JP6189639B2 - 鋳物表面の清浄方法 - Google Patents

鋳物表面の清浄方法 Download PDF

Info

Publication number
JP6189639B2
JP6189639B2 JP2013110946A JP2013110946A JP6189639B2 JP 6189639 B2 JP6189639 B2 JP 6189639B2 JP 2013110946 A JP2013110946 A JP 2013110946A JP 2013110946 A JP2013110946 A JP 2013110946A JP 6189639 B2 JP6189639 B2 JP 6189639B2
Authority
JP
Japan
Prior art keywords
electrolysis
casting
current density
treatment
molten alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013110946A
Other languages
English (en)
Other versions
JP2014226719A (ja
Inventor
徹 須永
徹 須永
和也 塚本
和也 塚本
貴幸 柳井
貴幸 柳井
佐藤 栄次
栄次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parker Corp
Original Assignee
Parker Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parker Corp filed Critical Parker Corp
Priority to JP2013110946A priority Critical patent/JP6189639B2/ja
Priority to CN201410208340.3A priority patent/CN104178800A/zh
Publication of JP2014226719A publication Critical patent/JP2014226719A/ja
Application granted granted Critical
Publication of JP6189639B2 publication Critical patent/JP6189639B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、重機、自動車その他の精密機器などの油圧制御系に用いられる鋳造鋳物製品の製造工程で、その表面に残留する鋳砂や離型剤、更に鋳物表面に形成される酸化物、炭化物などを溶融アルカリ塩中での電解処理によって除去する鋳物表面の清浄方法に関するものである。
一般に、鋳物製品の表面清浄方法には、溶融アルカリ塩浴中で電解処理する方法とショットブラストによるドライプロセスが行われてきている。溶融アルカリ塩浴中で電解処理する方法は、NaOHのみを用いる場合と、一部NaOHにNaClなどを添加する浴を用いた方法が行われている。鋳物製品は、ブロック状のもので、重量が、数kg数百kgまで様々な大きさものが製品化されている。
いずれもバッチ処理で行われているが、バッチ処理は、鉄製のバスケットを用い、これに鋳物製品を適当な数量、適当な間隔で配置し、その後、溶融アルカリ塩中に浸漬し、溶融槽との間で電解を行っているのが現状である。このときの電解条件は、経験的に電圧制御(3〜6V程度)が一般的で、従って、鋳物製品に負荷される電流(電流密度)は、その時の成り行きで行われている。
このような処理方法では、鋳物表面は、黒色に仕上がったり、色むらが発生したり、酸
化物が残留するなど不具合が多々経験されている。この解決には、経験的に負荷電圧を変えたり(結果的に負荷電流密度を変化させている)、溶融アルカリ塩を変えたり、再処理したりする方法が対症療法的に行われている。
例えば、米国特許第2468006号公報には、溶融ナトリウム、カリウムのアルカリ塩に塩化ナトリウム、アルミン酸ナトリウムを添加し、当該溶液中で電解することにより、表面スケール、或いは炭化物を除去し、或いは、必要に応じて鋳砂除去に効果的なふっ化ナトリウムを添加し表面を清浄化する方法が開示されている。この時の負荷電圧は4〜6Vで、電流密度は、50A/ft2 (53.4mA/cm2 )が適正であることが開示されている。しかし、溶融塩組成のそれぞれの役割は明確になっていない。又、電流密度も好ましい条件として上記の1点の値が示されているにすぎず、黒色や色ムラを防止する安定表面品質を作りだす条件は規定されていない。
米国特許第2468006号公報 H.Kruger,A.Rahmel,W.Schwenk;Electrochimca Acta,Vol13,pp625(1968)
一方で、溶融塩中での電解処理法に対して、近年、ドライプロセスとしてショットブラストによる方法も実用化されている。この方法は、1〜5mm径程度の鉄球を鋳物表面に連続投射して表面付着物やスケールを物理的に破壊、剥離する方法である。しかし、精密な油圧機器等鋳物内部の入り組んだ油流路の細孔部分への投射は難しく適用に制限があることも事実である。我々は、実際にショットブラスト処理製品と電解処理製品を比較した。その結果、簡単な油流路を有する鋳物製品でもショット粒が十分に投射されず、鋳物砂や酸化物が残留していたことを確認した。また、ショットされた表面も鉄球の成分が鋳物表面に沈着するため、再度これを除去することが必要となる場合がある。更に、ショットブラストでは、油流路細孔部までショットを行う必要から一度に多数の鋳物製品を処理することは出来ず効率化の課題が残っている。
このようなショットブラスト法に対して、溶融アルカリ塩浴中での電解処理法は、一度に多くの製品を処理することが可能であり、更に、溶融アルカリ塩溶液は鋳物製品内部の複雑な細孔部分に確実に浸透させることが出来、これに電解処理することにより細部に渡って均質な表面を得ることが可能である。
しかし、前述のように、湿式法では、金属製のバスケットに処理鋳物を載せて電解処理するが、その個数、並べ方は、鋳物のサイズによって異なる。従って、実処理において経験される灰色のムラ模様や黒色表面が生じるのは、処理鋳物の大きさ、個数がまちまちで明確な処理表面積に基く適正な電流密度が負荷されなかったことが第一要因として上げられる。
この負荷電流の問題を定量的に評価するためには、当該溶融塩中での鋳物材料の分極挙動の評価が不可欠である。これまで溶融アルカリ塩中での金属の分極挙動は、例えば、非特許文献1(H.Kruger,A.Rahmel,W.Schwenk;Electrochimca Acta,Vol13,pp625(1968)に示すように、純鉄、Ni、Ptの測定結果が明らかにされているが、それぞれの金属表面で生じる反応解析が主体であり、表面の綺麗さや清浄度の評価は皆無であった。また、鋳物材料についての分極挙動による評価も皆無であった。
鋳物製品の表面、特に、内表面がクリーンで清浄度が高いことは、自動車、産業機械、航空機などに用いられる精密油圧機器にとって、内部の作動状態を常に安定化し安全性を確保する上で、更にコスト的にもきわめて重要である。しかし、こうした鋳物部品表面を清浄化する効果的な方法として、これまでも適用されている溶融アルカリ塩中での電解処理法においても依然として黒色や色ムラが生じるなど鋳物の処理性が安定しない場合が多々生じていたのが実状である。
上述したような課題を解決するために、発明者らは鋭意開発を進めた結果、本発明では、この処理の安定性を一層高め、表面品質を向上するため溶融アルカリ塩中での電解条件(溶融塩組成、電解電流密度)と表面性状との関係を定量的に評価し発明に至った。
その発明の要旨とするところは、
(1)鋳物表面を電解清浄するに当たり、溶融アルカリ塩として、水酸化ナトリウムに水酸化カリウム0.5〜10%、塩化ナトリウム3〜15%、アルミン酸ナトリウム0.5〜7%の1種または2種以上を加えた溶融アルカリ塩を温度330〜550℃に加熱溶融した浴中に鋳物製品を浸漬し、電解条件として鋳物製品にアノード電解とカソード電解の順に、アノード電解電流密度を+15mA/cm2 〜+100mA/cm2 の範囲に、カソード電解電流密度を−15mA/cm2 〜−100mA/cm2 の範囲に連続的に負荷し、かつ、アノード電解、カソード電解いずれの場合も、10〜60分間の電解を行った後に、更に、常温から80℃の酸性浴中に1〜10分間浸漬、水洗、乾燥処理して、残留する微小酸化物、炭化物、さびなどの除去と表面安定化することを特徴とする鋳物材料の表面清浄方法にある
以上述べたように、本発明により、重機、自動車その他の精密油圧制御系に用いられる
鋳造鋳物製品の内部細孔表面の品質向上を目的に、従来から行われていた電解処理プロセスの問題を電気化学的な手法を用いて解析し、表面清浄との関係を定量的に評価した。それによってこれまで製造工程、処理工程で経験されていた種々の異物残存や黒茶色表面、むら模様など表面不具合(炭化物、離型剤や酸化物や反応生成物の残留)を解消し、鋳物表面を安定的、効率的に除去することが出来る鋳物材料の表面清浄方法を確立した。
各溶融アルカリ塩中にける鋳物材料の分極曲線を示す図である。
以下、本発明について詳細に説明する。
先ず、発明者等は、鋳物を溶融アルカリ塩中で電解処理する場合に、電解時に鋳物製品の表面でどのような反応が生じているか、定量評価が可能な電気化学的に電流−電位曲線(以下、分極曲線という)の測定を行った。高温溶融塩中で安定的に分極曲線を測定評価するためには、適用する溶融アルカリ塩成分に合った参照電極を適用することが望ましい。参照電極として、水酸化ナトリウムを主体とする溶融塩で安定した電位測定と取り扱いが簡易なことから、金/水/酸素(Au/H2 O/O2 )電極を用い、種々の溶融アルカリ塩中での鋳物材料(鋳物製品から、10mm幅×50mm長さ×1mm厚さの短冊状試料を切り出し、表面を400番エメリー研磨後、アセトン脱脂した測定用材料を用いた。)の高温溶融アルカリ塩中の分極曲線を測定した。これによって得られた分極曲線を図1に示した。
図1は、各溶融アルカリ塩中にける鋳物材料の分極曲線を示す図である。450℃の測定結果を示す。また、380℃、480℃での分極曲線の測定も行い、ほぼ同じ分極曲線を得た。この結果から、定量的にアノード、及び、カソード電解により電流を負荷した(定電流電解)とき、及び電位を負荷した(定電位電解)ときに得られる表面の性状との関係を詳細に調べた。実操業で鋳物に負荷される条件は、定電流電解であるが、定電流電解と定電位電解することによって、清浄な表面の得られる電位範囲と電流範囲を明確に規定し、負荷条件対応した表面性状との関係を明らかにすることが出来た。
前掲の図1(溶融アルカリ塩中での電流−電位曲線(分極曲線))から、陽極電解(以
下、アノード電解という)、陰極電解(以下、カソード電解という)時の素反応を考える。アノード方向に分極した場合、鋳物の分極曲線は、ほぼ同じで溶融アルカリ塩成分による影響は小さい。いずれのアルカリ塩成分系でも自然浸漬電位(−550から−400mVの間)から、アノード方向に分極すると、−300mVまでアノード電流は増大し、−300mV〜+0mVまでは、約+20mA/cm2 の定常電流密度を示した。この間は、素地の溶解とO2 発生を伴い、炭化物の分解反応が生じる。更に、0mV以上では、急激な電流の増大が観測される。この領域では、OH−の酸化反応によりO2 ガス発生反応が生じている。
また、実操業での電解は、定電流電解であるが、前述の鉄製バスケットに装荷する処理鋳物の大きさ、数量によって、負荷される負荷電流密度は、数mA/cm2 から数百mA/cm2 まで、広く負荷されている。図1から、アノード電流が負荷された時の電位は、いずれのアルカリ成分でも約自然浸漬電位〜+200mVの範囲にあると考えられ、鋳物の表層は、素地溶解と析出炭化物や付着物の除去された表面となる。しかし、アノード電解後の表面は、溶解した素地鉄の酸化物などによる茶黒色の反応皮膜で覆われた表面になっている。そのため、最終的に均質な製品表面に仕上げるために次に述べるカソード電解を付与することが不可避である。
カソード方向に分極した場合、自然浸漬電位から約−1200mVまでは、−3〜−5
mA/cm2 の還元電流が観測される。これは、溶融塩中に含有されるO2 の還元による限界拡散電流である。更に、約−1200mVから−1850mVまで電流密度は、−10〜−100mA/cm2 の範囲で漸増する。この約−1200mVから−1850mVの間の電流密度の変化は、溶融アルカリ塩中での特徴的な還元挙動を示している。
図1の曲線aは、水酸化ナトリウム単独、または塩化ナトリウムを3〜10%添加した系のカソード分極曲線は、ほぼ同じ形態を示したことから、一つの線で示した。また、水酸化ナトリウムに水酸化カリウムを0.5%〜10%添加した場合も、ほぼ図1の曲線aと同じ分極曲線を示した。この約−1200mVから−1850mVの間では、水分の還元、及びOH−の還元による水素ガスが発生する。この水素ガス発生反応の進行により、アノード電解時に生成した酸化物やその他残留する酸化物の還元反応が進行する。図1の曲線b,c及びdは、水酸化ナトリウムに塩化ナトリウムを含有させた系にアルミン酸ナトリウムを0.5%、3%、7%添加した溶融アルカリ塩中での分極曲線を示す。特徴的な半円弧を描く電流密度が増大する傾向を示した。−1800mV以上では、ナトリウムイオンの酸化反応による電流密度の直線的な増加が観測された。
溶融アルカリ成分のうち、アルミン酸ナトリウムは、分極曲線に大きく影響することが
明らかとなった。アノード反応には、大きな変化は見られないが、特に、カソード反応において、図1の曲線c,d,eに示すように、負荷電位−1250mVから−1800mVの範囲において、含有量に応じて大きく電流密度が増大(カソード反応の促進)する。アルミン酸ナトリウムNa2 Al24 (Na2 O・Al23 )を溶融アルカリ塩中に含有させると、Na2 Oの増大をもたらし、水分の活量を変化させる。その結果、上記電位範囲で水分の還元反応を促進するものと考えられる。
水分の還元は、素地金属界面での水素発生反応を促進し、酸化物の還元反応と同時に表
面に残留する微少酸化物の剥離を物理的に促進するバブル効果もあると考えられる。更に、鋳物製品の内部の複雑な細孔部表面での還元反応を促進する役割を有しており、カソード電解における還元効率の向上に極めて効果的な役割を果たしている。このようにカソード電流密度を負荷することによって表面汚れや炭化物、微少残留物のない均質な表面を得るには、カソード分極曲線のどの電位領域に保持することが必要かは、これまで経験則で定量的な評価はまったく行われていなかった。
なお、本発明に言う溶融アルカリ塩としては、水酸化ナトリウム単独、または水酸化ナ
トリウムに水酸化カリウム0.5〜10%、塩化ナトリウム3〜15%、アルミン酸ナトリウム0.5〜7%を1種または2種以上を添加することが好ましい。
以上のアノード、カソード分極挙動を基に、種々の溶融アルカリ塩中で鋳物を処理した
時の電流、電位負荷条件と鋳物表面の白色度との関係を詳細に検討した。
表1または表2は、20mm×5mm×50mmの短冊状鋳物を用い、それぞれの溶融塩組成において、アノード電流、カソード電流を負荷した電解条件と処理後の表面状態との関係をまとめたものである。全面灰白色が全面均一であるものを○、灰白色であるが部分的に黒灰色のむら模様が現れたものを△、灰黒色でむら模様のあるものを×で表示した。また、後述する電解処理後の第一段後の処理した表面状態も同様の表示をした。
Figure 0006189639
Figure 0006189639
表1に示すNo.1〜46は本発明例であり、表2に示すNo.47〜72は比較例である。
表1、2に示すように、それぞれの溶融アルカリ塩中で得られた分極曲線から電解電流密度(アノード及びカソード電流密度)をそれぞれ±8mA/cm2 、±10mA/cm2 、±15mA/cm2 、±30mA/cm2 、±50mA/cm2 、±70mA/cm2 、±100mA/cm2 、±120mA/cm2 、±150mA/cm2 負荷した場合を示した。表中には、電流密度に対応した電位も同時に示した。
表1のNo.1〜7は水酸化ナトリウム単独での試験結果を示す。No.8〜11は水酸化ナトリウムと塩化ナトリウムの場合であり、No.12〜13は水酸化ナトリウムとアルミン酸ナトリウムの場合であり、No.14〜22は水酸化ナトリウムと塩化ナトリウムおよびアルミン酸ナトリウムの場合であり、No.23〜46は水酸化ナトリウムと塩化ナトリウム、アルミン酸ナトリウムおよび水酸化カリウムのそれぞれの混合添加の場合を示す。これらいずれも本発明条件を満たしていることから、いずれの表面も全面灰白色化している。
これに対して、表2に示す比較例No.47〜72での水酸化ナトリウム単独および水酸化ナトリウムに塩化ナトリウム、アルミン酸ナトリウム、水酸化カリウムの混合添加の場合の電解電流密度が±8mA/cm2 、±10mA/cm2 では、仕上げ表面は灰黒色となった。また、電解電流密度が±120mA/cm2 と±150mA/cm2 負荷した場合には、表面は灰白色化するが、部分的に黒灰色がむら状に現れる傾向を示した。
以下、薬剤組成を種々変化させて、分極曲線から読み取った電流密度(電位)を負荷し
て処理した結果、いずれの場合も、電解電流密度が±8mA/cm2 、±10mA/cm2 で表面は灰黒色となった。電流密度±15mA/cm2 〜±100mA/cm2 負荷した場合はいずれも表面は均質な灰白色化する。更に、電流密度±120mA/cm2 〜±150mA/cm2 負荷した場合では表面は灰白色化するが、部分的に黒灰色のむら模様が現れた。上記の結果は、図1で示したように、鋳物の溶融アルカリ塩中での分極挙動、特にカソード分極の電位範囲(−1250mV〜−1950mV)、電流密度範囲(−15mA/cm2 〜−120mA/cm2 )での還元反応が、表面清浄に大きく影響することが明らかとなった。
次に、代表的な溶融アルカリ塩中での電解処理した鋳物に、更に、後処理を行うことに
よって、微少残留物や酸化物の残留しない均質な表面仕上げるために、後処理を行った場合(酸洗処理と防錆処理の2段処理)の表面の評価結果を表1および表2に合わせて示した。後処理は、酸洗処理と防錆処理の2段処理からなり、前述の電解処理後、連続して行った。第一段の酸洗処理には、リン酸塩系(例えば、製品番号PK−RSOP/パーカーコーポレーション製)を適用した。処理液濃度5〜10%、温度60℃で5分間程度処理した。アノード電流密度、カソード電流密度±15mA/cm2 〜±100mA/cm2の範囲の処理物は、いずれも灰白色の均一な表面が得られた。
更に、第二段では、第一段処理後水洗、乾燥した鋳物を温度60℃の防錆剤(例えば、製品記号PK6005CP/パーカーコーポレーション製)で浸漬し、取り出しそのまま放置し乾燥し、これを屋内大気中室温で3週間放置後、さび発生有無を評価した。その結果、いずれの場合もさび発生は認められなかった。なお、表1、2に示すように、屋内大気中室温で3週間放置した後に、さび発生ありを×、さび発生がなかったものを◎とした。但し、電解処理、酸洗処理で表面評価が×、△のものは、第二段後処理(防錆処理)の評価は行わなかった。
以下、鋳物表面を定常的に均質な表面にするための電解条件を規定した理由を述べる。本発明では、従来法に対して、各溶融アルカリ塩中での鋳物製品の電解処理の基本的な電解挙動を電気化学的に解析したことにより、均質で清浄な鋳物表面を得ることが出来る条件を見出した。電解条件、特に、カソード電解における条件は、負荷電流が一定の電流密度範囲にあり、それに対応した電位が、H2 O,OH−の還元される電位範囲に負荷されることが重要であることが明らかとなった。
その範囲は、アノード電解時の電流密度+15mA/cm2 〜+100mA/cm2
負荷し、その後負荷するカソード電流密度を−15mA/cm2 〜−100mA/cm2の(電位は、−1250mV〜−1850mVに相当する)範囲に負荷する。アノード電流密度は、素地溶解反応とOH−やカーボンなどの酸化反応を促進する下限値として+15mA/cm2 、上限は、過酸化反応を抑制するため+100mA/cm2 とするが、経済的な観点から+50mA/cm2 で良い。
カソード電流密度は、H2 O,OH−の還元による水素発生反応による表面酸化物の還元反応が生起する反応領域として下限値−15mA/cm2 を負荷する。−100mA/cm2 を超えると、表面がムラになるため上限は、−100mA/cm2 とする。経済的には、電流密度と同じ−50mA/cm2 で良い。本発明の電解清浄法では、アノード電解とカソード電解を基本とするが、機械加工した鋳物や生成さびを除去する場合には、直接カソ−ド電解のみによって処理してもよい。その負荷カソード電流密度条件は、前述の範囲で良い。
次に、後酸洗、防錆処理の理由について述べる。
電解処理後の表面は、溶鋼が鋳型に直接鋳込まれたままの表面になっていて、ミクロ的に規則性のある表面であるが、細かな凹凸表面になっている。この表面は、電解処理で灰白色の表面になるが、ミクロ的には、電解時の小さな反応生成物や酸化物が残留することがあり、これらが基点となってさびなどを誘発することがある。このため、微少残留物を除去し更に均質な表面に仕上げるため、電解処理後に酸洗処理を施す。この酸洗処理は、表層の汚れ除去だけでなく、積極的に表層に安定皮膜を形成させる目的がある。そのため通常の塩酸、硫酸浸漬処理でもよいが、リン酸主体の酸を用いる。これによって表面にリン酸鉄の薄い表層皮膜を生成させる。皮膜生成条件として、濃度5〜10%、80℃×1分の浸漬処理で良い。
更に、鋳物製品は、実機械部品として組込み加工されるが、その期間は、製品の種類、
用途によってさまざまである。そのため、輸送期間や倉庫に保管したりする期間に無用な表面錆等の劣化が生じさせない工夫が必要となっている。電解処理⇒酸洗処理された表面を一定期間安定に保つために防錆処理を施す。実用的には、3週間ほどの室温大気中放置でさび発生が認められないことが要求される。そのための条件として防錆処理は、防錆材(PK6005CP)/(株)パーカーコーポレーション製など)を80℃×1分の浸漬処理で良い。
電解処理と酸洗処理、引続き防錆処理を一貫して行うことは、精密性が要求される油圧
部品の作動安定性を確保する上で極めて重要である。本発明は、溶融アルカリ塩中の電解条件を正確に制御し、電解処理後の後処理を加えた一貫した処理工程により表面品質の優れた製品を供給できるようになった。
以下、本発明について実施例によって具体的に説明する。
代表的な溶融塩アルカリ組成1(NaOH:100%)、組成2(NaOH:88%,NaCl:10%,Na2 Al24 :2%,KOH:0.5%)と、組成3(NaOH:85%,NaCl:10%,Na2 Al24 :5%)、組成4(NaOH:87%,NaCl:10%,Na2 Al24 :2%,KOH:0.5%)及び組成5(NaOH:83%,NaCl:10%,Na2 Al24 :2%,KOH:5%)の380℃、及び480℃で溶融アルカリ塩中に鉄製バスケットに所定の個数の鋳物を配置して浸漬し、アノードとカソード電解を20分間行い、更に、後処理を加えた連続処理を行った。実際の鋳物製品は、内部に入り組んだ細孔を有しており、装荷した鋳物の数に見合う所定の電流密度を負荷するため、鋳物製品の一個当たりの内外表面積と処理個数から全表面積を求め、鋳物を装荷したバスケット全体にアノード及びカソード全電流を負荷した。
製品鋳物の大きさ、個数と全電流、及び負荷電流密度と電解処理後の表面性状の結果を
評価した。評価は、それぞれ処理ロットから、任意の場所から取り出した2ケの処理鋳物を半割して、目視で内外表面の清浄性を評価した。適正な電解条件では、均一な灰白色の表面が得られた。各製品鋳物のサイズが異なっていもて、いずれの溶融アルカリ塩中において適正な負荷電流密度(アノード電流密度、カソード電流密度それぞれ±15mA/cm2 〜±100mA/cm2 の範囲)が付与されれば、常に安定した良好な表面が得られることが確認された。
また、電解処理した鋳物製品の第一段後処理(リン酸系処理、5%、60℃×5分浸漬
し、水洗した後乾燥)後、任意の箇所から処理鋳物2ケを取り出し、半割して目視で内外表面の清浄性を評価した。アノード電流密度、カソード電流密度±15mA/cm2 〜±100mA/cm2 の範囲の処理物は、いずれも灰白色の均一な表面が得られた。更に、第一段後処理後、第二段後処理(防錆処理、濃度5%、60℃×1分浸漬し取出し大気中放置)したのち、それぞれ処理ロットから、任意の場所から取り出した2ケの鋳物を室温大気中に3週間放置し、外表面でのさび発生有無で評価した。3週間放置でいずれの鋳物もさび発生が認められなかった。
以上述べたように、本発明により、重機、自動車その他の精密油圧制御系に用いられる鋳造鋳物製品の内部細孔表面の品質向上を目的に、従来から行われていた電解処理プロセスの問題を電気化学的な手法を用いて解析し、表面清浄との関係を定量的に評価した。それによってこれまで製造工程、処理工程で経験されていた種々の異物残存や黒茶色表面、むら模様など表面不具合(炭化物、離型剤や酸化物や反応生成物の残留)を解消し、鋳物表面を安定的、効率的に除去することが出来る鋳物材料の表面清浄方法を確立した極めて優れた効果を奏するものである。


特許出願人 株式会社パーカーコ−ポレーション
代理人 弁理士 椎 名 彊

Claims (1)

  1. 鋳物表面を電解清浄するに当たり、溶融アルカリ塩として、水酸化ナトリウムに水酸化カリウム0.5〜10%、塩化ナトリウム3〜15%、アルミン酸ナトリウム0.5〜7%の1種または2種以上を加えた溶融アルカリ塩を温度330〜550℃に加熱溶融した浴中に鋳物製品を浸漬し、電解条件として鋳物製品にアノード電解とカソード電解の順に、アノード電解電流密度を+15mA/cm2 〜+100mA/cm2の範囲に、カソード電解電流密度を−15mA/cm2 〜−100mA/cm2 の範囲に連続的に負荷し、かつ、アノード電解、カソード電解いずれの場合も、10〜60分間の電解を行った後に、更に、常温から80℃の酸性浴中に1〜10分間浸漬、水洗、乾燥処理して、残留する微小酸化物、炭化物、さびなどの除去と表面安定化することを特徴とする鋳物材料の表面清浄方法。
JP2013110946A 2013-05-27 2013-05-27 鋳物表面の清浄方法 Active JP6189639B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013110946A JP6189639B2 (ja) 2013-05-27 2013-05-27 鋳物表面の清浄方法
CN201410208340.3A CN104178800A (zh) 2013-05-27 2014-05-16 铸物表面的清洁方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110946A JP6189639B2 (ja) 2013-05-27 2013-05-27 鋳物表面の清浄方法

Publications (2)

Publication Number Publication Date
JP2014226719A JP2014226719A (ja) 2014-12-08
JP6189639B2 true JP6189639B2 (ja) 2017-08-30

Family

ID=51960133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110946A Active JP6189639B2 (ja) 2013-05-27 2013-05-27 鋳物表面の清浄方法

Country Status (2)

Country Link
JP (1) JP6189639B2 (ja)
CN (1) CN104178800A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105945262B (zh) * 2016-05-09 2018-12-04 广东富行洗涤剂科技有限公司 一种酸性除壳模剂
CN107891201B (zh) * 2017-09-29 2019-10-25 南京航空航天大学 铸造回转体零件铸造余量和铸造冒口的电解加工方法
CN107999730A (zh) * 2017-11-24 2018-05-08 江苏华立控制阀有限公司 一种应用于控制阀门的后处理清理震动脱壳工艺
CN108672686A (zh) * 2018-04-19 2018-10-19 安徽相邦复合材料有限公司 一种清除熔模铸造砂型残留物清理液的制备方法
KR102060928B1 (ko) * 2019-08-23 2019-12-30 전범서 유압기기 주조품의 표면처리 용액을 이용한 표면처리 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2261744A (en) * 1937-12-30 1941-11-04 Rustless Iron & Steel Corp Metal cleansing
US2468006A (en) * 1948-06-23 1949-04-19 J H Shoemaker Electrolytic cleaning of metal
US2847374A (en) * 1956-06-12 1958-08-12 Kolene Corp Metal processing
JPS5333530B1 (ja) * 1973-06-29 1978-09-14
JPS5333530A (en) * 1976-09-09 1978-03-29 Omron Tateisi Electronics Co Decision method for bar code pattern
JPS6013079B2 (ja) * 1978-01-31 1985-04-04 松下電器産業株式会社 アルミニウム箔の表面処理法
DE2951130A1 (de) * 1979-12-19 1981-06-25 Degussa Ag, 6000 Frankfurt Verfahren zum abloesen von formsandresten an gussteilen
JPS6187897A (ja) * 1984-10-05 1986-05-06 Nippon Kinzoku Kogyo Kk ステンレス鋼の防食処理法
JPH0733593B2 (ja) * 1989-05-18 1995-04-12 日新製鋼株式会社 鋼材の変色防止方法
JPH04193963A (ja) * 1990-11-27 1992-07-14 Hitachi Metals Ltd 鋳鉄材料の複合表面処理方法
JPH0633296A (ja) * 1992-07-15 1994-02-08 Kawasaki Steel Corp 鋼板への亜鉛系めっき方法
JPH0827600A (ja) * 1994-07-14 1996-01-30 Nisshin Steel Co Ltd ステンレス鋼帯の脱スケール方法および装置
JPH10152800A (ja) * 1996-11-22 1998-06-09 Sumitomo Metal Ind Ltd 鋼帯の脱スケール方法
ITRM20010747A1 (it) * 2001-12-19 2003-06-19 Ct Sviluppo Materiali Spa Procedimento a ridotto impatto ambientale e relativo impianto per descagliare, decapare e finire/passivare, in modo continuo, integrato e fl
JP2005344210A (ja) * 2004-05-06 2005-12-15 Somakkusu Kk 金型洗浄液、金型洗浄方法および金型洗浄装置

Also Published As

Publication number Publication date
JP2014226719A (ja) 2014-12-08
CN104178800A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
JP6189639B2 (ja) 鋳物表面の清浄方法
JP5145083B2 (ja) チタンの電解研磨方法
US20200123675A1 (en) Smoothing the surface finish of rough metal articles
KR20130069419A (ko) 구리 혹은 구리기 합금 표면의 산화 피막의 제거 방법 및 이 방법을 사용하여 회수한 구리 혹은 구리기 합금
US20110253554A1 (en) Electrolyte for removing titanium-containing coatings and removing method using same
JP2505708B2 (ja) 内部品質を発現させるために金属を電解エッチングするための方法および装置
JP3955933B2 (ja) ニッケルメッキ段階とニッケル除去段階とを含む銅または銅合金からなる金属連続鋳造用鋳型の外側表面の調整方法
TWI418656B (zh) Surface treatment method
US20110253555A1 (en) Solution for electrolytically removing chromium carbide coating and method for same
US3378669A (en) Method of making non-porous weld beads
US3030286A (en) Descaling titanium and titanium base alloy articles
JP2011162850A (ja) アルミニウム合金のめっき前処理方法
JP2009504905A (ja) 電解研磨方法
US2766199A (en) Cleaning of magnesium base alloy castings
US3632490A (en) Method of electrolytic descaling and pickling
JP6528092B2 (ja) 皮膜除去剤及び皮膜除去方法
JP4826372B2 (ja) 均一皮膜を有するステンレス鋼板およびその製造方法
Silchenko et al. Establishing the patterns in anode behavior of copper in phosphoric acid solutions when adding alcohols
JP2013199702A (ja) 銅或いは銅基合金表面の酸化皮膜の除去方法
KR102094067B1 (ko) 무광 알루미늄합금 표면처리 방법
RU2537346C1 (ru) Способ электролитно-плазменной обработки поверхности металлов
CN110449676B (zh) 一种基于NaOH电解液电解磨削高铬合金的加工预处理方法
JP5886022B2 (ja) 銅或いは銅基合金表面の酸化皮膜の除去方法
CN113122906B (zh) 一种电解除油增效剂
JP2017057437A (ja) 銅或いは銅合金の板或いは棒の酸化被膜の除去方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170803

R150 Certificate of patent or registration of utility model

Ref document number: 6189639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250