔融原料和反应性气体离子之间的化学相互作用引起陶瓷化合物的原位形成,例如碳化物、氮化物、氧化物、硅化物,例如通过以下反应路径:{Me(l)+X+(g)-->MeN(s)}。
步骤5(可选的步骤,但优选地):通过调整激光功率、光栅扫描速度、偏置电压,熔融原料的等离子体反应性、流体动力和流体再循环模式受到影响,以引起氮化物沉淀物在液池固化之前分解,优选地分解成纳米级。
步骤6:在固化后形成具有纳米级分散的金属基质复合物。
请注意,在如上所述的步骤中,N+可以被任何反应性气体代替,反应性气体例如是诸如(O+、Si+、B+、C+)或其混合物。在步骤4中,l、g和s是反映原子百分比的数字。Me可以是例如Ti和/或Al和/或其混合物。
尽管该工艺被描述用于SLM工艺,但该领域专业人员将同意,该工艺可以被应用于其他的基于熔化的增材制造途径。
图1:(a)层铺散和激光熔化、(b)通过选择性激光熔化工艺形成所需形状的示意图。
图2:通过a)现有技术和b)提出的合成途径制造的增材制造部件的结构差异。
图3:所提出的合成途径中原位金属基质纳米复合物形成的图示。图中的数字表示文中说明的顺序工艺步骤。

Claims (4)

1.一种用于形成包含金属基质纳米复合物的部件的增材制造合成方法,所述方法包括以下步骤:
-在腔室中优选地在Me粉末床上进行反应性等离子体点燃,其中,所述Me粉末是包含金属的粉末,同时通过构建平台在熔融区域中施加几个100eV的静电势;
-在所述粉末床上进行激光光栅扫描,以非常局部地引起熔池形成;
-以几个100eV的能量静电驱动反应性气体离子X+进入所述熔池,所述X+例如是N+、O+、Si+、B+和/或C+;
-引起熔融原料和反应性气体离子之间的化学相互作用以原位形成陶瓷化合物,例如碳化物、氮化物、氧化物和/或硅化物,例如通过以下反应路径:{Me(l)+X+(g)-->MeX(s)};
-固化,从而形成具有纳米级分散的金属基质复合物。
2.根据权利要求1所述的方法,其特征在于,调节激光功率和/或光栅扫描速度和/或偏置电压以影响所述熔融原料的流体再循环模式和/或流体动力和/或等离子体反应性,以引起氮化物沉淀物在液池固化之前分解,优选地分解成纳米级。
3.根据权利要求1或2所述的方法,其特征在于,反应性气体离子X+是N+离子。
4.根据权利要求1至3中任一项所述的方法,其特征在于,Me是Ti和/或Al或其混合物。
CN201880020279.6A 2017-02-13 2018-02-09 通过增材制造途径合成原位金属基质纳米复合物 Pending CN110573275A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EPEP17000219.0 2017-02-13
EP17000219 2017-02-13
PCT/EP2018/000053 WO2018145812A1 (en) 2017-02-13 2018-02-09 Insitu metal matrix nanocomposite synthesis by additive manufacturing route

Publications (1)

Publication Number Publication Date
CN110573275A true CN110573275A (zh) 2019-12-13

Family

ID=58162414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880020279.6A Pending CN110573275A (zh) 2017-02-13 2018-02-09 通过增材制造途径合成原位金属基质纳米复合物

Country Status (4)

Country Link
US (1) US20200316685A1 (zh)
EP (1) EP3579997A1 (zh)
CN (1) CN110573275A (zh)
WO (1) WO2018145812A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11031161B2 (en) * 2018-05-11 2021-06-08 GM Global Technology Operations LLC Method of manufacturing a bulk nitride, carbide, or boride-containing material
US20200230746A1 (en) * 2019-01-22 2020-07-23 Exxonmobil Research And Engineering Company Composite components fabricated by in-situ reaction synthesis during additive manufacturing

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1030445A (zh) * 1987-05-13 1989-01-18 兰克西敦技术公司 金属基质复合材料
WO2012134299A2 (en) * 2011-03-31 2012-10-04 Norsk Titanium Components As Method and arrangement for building metallic objects by solid freedom fabrication
WO2014111264A1 (en) * 2013-01-18 2014-07-24 Oerlikon Trading Ag, Trübbach COATING METHOD FOR PRODUCING (Al,Cr)2O3-BASED COATINGS WITH ENHANCED PROPERTIES
US20150042017A1 (en) * 2013-08-06 2015-02-12 Applied Materials, Inc. Three-dimensional (3d) processing and printing with plasma sources
CN104801712A (zh) * 2015-04-22 2015-07-29 华南理工大学 一种激光与微束等离子复合3d打印设备与方法
WO2015136277A1 (en) * 2014-03-11 2015-09-17 Bae Systems Plc Forming a three dimensional object
WO2016011290A1 (en) * 2014-07-18 2016-01-21 Applied Materials, Inc. Additive manufacturing with laser and plasma
CN105392912A (zh) * 2013-07-03 2016-03-09 欧瑞康表面处理解决方案股份公司特鲁巴赫 靶准备
US20160256926A1 (en) * 2015-03-04 2016-09-08 Airbus Operations Gmbh 3d printing method and powder mixture for 3d printing
CN105935770A (zh) * 2016-07-07 2016-09-14 西安智熔金属打印系统有限公司 一种基于电子束熔丝成型的增材制造装置
CN106166615A (zh) * 2016-08-31 2016-11-30 成都真火科技有限公司 基于层流等离子技术的3d打印设备
CN205821443U (zh) * 2016-06-09 2016-12-21 广东世创金属科技股份有限公司 通过真空等离子体在工件表面快速沉积的增材制造系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1030445A (zh) * 1987-05-13 1989-01-18 兰克西敦技术公司 金属基质复合材料
WO2012134299A2 (en) * 2011-03-31 2012-10-04 Norsk Titanium Components As Method and arrangement for building metallic objects by solid freedom fabrication
WO2014111264A1 (en) * 2013-01-18 2014-07-24 Oerlikon Trading Ag, Trübbach COATING METHOD FOR PRODUCING (Al,Cr)2O3-BASED COATINGS WITH ENHANCED PROPERTIES
CN105392912A (zh) * 2013-07-03 2016-03-09 欧瑞康表面处理解决方案股份公司特鲁巴赫 靶准备
US20150042017A1 (en) * 2013-08-06 2015-02-12 Applied Materials, Inc. Three-dimensional (3d) processing and printing with plasma sources
WO2015136277A1 (en) * 2014-03-11 2015-09-17 Bae Systems Plc Forming a three dimensional object
WO2016011290A1 (en) * 2014-07-18 2016-01-21 Applied Materials, Inc. Additive manufacturing with laser and plasma
US20160256926A1 (en) * 2015-03-04 2016-09-08 Airbus Operations Gmbh 3d printing method and powder mixture for 3d printing
CN104801712A (zh) * 2015-04-22 2015-07-29 华南理工大学 一种激光与微束等离子复合3d打印设备与方法
CN205821443U (zh) * 2016-06-09 2016-12-21 广东世创金属科技股份有限公司 通过真空等离子体在工件表面快速沉积的增材制造系统
CN105935770A (zh) * 2016-07-07 2016-09-14 西安智熔金属打印系统有限公司 一种基于电子束熔丝成型的增材制造装置
CN106166615A (zh) * 2016-08-31 2016-11-30 成都真火科技有限公司 基于层流等离子技术的3d打印设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.Y.YAP: "Review of selective laser melting:Materials and applications", 《APPLIED PHYSICS REVIEWS》 *
FORD LUMBAN GAOL: "Microstruture and Strengthening Mechanisms of Oxide Dispersion Strengthened Ferritic Alloy", 《APPLIED MECHANICS AND MATERIALS》 *

Also Published As

Publication number Publication date
WO2018145812A1 (en) 2018-08-16
US20200316685A1 (en) 2020-10-08
EP3579997A1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
Dadbakhsh et al. Selective laser melting to manufacture “in situ” metal matrix composites: a review
Aversa et al. A study of the microstructure and the mechanical properties of an AlSiNi alloy produced via selective laser melting
Rogachev et al. Influence of the high energy ball milling on structure and reactivity of the Ni+ Al powder mixture
Guo et al. Dual-material electron beam selective melting: hardware development and validation studies
CN107660237B (zh) 钼-硅-硼合金和其制造方法以及构件
US20200230746A1 (en) Composite components fabricated by in-situ reaction synthesis during additive manufacturing
AU2008364348B2 (en) Ceramic powders coated with a nanoparticle layer and process for obtaining thereof
Konstantinov et al. Ti-B-based composite materials: Properties, basic fabrication methods, and fields of application
Grosdidier et al. Synthesis of bulk FeAl nanostructured materials by HVOF spray forming and Spark Plasma Sintering
Khoshnevis et al. Metallic part fabrication using selective inhibition sintering (SIS)
CN110573275A (zh) 通过增材制造途径合成原位金属基质纳米复合物
Ulianitsky et al. The influence of the in-situ formed and added carbon on the formation of metastable Ni-based phases during detonation spraying
Kermani et al. The effect of mechanical alloying on microstructure and mechanical properties of MoSi2 prepared by spark plasma sintering
Ranjan et al. Thermodynamic analysis of ZnO nanoparticle formation by wire explosion process and characterization
Li et al. Selective laser melting of metal matrix composites: Feedstock powder preparation by electroless plating
WO2009144665A4 (en) Nanometric-sized ceramic materials, process for their synthesis and uses thereof
Lisovsky et al. The role of interphase and contact surfaces in the formations of structures and properties of diamond-(WC-Co) composites. A review
Yoozbashizadeh et al. Novel method for additive manufacturing of metal-matrix composite by thermal decomposition of salts
RU2333076C1 (ru) Способ изготовления объемных изделий из порошковых композиций
US20150225301A1 (en) Metal-Ceramic Nanocomposites With Iron Aluminide Metal Matrix And Use Thereof As Protective Coatings For Tribological Applications
Rea et al. Structure and property evaluation of a vacuum plasma sprayed nanostructured tungsten–hafnium carbide bulk composite
Polozov et al. Tailoring microstructure and properties of graded Ti-22Al-25Nb/SiC and Ti-22Al-25Nb/Ti-6Al-4V alloys by in-situ synthesis during selective laser melting
KR101118615B1 (ko) 마이크로 입자의 표면에 나노 입자를 증착시키기 위한 혼합 분말 제조장치 및 이를 이용하여 제조되는 혼합 분말
Shishkovsky et al. Laser-assisted synthesis in Cu–Al–Ni system and some of its properties
Li et al. Effect of Ni contents on the microstructure and mechanical properties of TiC–Ni cermets obtained by direct laser fabrication

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191213

RJ01 Rejection of invention patent application after publication