JP6187156B2 - 窒化物半導体素子の製造方法 - Google Patents

窒化物半導体素子の製造方法 Download PDF

Info

Publication number
JP6187156B2
JP6187156B2 JP2013223810A JP2013223810A JP6187156B2 JP 6187156 B2 JP6187156 B2 JP 6187156B2 JP 2013223810 A JP2013223810 A JP 2013223810A JP 2013223810 A JP2013223810 A JP 2013223810A JP 6187156 B2 JP6187156 B2 JP 6187156B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor layer
wafer
type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013223810A
Other languages
English (en)
Other versions
JP2015088532A (ja
Inventor
成田 准也
准也 成田
陽平 若井
陽平 若井
一人 岡本
一人 岡本
瑞起 西岡
瑞起 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2013223810A priority Critical patent/JP6187156B2/ja
Priority to US14/526,740 priority patent/US9559253B2/en
Publication of JP2015088532A publication Critical patent/JP2015088532A/ja
Application granted granted Critical
Publication of JP6187156B2 publication Critical patent/JP6187156B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Description

本発明は、窒化物半導体素子の製造方法に関する。
発光ダイオード(Light Emitting Diode:以下「LED」ともいう)、レーザーダイオード(Laser Diode:以下「LD」ともいう)等の半導体発光素子は、小型で電力効率が良く鮮やかな色の発光をし、各種の光源として利用されている。半導体発光素子は、低消費電力で長寿命の次世代照明として注目を集めており、更なる発光出力の向上及び発光効率の改善が求められている。
このような半導体発光素子のうち、特に窒化物半導体素子は、その製造方法において、基板上に窒化物半導体が積層されたウェハを、個々の窒化物半導体素子に分割する。近年、分割工程で、レーザー光を対象材料(例えば、ウェハ)の表面または内部に集光して分割するための起点となる変質部を形成した後、ウェハに外力を加えることにより変質部から割り溝やクラックを生じさせてウェハを割断する、レーザーダイシング技術がある(特許文献1を参照のこと)。
特開2008−98465号公報
しかしながら、窒化物半導体層側からレーザー照射する場合だけでなく、基板側からレーザー照射する場合も、ウェハを透過したレーザー光による窒化物半導体層への損傷が懸念されている。損傷とは、窒化物半導体層の外観にみられる傷の有無にかかわらず、窒化物半導体層が正常に機能しなくなった場合も含み、損傷した窒化物半導体層は、リークや低電圧破壊などが生じる可能性がある。このようなレーザー光による窒化物半導体層への影響は、レーザー出力を抑えたり、レーザー照射回数を減らす事により抑制できるが、その反面、タクトタイムが増大したり、ウェハ分割時の未割断箇所の発生や分割後の窒化物半導体素子の形状不均一などが原因となり歩留りが悪化したりする。さらに、ウェハ厚みが厚いほど、ウェハ分割に必要なレーザー出力は大きく、またレーザー照射回数は増える。そのため、半導体層が損傷するリスクが高まってくる。
本発明は、かかる問題を解決するためになされたものあり、レーザー光による窒化物半導体層の損傷を抑制することを目的とする。
本発明に係る窒化物半導体素子の製造方法は、p型不純物を含む窒化物半導体層を有するウェハを準備する工程と、前記ウェハにレーザー光を集光することにより、変質部を形成する工程と、前記変質部を形成する工程の後、前記ウェハをアニール処理して前記窒化物半導体層をp型化する工程と、を備える、ことを特徴とする。
本発明によれば、レーザー光による窒化物半導体層の損傷を抑制することができる。
本発明の実施形態に係る窒化物半導体素子を示す概略断面図である。 本発明の実施形態に係る窒化物半導体素子の製造方法の一工程を示す概略断面図である。 本発明の実施形態に係る窒化物半導体素子の製造方法の一工程を示す概略断面図である。 本発明の実施形態に係る窒化物半導体素子の製造方法の一工程を示す概略断面図である。 本発明の実施形態に係る窒化物半導体素子の製造方法の一工程を示す概略断面図である。 本発明の実施形態に係る窒化物半導体素子の製造方法の一工程を示す概略断面図である。 本発明の実施形態に係る窒化物半導体素子の製造方法の一工程を示す概略断面図である。
以下、本発明の実施形態に係る半導体発光素子及びその製造方法について、図面を参照しながら詳細に説明する。
なお、以下の説明において参照する図面は、本発明を概略的に示したものであるため、各部材のスケールや間隔、位置関係などが誇張、あるいは、部材の一部の図示が省略されている場合がある。また、平面図とその断面図において、各部材のスケールや間隔が一致しない場合もある。また、以下の説明では、同一の名称及び符号については原則として同一又は同質の部材を示しており、詳細な説明を適宜省略することとする。
<実施形態>
[窒化物半導体素子の構成]
後述する製造方法で作製した本発明の実施形態1に係る窒化物半導体素子の構成を、図1を参照して説明する。実施形態1に係る窒化物半導体素子1は、フェイスアップ型またはフリップチップ型の実装をする窒化物半導体素子である。窒化物半導体素子1は、基板10と、基板10上に積層された窒化物半導体層20と、n側電極31と、全面電極32と、p側電極33と、を備える。窒化物半導体層20は、n型窒化物半導体層21、活性層22、p型窒化物半導体層23を有し、窒化物半導体層20の表面の一部において、厚さ方向にp型窒化物半導体層23及び活性層22の全て、及びn型窒化物半導体層21の一部が除去されている。これにより、n型窒化物半導体層21には、n側電極31を設ける領域となる段差部が形成されている。n側電極31はn型窒化物半導体層21と電気的に接続され、全面電極32とp側電極33はp型窒化物半導体層23上に設けられており、p型窒化物半導体層23と電気的に接続されている。なお、窒化物半導体素子1の上面は、外部電源と接続する部分を除き、保護膜で覆われているが、図示は省略している。
本明細書において、「上」とは、基板10の窒化物半導体層20を積層した面に直交する方向であって、窒化物半導体層20の積層方向のことをいう。例えば、図1においては図の上方向を指す。
また、本明細書において、層上等でいう「上」とは、必ずしも上面に接触して形成される場合に限られず、離間して上方に形成される場合も含んでおり、層と層の間に介在層が存在する場合も包含する意味で使用する。
(基板)
基板10は、窒化物半導体層20をエピタキシャル成長させることができる基板材料であればよく、大きさや厚さ等は特に限定されない。また、基板10の窒化物半導体層20が積層される側に、複数の凸部を有していてもよい。基板材料としては、C面、R面、A面のいずれかを主面とするサファイアやスピネル(MgA124)のような絶縁性基板、また炭化ケイ素(SiC)、シリコン、ZnS、ZnO、GaAs、ダイヤモンド等が挙げられる。
(窒化物半導体層)
窒化物半導体層20は、例えば一般式AlInGa1−x−yN(0≦x≦1,0≦y≦1,x+y≦1)で表される半導体材料が挙げられ、窒化ガリウム系化合物半導体が好適に用いられる。窒化物半導体層20は、基板10側から順に、n型窒化物半導体層21と、活性層22と、p型窒化物半導体層23とが積層された積層構造を有するものである。n型窒化物半導体層21、活性層22及びp型窒化物半導体層23は、それぞれ単層構造でもよいが、組成および膜厚の異なる層の積層構造、超格子構造などであってもよい。特に発光層である活性層22は、量子効果が生ずる薄膜を積層した単一量子井戸または多重量子井戸構造であることが好ましく、さらに井戸層がInを含む窒化物半導体であることが好ましい。なお、基板10上に、任意に基板10との格子定数の不整合を緩和させるためのバッファ層等の下地層(不図示)を介してn型窒化物半導体層21を形成してもよい。
n型窒化物半導体層21は、n型不純物であるSi、Ge、Sn、S、O、Ti、Zr、CdなどのIV族元素、あるいはVI族元素等のいずれか1つ以上を含有していてもよく、特にSiを含有することが好ましい。p型窒化物半導体層23は、p型不純物であるMg、Zn等を含有しており、特にMgを含有することが好ましい。n型及びp型不純物の濃度は5×1016/cm3以上5×1021/cm3以下であることが好ましく、特にMg等のp型不純物の濃度は、5×1018/cm3以上5×1021/cm3以下であることが好ましい。
(n側電極、p側電極)
n側電極31はn型窒化物半導体層21と、p側電極33は全面電極32を介してp型窒化物半導体層23と、それぞれ電気的に接続して、窒化物半導体素子1に外部からの電流を供給するためのパッド電極である。n側電極31とp側電極33は、窒化物半導体層20とのコンタクト性、光反射性等を考慮して材料を適宜選択することができる。例えば、Al、Ti、Ni、Au、Pt、Rh、Crやこれら金属の少なくとも一つを含む合金を用い、単層または多層構造とすることができる。
(全面電極)
全面電極32は、p型窒化物半導体層23上に、p型窒化物半導体層23の略全面を覆うように設けられ、p側電極33を介して外部から供給される電流を、p型窒化物半導体層23の全面に均一に拡散するための電極である。全面電極32は、数々の種類があるが、窒化物半導体素子1をフェイスアップ型実装する場合は、活性層22で発光した光を上方向に取り出すため、例えば透光性電極であることが好ましい。全面電極32は、ITO、ZnO、In23、SnO2等、Zn、In、Snの酸化物を含む透光性電極を好適に使用できる。特に、ITOは透過率が高く、電流拡散性、窒化物半導体層20(p型窒化物半導体層23)とのコンタクト性が良好なので好ましい。また、窒化物半導体素子1をフリップチップ型実装する場合は、活性層22で発光した光を、光取り出し面である基板10の裏面側に反射するための反射膜としての機能も有する。このため、全面電極32は、光の反射率の高い材料、例えばAg、Al、Rhを用いることが好ましい。なお、全面電極32とp側電極33は別部材又は同一部材でそれぞれ設けてもよいし、全面電極32を省いてもよい。また、全面電極と同じ材料の電極をn型窒化物半導体層21とn側電極31との間に設けることもできる。
[窒化物半導体素子の製造方法]
次に、本発明の実施形態1に係る窒化物半導体素子1の製造方法について、図2乃至図7を参照して各工程について詳細に説明する。
本実施形態にかかる窒化物半導体素子の製造方法は、p型不純物を含む窒化物半導体層を有するウェハを準備する工程と、ウェハにレーザー光を集光することにより、変質部を形成する工程と、変質部を形成する工程の後、ウェハをアニール処理して窒化物半導体層をp型化する工程と、を備える。
(窒化物半導体層形成工程)
まず、図2に示すように、基板10上に、有機金属気相成長法(MOVPE)を用いて、n型窒化物半導体層21、活性層22及びp型不純物を含む窒化物半導体層123を有する窒化物半導体層120を成長させたウェハ11を準備する。すなわち、ウェハ11は、基板10、n型窒化物半導体層21、前記p型不純物を含む窒化物半導体層123をこの順に有している。なお、窒化物半導体層120の成長方法は特に限定されず、公知の方法を用いることができる。
(n側電極、全面電極及びp側電極形成工程)
次に、図3に示すように、n側電極31を設けるための段差部及び窒化物半導体素子1の分割領域を露出させる。ウェハ11上にフォトレジストにて所定の形状のマスクを形成して、反応性イオンエッチング(RIE)にて、ウェハ11の所定の部分において厚さ方向にp型不純物を含む窒化物半導体層123及び活性層22の全部を除去し、更にn型窒化物半導体層21の一部を除去して、n型窒化物半導体層21を露出させる。エッチングの後、レジストを除去する。
次に、p型不純物を含む窒化物半導体層123上に、全面電極32をパターニング形成する。その後、n型窒化物半導体層21の段差部上にn側電極31を、全面電極32上にp側電極33を、パターニングしてそれぞれ形成する。このとき、n側電極31とp側電極33を同一材料として同時に形成すると、製造工程が短縮できる。
(基板研削工程)
次に、図4に示すように、基板10の厚みが80〜200μmとなるように、公知の方法により基板10を研削、研磨する。このとき、基板10の厚みが150μm以上とすると、ウェハ11の反りを防ぐことができるので好ましい。
(レーザースクライブ工程)
次に、図5に示すように、上面視においてウェハ11の窒化物半導体素子1となる分割予定線に沿ってレーザー光を照射する。レーザー光が窒化物半導体層120に直接当たるのを防ぐため、レーザー光はウェハ11の基板10側から照射するのが好ましい。レーザー光はウェハ11(好ましくは基板10)の表面もしくは内部の所望の深さに集光させることができ、これにより集光部に変質部41を形成する。なお、本明細書において変質部41とは、レーザー照射により生じた溝、溶融部、空隙、焼け、変色等を含む、ウェハ11のもはや初期状態(レーザー照射前の状態)ではなくなった部分をいう。この変質部41はウェハ11を分割する際の起点となり得る。
ウェハ11内部にレーザー照射した場合、形成された変質部41からウェハ11の上下方向に向かってクラック42を形成することができる。
レーザー光はパルスレーザーを好適に用いることができ、そのパルス幅がナノ秒以下のものが好ましく、ピコ秒以下のものがより好ましい。より詳細には、そのパルス幅が100フェムト秒以上500ナノ秒以下であることが好ましく、さらには100ピコ秒以下であることが好ましい。これにより、多光子吸収による変質部41を形成することができ、ウェハ11を容易に分割できる。このような短パルスのレーザー光はエネルギー密度が高く、窒化物半導体層120を損傷させやすいが、後述するアニール処理前にレーザー照射するので窒化物半導体層120の損傷が抑えられる。
(窒化物半導体層のアニール処理)
レーザースクライブ工程の後、図6に示すように、ウェハ11をアニール処理してp型不純物を含む窒化物半導体層123を低抵抗化してp型窒化物半導体層23とし、窒化物半導体層20を得る。アニール処理は、例えば、窒素雰囲気中で数分から数十分間、400〜600℃程度の温度でウェハ11を熱処理することにより行う。アニール処理では、温度は必ずしも一定に保持しておく必要はなく、適宜昇降させてもよい。
(ウェハ分割工程)
最後に、図7に示すように、ダイシングやブレイク等でウェハ11を分割することにより、個々の窒化物半導体素子1を得る。ウェハ11に外力を加えると、変質部41形成時に発生したクラック42により、容易に割断することができる。なお、外力はウェハ11の基板10側から加えてもよいし、ウェハ11の基板10側及び窒化物半導体層20側の両側から加えてもよい。
なお、レーザースクライブ工程(窒化物半導体層120へのレーザー照射)を窒化物半導体層120のアニール処理前に行っていれば、これら以外の工程の順序は特に問われない。
以上の窒化物半導体素子の製造方法による効果を確認するために、本発明者らは、レーザー光による窒化物半導体層の損傷と、レーザー光照射時に窒化物半導体層をアニール処理済みか否かとの関係について調査した。調査にあたり、サンプル1〜3を下記のように作製した。
(サンプル1)
サファイア基板上に、n型不純物としてSiを含む窒化物半導体層(n型窒化物半導体層)、活性層、p型不純物としてMg(マグネシウム)を含む窒化物半導体層を順に積層した窒化物半導体層を備えるウェハを準備した。この窒化物半導体層の表面の一部において、厚さ方向にp型不純物を含む窒化物半導体層と活性層の全て、及びn型窒化物半導体層の一部をエッチングにより除去し、n型窒化物半導体層の表面が露出した段差部を形成した。そして、段差部におけるn型窒化物半導体層に電気的に接続するTi/Rh/W/Auをこの順に積層したn側電極を形成し、p型不純物を含む窒化物半導体層に電気的に接続するTi/Rh/W/Auをこの順に積層したp側電極を形成した。その後、窒化物半導体素子となる分割予定線に沿って、ウェハにフェムト秒レーザーを照射してスクライブした。
(サンプル2)
サンプル2は、段差部を形成する工程とn側電極及びp側電極を形成する工程との間でウェハをアニール処理した以外は、サンプル1と同様に行った。ウェハ11をアニール処理することにより、p型不純物を含む窒化物半導体層を低抵抗化し、p型窒化物半導体層とした。なお、アニール処理は、窒素雰囲気中、400〜600℃程度の温度でウェハ11を数十分間保持することにより行った。
(サンプル3)
サンプル3は、段差部を形成する工程とn側電極及びp側電極を形成する工程との間で、p型不純物を含む窒化物半導体層上に透光性電極としてITOを形成して、ウェハをアニール処理した以外は、サンプル1と同様に行った。詳細には、段差部を形成した後、p型不純物を含む窒化物半導体層に接するITOを形成した。その後、ウェハをアニール処理して、段差部におけるn型窒化物半導体層及びITO上にそれぞれn側電極とp側電極を形成した。なお、アニール処理は、サンプル2と同様の条件で行った。
(結果)
サンプル1〜3について、ウェハにレーザー光を照射する(レーザースクライブ)前後でフォトルミネッセンス(PL)測定を行い、窒化物半導体層の損傷増加率をそれぞれ算出して比較した。窒化物半導体層の損傷増加率は、レーザー光照射前後に損傷箇所の個数を計測し、レーザー光照射前の損傷箇所の個数を基準として、レーザー光照射によって損傷箇所が何パーセント増加したかを算出した。サンプル2と3は、ITOの有無が異なるが、サンプル2の損傷増加率は2.2%、サンプル3の損傷増加率は2.9%であり、共に、ウェハにレーザー光を照射することで窒化物半導体層の損傷が顕著に増加していた。一方、サンプル1の損傷増加率は0.1%であり、レーザー光を照射してもほとんど損傷が生じていなかった。これにより、レーザー光を照射することによって生じる窒化物半導体層の損傷は、電極材料に関わらず、ウェハのアニール処理を行った後にレーザースクライブ工程を行うことにより生じているものと考えられる。
p型不純物を含む窒化物半導体層は、通常、アニール処理によりp型不純物を含む窒化物半導体層内の水素を脱離させることにより、p型不純物を活性化させる(p型化)。本発明者らは、上記実験結果により、アニール処理後にレーザースクライブを行うと窒化物半導体層が損傷することから、活性化(水素離脱)したp型不純物がレーザー光を吸収しやすくなり、あるエネルギー密度以上になるとp型窒化物半導体層の結晶の弱い箇所が損傷するのではないかと考えた。
このことに鑑み、窒化物半導体層がp型不純物を活性化しない、もしくは活性化されたp型不純物が少ない状態でレーザー処理を行うことで、p型不純物によるレーザー光の吸収を抑制し、損傷を抑えることを見出した。
なお、本明細書においてアニール処理とは、窒化物半導体素子として機能させるために最終的にp型化する工程をいう。したがって、アニール処理前の工程において窒化物半導体層に含まれるp型不純物の一部が活性化していてもよい。好ましくは、レーザー光照射前のp型不純物を含む窒化物半導体層は、窒化物半導体素子として機能しない程度の高抵抗がよい。
本発明の具体例を実施例に基づいて詳述するが、この実施例のみに限定されるものではないことはいうまでもない。
<実施例>
実施例1に係る窒化物半導体素子として、図2に示す上面視で700μm×300μmの窒化物半導体素子1を作製する。この窒化物半導体素子1は、サファイア基板10の上に、Siドープn型GaN系層(n型窒化物半導体層)21、活性層22、Mgドープp型GaN系層(p型窒化物半導体層)23を順に有する窒化物半導体層20が設けられている。Siドープn型GaN系層21は段差部を有し、段差部の上にはTi/Rh/W/Auをこの順に積層したn側電極31が設けられている。また、Mgドープp型GaN系層23上にはITOからなる全面電極32とTi/Rh/W/Auをこの順に積層したp側電極33とが設けられている。
実施例1に係る窒化物半導体発光素子1の製造方法について説明する。図2乃至図7は、それぞれ本発明の実施例1に係る窒化物半導体素子1の製造方法の一工程を示す概略断面図である。
まず、厚さ800μm、大きさ4インチのサファイア基板10の上に、n型不純物としてSiを含むGaN系層(以下、Siドープn型GaN系層ともいう)21を8μm、活性層22を0.07μm、p型不純物としてMgを含むGaN系層(以下、MgドープGaN系層ともいう)123を0.3μmこの順に積層して、窒化物半導体層120を備えるウェハ11を形成する(図2)。次に、窒化物半導体層120の表面の一部において、厚さ方向にMgドープGaN系層123及び活性層22の全て、及びSiドープn型GaN系層21の一部をエッチングにより除去し、Siドープn型GaN系層21に段差部を形成する。段差部上に、Siドープn型GaN系層21と電気的に接続されるTi/Rh/W/Auをこの順に積層したn側電極31を形成し、MgドープGaN系層123上に、MgドープGaN系層123と電気的に接続されるITOからなる全面電極32とTi/Rh/W/Auをこの順に積層したp側電極33とを形成する(図3)。そして、ウェハ11の上面を、外部電源と接続する部分(特に、n側電極31上面及びp側電極33上面)を除き、保護膜で被覆する(不図示)。そして、サファイア基板10を研削・研磨して、ウェハ11の厚さを150μmにする(図4)。
次に、ウェハ11のサファイア基板10側から、窒化物半導体素子1の分割予定線に沿って、フェムト秒レーザー光をサファイア基板10の内部、具体的には、サファイア基板10側から35μmの位置に集光させる(レーザースクライブ)(図5)。これにより、集光部に変質部41が形成される。詳細には、変質部41はサファイア基板10内の窒化物半導体層120の積層方向に対して直交する方向に、連続せず個々に形成される。また、個々の変質部41から、上下方向に伸びるクラック42が発生する。
次に、レーザースクライブ後のウェハ11を窒素雰囲気で400〜600℃程度でアニール処理する。これにより、MgドープGaN系層123内の水素を脱離させてMgを活性化し、低抵抗化されたMgドープp型GaN系層23を有する窒化物半導体層20を得る。
そして、ブレイキング刃を用いて、ウェハ11のサファイア基板10側からウェハ11に外力を加えることにより、上記で形成したレーザースクライブの線(分割予定線)に沿って分割し、個々の窒化物半導体素子1を得る(図7)。
本発明の製造方法により、窒化物半導体層20に損傷の無い窒化物半導体素子1を作製することができる。
また、窒化物半導体層20の損傷を防ぐことができるため、レーザー光の出力や走査速度を大きくすることが可能となり、厚いウェハ11の分割や、割断性とタクトの向上が期待できる。
以上、本発明に係る半導体発光素子及びその製造方法について、発明を実施するための形態により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変などしたものも本発明の趣旨に含まれることはいうまでもない。
本発明は、照明、ディスプレイ、光通信、OA機器などの光源に用いられる発光ダイオード(LED)、レーザーダイオード(LD)、その他の窒化物半導体素子を製造するために利用され得る。特に、本発明に従って得られる窒化物半導体素子は、ダウンライト、プロジェクタ、車載ヘッドライト、カメラフラッシュなどの点光源として利用可能である。但し、本発明はこれら用途に限定されるものではない。
1 窒化物半導体素子
10 基板
11 ウェハ
20、120 窒化物半導体層
21 n型窒化物半導体層
22 活性層(発光層)
23 p型窒化物半導体層
123 p型不純物を含む窒化物半導体層
31 n側電極
32 全面電極
33 p側電極
40 レーザー光
41 変質部
42 クラック

Claims (9)

  1. 基板と、前記基板上に設けられ、p型不純物を含む窒化物半導体層を有するウェハを準備する工程と、
    前記基板の内部にレーザー光を集光することにより、変質部を形成する工程と、
    前記変質部を形成する工程の後、前記ウェハをアニール処理して前記窒化物半導体層をp型化する工程と、
    を備える、ことを特徴とする窒化物半導体素子の製造方法。
  2. 前記変質部を形成する工程は、パルス幅が100ピコ秒以下であるパルスレーザーを用いことを特徴とする請求項1に記載の窒化物半導体素子の製造方法。
  3. 前記変質部を形成する工程において、レーザー光は前記基板側から照射することを特徴とする請求項1又は2に記載の窒化物半導体素子の製造方法。
  4. 前記ウェハを前記変質部を利用して分割することを特徴とする請求項1乃至のいずれか一項に記載の窒化物半導体素子の製造方法。
  5. 前記基板はサファイア基板であることを特徴とする請求項1乃至のいずれか一項に記載の窒化物半導体素子の製造方法。
  6. 前記p型不純物はマグネシウムであることを特徴とする請求項1乃至のいずれか一項に記載の窒化物半導体素子の製造方法。
  7. 前記ウェハは、基板、n型不純物を含む窒化物半導体層、前記p型不純物を含む窒化物半導体層をこの順に有していることを特徴とする請求項1乃至のいずれか一項に記載の窒化物半導体素子の製造方法。
  8. 前記パルス幅が100フェムト秒以上であるパルスレーザーを用いることを特徴とする請求項2に記載の窒化物半導体素子の製造方法。
  9. 前記基板の厚みが150μm以上200μm以下であることを特徴とする請求項1乃至8に記載の窒化物半導体素子の製造方法。
JP2013223810A 2013-10-29 2013-10-29 窒化物半導体素子の製造方法 Active JP6187156B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013223810A JP6187156B2 (ja) 2013-10-29 2013-10-29 窒化物半導体素子の製造方法
US14/526,740 US9559253B2 (en) 2013-10-29 2014-10-29 Method of manufacturing nitride semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013223810A JP6187156B2 (ja) 2013-10-29 2013-10-29 窒化物半導体素子の製造方法

Publications (2)

Publication Number Publication Date
JP2015088532A JP2015088532A (ja) 2015-05-07
JP6187156B2 true JP6187156B2 (ja) 2017-08-30

Family

ID=52995880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013223810A Active JP6187156B2 (ja) 2013-10-29 2013-10-29 窒化物半導体素子の製造方法

Country Status (2)

Country Link
US (1) US9559253B2 (ja)
JP (1) JP6187156B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873170B2 (en) 2015-03-24 2018-01-23 Nichia Corporation Method of manufacturing light emitting element
JP2017084939A (ja) * 2015-10-27 2017-05-18 パナソニックIpマネジメント株式会社 レーザー発光装置及び該レーザー発光装置を備える撮像装置
JP6789675B2 (ja) * 2016-06-02 2020-11-25 ローム株式会社 半導体発光素子およびその製造方法
JP7005890B2 (ja) * 2016-10-14 2022-01-24 株式会社リコー 半導体発光素子、照明装置、ヘッドライト、移動体、イルミネーション装置、映像装置、投射型映像装置及びプロジェクター。
US10505072B2 (en) 2016-12-16 2019-12-10 Nichia Corporation Method for manufacturing light emitting element
JP6669144B2 (ja) * 2016-12-16 2020-03-18 日亜化学工業株式会社 発光素子の製造方法
JP6504194B2 (ja) * 2017-03-31 2019-04-24 日亜化学工業株式会社 発光素子の製造方法
JP7169513B2 (ja) 2019-12-23 2022-11-11 日亜化学工業株式会社 発光素子の製造方法
JP7186357B2 (ja) * 2020-05-22 2022-12-09 日亜化学工業株式会社 半導体素子の製造方法および半導体素子
JP7089204B2 (ja) * 2020-06-09 2022-06-22 日亜化学工業株式会社 発光装置の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3362836B2 (ja) * 1997-12-26 2003-01-07 日亜化学工業株式会社 光半導体素子の製造方法
JP2002204036A (ja) * 2000-10-24 2002-07-19 Nichia Chem Ind Ltd 窒化物半導体レーザ素子、及びその製造方法
US7772605B2 (en) * 2004-03-19 2010-08-10 Showa Denko K.K. Compound semiconductor light-emitting device
JP2007087973A (ja) * 2005-09-16 2007-04-05 Rohm Co Ltd 窒化物半導体素子の製法およびその方法により得られる窒化物半導体発光素子
US20070298529A1 (en) 2006-05-31 2007-12-27 Toyoda Gosei, Co., Ltd. Semiconductor light-emitting device and method for separating semiconductor light-emitting devices
JP5232375B2 (ja) 2006-10-13 2013-07-10 アイシン精機株式会社 半導体発光素子の分離方法
US7795054B2 (en) * 2006-12-08 2010-09-14 Samsung Led Co., Ltd. Vertical structure LED device and method of manufacturing the same
JP4869101B2 (ja) * 2007-02-20 2012-02-08 株式会社豊田中央研究所 p型半導体結晶及びその結晶を用いた半導体素子
JP2010239005A (ja) 2009-03-31 2010-10-21 Kinki Univ 裏面照射型撮像素子の製造方法、その製造方法により製造された裏面照射型撮像素子及びそれを備えた撮像装置
JP2012114179A (ja) * 2010-11-24 2012-06-14 Hitachi Cable Ltd 発光素子
WO2012141031A1 (ja) * 2011-04-11 2012-10-18 日亜化学工業株式会社 半導体発光素子及びその製造方法
JP5589942B2 (ja) * 2011-04-15 2014-09-17 豊田合成株式会社 半導体発光チップの製造方法
JP5747743B2 (ja) * 2011-08-31 2015-07-15 日亜化学工業株式会社 発光素子の製造方法
JP5547143B2 (ja) * 2011-09-06 2014-07-09 株式会社ロゴスコーポレーション テーブル用の天板及びこれを備えた折り畳みテーブル
JP5848600B2 (ja) 2011-12-22 2016-01-27 シャープ株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
US20140353705A1 (en) * 2012-03-23 2014-12-04 Sharp Kabushiki Kaisha Semiconductor light emitting element, method of manufacturing semiconductor light emitting element, semiconductor light emitting device and substrate

Also Published As

Publication number Publication date
JP2015088532A (ja) 2015-05-07
US9559253B2 (en) 2017-01-31
US20150118775A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6187156B2 (ja) 窒化物半導体素子の製造方法
US8927348B2 (en) Method of manufacturing group-III nitride semiconductor light-emitting device, and group-III nitride semiconductor light-emitting device, and lamp
JP4592388B2 (ja) Iii−v族化合物半導体発光素子およびその製造方法
CN101467272B (zh) 氮化镓系化合物半导体发光元件
WO2016163083A1 (ja) 窒化物半導体発光素子
WO2010073539A1 (ja) 半導体発光素子及び半導体発光素子の製造方法、ランプ
JP2005259820A (ja) Iii−v族化合物半導体発光素子とその製造方法
JP2007287757A (ja) 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP2007258672A (ja) 発光ダイオード及びその製造方法
TW201603313A (zh) 發光裝置以及形成其之方法
TWI488333B (zh) LED element and manufacturing method thereof
JP2006278554A (ja) AlGaN系深紫外発光素子およびその製造方法
JP2022164879A (ja) 発光素子の製造方法
JP2007073789A (ja) 半導体発光素子用電極
US20130015480A1 (en) Semiconductor light emmiting device
KR102099440B1 (ko) 발광 소자의 제조 방법
KR20090115902A (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및제조방법
US20100038656A1 (en) Nitride LEDs based on thick templates
JP2011066061A (ja) 酸化亜鉛系半導体発光素子の製造方法及び酸化亜鉛系半導体発光素子
KR101119009B1 (ko) 이온주입에 의한 분리를 이용한 발광소자 제조 방법
US20140183589A1 (en) Method for manufacturing a semiconductor light-emitting element and semiconductor light-emitting element manufactured thereby
JP2006245555A (ja) 透光性電極
JP2020537360A (ja) 電子及び光電子デバイスのための窒化アルミニウム基板の電気化学的除去
JP2016018951A (ja) 半導体発光素子
JP5940315B2 (ja) 半導体発光素子及びその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150918

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R150 Certificate of patent or registration of utility model

Ref document number: 6187156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250