JP6177805B2 - シリコン精製の鋳型および方法 - Google Patents

シリコン精製の鋳型および方法 Download PDF

Info

Publication number
JP6177805B2
JP6177805B2 JP2014555747A JP2014555747A JP6177805B2 JP 6177805 B2 JP6177805 B2 JP 6177805B2 JP 2014555747 A JP2014555747 A JP 2014555747A JP 2014555747 A JP2014555747 A JP 2014555747A JP 6177805 B2 JP6177805 B2 JP 6177805B2
Authority
JP
Japan
Prior art keywords
crucible
silicon
temperature
molten metal
metal alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014555747A
Other languages
English (en)
Other versions
JP2015508744A (ja
JP2015508744A5 (ja
Inventor
アブダラ ヌーリ
アブダラ ヌーリ
チョンフイ チャン
チョンフイ チャン
カメル オウナジェラ
カメル オウナジェラ
Original Assignee
シリコー マテリアルズ インコーポレイテッド
シリコー マテリアルズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シリコー マテリアルズ インコーポレイテッド, シリコー マテリアルズ インコーポレイテッド filed Critical シリコー マテリアルズ インコーポレイテッド
Publication of JP2015508744A publication Critical patent/JP2015508744A/ja
Publication of JP2015508744A5 publication Critical patent/JP2015508744A5/ja
Application granted granted Critical
Publication of JP6177805B2 publication Critical patent/JP6177805B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/20Arrangement of controlling, monitoring, alarm or like devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Compounds (AREA)

Description

優先権の主張
本出願は、2012年2月1日に出願され参照によりその全体が本明細書に組み入れられる米国特許仮出願第61/593,573号に対する優先権の恩典を主張するものである。
背景
太陽電池は、太陽光を電気エネルギーに変換するその能力を利用することにより、実施可能なエネルギー源であり得る。シリコンは、半導体材料であり、太陽電池の製造において使用される受け入れ原材料である。この電池の電気特性、すなわち、変換効率は、シリコンの純度に依存する。シリコンを精製するために、いくつかの技術が使用されている。最も周知の技術は、「シーメンス法」と呼ばれている。この技術では、シリコン内に存在する実質的にすべての不純物が除去される。しかしながら、この技術は、不純物を除去するために、シリコンをガス相で生成して、固相に再堆積させる必要がある。他の技術としては、ゾーン精製および方向性凝固が挙げられる。
大量のシリコンを精製するために使用される多くの技術は、溶融シリコン溶液からシリコン結晶が凝固する間、望ましくない不純物がこの溶融溶液中に留まるという原理に基づいて行われる。例えば、フロートゾーン法を用いて、除去のために不純物を鋳型の端部へと追いやるための移動する液体を使用してシリコン単結晶インゴットを作製することができる。別の例の技術であるチョクラルスキー法を用いて、溶融溶液からゆっくりと引き上げられる種晶を使用してシリコン単結晶インゴットを作製することができ、この溶液中に不純物を残しつつ、シリコンの単結晶柱を形成することが可能である。さらなる例の技術、例えば、ブリッジマン法または熱交換法などを用いて、制御された冷却速度により温度勾配を生じさせて方向性凝固を生じさせることによってシリコンマルチ結晶インゴットを作製することができる。しかし、精製効率とコストにおける改善は常に望まれている。
概要
太陽電池用のシリコン結晶を作製する様々な技術では、精製作業の最中に溶融シリコンを保持するために、るつぼまたは鋳型が用いられる。精製作業における課題の1つは、精製の最中のるつぼ内の温度を正確に制御することである。1つの例では、溶融シリコン合金の温度が共晶温度未満に下がる場合に、望ましくない共晶相が形成され得る。この共晶相中に不純物がトラップされ得て、所望のシリコン純度に達するためにさらなる精製が必要となる場合がある。
本発明の鋳型、鋳型システム、および関連する方法は、分別凝固を用いてシリコンを精製するための手段を提供する。本鋳型、鋳型システム、および関連する方法では、結晶化の最中の温度勾配に対する制御が可能であり、これにより、太陽電池での使用のためのより高純度のシリコンがもたらされ得る。シリコン精製の方法は、溶融シリコン合金を冷却する工程、および、残存する溶融物中に不純物を残しつつ該溶融合金からシリコン結晶を析出させる工程を含み得る。さらに、シリコン精製方法は、析出したシリコンを溶融金属合金から分離する工程を含み得る。
本明細書において開示される鋳型、鋳型システム、および関連する方法をより良く示すために、非限定的な例の一覧を以下に提供する。
例1において、方法は、るつぼにおいて溶融金属合金を形成する工程であって、該合金がシリコンとの二成分共晶系を形成する、工程を含む。該方法はまた、溶融金属合金からシリコンを析出させるために、該溶融金属合金の少なくとも一部を液相線温度より低くかつ共晶温度より高い温度まで冷却する工程、該るつぼ内を該共晶温度より高い最低温度に維持するために、該るつぼ内の温度を制御する工程、および、析出した該シリコンを該溶融金属合金から分離する工程も含む。
例2において、例2の方法は任意で、るつぼ内の温度を制御する工程が、析出したシリコンが該るつぼの底部において濃縮されかつ残存する溶融金属合金が該るつぼの上側部分において濃縮されるように該るつぼ内の熱勾配を制御することをさらに含むように構成されている。
例3において、例1〜2のいずれか1つまたは任意の組み合わせの方法は任意で、るつぼにおいて溶融金属合金を形成する工程が、るつぼにおいてシリコン-アルミニウム合金を形成することを含むように構成されている。
例4において、例1〜3のいずれか1つまたは任意の組み合わせの方法は任意で、るつぼにおいて溶融金属合金を形成する工程が、およそ60重量%〜22重量%がシリコンであり残りが実質的にアルミニウムである出発組成でシリコン-アルミニウム合金を形成することを含むように構成されている。
例5において、例1〜4のいずれか1つまたは任意の組み合わせの方法は任意で、るつぼにおいて溶融金属合金を形成する工程が、およそ50重量%〜30重量%がシリコンであり残りが実質的にアルミニウムである出発組成でシリコン-アルミニウム合金を形成することを含むように構成されている。
例6において、例1〜5のいずれか1つまたは任意の組み合わせの方法は任意で、冷却する工程が、るつぼ内の温度をおよそ577℃〜1100℃の範囲に維持する工程を含むように構成されている。
例7において、例1〜6のいずれか1つまたは任意の組み合わせの方法は任意で、冷却する工程が、るつぼ内の温度をおよそ720℃〜1100℃の範囲に維持することを含むように構成されている。
例8において、例1〜7のいずれか1つまたは任意の組み合わせの方法は任意で、冷却する工程が、るつぼ内の温度をおよそ650℃〜960℃の範囲に維持することを含むように構成されている。
例9において、例1〜8のいずれか1つまたは任意の組み合わせの方法は任意で、るつぼ内の温度を制御する工程が、該るつぼの上部を覆うことを含むように構成されている。
例10において、方法は、るつぼにおいて溶融金属合金を形成する工程であって、該合金がシリコンとの二成分共晶系を形成する、工程、該溶融金属合金からシリコンを析出させるために、該溶融金属合金を液相線温度より低くかつ共晶温度より高い温度まで冷却する工程、該るつぼ内を該共晶温度より高い最低温度に維持するために、該るつぼを能動的に加熱する工程、ならびに、析出した該シリコンを該溶融金属合金から分離する工程を含む。
例11において、例10の方法は任意で、るつぼにおいて溶融金属合金を形成する工程が、該るつぼにおいてシリコン-アルミニウム合金を形成することを含むように構成されている。
例12において、例10〜11のいずれか1つまたは任意の組み合わせの方法は任意で、るつぼを能動的に加熱する工程が、該るつぼの上面を加熱することを含むように構成されている。
例13において、例10〜12のいずれか1つまたは任意の組み合わせの方法は任意で、るつぼを能動的に加熱する工程が、該るつぼの側部を加熱することを含むように構成されている。
例14において、例10〜13のいずれか1つまたは任意の組み合わせの方法は任意で、るつぼを能動的に加熱する工程が、該るつぼの上面を加熱することを含むように構成されている。
例15において、シリコン精製システムは、複数のるつぼ内張り層を備える、るつぼと、該るつぼの少なくとも一部内の温度を制御するための、該るつぼに隣接して位置する加熱システムと、作動中の場合に該るつぼ内を二成分シリコン合金の共晶温度より高い最低温度に維持するように構成された、加熱システムコントローラーとを備える。
例16において、例15のシステムは任意で、加熱システムが上部ヒーターを備えるように構成されている。
例17において、例15〜16のいずれか1つまたは任意の組み合わせのシステムは任意で、上部ヒーターが金属シェル内に耐熱性層を備えるように構成されている。
例18において、例15〜17のいずれか1つまたは任意の組み合わせのシステムは任意で、加熱システムが側部ヒーターを備えるように構成されている。
例19において、例15〜18のいずれか1つまたは任意の組み合わせのシステムは任意で、加熱システムが上部ヒーターを備えるように構成されている。
例20において、例15〜19のいずれか1つまたは任意の組み合わせのシステムは任意で、複数のるつぼ内張り層が、耐熱性内張りを有する金属シェルをSiC底部層とともに備えるように、構成されている。
例21において、例15〜20のいずれか1つまたは任意の組み合わせのシステムは任意で、加熱システムが上部カバーを備えるように構成されている。
例22において、例15〜21のいずれか1つまたは任意の組み合わせのシステムは任意で、加熱システムコントローラーがおよそ720℃〜1100℃の範囲内において作動するように構成されるように、構成されている。
例23において、例15〜22のいずれか1つまたは任意の組み合わせのシステムは任意で、析出したシリコンを溶融二成分シリコン合金内から取り出すためのすくい上げシステムをさらに備えるように構成されている。
[本発明1001]
るつぼにおいて溶融金属合金を形成する工程であって、該合金がシリコンとの二成分共晶系を形成する、工程;
該溶融金属合金からシリコンを析出させるために、該溶融金属合金の少なくとも一部を液相線温度より低くかつ共晶温度より高い温度まで冷却する工程;
該るつぼ内を該共晶温度より高い最低温度に維持するために、該るつぼ内の温度を制御する工程;
該るつぼの壁部より高い熱伝導性を有する熱伝導性材料を含む底面から優先的に、該るつぼを冷却する工程;および
析出した該シリコンを該溶融金属合金から分離する工程
を含む、方法。
[本発明1002]
るつぼにおいて溶融金属合金を形成する工程が、るつぼにおいてシリコン-アルミニウム合金を形成することを含む、本発明1001の方法。
[本発明1003]
るつぼにおいて溶融金属合金を形成する工程が、およそ60重量%〜22重量%がシリコンであり残りが実質的にアルミニウムである出発組成でシリコン-アルミニウム合金を形成することを含む、本発明1002の方法。
[本発明1004]
るつぼにおいて溶融金属合金を形成する工程が、およそ50重量%〜30重量%がシリコンであり残りが実質的にアルミニウムである出発組成でシリコン-アルミニウム合金を形成することを含む、本発明1002の方法。
[本発明1005]
冷却する工程が、前記るつぼ内の温度をおよそ577℃〜1100℃の範囲に維持することを含む、本発明1002の方法。
[本発明1006]
冷却する工程が、前記るつぼ内の温度をおよそ720℃〜1100℃の範囲に維持することを含む、本発明1002の方法。
[本発明1007]
冷却する工程が、前記るつぼ内の温度をおよそ650℃〜960℃の範囲に維持することを含む、本発明1002の方法。
[本発明1008]
前記るつぼ内の温度を制御する工程が、該るつぼの上部を覆うことを含む、本発明1001の方法。
[本発明1009]
るつぼにおいて溶融金属合金を形成する工程であって、該合金がシリコンとの二成分共晶系を形成する、工程;
該溶融金属合金からシリコンを析出させるために、該溶融金属合金を液相線温度より低くかつ共晶温度より高い温度まで冷却する工程;
該るつぼ内を該共晶温度より高い最低温度に維持するために、該るつぼを能動的に加熱する工程;
該るつぼの壁部より高い熱伝導性を有する熱伝導性材料を含む底面から優先的に、該るつぼを冷却する工程;および
析出した該シリコンを該溶融金属合金から分離する工程
を含む、方法。
[本発明1010]
るつぼにおいて溶融金属合金を形成する工程が、るつぼにおいてシリコン-アルミニウムを形成することを含む、本発明1009の方法。
[本発明1011]
前記るつぼを能動的に加熱する工程が、該るつぼの上面を加熱することを含む、本発明1009の方法。
[本発明1012]
前記るつぼを能動的に加熱する工程が、該るつぼの側部を加熱することを含む、本発明1009の方法。
[本発明1013]
前記るつぼを能動的に加熱する工程が、該るつぼの上面を加熱することを含む、本発明1012の方法。
[本発明1014]
複数のるつぼ内張り層を備え、該複数のるつぼ内張り層が、耐熱性内張りを有する金属シェルをSiC底部層とともに備える、るつぼと、
該るつぼの少なくとも一部内の温度を制御するための、該るつぼに隣接して位置する加熱システムと、
作動中の場合に該るつぼ内を二成分シリコン合金共晶温度より高い最低温度に維持するように構成された、加熱システムコントローラーと
を備える、シリコン精製システム。
[本発明1015]
前記加熱システムが上部ヒーターを備える、本発明1014のシリコン精製システム。
[本発明1016]
前記上部ヒーターが、金属シェル内に耐熱性層を備える、本発明1015のシリコン精製システム。
[本発明1017]
前記加熱システムが側部ヒーターを備える、本発明1014のシリコン精製システム。
[本発明1018]
前記加熱システムが上部ヒーターを備える、本発明1016のシリコン精製システム。
[本発明1019]
前記加熱システムが上部カバーを備える、本発明1014のシリコン精製システム。
[本発明1020]
前記加熱システムコントローラーが、およそ720℃〜1100℃の範囲内において作動するように構成されている、本発明1014のシリコン精製システム。
[本発明1021]
析出したシリコンを溶融二成分シリコン合金内から取り出すためのすくい上げシステムをさらに備える、本発明1014のシリコン精製システム。
本発明の鋳型、鋳型システム、および関連する方法のこれらの例および他の例ならびに特徴については、以下の詳細な説明においてその一部を説明する。これらの概説は、本発明の主題の非限定的な例を提供することを意図するものであり、排他的または包括的な説明を提供することを意図するものではない。以下の詳細な説明は、本発明の鋳型、鋳型システム、および方法についてのさらなる情報を提供するために含められている。
図面において、いくつかの図を通じて同様の要素を説明するために、同じ番号が使用されている。異なる添え字を有する同じ番号は、同様の要素の異なる図を表すために使用されている。図面は全体として、一例としてではあるが限定としてではなく、本明細書で説明される様々な態様を示している。
本発明の少なくとも1つの態様による二成分状態図を示す。 本発明の少なくとも1つの態様による鋳型の断面図を示す。 本発明の少なくとも1つの態様による鋳型の断面図を示す。 本発明の少なくとも1つの態様によるシステムの断面図を示す。 図5A〜5Dは、本発明の少なくとも1つの態様による鋳型を使用した、シリコンの一連のモデル化された冷却プロファイルを示す。 図6A〜6Eは、本発明の少なくとも1つの態様による鋳型を使用した、シリコンの別の一連のモデル化された冷却プロファイルを示す。 本発明の少なくとも1つの態様による例示の方法の流れ図を示す。
詳細な説明
以下の詳細な説明では、添付の図面について言及する。図面は、説明の一部を形成し、実例として提供されるが、限定としてではない。図示される態様は、当業者により本発明の主題を実施することを可能するのに十分詳細に記述されている。本発明の範囲から逸脱することなく、他の態様を用いることができ、かつ機械的、構造的、物質的変更が可能である。
開示される主題のある特定の例についてここで詳細に言及するが、この例のいくつかは、添付の図面に示されている。開示される主題を主として、添付の図面と併せて説明するが、そのような説明は、開示される主題をそれらの図面に限定することを意図するものではないことは理解されるべきである。逆に、開示される主題は、特許請求の範囲によって定義されるような、開示される本主題の範囲内に含まれ得る代替物、改変物、および等価物のすべてを網羅することが意図される。
「一態様」、「ある態様」、「例示の態様」などに対する明細書においての言及は、説明される態様が特定の特徴、構造、または特性を含み得ることを示しているが、必ずしも全ての態様が特定の特徴、構造、または特性を含み得るわけではない。さらに、そのような表現は、必ずしも同じ態様について言及しているとは限らない。さらに、特定の特徴、構造、または特性が、ある態様に関連して説明されている場合、明確に説明されているか否かにかかわらず、他の態様に関連するそのような特徴、構造、または特性にも影響を及すことは、当業者の知識の範囲内であると言える。
本明細書において、「1つの(a)」または「1つの(an)」という用語は、1つまたは複数を包含するために使用され、と「または(or)」いう用語は、特に明記されない限り、非排他的な「または(or)」を意味するために使用される。さらに、本明細書において使用される表現または専門用語は、特に定義されない限り、説明目的のみのためであり、限定目的ではないことは、理解されるべきである。
本主題は、分別凝固技術を使用してシリコンを精製するための鋳型、鋳型システム、および関連する方法に関する。分別凝固から結果として生じる精製シリコンは、太陽電池において使用することができる。鋳型内の温度および温度勾配を制御することにより、高度に制御された分別凝固を達成することができることが見出された。シリコンの精製は、以下の例において最も詳細に説明されるが、説明されるシステムおよび方法は、サファイアなどの他の材料の分別凝固および精製のためにも使用することができる。
一つの例において、不純物を含むシリコン出発材料を使用して溶融シリコン合金が形成される。精製プロセスにおいて、シリコンが、溶融シリコン合金から析出される(例えば、部分的に凝固される)。一つの例において、溶融シリコン合金は二成分合金であるが、本発明はそれに限定されない。一つの例において、シリコン出発材料に由来する不純物は、ある量の残存する溶融合金中に留まり、その一方で、析出したシリコンは実質的に純粋である。一つの例において、溶融シリコン合金は、下記において説明されるように、二成分シリコン-アルミニウム合金である。
図1は、シリコンおよびアルミニウムの二成分状態図を示している。X軸は、合金中のシリコンの量を示しており、重量パーセント(重量%)の単位で表されている。状態図の点102は、シリコンがゼロ重量%である100%のアルミニウム材料を示している。点104は、アルミニウムがゼロ重量%である100%のアルミニウム材料のシリコン材料を示している。固相線106が、アルミニウム-シリコンの場合の577℃の共晶温度において示されており、共晶点108が共晶温度上で示されかつ、シリコンがおよそ12.6重量%の組成を有する。液相線110は、純粋なシリコンの場合のおよそ1414℃の温度から共晶点の577℃へと下降しているのが示されている。
およそ60重量%のシリコンからおよそ22重量%のシリコンまでの組成範囲112も、図1に示されている。一つの例において、組成範囲112は、およそ42重量%のシリコンからおよそ22重量%のシリコンまでである。一つの例において、初期組成は、22重量%より高いシリコン重量%において開始され、選択された組成の液相線110より上の温度から進行する。るつぼ内において冷却が進行すると、温度が液相線110と交差し、結晶性シリコンフレークが溶融物中に形成され始め、残りの液体の組成は、矢印126で示されるように、液相線に沿って下降する。例えば、60重量%のシリコン濃度による合金の初期濃度は、冷却された場合、矢印126によって示されるように、液相線110に沿って進行する。温度124では、ある量のシリコンフレークが溶融合金から部分的に析出し、それにより、点122によって示されるように、残りの液体の濃度は、50重量%のシリコンとなる。
シリコン出発材料中に存在していた可能性がある不純物は、実質的にもしくは完全に、液体画分中に残存し得、その一方で、析出したシリコンフレークは、実質的に純粋なシリコンである。シリコンフレークは、収集され、かつ残存する溶融物から分離され得る。このようにして、シリコン出発材料中の不純物を取り除いて、実質的に純粋なシリコンを得ることができる。収集されたシリコンフレークはさらに、任意の残存する不純物を除去するために処理され得るか、または、電子デバイス、例えば光起電装置などを作製するために溶融および再形成され得る。
一つの例において、任意の残存する不純物を除去するためのさらなる処理は、上記において説明した分別凝固技術を繰り返し実施することを含み得る。一つの例において、任意の残存する不純物を除去するためのさらなる処理は、シリコンフレークを洗浄してすべての溶融合金残留物を除去することを含み得る。洗浄工程に関する一つの例は、酸洗浄作業を含み得る。一つの例において、上記において説明した分別凝固技術に加えて、他の処理技術を使用してもよく、例えば、説明した分別凝固技術の前もしくは後に、方向性凝固を用いてもよい。一つの例において、複数の処理作業の後、シリコンは、電子デバイス、例えば光起電装置などを作製するために、溶融および再形成される。
図2は、側部202および底部204を有するるつぼ200を示している。多数のシリコンフレーク206が、残存する液体部分208と共に示されている。るつぼ200の側部202に隣接して形成されたシリコンフレークのゾーン212と、るつぼ200の中央部分におけるシリコンフレークのゾーン214とを示すために、点線210が描かれている。
液体部分が共晶温度未満に冷却されると、ラメラ微細構造を示す固相が形成される。ラメラ微細構造は、シリコンおよびアルミニウムがお互いに挟装された複数の層を構成内に含有しかつアルミニウムからシリコンを分離するのが困難であるため、ラメラ微細構造は望ましくない。溶融物を共晶温度未満に冷却せずに溶融物から析出するシリコンフレークの画分を増加させることが、望ましい。
一つの例では、図2に示された冷却段階において、シリコンフレーク206が液体部分208から分離される。一つの例において、分離工程は、シリコンフレーク206を収集すること、およびそれらを液体部分208から取り除くことを含む。一つの例において、シリコンフレークの収集のため、液体部分208が注ぎ出されて、シリコンフレーク206が、るつぼ内に残存している。
図3は、本発明の態様によるるつぼ300を示している。金属シェル306内に収容された複数の異なる材料の層が示されている。一つの例において、複数のフィン308が、該金属シェル306に連結されている。一つの例において、該フィン308は、熱伝達のための増加した表面積を提供する。一つの例において、該フィン308は、金属シェル306のための構造支持体および取扱表面を提供する。
一つの例において、材料310は、(メートル(m)×ケルビン度(K))あたりおよそ2.5ワット(W)=2.5W/(mK)の熱伝導特性を有する。一つの例において、材料312は、およそ0.20W/(mK)の熱伝導特性を有する。一つの例において、材料314は、およそ0.05W/(mK)の熱伝導特性を有する。一つの例において、少なくとも底部分312は、およそ8W/(mK)の熱伝導特性を有する材料を含む。一つの例において、底部分312は、シリコンカーバイド(SiC)を含む。
以下においてより詳細に説明されるように、一つの例において、るつぼ300内の溶融物は、優先的に底部から冷却される。底部分312にSiCを含む構成は、優先的に底部から冷却するのに適している。
図4は、本発明の態様によるシステム400を示している。るつぼ401が示されている。一つの例において、るつぼ401は、図3に示されるようなるつぼ300に類似している。システム400は、カバー402を備える。一つの例において、カバーは、冷却中にるつぼ401内の熱を維持するのに適している。一つの例において、カバー402は、金属シェル内に断熱層を備える。一つの例において、該カバーは、冷却作業の最中に受動的断熱体を提供する。
一つの例において、カバー402は、1つまたは複数の加熱要素、例えば、抵抗加熱要素などを備える。選択された実施形態において、るつぼ401の上部の温度は、受動的断熱体または能動的加熱要素のどちらかを使用して制御され、その一方で、るつぼ401の底部は優先的に、例えば、システムの壁部またはカバー402より高い熱伝導性の材料を使用して冷却される。
一つの例において、るつぼ401の壁部は、1つまたは複数の側部ヒーター404を使用して加熱される。図4に示される側部ヒーター404は、るつぼ401の壁部の温度を制御ために使用される多数の抵抗加熱要素406を備える。一つの例において、側部ヒーター404はまた、るつぼ401の壁部の温度を維持するために、追加の断熱体、例えば耐熱性材料なども備える。
システム400は、るつぼ401に対して複数の温度制御を提供する。制御の1つとしては、望ましくない共晶相の成長を防ぐかまたは減じるための、選択された表面の温度を制御する能力が挙げられる。別の制御としては、るつぼ内の温度勾配を制御する能力が挙げられる。温度勾配が一貫性のあるほど、提供されるシリコンフレークの析出効率は高くなり得、かつ収率も高くなり得る。るつぼ内の溶融合金が、共晶温度付近の狭い温度勾配内の一貫した温度に維持されると、より多くのシリコンが析出し、かつ望ましくない共晶相の形成が少ない。
一つの例において、上面および壁面などの表面は、最適な表面温度制御を提供するために、別々に制御される。一つの例において、るつぼ401の底部は、るつぼ401の底部におけるより高熱伝導性の材料、ならびにるつぼ401の底部に隣接する任意の能動的加熱要素の不在などの要因の結果として、より急速に冷却され得る。るつぼ401の底部を冷却する選択された利点は、以下においてより詳細に説明される。
図5A〜5Dは、側部ヒーター、上部カバー、または上部ヒーターなどの要素を用いないるつぼ500内での溶融合金502のモデル化された冷却工程を示している。図5A〜5Dにおいてモデル化されたるつぼ500は、るつぼの壁部より高い熱伝導性の底部材料を含まない。
図5Aにおいて、るつぼ500内の実質的にすべての合金材料が、溶融シリコン合金502である。図5Bにおいて、冷却後、ある量の固体材料501が、るつぼ500の上面504および側部506において形成されており、ある量の溶融合金502が、るつぼ500の中央内に残存している。るつぼの底部508は、実質的に溶融状態のままである。
冷却が進行するに従い、図5Cには、るつぼの上部504および側部506での固体材料501の成長が示されている。底部508は、るつぼ500の中央部と共に、実質的に溶融状態のままである。図5Dでは、るつぼ内の固体材料の画分が実質的に増加し、上部504、側部506、および底部508の全てにおいて、固体材料501が形成され、残存する溶融部分502が、るつぼの中央に位置している。
この構成において、残存する溶融部分502は、るつぼ内にトラップされている。残存する溶融部分502内に留まる不純物は、るつぼ内の残りの固体部分から分離するのが困難である場合がある。
図6A〜6Eは、側部ヒーター、上部カバー、上部ヒーター、およびるつぼ600の側部よりも熱伝導性の高い底部などの特徴を含む、本発明の1つまたは複数の態様によるるつぼ600内での溶融合金602のモデル化された冷却工程を示している。
図6Aにおいて、るつぼ600内の実質的にすべての合金材料が、溶融シリコン合金602である。図6Bでは、冷却後、ある量の固体材料601が底部608において形成されており、少量の固体材料601が、るつぼ600の側部606に沿って形成されている。るつぼの底部608におけるより高熱伝導性の層、例えばシリコンカーバイドなどが、底部608での優先的な冷却を促進する。るつぼ600の上部604および中央部は、実質的に溶融状態のままである。
冷却が進行するに従い、図6Cには、底部608での固体材料601の成長が示されており、るつぼ600の側部606での成長は最小であり、上部604では実質的に成長していない。図6Dにおいて、るつぼ内の固体材料601の画分は、主に底部608から、およびいくらかは側部606から、上部604に向かって上方へと実質的に増加している。上部604は、実質的に溶融材料602のままである。
図6Eでは、溶融材料602のより大きな画分が固体材料601へと凝固しており、るつぼ600の上部604の近くにある残存する溶融部分602が残されている。一つの例において、固体材料601は、主にシリコンからなり、シリコンは、シリコン合金の共晶温度より高い温度において溶融材料602から析出したものである。受動的断熱体、ならびに/または、るつぼの上部604および側部606などの表面における能動的ヒーターなどの特徴を用いることによって、るつぼ内の温度は厳密に制御される。共晶温度より上での表面温度の厳密な制御により、るつぼの側部606、底部608、または上部604において共晶相がわずかしか析出しないかもしくは全く析出しないことが確保される。さらに、温度勾配の厳密な制御により、望ましくない共晶相材料を生じることなく、溶融材料602から析出したシリコンの収率が向上する。
さらに、るつぼの上部604付近の溶融材料602により、溶融材料602および溶融材料602内の任意の溶存不純物を分離することがより容易となり得る。一つの例において、溶融材料602は、るつぼ600から注ぎ出すことができる。一つの例において、固体材料601は、スコープシステム、例えば、篩、またはスロット状のスコープ、またはブレードなどを使用して、るつぼ600からすくい出すことができる。一つの例において、溶融材料602の注ぎ出しと精製された固体材料601のすくい出しとの組み合わせが使用され得る。上記の例において説明したように、不純物は、溶融材料602の溶液中に留まり、その一方で、析出したシリコン固体材料601は、実質的に純粋である。
図7は、選択された上記の例から説明した方法の流れ図を示している。作業702において、溶融金属合金が、シリコンとの二成分共晶合金を形成するために、るつぼ内で形成される。上記において説明したように、合金の1つとして、アルミニウム-シリコン合金が挙げられる。作業704において、溶融金属合金からシリコンを析出させるために、溶融金属合金の少なくとも一部が、液相線温度より低くかつ共晶温度より高い温度まで冷却される。作業706において、るつぼ内を共晶温度より高い最低温度に維持するためにるつぼ内の温度が制御され、かつ、作業708において、析出したシリコンが溶融金属合金から分離される。
本主題のいくつかの態様について説明してきたが、上記の態様は、包括的であることを意図するものではない。示された特定の態様の代わりに、鋳型全体を通しての固体-液体界面の一貫した進行を維持しつつ、方向性凝固技術を使用してシリコンの精製を達成するために構成された任意の配置を用いることができることを、当業者は理解するであろう。上記の態様の組み合わせおよび他の態様は、上記の説明を吟味することにより、当業者に明らかとなるであろう。本出願は、本発明の主題のあらゆる適合例または変更例を網羅することが意図される。上記の説明は、例示を意図するものであり、制限を意図するものではないことは理解されたい。

Claims (16)

  1. るつぼにおいて溶融金属合金を形成する工程であって、該合金がシリコンとの二成分共晶系を形成する、工程;
    該溶融金属合金からシリコンを析出させるために、該溶融金属合金の少なくとも一部を液相線温度より低くかつ共晶温度より高い温度まで冷却する工程;
    該るつぼ内を該共晶温度より高い最低温度に維持するために、該るつぼ内の温度を制御する工程;
    該溶融金属合金の上面を該溶融金属合金の上面に隣接する該共晶温度より高い最低温度に維持するために、少なくとも該溶融金属合金の上面を能動的に加熱する工程;
    該るつぼの壁部より高い熱伝導性を有する熱伝導性材料を含むるつぼの底面から優先的に、該溶融金属合金を冷却する工程;および
    析出した該シリコンを該溶融金属合金から分離する工程
    を含む、方法。
  2. るつぼにおいて溶融金属合金を形成する工程が、るつぼにおいてシリコン-アルミニウム合金を形成することを含む、請求項1に記載の方法。
  3. るつぼにおいて溶融金属合金を形成する工程が、60重量%〜22重量%がシリコンであり残りがアルミニウムである出発組成でシリコン-アルミニウム合金を形成することを含む、請求項2に記載の方法。
  4. るつぼにおいて溶融金属合金を形成する工程が、50重量%〜30重量%がシリコンであり残りがアルミニウムである出発組成でシリコン-アルミニウム合金を形成することを含む、請求項2に記載の方法。
  5. 冷却する工程が、前記るつぼ内の温度を577℃〜1100℃の範囲に維持することを含む、請求項2に記載の方法。
  6. 冷却する工程が、前記るつぼ内の温度を720℃〜1100℃の範囲に維持することを含む、請求項2に記載の方法。
  7. 冷却する工程が、前記るつぼ内の温度を650℃〜960℃の範囲に維持することを含む、請求項2に記載の方法。
  8. 前記るつぼ内の温度を制御する工程が、該るつぼの上部を覆うことを含む、請求項1に記載の方法。
  9. るつぼにおいて溶融金属合金を形成する工程であって、該合金がシリコンとの二成分共晶系を形成する、工程;
    該溶融金属合金からシリコンを析出させるために、該溶融金属合金を液相線温度より低くかつ共晶温度より高い温度まで冷却する工程;
    該溶融金属合金の上面を溶融金属合金の上面に隣接する該共晶温度より高い最低温度に維持するために、該溶融金属合金の上面を能動的に加熱する工程;
    該るつぼの壁部より高い熱伝導性を有する熱伝導性材料を含むるつぼの底面から優先的に、該溶融金属合金を冷却する工程;および
    析出した該シリコンを該溶融金属合金から分離する工程
    を含む、方法。
  10. るつぼにおいて溶融金属合金を形成する工程が、るつぼにおいてシリコン-アルミニウムを形成することを含む、請求項9に記載の方法。
  11. 前記るつぼを能動的に加熱する工程が、該るつぼの側部を加熱することを含む、請求項9に記載の方法。
  12. 複数のるつぼ内張り層を備え、該複数のるつぼ内張り層が、耐熱性内張りを有する金属シェルをSiC底部層とともに備える、るつぼと、
    二成分シリコン合金の上面の温度を制御するための、上部ヒーターを備える加熱システムと、
    該るつぼの壁部より高い熱伝導性を有する熱伝導性材料から形成された、るつぼの底面と、
    作動中の場合に該二成分シリコン合金の上面を二成分シリコン合金共晶温度より高い最低温度に維持するように構成された、加熱システムコントローラーと
    を備える、シリコン精製システム。
  13. 前記上部ヒーターが、金属シェル内に耐熱性層を備える、請求項12に記載のシリコン精製システム。
  14. 前記加熱システムが側部ヒーターを備える、請求項12に記載のシリコン精製システム。
  15. 前記加熱システムコントローラーが、720℃〜1100℃の範囲内において作動するように構成されている、請求項12に記載のシリコン精製システム。
  16. 析出したシリコンを溶融二成分シリコン合金内から取り出すためのすくい上げシステムをさらに備える、請求項12に記載のシリコン精製システム。
JP2014555747A 2012-02-01 2013-02-01 シリコン精製の鋳型および方法 Active JP6177805B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261593573P 2012-02-01 2012-02-01
US61/593,573 2012-02-01
PCT/US2013/024333 WO2013116640A1 (en) 2012-02-01 2013-02-01 Silicon purification mold and method

Publications (3)

Publication Number Publication Date
JP2015508744A JP2015508744A (ja) 2015-03-23
JP2015508744A5 JP2015508744A5 (ja) 2016-03-10
JP6177805B2 true JP6177805B2 (ja) 2017-08-09

Family

ID=47716173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014555747A Active JP6177805B2 (ja) 2012-02-01 2013-02-01 シリコン精製の鋳型および方法

Country Status (8)

Country Link
US (1) US9617618B2 (ja)
EP (1) EP2809615A1 (ja)
JP (1) JP6177805B2 (ja)
KR (1) KR102044450B1 (ja)
CN (2) CN110054189A (ja)
BR (1) BR112014018669A2 (ja)
TW (1) TWI627131B (ja)
WO (1) WO2013116640A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI627131B (zh) 2012-02-01 2018-06-21 美商希利柯爾材料股份有限公司 矽純化之模具及方法
CN107585770A (zh) * 2016-12-07 2018-01-16 安徽爱森能源有限公司 一种硅的提纯方法
CN106914609B (zh) * 2017-04-27 2019-06-28 重庆大学 一种铝合金熔体加热保温方法
RU2702173C1 (ru) * 2018-12-25 2019-10-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Способ повышения эффективности очистки кремния

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1194484A (fr) * 1958-01-24 1959-11-10 Electro Chimie Soc D Procédé d'obtention de silicium pur par cristallisation fractionnée
US4193975A (en) * 1977-11-21 1980-03-18 Union Carbide Corporation Process for the production of improved refined metallurgical silicon
US4256717A (en) * 1979-05-24 1981-03-17 Aluminum Company Of America Silicon purification method
US4312847A (en) * 1979-05-24 1982-01-26 Aluminum Company Of America Silicon purification system
US4643833A (en) * 1984-05-04 1987-02-17 Siemens Aktiengesellschaft Method for separating solid reaction products from silicon produced in an arc furnace
FR2827592B1 (fr) * 2001-07-23 2003-08-22 Invensil Silicium metallurgique de haute purete et procede d'elaboration
WO2007112592A1 (en) * 2006-04-04 2007-10-11 6N Silicon Inc. Method for purifying silicon
CN101479410A (zh) 2006-06-23 2009-07-08 Rec斯坎沃佛股份有限公司 用于使半导体级多晶硅锭料定向凝固的方法和坩埚
US20100143231A1 (en) 2007-03-19 2010-06-10 Mnk-Sog Silicon, Inc. Method and Apparatus for Manufacturing Silicon Ingot
EP2198077B1 (en) 2007-10-03 2017-05-17 Silicor Materials Inc. Method for processing silicon powder to obtain silicon crystals
US20090297774A1 (en) 2008-05-28 2009-12-03 Praveen Chaudhari Methods of growing heterepitaxial single crystal or large grained semiconductor films and devices thereon
EP2379975B1 (en) * 2008-12-26 2015-04-01 Inductotherm Corp. Heating and melting of materials by electric induction heating of susceptors
NO329987B1 (no) 2009-02-26 2011-01-31 Harsharn Tathgar Halvkontinuerlig fremgangsmate for dannelse, separasjon og smelting av store, rene silisiumkrystaller
US8562932B2 (en) 2009-08-21 2013-10-22 Silicor Materials Inc. Method of purifying silicon utilizing cascading process
GB2479165A (en) 2009-10-14 2011-10-05 Rec Wafer Norway As Reusable crucible
IT1396761B1 (it) * 2009-10-21 2012-12-14 Saet Spa Metodo e dispositivo per l'ottenimento di un materiale semiconduttore multicristallino, in particolare silicio
TWI627131B (zh) 2012-02-01 2018-06-21 美商希利柯爾材料股份有限公司 矽純化之模具及方法

Also Published As

Publication number Publication date
BR112014018669A2 (pt) 2019-09-24
US20150128764A1 (en) 2015-05-14
EP2809615A1 (en) 2014-12-10
TWI627131B (zh) 2018-06-21
TW201345837A (zh) 2013-11-16
CN104093666A (zh) 2014-10-08
KR102044450B1 (ko) 2019-11-13
JP2015508744A (ja) 2015-03-23
US9617618B2 (en) 2017-04-11
CN110054189A (zh) 2019-07-26
KR20140120362A (ko) 2014-10-13
WO2013116640A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
AU2006255886B2 (en) Method and apparatus for refining a molten material
JP5496674B2 (ja) 指向性凝固による金属シリコンの精製方法
EP2640874B1 (en) Apparatus and method for directional solidification of silicon
JP6177805B2 (ja) シリコン精製の鋳型および方法
CN102774839A (zh) 硅提纯法
CN102351188B (zh) 针状高纯硅聚集体的制备方法及其设备
TWI498282B (zh) 適用在用於純化矽之定向凝固之助熔劑組合物及其方法
WO2011116660A1 (zh) 提纯硅的方法
JP6401051B2 (ja) 多結晶シリコンインゴットの製造方法
CN104071790A (zh) 电磁搅拌硅合金熔体硅提纯装置及方法
EP2890636B1 (en) Method of directional solidification with reactive cover glass over molten silicon
JP4863635B2 (ja) 多結晶シリコンインゴットの鋳造方法
TW201402881A (zh) 用於純化矽之作為耐火表面之襯裏
CN108328618A (zh) 一种电磁感应定向凝固分离硅中硬质夹杂的方法
WO2017096563A1 (zh) 一种硅的工业提纯方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170712

R150 Certificate of patent or registration of utility model

Ref document number: 6177805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250