JP6123559B2 - 発光サイリスタ、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置、発光サイリスタおよび自己走査型発光素子アレイの製造方法 - Google Patents

発光サイリスタ、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置、発光サイリスタおよび自己走査型発光素子アレイの製造方法 Download PDF

Info

Publication number
JP6123559B2
JP6123559B2 JP2013164007A JP2013164007A JP6123559B2 JP 6123559 B2 JP6123559 B2 JP 6123559B2 JP 2013164007 A JP2013164007 A JP 2013164007A JP 2013164007 A JP2013164007 A JP 2013164007A JP 6123559 B2 JP6123559 B2 JP 6123559B2
Authority
JP
Japan
Prior art keywords
layer
current confinement
thyristor
light
confinement layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013164007A
Other languages
English (en)
Other versions
JP2015032812A (ja
Inventor
秀樹 福永
秀樹 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2013164007A priority Critical patent/JP6123559B2/ja
Publication of JP2015032812A publication Critical patent/JP2015032812A/ja
Application granted granted Critical
Publication of JP6123559B2 publication Critical patent/JP6123559B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、発光サイリスタ、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置、発光サイリスタおよび自己走査型発光素子アレイの製造方法に関する。
密着型イメージセンサやプリンタなどの書込みヘッドに、面発光素子アレイが利用されている。典型的な面発光素子アレイは、1つの基板上に線形に配列された複数の発光素子を集積して構成される。面発光素子の代表的なものとして、発光ダイオード(LED)、発光サイリスタ、レーザダイオードが知られている。その中で発光サイリスタは、GaAsやAlGaAsなどの化合物半導体層をpnpn構造に積層し、ゲートに駆動電流を印加することで、アノード・カソード間に電流を流し発光させるものである。こうした発光サイリスタを基板上に集積し、各発光サイリスタを順次点灯させる自己走査型の発光素子アレイが特許文献1に開示されている。
特開平1−238962号公報
本発明は、発光光量の向上を図る発光サイリスタ、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置、発光サイリスタおよび自己走査型発光素子アレイの製造方法を提供することを目的とする。
請求項は、基板側から順に、p型の第1の多層膜反射鏡、電流狭窄層、p型の第2の多層膜反射鏡、n型ゲート層、p型ゲート層、カソード層が積層され、前記第2の多層膜反射鏡に達し前記電流狭窄層に達しない深さの第1のメサにシフト部サイリスタが形成され、前記電流狭窄層に達する深さの第2のメサに発光部サイリスタが形成され、前記発光部サイリスタは前記第2のメサの側面から選択酸化されている自己走査型発光素子アレイ。
請求項は、前記電流狭窄層の膜厚がλ/4の奇数倍であるとき、電流狭窄層の一方の面には、第1の多層膜反射鏡の低屈折率層が隣接し、他方の面には、第2の多層膜反射鏡の低屈折率層が隣接する、請求項1に記載の自己走査型発光素子アレイ
請求項は、前記電流狭窄層の膜厚がλ/4の偶数倍であるとき、電流狭窄層の一方の面には、第1または第2の多層膜反射鏡の低屈折率層が隣接し、他方の面には、第1または第2の多層膜反射鏡の高屈折率層が隣接する、請求項1に記載の自己走査型発光素子アレイ
請求項は、第1の多層膜反射鏡の高屈折率層と低屈折率層の積層数は、第2の多層膜反射鏡の高屈折率層と低屈折率層の積層数よりも大きい、請求項2または3に記載の自己走査型発光素子アレイ
請求項は、請求項に記載の自己走査型発光素子アレイを用いた光書込みヘッド。
請求項は、請求項に記載の光書込みヘッドを備えた画像形成装置。
請求項は、基板側から順に、p型の第1の多層膜反射鏡、電流狭窄層、p型の第2の多層膜反射鏡、n型ゲート層、p型ゲート層、及びカソード層が順に積層された半導体基板を準備する工程と、前記第2の多層膜反射鏡に達するが前記電流狭窄層には達しない第1の深さのメサ構造を第1のエッチングにより形成する工程と、前記第1の深さのメサ構造に対して前記電流狭窄層を露出させる第2の深さのメサ構造を第2のエッチングにより形成する工程と、前記第2のエッチングにより露出された前記電流狭窄層を選択的に酸化する工程とを備え、前記第1の深さのメサ構造は、硫酸系のエッチング液により形成され、前記電流狭窄層の露出は、リン酸系のエッチング液によりなされる、発光サイリスタの製造方法。
請求項は、基板側から順に、p型の第1の多層膜反射鏡、電流狭窄層、p型の第2の多層膜反射鏡、n型ゲート層、p型ゲート層、カソード層が積層された半導体基板を準備する工程と、前記第2の多層膜反射鏡に達するが前記電流狭窄層には達しない第1の深さであって、シフト部サイリスタと発光部サイリスタとを含むメサ構造を、第1のエッチングにより形成する工程と、前記メサ構造に対して発光部サイリスタの周辺の前記電流狭窄層を露出させる第2の深さのメサ構造を第2のエッチングにより形成する工程と、発光部サイリスタ前記第2のエッチングより露出されたメサの側面から選択酸化する工程とを備え、前記第1の深さのメサ構造は、硫酸系のエッチング液により形成され、前記電流狭窄層の露出は、リン酸系のエッチング液によりなされる、自己走査型発光素子アレイの製造方法。
請求項1、7によれば、電流狭窄層を設けない場合と比較して、発光光量を増加させることができる。
請求項2、3によれば、第1および第2の多層膜反射鏡の反射率の低下を抑制することができる。
請求項によれば、n型ゲート層へのキャリアの注入効率を向上させることができる。
請求項7、8によれば、電流狭窄層の露出のためのエッチングの制御性を容易にすることができる。
本発明の実施例に係る自己走査型発光サイリスタアレイの平面図である。 図1のA1−A1線断面図、A2−A2線断面図、A3−A3線断面図である。 電流狭窄層の膜厚がλ/4の奇数倍と偶数倍のときの好ましい半導体多層膜反射鏡(DBR)の構成例を示す断面図である。 図1のB−B線断面図である。 第1および第2のメサM1、M2を説明するための島Sn+1の平面図である。 本発明の第1の実施例に係る自己走査型発光サイリスタアレイの等価回路である。 シフト部サイリスタTnが点弧しているときのゲートの電位分布を示す図である。 外部から印加される信号の電圧波形を示す図である。 比較例としての島の断面を示す図である。 本発明の実施例に係るSLEDの製造工程を示す断面図である。 本発明の実施例に係るSLEDの製造工程を示す断面図である。 本発明の実施例に係るSLEDの他の製造工程を示す断面図である。 本発明の実施例に係るSLEDの他の製造工程を示す断面図である。 図13(A)は、活性層のメサ面をドライエッチングで形成したときの表面電流を説明する図、図13(B)は、活性層のメサ面をドライエッチングで形成したときのしきい値電流を示すグラフである。 活性層のメサ面をドライエッチングしたときとウエットエッチングしたときのゲート電位分布を示すグラフである。 寄生サイリスタの動作点解析を示すグラフである。 寄生サイリスタがオンするときの動作を説明するSLEDの等価回路である。 本実施例の自己走査型発光素子アレイを適用した光書込みヘッドの構造を示す例である。 本実施例の自己走査型発光素子アレイを用いた光書込みヘッドを光プリンタに適用した例である。
多数の発光素子を同一基板上に集積した発光素子アレイは、その駆動用回路等と組み合わせてLEDプリンタ用のプリントヘッドに用いられる光源に利用されている。発光素子としては、例えば発光ダイオード(LED)を1次元的に配列した発光素子アレイでは、外部駆動用回路から画像信号に対応した信号を、一つ一つのLEDに供給しなければならないため、各LEDに給電するためのボンドパッドがLEDと同数だけ基板上に必要となる。ところが、ボンドパッドは、通常、面積が大きいため、発光素子アレイチップの面積が必然的に大きくなってしまう。チップ面積が大きくなると、1つのウェハから取得できるチップ数は減少するため、コスト低減化に限界が生じてしまう。
例えば、A3対応のプリンタの1200dpiプリントヘッドでは、1次元配列されたLEDの数は14,000個以上となり、これと同数のワイヤーをボンドパッドにボンディングする必要がある。ワイヤーボンディングの数が増える程、発光素子アレイの作製にかかるコストが大きくなる。さらに、印刷画像の品質を高めるために、高解像度の発光素子アレイを作成する場合には、ボンドパッド数が増えることによりワイヤーボンディング数が増加し、チップ面積がさらに大きくなることによりコストが増加し、これに加え、チップ上のボンドパッドのレイアウト自体に限界が見えてくる。
発光サイリスタを順次点弧させる自己走査型発光素子アレイでは、基板をアノード、最上層のn層をカソードとし、カソード層の直下のp層をゲートとするとき、しきい値以上の電流がゲートに流れないと、アノード・カソード間に電流が流れない。自己走査型発光素子アレイ(以下、SLED(Self-scanning Light Emitting Device)と呼ぶ)は、このような性質をもつサイリスタを1次元的にアレイ化し、外部からのクロック(転送信号)により順次オン状態が転送されるように構成したものである。例えば、点灯信号に基づき発光点として機能するサイリスタ(発光部サイリスタ)と、この発光部サイリスタを外部からのクロックに基づき順次点灯対象として指定するサイリスタ(シフト部サイリスタ)を備えることで、画像形成装置におけるプリントヘッドとして利用できるものである。
本発明の実施の形態におけるSLEDでは、1つ1つの発光サイリスタに対応したボンドパッドを設ける必要はなく、チップの片側もしくは両側に配置されたボンドパッドに、矩形電圧を給電することにより、発光部サイリスタを端から順次点弧(自己走査)させることができる。従って、本発明の実施の形態におけるSLEDにおいては、解像度を上げても、ボンドパッドをチップの端に寄せることができ、ボンドパッド数の増加とそれによるチップ面積の拡大、ワイヤボンド数の増加によるコストアップを回避することができる。
以下、本発明の実施の形態について図面を参照して説明する。本実施の態様では、pnpn構造の発光サイリスタを有するSLEDを例示する。pnpnを構成する半導体層は、III−V族化合物半導体によって構成されるが、本実施の形態は、化合物半導体として、GaAs、AlGaAs、AlAsを例示する。なお、図面のスケールは、発明の特徴を分かり易くするために強調しており、必ずしも実際のデバイスのスケールと同一ではないことに留意すべきである。
図1は、本発明の実施例に係るSLEDの一部の平面図、図2は、図1に示すSLEDの1つの島のA1−A1線、A2−A2線およびA3−A3線断面図、図3は、B−B線断面図、図4は、第1および第2の積層構造であるメサM1、M2を有する島を説明する平面図、図5は、図1に示すSLEDの等価回路である。
図5を参照すると、ここには、SLED10の一部として、4つの発光素子に関する等価回路が示されている。Ln-1、Ln、Ln+1、Ln+2は発光部サイリスタ、Tn-1、Tn、Tn+1、Tn+2はシフト部サイリスタ、Gn-1、Gn、Gn+1、Gn+2は発光部サイリスタおよびシフト部サイリスタの共通のゲート、RGはゲート負荷抵抗、Dn-2、Dn-1、Dn、Dn+1は結合ダイオード、PTn-1、PTn、PTn+1、PTn+2は結合ダイオードのカソード電極直下に形成される寄生サイリスタ、Φ1は奇数ビット転送ライン、Φ2は偶数ビット転送ライン、ΦIは発光信号ライン、VGAはゲートラインである。ここで、nは、正の整数である。以下の説明において、発光部サイリスタ、シフト部サイリスタ、寄生サイリスタを総称するときは、発光部サイリスタLi、シフト部サイリスタTi、寄生サイリスタPTiと称する。
SLEDの転送機能について説明する。今、シフト部サイリスタTnがオン状態にあるとする。このときのシフト部サイリスタTnのゲートGnの電位は、-0.2V程度まで引き上げられ、結合ダイオードDnの両端には、拡散電位分の約1.5Vの電位差が発生する。このため、Gn+1=Gn−1.5V=−1.7V、Gn+2=Gn+1−1.5V=−3.2Vとなる。
シフト部サイリスタTnが点弧しているときのゲートの電位分布を図6に示す。また、図7に、ゲートに供給されるゲートラインVGAの電圧波形と、奇数ビット転送ラインΦ1、偶数ビット転送ラインΦ2、および発光信号ラインΦIに供給される周期Tの矩形電圧を示す。奇数ビット転送ラインΦ1と偶数ビット転送ラインΦ2がともにローレベルになっている時間を重なり時間と呼び、これをtaで表わしている。
ゲートラインVGAの電圧と、転送ラインΦ1、Φ2、ΦIに供給される電圧を−3.3Vとすると、シフト部サイリスタTn+2のゲート・カソード間には、0.1V程度しか印加されない。サイリスタをオンさせるためには、少なくともゲート・カソード間に拡散電位以上の電圧が印加され、かつカソード・アノード間に保持電流以上の電流が流される必要がある。このため、シフト部サイリスタTn+2は点弧できない。一方、ゲートGnよりも左側にあるダイオードDn-1には、逆バイアスがかかるので、ゲートGn-1の電位はゲートラインVGAの電圧程度(約−3.3V)となり、シフト部サイリスタTn-1はオンすることはできない。こうして、奇数ビット転送ラインΦ1が−3.3Vで、シフト部サイリスタTnがオンしている際に、偶数ビット転送ラインΦ2を0Vから−3.3Vに下げると、隣のシフト部サイリスタTn+1のみが点弧する。その後、奇数ビット転送ラインΦ1を0Vに上昇させると、シフト部サイリスタTnはオフされ、シフト部サイリスタTnからTn+1へのオン状態の転送が可能となる。
シフト部サイリスタTnがオンしているとき、ゲート電位Gnが最も高い電圧に引き上げられている。従って、奇数ビット転送ラインΦ1を0Vから-3.3Vに下げると、発光部サイリスタLnのみがオンして発光する。こうして、シフト部サイリスタの列が左から右側へ順次点弧状態が転送され、シフト部サイリスタがオン状態であるビットの発光部サイリスタのみ、外部からの発光信号ラインΦIに入力された0、1データにしたがって、オンするか否かが決まる。これによって、0、1データが発光または非発光の情報に変換される。
図1には、図5に示す4ビットの素子に対応する素子アレイの平面図が示されている。SLEDは、p型のGaAs半導体基板上に、これと格子整合するようにエピタキシャル成長されたpnpn構造の半導体層を含んで構成される。半導体基板上には、半導体層をエッチングすることで、各素子に対応する島すなわちメサが形成される。図1には、図5の回路に対応して、4つの島Sn-1、Sn、Sn+1、Sn+2が形成され、これらの島Sn-1、Sn、Sn+1、Sn+2が線形に配列されている。1つの島には、発光部サイリスタLiと、シフト部サイリスタTiと、結合ダイオードDiとが形成される。また、結合ダイオードDiの直下にはpn層が存在するため、結合ダイオードDiを構成するpn層とともにpnpn構造が形成されることにより、ここに寄生サイリスタPTiが形成される。
奇数ビットの島Sn、Sn+2のシフト部サイリスタのカソード電極32Tには、奇数ビット転送ラインΦ1が接続され、偶数ビットの島Sn-1、Sn+1のシフト部サイリスタのカソード電極32Tには、偶数ビット転送ラインΦ2が接続される。発光部サイリスタのカソード電極32Lには、発光信号ラインΦIが接続される。また、基板上には、ゲートラインVGAに接続する島SRが形成される。ゲートラインVGAは、この島SRのp型のゲート層26にコンタクト電極CTを介して電気的に接続され、ゲート負荷抵抗RGは、p型のゲート層26を利用して形成される。ゲート負荷抵抗RGの出力端は、コンタクトCT1を介して共通のゲート電極に接続されるとともに、隣接する結合ダイオードのカソード電極32PTに接続される。
図2および図3は、代表的な島Sn+1に形成された発光部サイリスタLn+1、シフト部サイリスタTn+1、結合ダイオードDn+1、寄生サイリスタPTn+2の断面をそれぞれ示している。p型のGaAs基板20上には、所定の膜厚、所定のドーパント濃度を有するp型のGaAsまたはAlGaAsからなるバッファ層21、Al組成を異にするp型のAlGaAs層の対を複数積層した分布ブラッグ型反射鏡(Distributed Bragg Reflector:以下、DBRという)22、所定の膜厚、所定のドーパント濃度を有するn型のAlGaAs(例えば、1.25λの膜厚のn型Al0.3Ga0.7As(λは、n型Al0.3Ga0.7As内におけるn型ゲート層24またはp型ゲート層26で発光した光のピーク波長))からなるn型ゲート層24、所定の膜厚、所定のドーパント濃度を有するp型のAlGaAs(例えば、2.25λ厚のp型Al0.14Ga0.86As)からなるp型ゲート層26、および所定の膜厚、所定のドーパント濃度を有するn型のGaAsまたはAlGaAsからなる発光部サイリスタLn+1のカソード層28L、シフト部サイリスタTn+1のカソード層28T、結合ダイオードDn+1のカソード層28PTが形成される。各カソード層28L、28T、28PT上には、これと電気的に接続されるカソード電極32L、32T、32PTが形成され、基板20の裏面には、グランド電位を供給する共通のアノード電極40が形成される。それぞれの島は、基板上にエピタキシャル成長によって形成された半導体層にエッチング等の加工処理を施すことで形成される。
本実施例では、DBR22は、発光サイリスタのアノード層として電気的に機能するとともに、p型ゲート層26またはn型ゲート層24で発光した光の波長帯域を反射する光学的な機能を有する。DBR22の内部には、電流狭窄層30が挿入され、電流狭窄層30は、例えば図2(A)に示されるように、島またはメサの側面から選択的に酸化され、これにより酸化領域30Aと非酸化領域30Bとが形成される。酸化領域30Aは、電気的に高抵抗な領域であり、非酸化領域30Bは導電領域である。このような電流狭窄層30をDBR22内に形成することで、アノード電極40から注入されたキャリアが非酸化領域30B内に狭窄され、高密度なキャリアがn型ゲート層24に注入される。その結果、n型ゲート層24またはp型ゲート層26において、正孔と電子の結合効率が高められ、発光光量が向上する。また、n型ゲート層24またはp型ゲート層26において発光した光は、DBR22によって基板上方に反射されるため、基板等による光の吸収が抑制され、発光光量が向上する。
DBR22は、バッファ層21上に形成されたp型の第1の半導体多層膜反射鏡22Aと、第1の半導体多層膜反射鏡22A上に形成された電流狭窄層30と、電流狭窄層30上に形成されたp型の第2の半導体多層膜反射鏡22Bとを含む。なお、DBR22は、バッファ層21上に形成されている例が示されるが、DBR22は、基板20上に直接形成されるものであってもよい。第1の半導体多層膜反射鏡22Aは、例えば、それぞれがλ/4の膜厚のp型のAl0.9Ga0.1AsとAl0.2Ga0.8Asとを交互に12層積層して構成される。電流狭窄層30は、例えば、3λ/4の膜厚のp型のAlAs層から構成される。第2の半導体多層膜反射鏡22Bは、例えば、それぞれλ/4の膜厚のp型のAl0.9Ga0.1Asとp型のAl0.2Ga0.8Asとを交互に6層積層して構成される。
電流狭窄層30には、メサ側面から選択的に酸化された酸化領域30Aが形成される必要があるため、電流狭窄層30のAl組成比は、第1の半導体多層膜反射鏡22Aおよび第2の半導体多層膜反射鏡22Bの低屈折率側(高Al組成側)の半導体層のAl組成比よりも大きく、さらに他のn型ゲート層24、p型ゲート層26およびカソード層のAl組成比よりも大きい。従って、電流狭窄層30は、AlAs層から構成されることが好ましいが、これ以外にも、Al組成比が高いAlGaAs、例えばAl組成比が98%以上のAlGaAsから構成されるものであってもよい。
また、電流狭窄層30は、n型ゲート層24に近接する位置に挿入されることが望ましい。これは、電流狭窄層30からn型ゲート層24までの距離が小さい方が、n型ゲート層24内に効果的にキャリアを注入することができるためである。このため、電流狭窄層30は、第2の半導体多層膜反射鏡22Bの積層数が第1の半導体多層膜反射鏡22Aの積層数よりも小さくなる位置に挿入される。但し、電流狭窄層30からn型ゲート層24までの絶対距離が短いようであれば、必ずしもこのような態様に限らず、電流狭窄層30は、第2の半導体多層膜反射鏡22Bの積層数が第1の半導体多層膜反射鏡22Aの積層数よりも大きくなる位置に挿入されてもよい。
好ましい態様では、DBR22がMOCVDによって形成されるとき、DBR22を構成するAl組成が高い高Al組成半導体層とAl組成が低い低Al組成半導体層のうち、高Al組成半導体層が電流狭窄層30に置換される。電流狭窄層30の膜厚は、DBR22を構成する半導体層と同様にλ/4の膜厚であってもよいが、好ましくは、電流狭窄層30の膜厚は、λ/4の整数倍である。AlAsまたはAlGaAsを選択的に酸化させるとき、その膜厚が大きい方が酸化が促進される。膜厚が薄いと、膜厚バラツキが酸化距離に及ぼす影響が大きくなるが、λ/4の膜厚でも十分に電流狭窄層30の酸化制御をすることが可能であれば、膜厚はλ/4であってもよいが、電流狭窄層30の膜厚をλ/4よりも大きくし、膜厚バラツキが酸化距離に及ぼす影響を小さくすることで、酸化時間の制御を容易にし、酸化領域30Aの酸化距離のバラツキが抑制された、安定した電流狭窄層30を得るようにすることができる。
電流狭窄層30の膜厚がλ/4の奇数倍であるとき、電流狭窄層30の一方の面には、第1の半導体多層膜反射鏡22Aの低Al組成半導体層が隣接され、電流狭窄層30の他方の面には、第2の半導体多層膜反射鏡22Bの低Al組成半導体層が隣接される。図2A(A)は、電流狭窄層30の膜厚が3λ/4を例示しており、電流狭窄層30の両側にλ/4の低Al組成半導体層が隣接される。これにより、DBR22の反射率の低下が抑制される。
他方、電流狭窄層30の膜厚がλ/4の偶数倍であるとき、電流狭窄層30の一方の面には、第1の半導体多層膜反射鏡22Aの高Al組成半導体層が隣接され、電流狭窄層30の他方の面には、第2の半導体多層膜反射鏡22Bの低Al組成半導体層が隣接される。図2A(B)は、電流狭窄層30の膜厚がλ/2を例示しており、電流狭窄層30の上方の面に第2の半導体多層膜反射鏡22Bのλ/4の低Al組成半導体層が隣接され、下方の面に第1の半導体多層膜反射鏡22Aのλ/4の高Al組成半導体層が隣接される。これにより、DBR22の反射率の低下が抑制される。
次に、発光サイリスタにおいて電流狭窄層30を挿入する位置について更に詳しく説明する。電流狭窄層30を挿入する位置としては、カソード層28L内、カソード層28Lとp型ゲート層26の境界面、p型ゲート層26内、p型ゲート層26とn型ゲート層24の境界面、n型ゲート層24内というように様々な位置がある。ここで、電流狭窄層30を、カソード層28L内、またはカソード層28Lとp型ゲート層26の境界面に挿入する場合、サイリスタがターンオンする前にカソード層28Lとゲート電極を有するp型ゲート層26との間を流れるしきい電流が、電流狭窄による抵抗値の増加の影響を受け、ターンオン特性に悪影響を与えることが考えられる。また、電流狭窄層30をn型ゲート層24内やp型ゲート層26内、またはp型ゲート層26とn型ゲート層24の境界面に挿入する場合、発光径を小さくする効果は期待できると考えられるが、一方で、酸化により形成された電流狭窄層30の界面で非発光再結合を誘発し十分な光量が得られないことが考えられる。
さらに、DBR22上に、別個にp型のアノード層を形成し、当該アノード層内に電流狭窄層30を挿入する場合、後述するように島には、深さの異なる2つのメサ(柱状構造)M1、M2を2段階のエッチングで形成しなければならず、特に、アノード層内の電流狭窄層の側面が露出されるようなエッチングの制御が容易ではない。他方、エッチングを停止させるようなエッチングストップ層を挿入するとなれば、コスト高になってしまう。このようなことから本実施例においては、ターンオン特性に与える影響及び非発光再結合の影響が小さく、コスト高にならずに電流狭窄層30の側面出しのエッチング制御性が優れるように、アノード層としても機能するDBR22内に電流狭窄層30を挿入し、電流狭窄構造を得ている。なお、実験結果に基づくと、n型ゲート層24とDBR22の境界面に電流狭窄層30を設けるよりも、アノード層として機能するDBR22内に設けた方が約1.15倍〜約1.25倍程度の高い光量を得られる結果となっている。これは、DBR22内に電流狭窄層30をもうけた方が、非発光再結合による発光量の影響が少ないためと考えられる。以上のように、電流狭窄層30は、DBR22内に設ける構成がより好ましく、発光光量の観点からは、特に、DBR(アノード層)22内に設ける構成がより好ましい。
最上層であるn型のカソード層は、フォトリソ工程により矩形状等のパターンに加工され、発光部サイリスタLn+1、シフト部サイリスタTn+1、および結合ダイオードDn+1のカソード層28L、28T、28PTを形成する。好ましくは、カソード電極32Lは、カソード層28Lに対して相対的に小さく形成され、発光部サイリスタLn+1から出射される光は、カソード電極32Lによって大きく遮蔽されない。また、シフト部サイリスタTn+1のカソード層28Tは、大部分がカソード電極32Tによって覆われているため、その表面から光は出射されない。カソード層28L、28T、28PTのエッチングにより露出されたp型ゲート層26には、図3に示すようにゲート電極34が形成される。このゲート電極34は、発光部サイリスタLn+1およびシフト部サイリスタTn+1に共通である。
基板上に積層された半導体層をエッチングすることで、矩形状の島Sn+1が形成されるが、本実施例では、当該エッチングは2段階で行われ、島Sn+1は、側面の深さを異にする2つの積層構造のメサM1及びメサM2により形成されることに留意すべきである。第1のメサM1は、シフト部サイリスタTn+1および結合ダイオードDn+1が形成される領域に形成され、第1のメサM1の側面は、図2(B)、(C)に示すように、少なくともDBR22の電流狭窄層30に到達しない深さを有する。また、第2のメサM2は、発光部サイリスタLn+1が形成される領域に形成され、第2のメサM2の側面は、図2(A)に示すように、少なくともDBR22の電流狭窄層30に到達する深さを有する。本実施の形態においては、エッチングによって電流狭窄層30の側面が全て露出する深さを有しているが、電流狭窄層30の側面の一部のみが露出する深さであってもよい。更には、電流狭窄層30の上面にちょうど到達する深さであってもよい。すなわち、電流狭窄層30に到達する深さを有することにより、露出した電流狭窄層30の一部から発光部サイリスタの中心部に向けて酸化が進行する構成であればよい。
図4は、第1および第2のメサM1、M2を説明するための島Sn+1の平面図である。発光部サイリスタLn+1が形成される領域は、メサM2が形成される島Sn+1の底部側であり、シフト部サイリスタTn+1、および結合ダイオードDn+1が形成される領域は、メサM1が形成される島Sn+1の中央部および上部側である。発光部サイリスタLn+1、およびシフト部サイリスタTn+1の機能は、カソード層28L、28Tによって分離されるため、発光部サイリスタLn+1、およびシフト部サイリスタTn+1が形成される領域は、少なくともカソード層28L、28Tを有する領域とすることもできる。
島Sn+1は、4つの側面50、52、54、56によって囲まれた矩形状を有し、シフト部サイリスタTn+1、および結合ダイオードDn+1が形成される領域は、側面50およびこれに連続する側面52の一部52aと側面56の一部56aである。これらの側面50、52a、56aは、第1のメサM1によって構成され、従って、側面50、52a、56aは、電流狭窄層30に到達しない深さでエッチングされる。他方、発光部サイリスタLn+1が形成される領域は、側面54およびこれに連続する側面52の一部52bと側面56の一部56bである。これらの側面54、52b、56bは、第2のメサM2によって構成され、従って、側面54、52b、56bは、少なくとも電流狭窄層30に到達する深さでエッチングされる。
このような島Sn+1が構成された基板が酸化処理されると、発光部サイリスタLn+1が形成された領域の電流狭窄層30は、側面52b、54、56bから選択的に酸化され、そこに酸化領域(Al)30Aが形成される。酸化は、3つの側面52b、54、56bから内部に向けて一定距離だけ進行するため、島Sn+1には、略コ字状の酸化領域30Aが形成される。図1の破線Kは、酸化領域30Aと非酸化領域(導電領域)30Bとの境界を示している。発光部サイリスタLn+1のカソード層28Lの直下には、酸化領域30Aおよび非酸化領域30Bとを有する電流狭窄層30が存在する。酸化領域30Aは、電気的に高抵抗領域であり、非酸化領域30Bは導電領域であるため、アノード電極40から注入された、電子より移動度の低いキャリア(正孔)が非酸化領域30B内に閉じ込められ、高密度な状態でn型ゲート層24に注入される。図2(A)に示すように、第2のメサM2の外周に酸化領域30Aを形成することで、キャリアがメサ側面の表面準位にトラップされることが抑制され、リーク電流が抑制される。この結果、n型ゲート層24およびp型ゲート層26における正孔と電子との再結合確率が増加され、発光効率が改善され高出力化が可能になる。
これに対し、シフト部サイリスタTn+1、および結合ダイオードDn+1が形成された第1のメサM1では、図2(B)および(C)に示すように、側面の深さが電流狭窄層30に到達していない、言い換えれば電流狭窄層30が第1のメサM1の側面により露出されていないため、電流狭窄層30は酸化されず、その全体が導電領域のままである。シフト部サイリスタTn+1は、発光部サイリスタLn+1と半導体層22、24、26を共通にし、最上のカソード層28Tが発光部サイリスタLn+1のカソード層28Lから分離されている。ここでは、カソード層28Tは、島Sn+1のほぼ中央に矩形状に形成され、カソード層28T上には、矩形状のカソード電極32Tが形成される。カソード層28Tの直下には、酸化領域が形成されていない電流狭窄層30が存在し、電流狭窄層30の導電領域の面積は小さくならない。このため、シフト部サイリスタTn+1のオン抵抗は何ら影響を受けない。このように、シフト部サイリスタは、発光部サイリスタLn+1のアノードとカソード間に位置する電流狭窄層の領域が酸化され電流狭窄構造が形成される場合に、シフト部サイリスタのアノードとカソード間に位置する電流狭窄層の領域が酸化されない位置に形成されている。
次に、本実施例の島Sn+1と、1回のエッチングで島Sn+1を形成した比較例と対比する。図8(A)、(B)は、島Sn+1を1回のエッチングにより形成したときの比較例であり、図8(A)の断面図は、本実施例の図2(B)のA2−A2線断面に対応し、図8(B)の断面図は、本実施例の図3のB−B線断面に対応する。図8の比較例に示す島Sn+1は、1回のエッチングにより形成され、その側面は基板20に到達する深さを有する。従って、島Sn+1が酸化処理されたとき、電流狭窄層30は、島Sn+1の4つの側面から同時に酸化される。このような構造は、発光部サイリスタLn+1においては、キャリア密度を高めることで発光光量を増加させるという利点があるが、シフト部サイリスタTn+1においては、図8(A)に示すように酸化狭窄30Aによって電流経路が狭くなるため、アノード・カソード間のオン抵抗が増加し、転送動作可能な電圧範囲が狭められてしまう。これに対し、本実施例では、シフト部サイリスタTn+1において酸化狭窄が形成されないので、オン抵抗の増加を防止することができる。
次に、本実施例のSLEDの製造方法について図9および図10を参照して説明する。図9および図10に示す断面図は、図3に示した島のB−B線断面に対応するものである。先ず、図9(A)に示すように、p型のGaAs基板20上に、p型のGaAsバッファ層21、それぞれが0.25λの膜厚のp型のAl0.9Ga0.1AsとAl0.2Ga0.8Asとを交互に12層積層した第1の半導体多層膜反射鏡22A、0.75λの膜厚のp型のAlAs層から成る電流狭窄層30、それぞれ0.25λの膜厚のp型のAl0.9Ga0.1Asとp型のAl0.2Ga0.8Asとを交互に6層積層した第2の半導体多層膜反射鏡22B、1.25λの膜厚のn型Al0.3Ga0.7As(λは、n型Al0.3Ga0.7As内におけるn型ゲート層24またはp型ゲート層26で発光した光のピーク波長)からなるn型ゲート層24、2.25λ厚のp型Al0.14Ga0.86Asからなるp型ゲート層26、およびn型のGaAsまたはAlGaAsからなるカソード層28がMOCVDにより積層される。なお、必要に応じてカソード層28上にコンタクト層を形成してもよいし、バッファ層21が形成されないようにしてもよい。
次に、カソード層上にリフトオフ法によってAuGeなどからなるカソード電極32L、32Tを形成し、その後、公知のフォトリソ工程によって形成されたマスクパターンにより所定の領域を覆い、p型ゲート層26が露出されるまで硫酸系のエッチング液(例えば、重量比 硫酸:過酸化水素:水=1:10:300)を用いてウエットエッチングが行われ、図9(B)に示すように、露出したp型ゲート層26上にAuZnからなるゲート電極34がリフトオフ法によって形成される。
次に、図9(C)に示すように、フォトリソ工程によりマスクパターン60を形成し、マスクパターン60を用いて第1のメサM1を形成するべく、半導体層を硫酸系のエッチング液(例えば、重量比 硫酸:過酸化水素:水=1:10:300)を用いてウエットエッチングが行われる。このときのエッチングの深さは、p型ゲート層26およびn型ゲート層24を超えるが、DBR22の電流狭窄層30に到達する手前である。こうして、第1のメサM1の側面を有する島が形成され、隣接する素子の電気的な分離が行われる。この段階では、島を取り囲む4つの側面50、52、54、56(図4を参照)が同一の深さを有している。
マスクパターン60を除去した後、図10(A)に示すように、発光部サイリスタが形成される領域の側面52b、54、56b(図4を参照)を露出するようなマスクパターン62が形成される。次に、図10(B)に示すように、マスクパターン62を用いて第2のメサM2を形成するべく、半導体層をリン酸系のエッチング液(例えば、重量比 リン酸:過酸化水素:水=1:10:60)を用いて、DBR22の電流狭窄層の側面が露出するまでウエットエッチングが行われる。こうして、第2のメサM2が形成され、発光部サイリスタが形成される領域の側面52b、54、56bにおいて電流狭窄層30が露出されるが、シフト部サイリスタが形成される領域の側面50、52a、56aにおいては電流狭窄層30は露出されない。
次に、基板は、300〜400℃の水蒸気酸化アニールにより酸化され、第2のメサM2の側面で露出された電流狭窄層30が選択酸化され、図10(C)に示すように、Alからなる酸化領域30Aが形成される。次に、マスクパターン62を除去した後、基板上を絶縁膜で被覆し、カソード電極、ゲート電極上にコンタクトホールを形成し、カソード電極、ゲート電極に接続されるAl配線を形成する。その後、基板上を保護膜で被覆し、電極パッドを露出する開口を形成し、基板裏面にアノード電極を形成し、SLEDが完成される。なお、上記工程は一例であって、例えば、カソード電極32L、32Tおよびゲート電極34は、メサM2の形成後に形成するようにしてもよい。
次に、本実施例のSLEDの他の製造工程について説明する。図9(B)に示すように、カソード層28L、28Tをパターンニングした後、図11(A)に示すように、シフト部サイリスタが形成される領域を露出させるようなマスクパターン60Aを形成し、当該マスクパターン60Aを用いて、上記と同様の構成の硫酸系のエッチング液を用いてウエットエッチングを行う。これにより、シフト部サイリスタが形成される領域の側面50、52a、56aをもつ第1のメサM1が形成される。
マスクパターン60Aを除去した後、図11(B)に示すように、シフト部サイリスタが形成される領域を覆い、発光部サイリスタが形成される領域を露出するマスクパターン62Aを形成し、上記と同様の構成のリン酸系のエッチング液を用いてウエットエッチングを行う。これにより、発光部サイリスタが形成される領域の側面52b、54、56bをもつ第2のメサM2が形成される。
図12に示す製造工程は、図11のエッチング工程の順序を入れ替えたものである。図12(A)に示すように、発光部サイリスタが形成される領域を露出させるマスクパターン60Bを形成し、このマスクパターン60Bを用いて半導体層を、上記と同様の構成のリン酸系のエッチング液でウエットエッチングする。これにより、発光部サイリスタが形成される領域の側面52b、54、56bをもつ第2のメサM2が形成される。
マスクパターン60Bを除去した後、シフト部サイリスタが形成される領域を露出するようなマスクパターン62Bが形成され、当該マスクパターン62Bを用いて、上記と同様の構成の硫酸系のエッチング液でウエットエッチングが行われる。これにより、シフト部サイリスタが形成される領域の側面50、52a、56aをもつ第1のメサM1が形成される。
このように本実施例では、シフト部サイリスタの領域を形成する第1のメサM1は、硫酸系のエッチャントによるウエットエッチングを用い、発光部サイリスタの領域を形成する第2のメサM2は、リン酸系のエッチャントによるウエットエッチングを用いて行われる。このようなエッチャントの組合せによる利点を説明する。
一般に、AlGaAs系のエッチングには、制御性に優れた硫酸系エッチング液が用いられる。しかし、硫酸系エッチングは、Gaが入っていないAlAsではエッチング速度が非常に早いため、例えば、AlAs層(電流狭窄層)の側面出しにおいて、AlGaAs層の深さ方向に対してAlAs層内の横方向のエッチングが速く進行して、AlAs側面の制御が困難である。その結果、電流狭窄層30に形成される酸化狭窄が不均一となったり、メサ側面のAlAs層があった領域に空隙が生じ、絶縁膜や保護膜のカバレッジ不良によって信頼性が悪化するという問題が発生する。一方、リン酸系エッチング液の場合、AlAsとAlGaAsでのエッチング速度の差はほとんどないため、硫酸系エッチングでの上記のような問題は発生しない。但し、リン酸系エッチングでは、エッチングの異方性が顕著になるなど制御性が難しい面はあるため、AlAs層の側面出しの短い距離のみのエッチングに用いることで、制御性の難しさを最少に抑えることができる。
また、本実施例では、AlAs層をDBR22の内部に配置することにより、半導体多層膜反射鏡の一部(この場合、第1の半導体多層膜反射鏡22A)をエッチングバッファー層として用いることができるため、膜厚を薄くすることができる。これは、AlAs層の厚さをλ/4の整数倍にすることにより、半導体多層膜反射鏡の機能を維持させているためである。
次に、第1のメサM1をウエットエッチングにより形成することの利点を以下に説明する。サイリスタの活性層(つまり、n型ゲート層24およびp型ゲート層26)が露出するメサ面をドライエッチングにより形成した場合には、適切な表面処理を行わなければ、図13(A)に示すように、活性層24、26のメサ面に表面電流が流れやすくなる。このために、pnpn構造におけるサイリスタのオンに必要なしきい電流値は、図13(B)に示すように、ウエットエッチングにより活性層のメサ面を形成したときよりも、ドライエッチングにより活性層のメサ面を形成したときの方が低くなり、サイリスタがオンし易くなる。
サイリスタがオンし易いことは、発光部サイリスタLiにとっては良いが、シフト部サイリスタTiにおいては必ずしも良いとは言えない。なぜなら、SLED回路において、各ビットのゲート電位を決めている結合ダイオードDiの直下に寄生するサイリスタPTiがオンし易くなると、結合ダイオードDiによって決められる階段型のゲート電位分布が崩れ、正常な転送動作ができなくなるからである。図14は、ドライエッチングにより活性層のメサ面を形成したときのゲート電位(破線で示す)と、ウエットエッチングにより活性層のメサ面を形成したときのゲート電位(実線で示す)を表している。
例えば、図16に示すように、発光部サイリスタLnおよびシフト部サイリスタTnがオンしているとき、結合ダイオードDnによって、隣のビットのゲート電位Gn+1は、−1.7V程度である。ここでもし、寄生サイリスタPTn+1がオンしていると、そのカソードGn+1は、−1.5V程度に上昇する。このとき、さらに隣のビットの寄生サイリスタPTn+2のゲート電位は−1.5Vとなり、さらにそのカソード電位は、−3.0Vとなる。ドライエッチングによって活性層のメサ面が形成され、しきい電流値が低いと、図16の矢印In+2で示した電流経路(閉回路)で考えると、寄生サイリスタPTn+2の動作点は、図15のように、OFF状態ではなく、ON状態に遷移してしまう。したがって、寄生サイリスタPTn+2は、オンし、同時にシフト部サイリスタTn+2も、そのゲート電位が−1.5V程度なので点弧してしまい、順次転送動作が成立しなくなってしまう。
このように、島内のシフト部サイリスタと発光部サイリスタが形成される領域をそれぞれ二段階エッチングする場合に、シフト部サイリスタの形成にウエットエッチングを用いるのは、このためである。
このような点から、本実施例では、シフト部サイリスタのオン抵抗を低く保ち、転送動作電圧範囲を狭めないことだけでなく、活性層に表面電流が流れることによる転送動作の異常を抑制するために、シフト部サイリスタの活性層はウエットエッチングでメサ出しを行っている。
なお、上記の実施例では、基板として半導体基板を用いて基板の裏面にアノード電極を設ける例を示したが、絶縁基板を用いて、アノード電極とカソード電極の両方を基板に対して光の出射面側に設けてもよい。
また、アノードとカソードの位置を入れ替えてもよい。すなわち、基板側から、カソード層、ゲート電極を有するゲート層、及びアノード電極を有するアノード層の順で積層されたpnpn積層構造に対して、電流狭窄層30を設けてもよい。
また、ゲート電極は、アノード層とカソード層の間の層であれば、p層、n層のいずれに設けてもよい。
また、アノード層、ゲート層、カソード層が順に積層されたpnpn積層構造であれば、各層の間や各層内に他の層が挿入されていてもよい。
また、上記の実施例では、ウェットエッチングを用いてメサM1、M2の積層構造を形成する例を示したが、メサM1をウェットエッチングにより形成す、メサM2をドライエッチングにより形成してもよい。この場合、メサM2は、例えば塩化ホウ素などのエッチャントを用いた異方性ドライエッチングにより形成することが可能である。
また、発光部サイリスタ、シフト部サイリスタ、及び結合ダイオードの各素子は、それぞれが連続する共通の半導体層(共通の島構造)を有さずに分離されていてもよく、また、2つの素子間で連続する共通の半導体層(共通の島構造)を有するとともに、1つの素子のみが共通の半導体層を有さずに分離された構造であってもよい。さらに本実施例では、島の平面形状を矩形状としたが、これは一例であって、他の形状、例えば、円形状、楕円状、台形状、他の多角形状であってもよく、更には、長さや幅が異なる島が複数組み合わされて1つの島を形成してもよい。
また、上記の実施例では、三端子のサイリスタを一例として示したが、しきい電流またはしきい電圧によって制御されるpnpn構造のスイッチ素子(すなわち、サイリスタ)であれば、四端子など、三端子を超える数の端子を備えたものであってもよい。
以上のような自己走査型発光素子アレイは、例えば、光プリンタの光書込みヘッドに用いられる。図17に、自己走査型発光素子アレイを用いた光書込みヘッドの一例を示す。チップ実装基板70上に、発光サイリスタを列状に配置した複数個の発光素子アレイチップ71が、主走査方向に実装され、発光素子アレイチップ71の発光素子が発光する光の光路上には、主走査方向に長尺な正立等倍のロッドレンズアレイ72が、樹脂ハウジング73により固定されている。ロッドレンズアレイ72の光軸上には、感光ドラム74が設けられる。また、チップ実装基板70の下地には発光素子アレイチップ71の熱を放出するためのヒートシンク75が設けられ、ハウジング73とヒートシンク75は、チップ実装基板70を間に挟んで止め金具76により固定されている。
図17に示す光書込みヘッドを用いた光プリンタを図18に示す。光プリンタには、光書込みヘッド100が設置される。円筒形の感光ドラム102の表面に、アモルファスSi等の光導電性を持つ材料(感光体)が作られている。このドラムはプリントの速度で回転している。回転しているドラムの感光体表面を、帯電器104で一様に帯電させる。そして、光書込みヘッド100で、印字するドットイメージの光を感光体上に照射し、光の当たったところの帯電を中和し、潜像を形成する。続いて、現像器106で感光体上の帯電状態にしたがって、トナーを感光体上につける。そして、転写器108でカセット110中から送られてきた用紙112上に、トナーを転写する。用紙は、定着器114にて熱等を加えられ定着され、スタッカ116に送られる。一方、転写の終了したドラムは、消去ランプ118で帯電が全面にわたって中和され、清掃器120で残ったトナーが除去される。このような光書込みヘッドは、プリンタのみならずファクシミリ,複写機などの画像形成装置にも利用することができる。
以上、本発明の好ましい実施の形態について詳述したが、本発明は、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。例えば、本実施例に開示した積層構造の発光サイリスタは、自己走査型発光素子アレイ以外の発光素子アレイに適用してもよく、更には、アレイではなく単体の発光素子として、画像形成装置以外の電子機器に適用してもよい。
例えば、基板上に、基板側から順に、アノード層、n型層、ゲート電極が設けられたp型のゲート層、及びカソード電極が設けられたカソード層が積層された積層構造と、前記アノード層と前記n型のゲート層との境界、または前記アノード層内に設けられたAlを含む電流狭窄層と、前記積層構造の側面から前記電流狭窄層が酸化されて形成された電流狭窄構造と、を備える発光サイリスタを、自己走査型発光素子アレイ以外の発光素子アレイに適用してもよく、更には、アレイではなく単体の発光素子として、画像形成装置以外の電子機器に適用してもよい。
10:SLED
20:半導体基板
21:バッファ層
22:DBR
24:n型ゲート層
26:p型ゲート層
28L、28T、28PT:カソード層
30:電流狭窄層
30A:酸化領域
30B:非酸化領域
32L、32T、32PT:カソード電極
34:ゲート電極
40:アノード電極
50、52、52a、52b、54、56、56a、56b:側面
Li:発光部サイリスタ
Ti:シフト部サイリスタ
PTi:寄生サイリスタ
Di:結合ダイオード
K:酸化領域と非酸化領域との境界

Claims (8)

  1. 基板側から順に、p型の第1の多層膜反射鏡、電流狭窄層、p型の第2の多層膜反射鏡、n型ゲート層、p型ゲート層、カソード層が積層され、
    前記第2の多層膜反射鏡に達し前記電流狭窄層に達しない深さの第1のメサにシフト部サイリスタが形成され、
    前記電流狭窄層に達する深さの第2のメサに発光部サイリスタが形成され、
    前記発光部サイリスタは前記第2のメサの側面から選択酸化されている自己走査型発光素子アレイ。
  2. 前記電流狭窄層の膜厚がλ/4の奇数倍であるとき、電流狭窄層の一方の面には、第1の多層膜反射鏡の低屈折率層が隣接し、他方の面には、第2の多層膜反射鏡の低屈折率層が隣接する、請求項1に記載の自己走査型発光素子アレイ
  3. 前記電流狭窄層の膜厚がλ/4の偶数倍であるとき、電流狭窄層の一方の面には、第1または第2の多層膜反射鏡の低屈折率層が隣接し、他方の面には、第1または第2の多層膜反射鏡の高屈折率層が隣接する、請求項1に記載の自己走査型発光素子アレイ
  4. 第1の多層膜反射鏡の高屈折率層と低屈折率層の積層数は、第2の多層膜反射鏡の高屈折率層と低屈折率層の積層数よりも大きい、請求項2または3に記載の自己走査型発光素子アレイ
  5. 請求項に記載の自己走査型発光素子アレイを用いた光書込みヘッド。
  6. 請求項に記載の光書込みヘッドを備えた画像形成装置。
  7. 基板側から順に、p型の第1の多層膜反射鏡、電流狭窄層、p型の第2の多層膜反射鏡、n型ゲート層、p型ゲート層、及びカソード層が順に積層された半導体基板を準備する工程と、
    前記第2の多層膜反射鏡に達するが前記電流狭窄層には達しない第1の深さのメサ構造を第1のエッチングにより形成する工程と、
    前記第1の深さのメサ構造に対して前記電流狭窄層を露出させる第2の深さのメサ構造を第2のエッチングにより形成する工程と、
    前記第2のエッチングにより露出された前記電流狭窄層を選択的に酸化する工程とを備え、
    前記第1の深さのメサ構造は、硫酸系のエッチング液により形成され、前記電流狭窄層の露出は、リン酸系のエッチング液によりなされる、発光サイリスタの製造方法。
  8. 基板側から順に、p型の第1の多層膜反射鏡、電流狭窄層、p型の第2の多層膜反射鏡、n型ゲート層、p型ゲート層、カソード層が積層された半導体基板を準備する工程と、
    前記第2の多層膜反射鏡に達するが前記電流狭窄層には達しない第1の深さであって、シフト部サイリスタと発光部サイリスタとを含むメサ構造を、第1のエッチングにより形成する工程と、
    前記メサ構造に対して発光部サイリスタの周辺の前記電流狭窄層を露出させる第2の深さのメサ構造を第2のエッチングにより形成する工程と、
    発光部サイリスタ前記第2のエッチングより露出されたメサの側面から選択酸化する工程とを備え、
    前記第1の深さのメサ構造は、硫酸系のエッチング液により形成され、前記電流狭窄層の露出は、リン酸系のエッチング液によりなされる、自己走査型発光素子アレイの製造方法。
JP2013164007A 2013-08-07 2013-08-07 発光サイリスタ、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置、発光サイリスタおよび自己走査型発光素子アレイの製造方法 Active JP6123559B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013164007A JP6123559B2 (ja) 2013-08-07 2013-08-07 発光サイリスタ、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置、発光サイリスタおよび自己走査型発光素子アレイの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164007A JP6123559B2 (ja) 2013-08-07 2013-08-07 発光サイリスタ、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置、発光サイリスタおよび自己走査型発光素子アレイの製造方法

Publications (2)

Publication Number Publication Date
JP2015032812A JP2015032812A (ja) 2015-02-16
JP6123559B2 true JP6123559B2 (ja) 2017-05-10

Family

ID=52517854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013164007A Active JP6123559B2 (ja) 2013-08-07 2013-08-07 発光サイリスタ、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置、発光サイリスタおよび自己走査型発光素子アレイの製造方法

Country Status (1)

Country Link
JP (1) JP6123559B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728604B2 (ja) * 2015-09-11 2020-07-22 富士ゼロックス株式会社 発光部品、プリントヘッドおよび画像形成装置
JP6728831B2 (ja) * 2016-03-22 2020-07-22 富士ゼロックス株式会社 発光部品、プリントヘッド及び画像形成装置
JP6210120B2 (ja) * 2016-03-29 2017-10-11 富士ゼロックス株式会社 発光部品、プリントヘッド及び画像形成装置
JP6737008B2 (ja) * 2016-06-30 2020-08-05 富士ゼロックス株式会社 光スイッチ
JP6341345B1 (ja) * 2017-03-07 2018-06-13 富士ゼロックス株式会社 発光装置、画像形成装置及び光照射装置
JP6332535B2 (ja) * 2017-09-06 2018-05-30 富士ゼロックス株式会社 積層構造体、発光部品、プリントヘッド及び画像形成装置
JP6369613B1 (ja) * 2017-09-21 2018-08-08 富士ゼロックス株式会社 発光部品、プリントヘッド及び画像形成装置
JP7094694B2 (ja) * 2017-12-01 2022-07-04 キヤノン株式会社 発光素子アレイ及びこれを用いた露光ヘッドと画像形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719892A (en) * 1996-04-23 1998-02-17 Motorola, Inc. Hybrid mirror structure for a visible emitting VCSEL
JP2004031925A (ja) * 2002-05-07 2004-01-29 Ricoh Co Ltd n型半導体分布ブラッグ反射器および面発光半導体レーザ素子および面発光レーザアレイおよび面発光レーザモジュールおよび光インターコネクションシステムおよび光通信システム
TW474033B (en) * 2000-11-03 2002-01-21 United Epitaxy Co Ltd LED structure and the manufacturing method thereof
JP2003069151A (ja) * 2001-06-12 2003-03-07 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子
JP2003115635A (ja) * 2001-08-03 2003-04-18 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子
JP2011054754A (ja) * 2009-09-02 2011-03-17 Fuji Xerox Co Ltd 半導体素子およびその製造方法
JP2011155219A (ja) * 2010-01-28 2011-08-11 Fuji Xerox Co Ltd 発光サイリスタ、プリントヘッド及び画像形成装置
JP5853496B2 (ja) * 2011-08-30 2016-02-09 富士ゼロックス株式会社 発光素子、発光素子アレイ、光書込みヘッドおよび画像形成装置
JP5857569B2 (ja) * 2011-09-15 2016-02-10 富士ゼロックス株式会社 発光素子、発光素子アレイ、光書込みヘッドおよび画像形成装置

Also Published As

Publication number Publication date
JP2015032812A (ja) 2015-02-16

Similar Documents

Publication Publication Date Title
JP6123559B2 (ja) 発光サイリスタ、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置、発光サイリスタおよび自己走査型発光素子アレイの製造方法
CN102891230B (zh) 发光器件、发光器件阵列、光学记录头、图像成形装置和制造发光器件的方法
US9787062B2 (en) Vertical cavity surface emitting laser array and method for manufacturing vertical cavity surface emitting laser array
JP5853496B2 (ja) 発光素子、発光素子アレイ、光書込みヘッドおよび画像形成装置
JP5310960B1 (ja) 発光サイリスタ、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置
US20170277065A1 (en) Light emitting component, print head, and image forming apparatus
JP5327376B2 (ja) 発光素子、自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置
US9059362B2 (en) Light emitting element, light emitting element array, optical writing head, and image forming apparatus
US10644198B2 (en) Light-emitting element, light-emitting element array, exposure head, and image formation apparatus
US20090057693A1 (en) Light-emitting element array and image forming apparatus
US7491976B2 (en) Light-emitting element array and image forming apparatus
JP5857569B2 (ja) 発光素子、発光素子アレイ、光書込みヘッドおよび画像形成装置
JP2007180460A (ja) 発光サイリスタ、発光サイリスタを用いた発光装置および画像形成装置
JP2018107420A (ja) 発光素子、発光素子アレイ、露光ヘッド、および、画像形成装置
JP5257547B2 (ja) 自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置
CN109473510B (zh) 发光晶闸管、发光晶闸管阵列、曝光头和图像形成设备
JP2016152244A (ja) 発光素子、発光素子アレイ、光書込みヘッドおよび画像形成装置
JP4140358B2 (ja) 発光サイリスタ、発光サイリスタの製造方法および発光素子アレイチップ
JP2007250961A (ja) 発光素子アレイ
JP2013065593A (ja) 発光素子、発光素子アレイ、光書込みヘッドおよび画像形成装置
JPH09283792A (ja) 面発光サイリスタおよび自己走査型発光装置
JP5299554B2 (ja) 自己走査型発光素子アレイ、光書込みヘッドおよび画像形成装置
JP2004356191A (ja) 発光素子アレイおよびその製造方法
JP4578195B2 (ja) 発光装置および画像記録装置
JP2013187342A (ja) 発光素子、発光素子アレイ、光書込みヘッドおよび画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161122

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R150 Certificate of patent or registration of utility model

Ref document number: 6123559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350