JP6105780B2 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP6105780B2
JP6105780B2 JP2016056855A JP2016056855A JP6105780B2 JP 6105780 B2 JP6105780 B2 JP 6105780B2 JP 2016056855 A JP2016056855 A JP 2016056855A JP 2016056855 A JP2016056855 A JP 2016056855A JP 6105780 B2 JP6105780 B2 JP 6105780B2
Authority
JP
Japan
Prior art keywords
transistor
switch
wiring
capacitor
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016056855A
Other languages
English (en)
Other versions
JP2016122216A5 (ja
JP2016122216A (ja
Inventor
木村 肇
肇 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2016122216A publication Critical patent/JP2016122216A/ja
Publication of JP2016122216A5 publication Critical patent/JP2016122216A5/ja
Application granted granted Critical
Publication of JP6105780B2 publication Critical patent/JP6105780B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、半導体装置またはそれらの駆動方法に関する。
近年、液晶ディスプレイ(LCD)などのフラットパネルディスプレイが広く普及してき
ている。しかしながら、LCDには、視野角が狭い、色度範囲が狭い、応答速度が遅い、
などの様々な欠点を有している。そこで、それらの欠点を克服したディスプレイとして、
有機EL(エレクトロルミネッセンス、有機発光ダイオード、オーレッドなどとも言う)
ディスプレイの研究が活発に行われている(特許文献1)。
しかしながら、有機ELディスプレイには、有機EL素子に流れる電流を制御するための
トランジスタの電流特性が、画素毎にばらついてしまう、という問題点があった。有機E
L素子に流れる電流(すなわち、トランジスタを流れる電流)がばらつけば、有機EL素
子の輝度もばらつき、ムラのある表示画面となってしまう。そこで、トランジスタのしき
い値電圧のバラツキを補正する方法が検討されている(特許文献2乃至6)。
しかし、トランジスタのしきい値電圧のバラツキを補正しても、トランジスタの移動度が
ばらつけば、有機EL素子に流れる電流もばらついてしまい、画像ムラを生じてしまう。
そこで、トランジスタのしきい値電圧だけでなく、移動度のバラツキも補正する方法が検
討されている(特許文献7乃至8)。
特開2003−216110号公報 特開2003−202833号公報 特開2005−31630号公報 特開2005−345722号公報 特開2007−148129号公報 国際公開第2006/060902号パンフレット 特開2007−148128号公報([0098]段落) 特開2007−310311号公報([0026]段落
しかしながら、特許文献7乃至8で開示された技術においては、映像信号(ビデオ信号)
を画素に入力しながら、トランジスタの移動度のばらつきの補正を行っている。そのため
、様々な問題点が生じる。
例えば、映像信号を入力しながら移動度のばらつきの補正を行うため、その間は、別の画
素に映像信号を入力することが出来ない。通常、画素数、フレーム周波数または画面サイ
ズなどが決まれば、各画素に映像信号を入力する期間(いわゆる、1ゲート選択期間また
は1水平期間)の最大値も決まる。よって、1ゲート選択期間中に、移動度のバラツキの
補正を行う期間が増えることにより、他の処理(映像信号の入力やしきい値電圧の取得な
ど)の期間が減ってしまう。そのため画素では、1ゲート選択期間中に、様々な処理を行
わなければならないこととなる。結果として、処理期間が足りず、正確な処理を行えない
、または、移動度のバラツキの補正の期間を十分に確保することができないために移動度
の補正が不十分となってしまう。
さらに、画素数やフレーム周波数が高くなる、または画面サイズが大きくなると、1画素
当たりの1ゲート選択期間がますます短くなる。そのため、画素への映像信号の入力や、
移動度のばらつきの補正などが十分に確保できなくなってしまう。
あるいは、映像信号を入力しながら移動度のばらつきの補正を行う場合、移動度のばらつ
きの補正は、映像信号の波形のなまりの影響を受けやすい。そのため、映像信号の波形の
なまりが大きい場合と小さい場合とでは、移動度の補正の程度にばらつきが生じてしまい
、正確な補正が出来ない。
あるいは、画素に映像信号を入力しながら移動度のばらつきの補正を行う場合、点順次駆
動を行うことが困難である場合が多い。点順次駆動では、ある行の画素に映像信号を入力
する場合、その行の全ての画素に同時に映像信号を入力するのではなく、1画素ずつ順に
映像信号を入力していく。したがって、映像信号を入力している期間の長さは、画素毎に
異なってくる。よって、映像信号を入力しながら移動度のばらつきの補正を行う場合、画
素毎に移動度のばらつきの補正期間が異なってきてしまうため、補正量も画素毎に異なっ
てしまい、正常に補正を行うことが出来ない。したがって、映像信号を入力しながら移動
度のばらつきの補正を行う場合は、点順次駆動ではなく、その行の全ての画素に同時に信
号を入力する線順次駆動を行う必要がある。
さらに、線順次駆動を行う場合、点順次駆動を行う場合と比べて、ソース信号線駆動回路
(ビデオ信号線駆動回路、ソースドライバー、データドライバーとも言う)の構成が複雑
になる。例えば、線順次駆動でのソース信号線駆動回路は、DAコンバータ、アナログバ
ッファ、ラッチ回路などの回路が必要となる場合が多い。しかし、アナログバッファは、
オペアンプやソースフォロワ回路などで構成される場合が多く、トランジスタの電流特性
のばらつきの影響を受けやすい。したがって、TFT(薄膜トランジスタ)を用いて回路
を構成する場合、トランジスタの電流特性のばらつきを補正する回路が必要となり、回路
の規模が大きくなってしまったり、消費電力が大きくなってしまったりする。そのため、
画素部分のトランジスタとしてTFTが用いられている場合には、画素部分と信号線駆動
回路とを同一基板上に形成することが困難となる可能性がある。そのため、信号線駆動回
路を画素部分とは別の手段を用いて作成する必要があり、コストが高くなってしまう可能
性がある。さらに、画素部分と信号線駆動回路とを、COG(チップ・オン・グラス)ま
たはTAB(テープ・オートメイテド・ボンディング)などを用いて接続する必要があり
、接触不良などを起こしてしまったり、信頼性を損ねてしまったりする。
以上のことから、トランジスタのしきい値電圧のばらつきの影響を低減した装置またはそ
の駆動方法を提供することを課題とする。または、トランジスタの移動度のばらつきの影
響を低減した装置またはその駆動方法を提供することを課題とする。または、トランジス
タの電流特性のばらつきの影響を低減した装置またはその駆動方法を提供することを課題
とする。または、映像信号の入力期間を長く確保できる装置またはその駆動方法を提供す
ることを課題とする。または、しきい値電圧のばらつきの影響を低減するための補正期間
を長く確保できる装置またはその駆動方法を提供することを課題とする。または、移動度
のばらつきの影響を低減するための補正期間を長く確保できる装置またはその駆動方法を
提供することを課題とする。または、映像信号の波形のなまりの影響を受けにくい装置ま
たはその駆動方法を提供することを課題とする。または、線順次駆動だけでなく、点順次
駆動を用いることも出来る装置またはその駆動方法を提供することを課題とする。または
、画素と駆動回路とを同じ基板上に形成することが出来る装置またはその駆動方法を提供
することを課題とする。または、消費電力の低い装置またはその駆動方法を提供すること
を課題とする。または、コストの低い装置またはその駆動方法を提供することを課題とす
る。または、配線の接続部分の接触不良を起こす可能性が低い装置またはその駆動方法を
提供することを課題とする。または、信頼性の高い装置またはその駆動方法を提供するこ
とを課題とする。または、画素数の多い装置またはその駆動方法を提供することを課題と
する。または、フレーム周波数の高い装置またはその駆動方法を提供することを課題とす
る。または、パネルサイズの大きい装置またはその駆動方法を提供することを課題とする
。これらの他にも、様々な手段を用いて、よりよい装置またはその駆動方法を提供するこ
とを課題とする。
トランジスタと、トランジスタのゲートに電気的に接続された容量素子とを有し、トラン
ジスタのしきい値電圧に応じた電圧と映像信号電圧との和の電圧に応じて容量素子に保持
された電荷を、一度トランジスタを介して放電させることで、トランジスタに流れる電流
のばらつき、またはトランジスタの移動度のばらつきを低減する。
本発明の例示的な態様の一は、トランジスタと、トランジスタのゲートに電気的に接続さ
れた容量素子とを有する半導体装置の駆動方法であって、トランジスタのしきい値電圧に
応じた電圧と映像信号電圧との和の電圧に応じて容量素子に保持された電荷を、トランジ
スタを介して放電させる半導体装置の駆動方法である。
また本発明の例示的な態様の一は、トランジスタと、表示素子と、配線と、を有する半導
体装置の駆動方法であって、第1の期間において、トランジスタのソースまたはドレイン
の一方とトランジスタのゲートとを導通状態にし、トランジスタのソースまたはドレイン
の他方と配線とを導通状態にし、トランジスタのソースまたはドレインの一方と表示素子
とを非導通状態にし、第2の期間において、トランジスタのソースまたはドレインの一方
とトランジスタのゲートとを非導通状態にし、トランジスタのソースまたはドレインの他
方と配線とを導通状態にし、トランジスタのソースまたはドレインの一方と表示素子とを
導通状態にする半導体装置の駆動方法である。
また本発明の例示的な態様の一は、トランジスタと、表示素子と、第1の配線と、第2の
配線と、を有する半導体装置の駆動方法であって、第1の期間において、トランジスタの
ソースまたはドレインの一方とトランジスタのゲートとを導通状態にし、トランジスタの
ソースまたはドレインの他方と第1の配線とを導通状態にし、トランジスタのソースまた
はドレインの他方と第2の配線とを非導通状態にし、トランジスタのソースまたはドレイ
ンの一方と表示素子とを非導通状態にし、第2の期間において、トランジスタのソースま
たはドレインの一方とトランジスタのゲートとを非導通状態にし、トランジスタのソース
またはドレインの他方と第1の配線とを導通状態にし、トランジスタのソースまたはドレ
インの他方と第2の配線とを非導通状態にし、トランジスタのソースまたはドレインの一
方と表示素子とを導通状態にする半導体装置の駆動方法である。
また本発明の例示的な態様の一は、トランジスタと、トランジスタのゲートに電気的に接
続された容量素子と、を有する半導体装置の駆動方法であって、第1の期間において、容
量素子には、トランジスタのしきい値電圧に応じた電圧と映像信号電圧との和の電圧が保
持され、第2の期間において、第1の期間に、電圧に応じて容量素子に保持された電荷が
、トランジスタを介して放電される半導体装置の駆動方法である。
また本発明の例示的な態様の一は、トランジスタと、トランジスタのゲートに電気的に接
続された容量素子と、表示素子と、を有する半導体装置の駆動方法であって、第1の期間
において、容量素子には、トランジスタのしきい値電圧に応じた電圧と映像信号電圧との
和の電圧が保持され、第2の期間において、第1の期間に、電圧に応じて容量素子に保持
された電荷が、トランジスタを介して放電され、第3の期間において、トランジスタを介
して、表示素子に電流が供給される半導体装置の駆動方法である。
また本発明の例示的な態様の一は、トランジスタと、トランジスタのゲートに電気的に接
続された容量素子と、を有する半導体装置の駆動方法であって、第1の期間において、容
量素子は第1の電圧を保持し、トランジスタのソースまたはドレインの一方と表示素子と
は非導通状態であり、第2の期間において、容量素子は第2の電圧を保持し、トランジス
タのソースまたはドレインの一方と表示素子とは導通状態であり、第1の電圧は、第2の
電圧よりも大きい半導体装置の駆動方法である。
また本発明の例示的な態様の一は、トランジスタと、第1の配線と、トランジスタのソー
スまたはドレインの一方との導通または非導通を制御する第1のスイッチと、第2の配線
と、トランジスタのソースまたはドレインの一方との導通または非導通を制御する第2の
スイッチと、トランジスタのソースまたはドレインの他方と、トランジスタのゲートとの
導通または非導通を制御する第3のスイッチと、トランジスタのソースまたはドレインの
他方と、表示素子との導通または非導通を制御する第4のスイッチと、を有する半導体装
置の駆動方法であって、第1の期間において、第1のスイッチ及び第3のスイッチを導通
状態、並びに第2のスイッチ及び第4のスイッチを非導通状態にし、第2の期間において
、第1のスイッチ及び第4のスイッチを導通状態、並びに第2のスイッチ及び第3のスイ
ッチを非導通状態にする半導体装置の駆動方法である。
また本発明の例示的な態様の一は、トランジスタと、第1の配線と、トランジスタのソー
スまたはドレインの一方との導通または非導通を制御する第1のスイッチと、第2の配線
と、トランジスタのソースまたはドレインの一方との導通または非導通を制御する第2の
スイッチと、トランジスタのソースまたはドレインの他方と、トランジスタのゲートとの
導通または非導通を制御する第3のスイッチと、トランジスタのソースまたはドレインの
他方と、表示素子との導通または非導通を制御する第4のスイッチと、を有する半導体装
置の駆動方法であって、第1の期間において、第2のスイッチ及び第3のスイッチを導通
状態、並びに第1のスイッチ及び第4のスイッチを非導通状態にし、第2の期間において
、第1のスイッチ及び第3のスイッチを導通状態、並びに第2のスイッチ及び第4のスイ
ッチを非導通状態にし、第3の期間において、第1のスイッチ及び第4のスイッチを導通
状態、並びに第2のスイッチ及び第3のスイッチを非導通状態にする半導体装置の駆動方
法である。
なお、スイッチは、様々な形態のものを用いることができる。例としては、電気的スイ
ッチや機械的なスイッチなどがある。つまり、電流の流れを制御できるものであればよく
、特定のものに限定されない。例えば、スイッチとして、トランジスタ(例えば、バイポ
ーラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、
PINダイオード、ショットキーダイオード、MIM(Metal Insulator
Metal)ダイオード、MIS(Metal Insulator Semicon
ductor)ダイオード、ダイオード接続のトランジスタなど)などを用いることが出
来る。または、これらを組み合わせた論理回路をスイッチとして用いることが出来る。
機械的なスイッチの例としては、デジタルマイクロミラーデバイス(DMD)のように
、MEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いたスイッチがあ
る。そのスイッチは、機械的に動かすことが出来る電極を有し、その電極が動くことによ
って、接続と非接続とを制御して動作する。
スイッチとしてトランジスタを用いる場合、そのトランジスタは、単なるスイッチとし
て動作するため、トランジスタの極性(導電型)は特に限定されない。ただし、オフ電流
を抑えたい場合、オフ電流が少ない方の極性のトランジスタを用いることが望ましい。オ
フ電流が少ないトランジスタとしては、LDD領域を有するトランジスタやマルチゲート
構造を有するトランジスタ等がある。または、スイッチとして動作させるトランジスタの
ソース端子の電位が、低電位側電源(Vss、GND、0Vなど)の電位に近い値で動作
する場合はNチャネル型トランジスタを用いることが望ましい。反対に、ソース端子の電
位が、高電位側電源(Vddなど)の電位に近い値で動作する場合はPチャネル型トラン
ジスタを用いることが望ましい。なぜなら、Nチャネル型トランジスタではソース端子が
低電位側電源の電位に近い値で動作するとき、Pチャネル型トランジスタではソース端子
が高電位側電源の電位に近い値で動作するとき、ゲートとソースの間の電圧の絶対値を大
きくできるため、スイッチとして、より正確な動作を行うことができるからである。さら
に、トランジスタがソースフォロワ動作をしてしまうことが少ないため、出力電圧の大き
さが小さくなってしまうことが少ないからである。
なお、Nチャネル型トランジスタとPチャネル型トランジスタの両方を用いて、CMO
S型のスイッチをスイッチとして用いてもよい。CMOS型のスイッチにすると、Pチャ
ネル型トランジスタまたはNチャネル型トランジスタのどちらか一方のトランジスタが導
通すれば電流が流れるため、スイッチとして機能しやすくなる。例えば、スイッチへの入
力信号の電圧が高い場合でも、低い場合でも、適切に電圧を出力させることが出来る。さ
らに、スイッチをオンまたはオフさせるための信号の電圧振幅値を小さくすることが出来
るので、消費電力を小さくすることも出来る。
なお、スイッチとしてトランジスタを用いる場合、スイッチは、入力端子(ソース端子
またはドレイン端子の一方)と、出力端子(ソース端子またはドレイン端子の他方)と、
導通を制御する端子(ゲート端子)とを有している。一方、スイッチとしてダイオードを
用いる場合、スイッチは、導通を制御する端子を有していない場合がある。そのため、ト
ランジスタよりもダイオードをスイッチとして用いた方が、端子を制御するための配線を
少なくすることが出来る。
なお、AとBとが接続されている、と明示的に記載する場合は、AとBとが電気的に接
続されている場合と、AとBとが機能的に接続されている場合と、AとBとが直接接続さ
れている場合とを含むものとする。ここで、A、Bは、対象物(例えば、装置、素子、回
路、配線、電極、端子、導電膜、層、など)であるとする。したがって、所定の接続関係
、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続
関係以外のものも含むものとする。
例えば、AとBとが電気的に接続されている場合として、AとBとの電気的な接続を可
能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダ
イオードなど)が、AとBとの間に1個以上接続されていてもよい。あるいは、AとBと
が機能的に接続されている場合として、AとBとの機能的な接続を可能とする回路(例え
ば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換
回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路
、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源
、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ
、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、
制御回路など)が、AとBとの間に1個以上接続されていてもよい。例えば、AとBとの
間に別の回路を挟んでいても、Aから出力された信号がBへ伝達される場合は、AとBと
は機能的に接続されているものとする。
なお、AとBとが電気的に接続されている、と明示的に記載する場合は、AとBとが電
気的に接続されている場合(つまり、AとBとの間に別の素子や別の回路を挟んで接続さ
れている場合)と、AとBとが機能的に接続されている場合(つまり、AとBとの間に別
の回路を挟んで機能的に接続されている場合)と、AとBとが直接接続されている場合(
つまり、AとBとの間に別の素子や別の回路を挟まずに接続されている場合)とを含むも
のとする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続さ
れている、とのみ明示的に記載されている場合と同じであるとする。
なお、表示素子、表示素子を有する装置である表示装置、発光素子、発光素子を有する
装置である発光装置は、様々な形態を用いたり、様々な素子を有することが出来る。例え
ば、表示素子、表示装置、発光素子または発光装置としては、EL(エレクトロルミネッ
センス)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)、LE
D(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応
じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グ
レーティングライトバルブ(GLV)、プラズマディスプレイ(PDP)、デジタルマイ
クロミラーデバイス(DMD)、圧電セラミックディスプレイ、カーボンナノチューブ、
など、電気磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示
媒体を有することができる。なお、EL素子を用いた表示装置としてはELディスプレイ
、電子放出素子を用いた表示装置としてはフィールドエミッションディスプレイ(FED
)やSED方式平面型ディスプレイ(SED:Surface−conduction
Electron−emitter Display)など、液晶素子を用いた表示装置
としては液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射
型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)、電子インク
や電気泳動素子を用いた表示装置としては電子ペーパーがある。
なお、EL素子とは、陽極と、陰極と、陽極と陰極との間に挟まれたEL層とを有する
素子である。なお、EL層としては、1重項励起子からの発光(蛍光)を利用するもの、
3重項励起子からの発光(燐光)を利用するもの、1重項励起子からの発光(蛍光)を利
用するものと3重項励起子からの発光(燐光)を利用するものとを含むもの、有機物によ
って形成されたもの、無機物によって形成されたもの、有機物によって形成されたものと
無機物によって形成されたものとを含むもの、高分子の材料、低分子の材料、高分子の材
料と低分子の材料とを含むものなどを有することができる。ただし、これに限定されず、
EL素子として様々なものを有することができる。
なお、トランジスタとして、様々な形態のトランジスタを用いることが出来る。よって
、用いるトランジスタの種類に限定はない。例えば、非晶質シリコン、多結晶シリコン、
微結晶(マイクロクリスタル、ナノクリスタル、セミアモルファスとも言う)シリコンな
どに代表される非単結晶半導体膜を有する薄膜トランジスタ(TFT)などを用いること
が出来る。TFTを用いる場合、様々なメリットがある。例えば、単結晶シリコンの場合
よりも低い温度で製造できるため、製造コストの削減、又は製造装置の大型化を図ること
ができる。製造装置を大きくできるため、大型基板上に製造できる。そのため、同時に多
くの個数の表示装置を製造できるため、低コストで製造できる。さらに、製造温度が低い
ため、耐熱性の弱い基板を用いることができる。そのため、透光性を有する基板上にトラ
ンジスタを製造できる。そして、透光性を有する基板上のトランジスタを用いて表示素子
での光の透過を制御することが出来る。あるいは、トランジスタの膜厚が薄いため、トラ
ンジスタを構成する膜の一部は、光を透過させることが出来る。そのため、開口率が向上
させることができる。
なお、多結晶シリコンを製造するときに、触媒(ニッケルなど)を用いることにより、
結晶性をさらに向上させ、電気特性のよいトランジスタを製造することが可能となる。そ
の結果、ゲートドライバ回路(走査線駆動回路)やソースドライバ回路(信号線駆動回路
)、信号処理回路(信号生成回路、ガンマ補正回路、DA変換回路など)を基板上に一体
形成することが出来る。
なお、微結晶シリコンを製造するときに、触媒(ニッケルなど)を用いることにより、
結晶性をさらに向上させ、電気特性のよいトランジスタを製造することが可能となる。こ
のとき、レーザー照射を行うことなく、熱処理を加えるだけで、結晶性を向上させること
も可能である。その結果、ゲートドライバ回路(走査線駆動回路)やソースドライバ回路
の一部(アナログスイッチなど)を基板上に一体形成することが出来る。さらに、結晶化
のためにレーザー照射を行わない場合は、シリコンの結晶性のムラを抑えることができる
。そのため、画質の向上した画像を表示することが出来る。
ただし、触媒(ニッケルなど)を用いずに、多結晶シリコンや微結晶シリコンを製造す
ることは可能である。
なお、シリコンの結晶性を、多結晶または微結晶などへと向上させることは、パネル全
体で行うことが望ましいが、それに限定されない。パネルの一部の領域のみにおいて、シ
リコンの結晶性を向上させてもよい。選択的に結晶性を向上させることは、レーザー光を
選択的に照射することなどにより可能である。例えば、画素以外の領域である周辺回路領
域にのみ、レーザー光を照射してもよい。または、ゲートドライバ回路、ソースドライバ
回路等の領域にのみ、レーザー光を照射してもよい。あるいは、ソースドライバ回路の一
部(例えば、アナログスイッチ)の領域にのみ、レーザー光を照射してもよい。その結果
、回路を高速に動作させる必要がある領域にのみ、シリコンの結晶化を向上させることが
できる。画素領域は、高速に動作させる必要性が低いため、結晶性が向上されなくても、
問題なく画素回路を動作させることが出来る。結晶性を向上させる領域が少なくて済むた
め、製造工程も短くすることが出来、スループットが向上し、製造コストを低減させるこ
とが出来る。必要とされる製造装置の数も少ない数で製造できるため、製造コストを低減
させることが出来る。
または、半導体基板やSOI基板などを用いてトランジスタを形成することが出来る。
これらにより電流供給能力が高く、サイズの小さいトランジスタを製造することができる
。これらのトランジスタを用いると、回路の低消費電力化、又は回路の高集積化を図るこ
とができる。
または、ZnO、a−InGaZnO、SiGe、GaAs、IZO、ITO、SnO
などの化合物半導体または酸化物半導体を有するトランジスタや、さらに、これらの化合
物半導体または酸化物半導体を薄膜化した薄膜トランジスタなどを用いることが出来る。
これらにより、製造温度を低くでき、例えば、室温でトランジスタを製造することが可能
となる。その結果、耐熱性の低い基板、例えばプラスチック基板やフィルム基板に直接ト
ランジスタを形成することが出来る。なお、これらの化合物半導体または酸化物半導体を
、トランジスタのチャネル部分に用いるだけでなく、それ以外の用途で用いることも出来
る。例えば、これらの化合物半導体または酸化物半導体を抵抗素子、画素電極、透光性を
有する電極として用いることができる。さらに、それらをトランジスタと同時に成膜又は
形成できるため、コストを低減できる。
または、インクジェットや印刷法を用いて形成したトランジスタなどを用いることが出
来る。これらにより、室温で製造、低真空度で製造、又は大型基板上に製造することがで
きる。マスク(レチクル)を用いなくても製造することが可能となるため、トランジスタ
のレイアウトを容易に変更することが出来る。さらに、レジストを用いる必要がないので
、材料費が安くなり、工程数を削減できる。さらに、必要な部分にのみ膜を付けるため、
全面に成膜した後でエッチングする、という製法よりも、材料が無駄にならず、低コスト
にできる。
または、有機半導体やカーボンナノチューブを有するトランジスタ等を用いることがで
きる。これらにより、曲げることが可能な基板上にトランジスタを形成することが出来る
。このような基板を用いた半導体装置は、衝撃に強くすることができる。
なお、トランジスタは、様々な基板を用いて形成することが出来る。基板の種類は、特
定のものに限定されることはない。その基板としては、例えば、単結晶基板、SOI基板
、ガラス基板、石英基板、プラスチック基板、ステンレス・スチル基板、ステンレス・ス
チル・ホイルを有する基板などを用いることが出来る。または、ある基板を用いてトラン
ジスタを形成し、その後、別の基板にトランジスタを転置し、別の基板上にトランジスタ
を配置してもよい。トランジスタが転置される基板としては、単結晶基板、SOI基板、
ガラス基板、石英基板、プラスチック基板、紙基板、セロファン基板、石材基板、木材基
板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステ
ル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含
む)、皮革基板、ゴム基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有
する基板などを用いることができる。あるいは、人などの動物の皮膚(皮表、真皮)又は
皮下組織を基板として用いてもよい。または、ある基板を用いてトランジスタを形成し、
その基板を研磨して薄くしてもよい。研磨される基板としては、単結晶基板、SOI基板
、ガラス基板、石英基板、プラスチック基板、ステンレス・スチル基板、ステンレス・ス
チル・ホイルを有する基板などを用いることができる。これらの基板を用いることにより
、特性のよいトランジスタの形成、消費電力の小さいトランジスタの形成、壊れにくい装
置の製造、耐熱性の付与、軽量化、又は薄型化を図ることができる。
なお、トランジスタの構成は、様々な形態をとることができ、特定の構成に限定されな
い。例えば、ゲート電極が2個以上のマルチゲート構造を適用することができる。マルチ
ゲート構造にすると、チャネル領域が直列に接続されるため、複数のトランジスタが直列
に接続された構成となる。マルチゲート構造により、オフ電流の低減、トランジスタの耐
圧向上(信頼性の向上)を図ることができる。あるいは、マルチゲート構造により、飽和
領域で動作する時に、ドレイン・ソース間電圧が変化しても、ドレイン・ソース間電流が
あまり変化せず、電圧・電流特性の傾きをフラットな特性にすることができる。電圧・電
流特性の傾きがフラットである特性を利用すると、理想的な電流源回路や、非常に高い抵
抗値をもつ能動負荷を実現することが出来る。その結果、特性のよい差動回路やカレント
ミラー回路を実現することが出来る。
別の例として、チャネルの上下にゲート電極が配置されている構造を適用することができ
る。チャネルの上下にゲート電極が配置されている構造にすることにより、チャネル領域
が増えるため、電流値の増加を図ることができる。または、チャネルの上下にゲート電極
が配置されている構造にすることにより、空乏層ができやすくなるため、S値の改善を図
ることができる。なお、チャネルの上下にゲート電極が配置される構成にすることにより
、複数のトランジスタが並列に接続されたような構成となる。
チャネル領域の上にゲート電極が配置されている構造、チャネル領域の下にゲート電極
が配置されている構造、正スタガ構造、逆スタガ構造、チャネル領域を複数の領域に分け
た構造、チャネル領域を並列に接続した構造、またはチャネル領域が直列に接続する構成
も適用できる。さらに、チャネル領域(もしくはその一部)にソース電極やドレイン電極
が重なっている構造も適用できる。チャネル領域(もしくはその一部)にソース電極やド
レイン電極が重なる構造にすることによって、チャネル領域の一部に電荷が溜まることに
より動作が不安定になることを防ぐことができる。あるいは、LDD領域を設けた構造を
適用できる。LDD領域を設けることにより、オフ電流の低減、又はトランジスタの耐圧
向上(信頼性の向上)を図ることができる。あるいは、LDD領域を設けることにより、
飽和領域で動作する時に、ドレイン・ソース間電圧が変化しても、ドレイン・ソース間電
流があまり変化せず、電圧・電流特性の傾きがフラットな特性にすることができる。
なお、トランジスタは、様々なタイプを用いることができ、様々な基板を用いて形成さ
せることができる。したがって、所定の機能を実現させるために必要な回路の全てが、同
一の基板に形成することも可能である。例えば、所定の機能を実現させるために必要な回
路の全てが、ガラス基板、プラスチック基板、単結晶基板、またはSOI基板などの様々
な基板を用いて形成することも可能である。所定の機能を実現させるために必要な回路の
全てが同じ基板を用いて形成されていることにより、部品点数の削減によるコストの低減
、又は回路部品との接続点数の低減による信頼性の向上を図ることができる。あるいは、
所定の機能を実現させるために必要な回路の一部が、ある基板に形成され、所定の機能を
実現させるために必要な回路の別の一部が、別の基板に形成されていることも可能である
。つまり、所定の機能を実現させるために必要な回路の全てが同じ基板を用いて形成され
ていなくてもよい。例えば、所定の機能を実現させるために必要な回路の一部は、ガラス
基板上にトランジスタにより形成され、所定の機能を実現させるために必要な回路の別の
一部は、単結晶基板に形成され、単結晶基板を用いて形成されたトランジスタで構成され
たICチップをCOG(Chip On Glass)でガラス基板に接続して、ガラス
基板上にそのICチップを配置することも可能である。あるいは、そのICチップをTA
B(Tape Automated Bonding)やプリント基板を用いてガラス基
板と接続することも可能である。このように、回路の一部が同じ基板に形成されているこ
とにより、部品点数の削減によるコストの低減、又は回路部品との接続点数の低減による
信頼性の向上を図ることができる。あるいは、駆動電圧が高い部分及び駆動周波数が高い
部分の回路は、消費電力が大きくなってしまうので、そのような部分の回路は同じ基板に
形成せず、そのかわりに、例えば、単結晶基板にその部分の回路を形成して、その回路で
構成されたICチップを用いるようにすれば、消費電力の増加を防ぐことができる。
なお、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端
子を有する素子であり、ドレイン領域とソース領域の間にチャネル領域を有しており、ド
レイン領域とチャネル領域とソース領域とを介して電流を流すことが出来る。ここで、ソ
ースとドレインとは、トランジスタの構造や動作条件等によって変わるため、いずれがソ
ースまたはドレインであるかを限定することが困難である。そこで、ソース及びドレイン
として機能する領域を、ソースもしくはドレインと呼ばない場合がある。その場合、一例
としては、それぞれを第1端子、第2端子と表記する場合がある。あるいは、それぞれを
第1電極、第2電極と表記する場合がある。あるいは、第1領域、第2領域と表記する場
合がある。
なお、半導体装置とは半導体素子(トランジスタ、ダイオード、サイリスタなど)を含
む回路を有する装置のことをいう。さらに、半導体特性を利用することで機能しうる装置
全般を半導体装置と呼んでもよい。または、半導体材料を有する装置のことを半導体装置
と言う。
なお、表示装置とは、表示素子を有する装置のことを言う。なお、表示装置は、表示素
子を含む複数の画素を含んでいても良い。なお、表示装置は、複数の画素を駆動させる周
辺駆動回路を含んでいても良い。なお、複数の画素を駆動させる周辺駆動回路は、複数の
画素と同一基板上に形成されてもよい。なお、表示装置は、ワイヤボンディングやバンプ
などによって基板上に配置された周辺駆動回路、いわゆる、チップオングラス(COG)
で接続されたICチップ、または、TABなどで接続されたICチップを含んでいても良
い。なお、表示装置は、ICチップ、抵抗素子、容量素子、インダクタ、トランジスタな
どが取り付けられたフレキシブルプリントサーキット(FPC)を含んでもよい。なお、
表示装置は、フレキシブルプリントサーキット(FPC)などを介して接続され、ICチ
ップ、抵抗素子、容量素子、インダクタ、トランジスタなどが取り付けられたプリント配
線基板(PWB)を含んでいても良い。なお、表示装置は、偏光板または位相差板などの
光学シートを含んでいても良い。なお、表示装置は、照明装置、筐体、音声入出力装置、
光センサなどを含んでいても良い。
なお、Aの上にBが形成されている、あるいは、A上にBが形成されている、と明示的
に記載する場合は、Aの上にBが直接接して形成されていることに限定されない。直接接
してはいない場合、つまり、AとBと間に別の対象物が介在する場合も含むものとする。
ここで、A、Bは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層
、など)であるとする。
従って例えば、層Aの上に(もしくは層A上に)、層Bが形成されている、と明示的に
記載されている場合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に
直接接して別の層(例えば層Cや層Dなど)が形成されていて、その上に直接接して層B
が形成されている場合とを含むものとする。なお、別の層(例えば層Cや層Dなど)は、
単層でもよいし、複層でもよい。
さらに、Aの上方にBが形成されている、と明示的に記載されている場合についても同
様であり、Aの上にBが直接接していることに限定されず、AとBとの間に別の対象物が
介在する場合も含むものとする。従って例えば、層Aの上方に、層Bが形成されている、
という場合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に直接接し
て別の層(例えば層Cや層Dなど)が形成されていて、その上に直接接して層Bが形成さ
れている場合とを含むものとする。なお、別の層(例えば層Cや層Dなど)は、単層でも
よいし、複層でもよい。
なお、Aの上にBが形成されている、又はAの上方にBが形成されている、と明示的に記
載する場合、斜め上にBが形成される場合も含むこととする。
なお、Aの下にBが、あるいは、Aの下方にBが、の場合についても、同様である。
なお、明示的に単数として記載されているものについては、単数であることが望ましい。
ただし、これに限定されず、複数であることも可能である。同様に、明示的に複数として
記載されているものについては、複数であることが望ましい。ただし、これに限定されず
、単数であることも可能である。
なお、図において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合
がある。よって、必ずしもそのスケールに限定されない。
なお、図は、理想的な例を模式的に示したものであり、図に示す形状又は値などに限定さ
れない。例えば、製造技術による形状のばらつき、誤差による形状のばらつき、ノイズに
よる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、
若しくは電流のばらつきなどを含むことが可能である。
なお、専門用語は、特定の実施の形態、又は実施例などを述べる目的で用いられる場合が
多く、これに限定されない。
なお、定義されていない文言(専門用語又は学術用語などの科学技術文言を含む)は、通
常の当業者が理解する一般的な意味と同等の意味として用いることが可能である。辞書等
により定義されている文言は、関連技術の背景と矛盾がないような意味に解釈されること
が好ましい。
なお、第1、第2、第3などの語句は、様々な要素、部材、領域、層、区域を他のものと
区別して記述するために用いられる。よって、第1、第2、第3などの語句は、要素、部
材、領域、層、区域などの数を限定するものではない。さらに、例えば、「第1の」を「
第2の」又は「第3の」などと置き換えることが可能である。
トランジスタのしきい値電圧のばらつきの影響を低減することが出来る。または、トラン
ジスタの移動度のばらつきの影響を低減することが出来る。または、トランジスタの電流
特性のばらつきの影響を低減することが出来る。または、映像信号の入力期間を長く確保
することが出来る。または、しきい値電圧のばらつきの影響を低減するための補正期間を
長く確保することが出来る。または、移動度のばらつきの影響を低減するための補正期間
を長く確保することが出来る。または、映像信号の波形のなまりの影響を受けにくくする
ことが出来る。または、線順次駆動だけでなく、点順次駆動を用いることが出来る。また
は、画素と駆動回路とを同じ基板上に形成することが出来る。または、消費電力の低くす
ることが出来る。または、コストを低くすることが出来る。または、配線の接続部分の接
触不良を低減することが出来る。または、信頼性を高くすることが出来る。または、画素
数を多くすることが出来る。または、フレーム周波数を高くすることが出来る。または、
パネルサイズを大きくすることが出来る。
実施の形態で示す回路または駆動方法を説明する図。 実施の形態で示す回路または駆動方法を説明する図。 実施の形態で示す動作を説明する図。 実施の形態で示す回路または駆動方法を説明する図。 実施の形態で示す回路または駆動方法を説明する図。 実施の形態で示す回路または駆動方法を説明する図。 実施の形態で示す回路または駆動方法を説明する図。 実施の形態で示す回路または駆動方法を説明する図。 実施の形態で示す回路または駆動方法を説明する図。 実施の形態で示す回路または駆動方法を説明する図。 実施の形態で示すトランジスタを説明する断面図。 実施の形態で示す電子機器を説明する図。 実施の形態で示す電子機器を説明する図。
以下、本発明の実施の形態について図面を参照しながら説明する。但し、本発明は多く
の異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱すること
なくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従っ
て本実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本
発明の構成において、同様のものを指す符号は異なる図面間で共通の符号を用いて示し、
同一部分又は同様な機能を有する部分の詳細な説明は省略する。
なお、以下に、各々の実施の形態において、様々な図を用いて述べていく。その場合、あ
る一つの実施の形態において、各々の図で述べる内容(一部の内容でもよい)は、別の図
で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、又は置き換えなどを
自由に行うことが出来る。同様に、一つまたは複数の実施の形態の各々の図で述べる内容
(一部の内容でもよい)は、一つまたは複数の別の実施の形態の図で述べる内容(一部の
内容でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来
る。
(実施の形態1)
図1に、トランジスタの移動度などの電流特性のばらつきを補正する場合の駆動方法、駆
動タイミングおよび、その時の回路構成について、その一例を示す。
図1(a)に、トランジスタ101の移動度などの電流特性のばらつきを補正している期
間における回路構成を示す。なお図1(a)に示す回路構成は、トランジスタ101の移
動度などの電流特性のばらつきを補正するために、トランジスタのゲートに保持されてい
る電荷を放電するための回路構成であり、実際には配線間に設けられる複数のスイッチの
オンまたはオフを制御することで当該回路構成の接続関係を実現するものである。
図1(a)において、トランジスタ101のソース(またはドレイン、第1の端子、第1
の電極)は、配線103と導通状態にある。トランジスタ101のドレイン(またはソー
ス、第2の端子、第2の電極)は、トランジスタ101のゲートと導通状態にある。容量
素子102の第1の端子(または第1の電極)は、トランジスタ101のゲートと導通状
態にある。容量素子102の第2の端子(または第2の電極)は、配線103と導通状態
にある。
表示素子105の第1の端子(または第1の電極)は、トランジスタ101のドレイン(
またはソース、第2の端子、第2の電極)と、非導通状態にある。トランジスタ101の
ドレイン(またはソース、第2の端子、第2の電極)以外の端子、配線または電極と、表
示素子105の第1の端子(または第1の電極)とは、非導通状態にあることが望ましい
が、これに限定されない。表示素子105の第2の端子(または第2の電極)は、配線1
06と導通状態にあることが望ましいが、これに限定されない。
配線104は、トランジスタ101のドレイン(またはソース、第2の端子、第2の電極
)と、非導通状態にある。さらに、配線104は、容量素子102の第1の端子(または
第1の電極)と、非導通状態にある。なお、配線104は、図1(a)に示すように、ト
ランジスタ101のドレイン(またはソース、第2の端子、第2の電極)と容量素子10
2の第1の端子(または第1の電極)以外の端子、配線または電極とも、非導通状態にあ
ることが望ましいが、これに限定されない。
なお、配線104を介して、トランジスタ101または容量素子102に、映像信号また
は所定の電圧などを供給される場合がある。よって、配線104は、ソース信号線、映像
信号線、または、ビデオ信号線などと呼ばれる場合がある。
なお、図1(a)の様な接続構成になる前に、つまり、トランジスタ101の移動度など
の電流特性のばらつきの補正を行う前に、容量素子102には、トランジスタ101のし
きい値電圧に応じた電圧が保持されていることが望ましい。そして、映像信号(ビデオ信
号)が配線104を介して容量素子102に入力されていることが望ましい。したがって
、容量素子102には、トランジスタ101のしきい値電圧に応じた電圧および映像信号
電圧の和の電圧が保持されていることが望ましい。よって、図1(a)の前の状態におい
ては、つまり、トランジスタ101の移動度などの電流特性のばらつきの補正を行う前に
は、配線104は、トランジスタ101のドレイン、ソース、ゲート、容量素子102の
第1の端子(または第1の電極)、第2の端子(または第2の電極)などのうちの少なく
とも一つと導通状態にあり、既に映像信号の入力動作が行われていることが望ましい。
なお、容量素子102によって、トランジスタ101のしきい値電圧に応じた電圧および
映像信号電圧の和の電圧が保持されていることが望ましいが、これに限定されない。容量
素子102には、トランジスタ101のしきい値電圧に応じた電圧は保持されておらず、
映像信号電圧のみが保持されていることも可能である。
なお、容量素子102によって電圧が保持されている場合、スイッチングノイズなどによ
り、わずかに電圧が変動する可能性がある。ただし、実動作に影響を与えない範囲であれ
ば、多少ずれていても問題はない。したがって、例えば、トランジスタ101のしきい値
電圧に応じた電圧および映像信号電圧の和の電圧が容量素子102に入力された場合、実
際に容量素子102に保持されている電圧は、その入力された電圧とは、完全には一致せ
ず、ノイズなどの影響により、わずかに、異なっている場合がある。ただし、実動作に影
響を与えない範囲であれば、多少ずれていても問題はない。
次に、図1(b)に、トランジスタ101を介して、表示素子105に電流が供給されて
いる期間における回路構成について示す。なお図1(b)に示す回路構成は、トランジス
タ101より表示素子105に電流を供給するための回路構成であり、実際には配線間に
設けられる複数のスイッチのオンまたはオフを制御することで当該回路構成の接続関係を
実現するものである。
トランジスタ101のソース(またはドレイン、第1の端子、第1の電極)は、配線10
3と導通状態にある。トランジスタ101のドレイン(またはソース、第2の端子、第2
の電極)は、表示素子105の第1の端子(または第1の電極)と導通状態にある。トラ
ンジスタ101のドレイン(またはソース、第2の端子、第2の電極)は、トランジスタ
101のゲートと非導通状態にある。容量素子102の第1の端子(または第1の電極)
は、トランジスタ101のゲートと導通状態にある。容量素子102の第2の端子(また
は第2の電極)は、配線103と導通状態にある。表示素子105の第2の端子(または
第2の電極)は、配線106と導通状態にある。
配線104は、トランジスタ101のドレイン(またはソース、第2の端子、第2の電極
)と、非導通状態にある。さらに、配線104は、容量素子102の第1の端子(または
第1の電極)と、非導通状態にある。なお、配線104は、図1(b)に示すように、ト
ランジスタ101のドレイン(またはソース、第2の端子、第2の電極)と容量素子10
2の第1の端子(または第1の電極)以外の端子、配線または電極とも、非導通状態にあ
ることが望ましいが、これに限定されない。
つまり、トランジスタ101の移動度などの電流特性のばらつきを補正している期間(図
1(a))から、トランジスタ101を介して、表示素子105に電流が供給されている
期間(図1(b))へ移行するときには、少なくとも、トランジスタ101のドレイン(
またはソース、第2の端子、第2の電極)とトランジスタ101のゲートとの導通状態と
、トランジスタ101のドレイン(またはソース、第2の端子、第2の電極)と表示素子
105の第1の端子(または第1の電極)との導通状態とが変化することとなるが、これ
に限定されず、他の部分の導通状態が変化することもできる。そして、上述のように導通
状態を制御できるように、スイッチ、トランジスタまたはダイオードなど素子を配置する
ことが望ましい。そして、当該素子を用いて導通状態を制御し、図1(a)、図1(b)
の接続状況を実現するような回路構成を実現することが出来る。よって、図1(a)、図
1(b)のような接続状況を実現できるならば、スイッチ、トランジスタまたはダイオー
ドなどの素子を自由に配置することができ、その個数または接続構造も限定されない。
一例としては、図2(a)に示すように、スイッチ201の第1の端子をトランジスタ1
01のゲートと電気的に接続し、第2の端子をトランジスタ101のドレイン(またはソ
ース、第2の端子、第2の電極)と電気的に接続する。そして、スイッチ202の第1の
端子をトランジスタ101のドレイン(またはソース、第2の端子、第2の電極)と電気
的に接続し、第2の端子を表示素子105と電気的に接続する。このように、2つのスイ
ッチを配置することにより、図1(a)、図1(b)の接続状況を実現するような回路構
成を実現することが出来る。
図2(a)とは別の例を、図2(b)、図2(c)に示す。図2(b)では、図2(a)
におけるスイッチ202の位置を、図2(b)のスイッチ205のような位置に変更した
。図2(c)では、図2(a)におけるスイッチ202を削除した。その代わり、例えば
、配線106の電位を変化させることにより、表示素子105が非導通状態となり、図1
(a)と同様な動作を実現することが出来る。そして、さらにスイッチやトランジスタな
どが必要な場合は、適宜、配置される。
なお、AはBと導通状態にある、と記載しているが、その場合、AとBとの間には、様々
な素子が接続されていることは可能である。例えば、抵抗素子、容量素子、トランジスタ
、ダイオードなどがAとBとの間に、直列接続、または並列接続で接続されていることは
可能である。同様に、AはBと非導通状態にある、と記載しているが、その場合、AとB
との間には、様々な素子が接続されていることは可能である。AとBとが、非導通になっ
てさえすればよいため、それ以外の部分では、様々な素子が接続されていることは可能で
ある。例えば、抵抗素子、容量素子、トランジスタ、ダイオードなどの素子が直列接続、
または並列接続で接続されていることは可能である。
したがって、例えば、図2(a)の回路において、スイッチ203を追加した場合の回路
を図2(d)に、スイッチ204を追加した場合の回路を図2(e)に、スイッチ206
を追加した場合の回路を図2(f)に示す。
このように、トランジスタ101の移動度などの電流特性のばらつきを補正している期間
(図1(a))において、トランジスタ101の移動度などの電流特性のばらつきが低減
されるため、表示素子105に電流が供給されている期間(図1(b))において、表示
素子105に供給される電流のばらつきも低減される。その結果、表示素子105の表示
状態のばらつきも低減され、表示品位の高い表示を行うことが出来る。
以上説明した図2(a)乃至図2(f)に示す回路構成は、上記図1(a)、図1(b)
で示した回路構成を実現する一例として示したものである。なお、実際には図2(a)乃
至図2(f)に示した複数のスイッチ以外に、配線間に設けられる複数のスイッチのオン
またはオフを制御することで、当該回路構成の接続関係を実現するものである。
なお、表示素子105に電流が供給されている期間(図1(b))は、トランジスタ10
1の移動度などの電流特性のばらつきを補正している期間(図1(a))の直後に出現さ
せることが望ましい。なぜなら、表示素子105に電流が供給されている期間(図1(b
))において取得したトランジスタ101のゲート電位(容量素子102に保持された電
荷)を利用して、表示素子105に電流が供給されている期間(図1(b))において、
処理を行うからである。しかしながら、トランジスタ101の移動度などの電流特性のば
らつきを補正している期間(図1(a))の直後に表示素子105に電流が供給されてい
る期間(図1(b))を出現させることに限定されない。トランジスタ101の移動度な
どの電流特性のばらつきを補正している期間において、容量素子102の電荷量が変化し
、そして、期間終了時に決定した容量素子102の電荷量が、表示素子105に電流が供
給されている期間(図1(b))において、大きく変化していない場合などは、トランジ
スタ101の移動度などの電流特性のばらつきを補正している期間(図1(a))と、表
示素子105に電流が供給されている期間(図1(b))との間に、別の処理が行われる
期間が設けられていても良い。
したがって、トランジスタ101の移動度などの電流特性のばらつきを補正している期間
が終了した時点での容量素子102に保持された電荷と、表示素子105に電流が供給さ
れている期間が開始した時点での容量素子102に保持された電荷とは、概ね同じ量であ
ることが望ましい。ただし、ノイズなどの影響により、わずかに双方の電荷量が異なって
いる場合もある。具体的は、双方の電荷量の差は、10%以内が望ましく、より望ましく
は、3%以内が望ましい。電荷量の差が3%以内であれば、その差が反映される表示素子
を人間の眼で見たときに、その差を視認できないため、より望ましい。
そこで、トランジスタ101の移動度などの電流特性のばらつきを補正している期間(図
1(a))において、電圧電流特性がどのような状態に変化するかを図3(a)に示す。
容量素子102に保存されていた電荷が、トランジスタ101の移動度などの電流特性の
ばらつきを補正している期間(図1(a))において、トランジスタ101のソースとド
レインの間を介して、放電されていく。その結果、容量素子102に保持されていた電荷
量が減少していき、容量素子102に保持された電圧も減少していく。したがって、トラ
ンジスタ101のゲートとソースの間の電圧の絶対値も減少していく。容量素子102に
保存されている電荷は、トランジスタ101を介して放電されていくため、電荷の放電量
は、トランジスタ101の電流特性に依存する。つまり、トランジスタ101の移動度が
高ければ、より多くの電荷が放電される。または、トランジスタ101のチャネル幅Wと
チャネル長Lの比(W/L)が大きければ、より多くの電荷が放電される。または、トラ
ンジスタ101のゲートとソースの間の電圧の絶対値が大きければ(つまり、容量素子1
02で保持される電圧の絶対値が大きければ)、より多くの電荷が放電される。または、
トランジスタ101のソース領域、ドレイン領域での寄生抵抗が小さければ、より多くの
電荷が放電される。または、トランジスタ101のLDD領域での抵抗が小さければ、よ
り多くの電荷が放電される。または、トランジスタ101と電気的に接続されているコン
タクトホールでのコンタクト抵抗が小さければ、より多くの電荷が放電される。
そのため、放電前、つまり、トランジスタ101の移動度などの電流特性のばらつきを補
正している期間(図1(a))に入る前の期間における電圧電流特性のグラフは、トラン
ジスタ101の移動度などの電流特性のばらつきを補正している期間(図1(a))にお
いて、容量素子102に保存されている電荷の一部が放電された結果、傾きが小さな曲線
のグラフに変化する。そして、例えば、放電前と放電後の電圧電流特性のグラフの差は、
トランジスタ101の移動度が大きい方が大きくなる。したがって、トランジスタ101
の移動度が高い場合(つまり、グラフの傾きが大きい場合)は、放電後には、傾きの変化
量が大きくなり、トランジスタ101の移動度が低い場合(つまり、グラフの傾きが小さ
い場合)は、放電後には、傾きの変化量が小さくなる。その結果、放電後では、トランジ
スタ101の移動度が高い場合と低い場合とで、電圧電流特性のグラフの差が小さくなり
、移動度のばらつきの影響が低減することができる。さらに、トランジスタ101のゲー
トとソースの間の電圧の絶対値が大きければ(つまり、容量素子102で保持される電圧
の絶対値が大きければ)、より多くの電荷が放電され、トランジスタ101のゲートとソ
ースの間の電圧の絶対値が小さければ(つまり、容量素子102で保持される電圧の絶対
値が小さければ)、放電される電荷量が少なくなるため、より適切に、移動度のばらつき
を低減することが出来る。
なお、図3(a)のグラフは、すでにしきい値電圧のばらつきの影響を低減した後の場合
のグラフである。したがって、図3(b)に示すように、トランジスタ101の移動度の
ばらつきを補正している期間(図1(a))に入る前には、しきい値電圧のばらつきの影
響が低減されている。しきい値電圧のばらつきを低減するために、電圧電流特性のグラフ
をしきい値電圧の分だけ平行移動させる。つまり、トランジスタのゲートとソースの間の
電圧には、映像信号電圧としきい値電圧との和の電圧が供給される。その結果、しきい値
電圧のばらつきの影響は低減される。しきい値電圧のばらつきを低減したあと、図3(a
)のグラフに示すように、移動度のばらつきを低減することにより、トランジスタ101
の電流特性のばらつきを大幅に低減させることが出来る。
なお、ばらつきを補正できるトランジスタ101の電流特性は、トランジスタ101の移
動度だけでなく、しきい値電圧、ソース部分(ドレイン部分)での寄生抵抗、LDD領域
での抵抗、トランジスタ101と電気的に接続されているコンタクトホールでのコンタク
ト抵抗などもあげられる。これらの電流特性も、トランジスタ101を介して電荷が放電
されることから、移動度の場合と同様、ばらつきを低減することが出来る。
従って、放電前、つまり、トランジスタ101の移動度などの電流特性のばらつきを補正
している期間(図1(a))に入る前の期間における容量素子102の電荷量は、トラン
ジスタ101の移動度などの電流特性のばらつきを補正している期間(図1(a))の終
了時点における容量素子102の電荷量よりも多い。なぜなら、トランジスタ101の移
動度などの電流特性のばらつきを補正している期間(図1(a))では、容量素子102
の電荷が放電されるため、容量素子102に保存されている電荷が少なくなっていくから
である。
なお、容量素子102に保持されている電荷は、一部が放電されれば、すぐに放電を停止
することが望ましい。仮に、完全に放電してしまったら、つまり、電流が流れなくなるま
で放電させてしまうと、映像信号の情報がほとんど無くなってしまう。したがって、完全
に放電される前に、放電を停止することが望ましい。つまり、トランジスタ101に電流
が流れている間に、放電を停止することが望ましい。
したがって、1ゲート選択期間(または1水平期間、1フレーム期間を画素の行数で割り
算した値など)と、トランジスタ101の移動度などの電流特性のばらつきを補正してい
る期間(図1(a))との長さを比較すると、1ゲート選択期間(または1水平期間、1
フレーム期間を画素の行数で割り算した値など)の方が長いことが望ましい。なぜなら、
1ゲート選択期間よりも長く放電を行うと、放電しすぎてしまう可能性があるからである
。ただし、これに限定されない。
または、画素に映像信号を入力している期間と、トランジスタ101の移動度などの電流
特性のばらつきを補正している期間(図1(a))との長さを比較すると、画素に映像信
号を入力している期間の方が長いことが望ましい。なぜなら、画素に映像信号を入力して
いる期間よりも長く放電を行うと、放電しすぎてしまう可能性があるからである。ただし
、これに限定されない。
または、トランジスタのしきい値電圧を取得している期間と、トランジスタ101の移動
度などの電流特性のばらつきを補正している期間(図1(a))との長さを比較すると、
トランジスタのしきい値電圧を取得している期間の方が長いことが望ましい。なぜなら、
トランジスタのしきい値電圧を取得している期間よりも長く放電を行うと、放電しすぎて
しまう可能性があるからである。ただし、これに限定されない。
なお、トランジスタ101の移動度などの電流特性のばらつきを補正している期間(図1
(a))において、容量素子102に保持されている電荷を放電する期間の長さは、例え
ば、トランジスタ101の移動度のばらつき量、容量素子102の大きさ、トランジスタ
101のW/Lなどに応じて、決定することが望ましい。
例えば、図1、図2に示す回路が複数ある場合について考える。例としては、第1の色を
表示するための第1の画素と、第2の色を表示するための第2の画素とを有しており、各
々の画素はトランジスタ101に相当するトランジスタとして、第1の画素は、トランジ
スタ101Aを、第2の画素はトランジスタ101Bとを有しているとする。同様に、容
量素子102に相当する容量素子として、第1の画素は、容量素子102Aを、第2の画
素は容量素子102Bとを有しているとする。
そして、トランジスタ101AのW/Lが、トランジスタ101BのW/Lよりも大きい
場合は、容量素子102Aの容量値の方が、容量素子102Bの容量値よりも大きいこと
が望ましい。なぜなら、トランジスタ101Aの方が多くの電荷を放電するため、容量素
子102Aの電圧も、より大きく変化してしまう。そこで、それを調整するために、容量
素子102Aの容量値が大きいことが望ましい。または、トランジスタ101Aのチャネ
ル幅Wが、トランジスタ101Bのチャネル幅Wよりも大きい場合は、容量素子102A
の容量値の方が、容量素子102Bの容量値よりも大きいことが望ましい。または、トラ
ンジスタ101Aのチャネル長Lが、トランジスタ101Bのチャネル長Lよりも小さい
場合は、容量素子102Aの容量値の方が、容量素子102Bの容量値よりも大きいこと
が望ましい。
なお、容量素子102に保持されている電荷の放電量を制御するために、追加して容量素
子を配置することが可能である。例えば、図1(a)、図1(b)に対して、容量素子を
追加した場合の一例を図4(a)、図4(b)に示す。なお図4(a)乃至図4(f)で
説明する回路構成は、上記図1(a)、図1(b)で示した回路構成を実現する一例とし
て示したものである。なお、実際には図4(a)乃至図4(f)に示した複数のスイッチ
及び容量素子以外に、配線間に設けられる複数のスイッチのオンまたはオフを制御するこ
とで、当該回路構成の接続関係を実現するものである。
図4(a)、図4(b)において、容量素子402Aの第1の端子(または第1の電極)
は、トランジスタ101のドレイン(またはソース、第2の端子、第2の電極)と導通状
態にあり、容量素子402Aの第2の端子(または第2の電極)は、配線103と導通状
態にある。なお、図4(b)では、容量素子402Aの各端子の導通状態は、図4(a)
と同じであることが望ましいが、これに限定されない。一部が非導通状態にあってもよい
同様に、図1(a)、図1(b)に対して容量素子を追加した場合の別の例を図4(c)
、図4(d)に示す。容量素子402Bの第1の端子(または第1の電極)は、トランジ
スタ101のドレイン(またはソース、第2の端子、第2の電極)と導通状態にあり、容
量素子402Bの第2の端子(または第2の電極)は、配線106と導通状態にある。な
お、図4(d)では、容量素子402Bの各端子の導通状態は、図4(c)と同じである
ことが望ましいが、これに限定されない。一部が非導通状態にあってもよい。
例えば、図4などに示す回路が複数ある場合について考える。例としては、第1の色を表
示するための第1の画素と、第2の色を表示するための第2の画素とを有しており、各々
の画素はトランジスタ101に相当するトランジスタとして、第1の画素は、トランジス
タ101Aを、第2の画素はトランジスタ101Bとを有しているとする。同様に、容量
素子102に相当する容量素子として、第1の画素は、容量素子102Aを、第2の画素
は容量素子102Bとを有しているとする。さらに、容量素子402A乃至容量素子40
2Cの少なくともいずれか一つに相当する容量素子として、第1の画素は、容量素子40
2AAを、第2の画素は容量素子402ABとを有しているとする。
そして、トランジスタ101AのW/Lが、トランジスタ101BのW/Lよりも大きい
場合は、容量素子102Aの容量値の方が、容量素子102Bの容量値よりも大きいこと
が望ましい。または、容量素子402AAの容量値の方が、容量素子402ABの容量値
よりも大きいことが望ましい。または、容量素子102Aと容量素子402AAの合計の
容量値の方が、容量素子102Bと容量素子402ABの合計の容量値よりも大きいこと
が望ましい。なぜなら、トランジスタ101Aの方が多くの電荷を放電するので、電位を
調整するためである。または、トランジスタ101Aのチャネル幅Wが、トランジスタ1
01Bのチャネル幅Wよりも大きい場合は、容量素子102Aの容量値の方が、容量素子
102Bの容量値よりも大きいことが望ましい。または、容量素子402AAの容量値の
方が、容量素子402ABの容量値よりも大きいことが望ましい。または、容量素子10
2Aと容量素子402AAの合計の容量値の方が、容量素子102Bと容量素子402A
Bの合計の容量値よりも大きいことが望ましい。または、トランジスタ101Aのチャネ
ル長Lが、トランジスタ101Bのチャネル長Lよりも小さい場合は、容量素子102A
の容量値の方が、容量素子102Bの容量値よりも大きいことが望ましい。または、容量
素子402AAの容量値の方が、容量素子402ABの容量値よりも大きいことが望まし
い。または、容量素子102Aと容量素子402AAの合計の容量値の方が、容量素子1
02Bと容量素子402ABの合計の容量値よりも大きいことが望ましい。
なお、容量素子402AAと容量素子402ABの容量値は異なっていて、容量素子10
2Aと容量素子102Bの容量値は、概ね等しい、という状態になっていることも可能で
ある。つまり、容量値の調整を、容量素子102Aと容量素子102Bではなく、容量素
子402AAと容量素子402ABの方を用いて行う、ということも可能である。容量素
子102Aと容量素子102Bの大きさが異なる場合、映像信号の大きさに差が出てきて
しまう可能性があるなど、他への影響が大きい場合がある。そのため、容量素子402A
Aと容量素子402ABの方を用いて容量値の調整を行うことが望ましい。
なお、回路の接続構造は、図1(a)、図1(b)に限定されない。例えば、図1(a)
、図1(b)では、容量素子102の第2の端子(または第2の電極)が、配線103と
導通状態にあるが、これに限定されない。少なくとも所定の期間において、一定の電位を
供給する機能を有している配線と導通状態にあればよい。例えば、容量素子102の第2
の端子(または第2の電極)が配線107に接続されている場合の例を、図1(c)、図
1(d)に示す。同様に、容量素子102の第2の端子(または第2の電極)が配線10
6に接続されている場合の例を、図1(e)、図1(f)に示す。
なお、図1(c)乃至図1(f)においても、図4(a)乃至図4(d)と同様に、追加
で容量素子を配置することができる。一例として、図1(c)、図1(d)に対して、追
加の容量素子402Cを配置した場合を図4(e)、図4(f)に示す。
なお、図1(c)乃至図1(f)においても、図2(a)乃至図2(f)と同様に、スイ
ッチを配置することができる。
なお、図1(a)乃至図1(f)、図2(a)乃至図2(f)、図4(a)乃至図4(f
)などにおいて、容量素子102を単独での表記によって説明したが、これに限定されな
い。直列接続、または、並列接続によって、複数の容量素子が配置されることができる。
例えば、図1(a)、図1(b)において、2つの容量素子102A、102Bが直列に
接続されている場合の例を図1(g)、図1(h)に示す。
なお、図1、図3、図4などにおいて、トランジスタ101がPチャネル型の場合につい
て述べたが、これに限定されない。図5に示すように、Nチャネル型を用いることが可能
である。例として、図1(a)乃至図1(d)に対して、Nチャネル型を用いた場合を図
5(a)〜図5(d)に示す。これら以外の場合においても、同様に行うことが出来る。
なお図5(a)乃至図5(d)で説明する回路構成は、上記図1(a)、図1(b)で示
した回路構成を実現する一例として示したものである。なお、実際には図5(a)乃至図
5(d)に示した複数のスイッチ及び容量素子以外に、配線間に設けられる複数のスイッ
チのオンまたはオフを制御することで、当該回路構成の接続関係を実現するものである。
なお、トランジスタ101は、表示素子105に流れる電流の大きさを制御し、表示素子
105を駆動する能力を有している場合が多いが、これに限定されない。
なお、配線103は、表示素子105に電力を供給する能力を有している場合が多い。あ
るいは、配線103は、トランジスタ101に流れる電流を供給する能力を有している場
合が多いが、これに限定されない。
なお、配線107は、容量素子102に電圧を供給するする能力を有している場合が多い
。あるいは、トランジスタ101のゲート電位がノイズなどにより変動しにくいようにす
る機能を有している場合が多いが、これに限定されない。
なお、トランジスタ101のしきい値電圧に応じた電圧とは、トランジスタ101のしき
い値電圧と同じ大きさの電圧、または、トランジスタ101のしきい値電圧に近い大きさ
を有する電圧のことを言う。例えば、トランジスタ101のしきい値電圧が大きい場合は
、しきい値電圧に応じた電圧も大きく、トランジスタ101のしきい値電圧が小さい場合
は、しきい値電圧に応じた電圧も小さい。このように、しきい値電圧に応じて大きさが決
まっているような電圧のことを、しきい値電圧に応じた電圧と呼ぶ。したがって、ノイズ
などの影響により、僅かに異なっているような電圧も、しきい値電圧に応じた電圧と呼ぶ
事が出来る。
なお、表示素子105は、輝度、明るさ、反射率、透過率などを変化させるような機能を
有する素子のことを言う。したがって、表示素子105の例としては、液晶素子、発光素
子、有機EL素子、電気泳動素子などを用いることが出来る。
なお、本実施の形態において、各々の図で述べた内容は、別の実施の形態で述べた内容に
対して、適宜、組み合わせ、又は置き換えなどを自由に行うことができる。
(実施の形態2)
本実施の形態では、実施の形態1で述べた回路および駆動方法の具体例について示す。
図6(a)に、図1(a)、図1(b)、図2(a)、図2(d)の具体例について示す
。スイッチ601の第1の端子は、配線104に接続され、第2の端子は、トランジスタ
101のソース(またはドレイン)と接続されている。スイッチ203の第1の端子は、
配線103と接続され、第2の端子は、トランジスタ101のソース(またはドレイン)
と接続されている。容量素子102の第1の端子は、トランジスタ101のゲートに接続
され、第2の端子は、配線103に接続されている。スイッチ201の第1の端子は、ト
ランジスタ101のゲートに接続され、第2の端子は、トランジスタ101のドレイン(
またはソース)と接続されている。スイッチ202の第1の端子は、トランジスタ101
のドレイン(またはソース)と接続され、第2の端子は、表示素子105の第1の端子と
接続されている。表示素子105の第2の端子は、配線106と接続されている。
なお、トランジスタ101のドレイン(またはソース)、またはゲートの電位を制御する
ために、スイッチを追加することが望ましい。ただし、これに限定されない。スイッチを
追加した例を図6(b)、図6(c)に示す。図6(b)では、スイッチ602が追加さ
れ、その第1の端子はトランジスタ101のゲートに接続され、第2の端子は、配線60
6に接続されている。図6(c)では、スイッチ603が追加され、その第1の端子はト
ランジスタ101のドレイン(またはソース)に接続され、第2の端子は、配線606に
接続されている。
なお、配線606は、別の配線と共有して、配線数を削減することが可能である。例えば
、配線106と配線606とを共有して、配線106のみで構成した場合の例を図6(d
)に示す。スイッチ602の第1の端子はトランジスタ101のゲートに接続され、第2
の端子は、配線106に接続されている。このように、スイッチ602の第2の端子の接
続先は、限定されず、様々な配線に接続させることが可能である。そして、別の配線と共
有することにより、配線数を低減することが出来る。
なお、回路の接続構成は、これに限定されない。所望の動作を行うことができるように配
置されていれば、様々な場所に、スイッチやトランジスタなどを配置することによって、
様々な構成の回路を実現することが出来る。
このように、実施の形態1で述べた構成についての例は、様々な構成をとることが出来る
。さらに、図1(a)、図1(b)、図2(a)、図2(d)の具体例について示したが
、図1、図2、図4、図5においても、同様に、具体例を構成することが出来る。
例として、図1(c)、図1(d)についての例を図6(e)に示す。なお、図6(e)
では、スイッチ603の第2の端子及び容量素子102の第2の端子(または第2の電極
)は、共に配線107に接続されており、配線を共有している。ただし、これに限定され
ない。
さらに、図4(c)、図4(d)についての例を図6(f)に示す。容量素子402B、
第1の端子は、トランジスタ101のドレイン(またはソース)に接続され、第2の端子
は、配線106に接続されている。
このように、図6では、実施の形態1で述べた構成についての例の一部を示したが、それ
以外の例についても、同様に構成することが出来る。
次に、動作方法について述べる。ここでは、図6(b)の回路を用いて述べるが、それ以
外の回路についても、同様な動作方法を用いることが出来る。
まず、図7(a)に示すように、初期化を行う。これは、トランジスタ101のゲート、
または、ドレイン(またはソース)の電位を、所定の電位に設定する動作である。これに
より、トランジスタ101がオンするような状態にすることが出来る。または、容量素子
102に、所定の電圧が供給される。そのため、容量素子102には、電荷が保持される
こととなる。スイッチ602は導通状態にあり、オンになっている。スイッチ601、ス
イッチ201、スイッチ202、スイッチ203については、非導通状態であり、オフに
なっていることが望ましい。ただし、これに限定されない。ただし、表示素子105に電
流が流れないことが望ましいため、それを実現できるような状態にあることが望ましい。
したがって、少なくとも、スイッチ202、スイッチ203の少なくともいずれか一つが
非導通状態であり、オフになっていることが望ましい。
なお、配線606の電位は、配線104より低いことが望ましい。なお、配線606の電
位は、配線106と概ね同じであることが望ましい。ここで概ねとは、誤差の範囲で等し
いと言える程度の状態であり、±10%以内の範囲で等しい場合のことを言う。なお、電
位は、これに限定されない。また、これらの電位は、トランジスタ101がPチャネル型
の場合である。よって、トランジスタ101の極性がNチャネル型の場合は、電位の上下
関係は逆であることが望ましい。
次に、図7(b)に示すように、映像信号の入力を行う。なお、この期間において、トラ
ンジスタ101のしきい値電圧の取得も行うこととなる。スイッチ601、スイッチ20
1は、導通状態にあり、オンになっている。スイッチ202、スイッチ203、スイッチ
602は、非導通状態であり、オフになっていることが望ましい。そして、配線104よ
り、映像信号が供給される。このとき、容量素子102には、図7(a)の期間において
蓄積された電荷があるため、その電荷が放電されていく。そのため、トランジスタ101
のゲートの電位は、配線104より供給される映像信号から、トランジスタ101のしき
い値電圧(負の値)を足し合わせた電位に近づいていく。つまり、配線104より供給さ
れる映像信号よりも、トランジスタ101のしきい値電圧の絶対値の分だけ低い電位に近
づいていく。このとき、トランジスタ101のゲートとソースの間の電圧は、トランジス
タ101のしきい値電圧に近づいていく。これらの動作により、映像信号の入力と、しき
い値電圧の取得とを同時並行に行うことが出来る。なお、容量素子102の電荷を放電す
る場合、ほぼ完全に放電することは可能である。その場合、トランジスタ101は、ほと
んど電流が流れなくなっているため、トランジスタ101のゲートとソースの間の電圧は
、トランジスタ101のしきい値電圧に非常に近い大きさになっている。ただし、完全に
放電する前に、放電を止めることも可能である。
このような動作により、容量素子102には、しきい値電圧に応じた電圧と映像信号電圧
とを足し合わせた電圧が供給され、その電圧に応じた電荷が蓄積される。
なお、この期間において、容量素子102の電荷を放電する場合、その期間に違いがでて
も、大きな問題はない。なぜなら、ある程度の時間が経過すれば、ほぼ完全に放電されて
しまうため、期間に長さが違っても、動作に与える影響は小さいからである。したがって
、この動作は、線順次ではなく、点順次を用いて駆動させることが出来る。したがって、
駆動回路の構成が簡単な構成で実現できる。そのため、図6に示すような回路を1つの画
素としたとき、その画素がマトリクス状に配置された画素部と、画素部に信号を供給する
駆動回路部とについて、両者を同じ種類のトランジスタを用いて構成すること、または同
じ基板上に形成することが可能となる。ただしこれに限定されず、線順次駆動を用いたり
、画素部と駆動回路部とを別々の基板上に形成することも可能である。
次に、図7(c)に示すように、トランジスタ101の移動度などの電流特性のばらつき
を補正する。これは、図1(a)、図1(c)などの期間に相当する。そして、スイッチ
201、スイッチ203は、導通状態にあり、オンになっている。スイッチ601、スイ
ッチ202、スイッチ602は、非導通状態であり、オフになっていることが望ましい。
このような状態にすることにより、容量素子102に蓄積された電荷が、トランジスタ1
01を介して放電されていく。このようにして、トランジスタ101を介してわずかに放
電させることにより、トランジスタ101の電流のばらつきの影響を低減することが出来
る。
次に、図7(d)に示すように、トランジスタ101を介して、表示素子105に電流を
供給する。これは、図1(b)、図1(d)などの期間に相当する。そして、スイッチ2
02、スイッチ203は、導通状態にあり、オンになっている。スイッチ201、スイッ
チ601、スイッチ602は、非導通状態であり、オフになっていることが望ましい。こ
のとき、トランジスタ101のゲートとソースの間の電圧は、しきい値電圧に応じた電圧
と映像信号電圧との和の電圧から、トランジスタ101の電流特性に応じた電圧が差し引
かれた電圧となっている。したがって、トランジスタ101の電流特性のばらつきの影響
を低減することができ、表示素子105には、適切な大きさの電流を供給することが出来
る。
なお、図6(a)の回路構成の場合は、図7(a)に示す初期化の期間においては、図8
(a)に示すように、表示素子105を介して、トランジスタ101のゲートまたはドレ
イン(またはソース)の電位を制御することが可能である。そして、スイッチ201、ス
イッチ202は、導通状態であり、オンになっていることが望ましい。スイッチ601、
スイッチ203については、非導通状態であり、オフになっていることが望ましいが、こ
れに限定されない。図7(b)以降については、同様に動作させればよい。
または、図6(c)の回路構成の場合は、図7(a)に示す初期化の期間においては、図
8(b)に示すように、スイッチ603を介して、トランジスタ101のゲートまたはド
レイン(またはソース)の電位を制御することが可能である。そして、スイッチ201、
スイッチ603は、導通状態であり、オンになっていることが望ましい。スイッチ601
、スイッチ202、スイッチ203については、非導通状態であり、オフになっているこ
とが望ましいが、これに限定されない。図7(b)以降については、同様に動作させれば
よい。
なお、図7において、各動作への切り替わり時において、その動作の間に、別の動作や別
の期間が設けられていることも可能である。例えば、図8(c)に示すような状態を、図
7(a)と図7(b)の間に設けても良い。このような期間を設けても、支障がないため
、問題はない。
なお、本実施の形態において、各々の図で述べた内容は、別の実施の形態で述べた内容に
対して、適宜、組み合わせ、又は置き換えなどを自由に行うことができる。
(実施の形態3)
本実施の形態では、実施の形態1で述べた回路および駆動方法の別の具体例について示す
図9(a)に、図1(a)、図1(b)、図2(a)の具体例について示す。スイッチ9
01の第1の端子は、配線104に接続され、第2の端子は、トランジスタ101のゲー
トと接続されている。容量素子102の第1の端子は、トランジスタ101のゲートに接
続され、第2の端子は、配線103に接続されている。スイッチ201の第1の端子は、
トランジスタ101のゲートに接続され、第2の端子は、トランジスタ101のドレイン
(またはソース)と接続されている。スイッチ202の第1の端子は、トランジスタ10
1のドレイン(またはソース)と接続され、第2の端子は、表示素子105の第1の端子
と接続されている。表示素子105の第2の端子は、配線106と接続されている。トラ
ンジスタ101のソース(またはドレイン)は、配線103に接続されている。
なお、回路の接続構成は、これに限定されない。所望の動作を行うことができるように配
置されていれば、様々な場所に、スイッチやトランジスタなどを配置することによって、
様々な構成の回路を実現することが出来る。
例えば、図9(e)に示すように、スイッチ901の接続を変更することが可能である。
図9(e)では、スイッチ901の第1の端子は、配線104に接続され、第2の端子は
、トランジスタ101のドレイン(またはソース)と接続されている。
このように、実施の形態1で述べた構成についての例は、様々な構成をとることが出来る
。さらに、図1(a)、図1(b)、図2(a)の具体例について示したが、図1、図2
、図4、図5においても、同様に、具体例を構成することが出来る。
次に、動作方法について述べる。
まず、図9(b)に示すように、映像信号の入力を行う。スイッチ901は、導通状態に
あり、オンしている。スイッチ201、スイッチ202は、非導通状態であり、オフして
いることが望ましい。そして、配線104より、映像信号が供給される。このとき、容量
素子102には、電荷が蓄積される。
次に、図9(c)に示すように、トランジスタ101の移動度などの電流特性のばらつき
を補正する。これは、図1(a)、図1(c)などの期間に相当する。そして、スイッチ
201は、導通状態にあり、オンしている。スイッチ901、スイッチ202は、非導通
状態であり、オフしていることが望ましい。このような状態にすることにより、容量素子
102に蓄積された電荷が、トランジスタ101を介して放電されていく。このようにし
て、トランジスタ101を介してわずかに放電させることにより、トランジスタ101の
電流のばらつきの影響を低減することが出来る。
次に、図9(d)に示すように、トランジスタ101を介して、表示素子105に電流を
供給する。これは、図1(b)、図1(d)などの期間に相当する。そして、スイッチ2
02は、導通状態にあり、オンしている。スイッチ201、スイッチ901は、非導通状
態であり、オフしていることが望ましい。このとき、トランジスタ101のゲートとソー
スの間の電圧は、映像信号電圧から、トランジスタ101の電流特性に応じた電圧が差し
引かれた電圧となっている。したがって、トランジスタ101の電流特性のばらつきの影
響を低減することができ、表示素子105には、適切な大きさの電流を供給することが出
来る。
なお、図9(e)の回路構成の場合は、図9(b)の期間において、スイッチ201とス
イッチ901とは、導通状態にあり、オンしているようにすることが望ましい。図9(c
)以降については、同様に動作させればよい。
なお、図9において、各動作への切り替わり時において、その動作の間に、別の動作や別
の期間が設けられていることも可能である。
なお、本実施の形態において、各々の図で述べた内容は、別の実施の形態で述べた内容に
対して、適宜、組み合わせ、又は置き換えなどを自由に行うことができる。
(実施の形態4)
本実施の形態では、実施の形態1乃至実施の形態3で述べた回路について、具体例を示す
例として、図6(b)に示す回路が1つの画素を構成し、その画素がマトリクス状に配置
されている場合について、図10に示す。なお、図10では、スイッチは、Pチャネル型
のトランジスタを用いて実現している。ただし、これに限定されず、別の極性のトランジ
スタを用いたり、両方の極性のトランジスタを用いたり、ダイオードまたはダイオード接
続されたトランジスタなどを用いたりすることも可能である。
図6(b)に示す回路は、1つ分の画素である画素1000Mを構成している。画素10
00Mと同様な構成の画素が、画素1000N、画素1000P、画素1000Qとして
、マトリクス状に配置されている。各画素では、上下、左右の配置に応じて、同じ配線に
接続されている場合がある。
次に、図6(b)の各要素と、画素1000Mにおける各要素との対応を、以下に示す。
配線104は、配線104Mに対応し、配線103は、配線103Mに対応し、スイッチ
601は、トランジスタ601Mに対応し、スイッチ203は、トランジスタ203Mに
対応し、トランジスタ101は、トランジスタ101Mに対応し、容量素子102は容量
素子102Mに対応し、スイッチ201は、トランジスタ201Mに対応し、スイッチ2
02は、トランジスタ202Mに対応し、スイッチ602は、トランジスタ602Mに対
応し、表示素子105は、発光素子105Mに対応し、配線106は、配線106Mに対
応し、配線606は、配線606Mに対応する。
トランジスタ601Mのゲートは、配線1002Mと接続されている。トランジスタ20
3Mのゲートは、配線1001Mと接続されている。トランジスタ202Mのゲートは、
配線1003Mと接続されている。トランジスタ201Mのゲートは、配線1004Mと
接続されている。トランジスタ602Mのゲートは、配線1005Mと接続されている。
なお、各々のトランジスタのゲートに接続されている配線は、別の画素の配線または同じ
画素の別の配線に接続されていることが可能である。例えば、トランジスタ602Mのゲ
ートは、画素1000Nが有する配線である配線1002Nと接続されることが可能であ
る。この場合は、配線1005Mと配線1002Nとが共用し、配線1005Mを削除す
ることができる。
なお、スイッチ602として、3端子または4端子を有するトランジスタ602Mを用い
る場合を示したが、2端子のダイオード、または、ダイオード接続されたトランジスタを
用いることが可能である。それらを用いる場合、トランジスタ602Mのオンまたはオフ
を制御していた配線1005Mを削除することができる。
なお、配線606Mは、配線606P、配線606N、配線606Q、配線106Mと接
続されることが可能である。または、配線606Mは、他の画素が有する配線に接続され
ることが可能である。
図10と同様に、様々な回路を構成することが可能である。
なお、本実施の形態において、各々の図で述べた内容は、別の実施の形態で述べた内容に
対して、適宜、組み合わせ、又は置き換えなどを自由に行うことができる。
(実施の形態5)
本実施の形態においては、トランジスタの構造及び作製方法について説明する。
図11(A)乃至(G)は、トランジスタの構造及び作製方法の例を示す図である。図1
1(A)は、トランジスタの構造の例を示す図である。図11(B)乃至(G)は、トラ
ンジスタの作製方法の例を示す図である。
なお、トランジスタの構造及び作製方法は、図11(A)乃至(G)に示すものに限定さ
れず、様々な構造及び作製方法を用いることができる。
まず、図11(A)を参照し、トランジスタの構造の例について説明する。図11(A)
は複数の異なる構造を有するトランジスタの断面図である。ここで、図11(A)におい
ては、複数の異なる構造を有するトランジスタを並置して示しているが、これは、トラン
ジスタの構造を説明するための表現であり、トランジスタが、実際に図11(A)のよう
に並置されている必要はなく、必要に応じてつくり分けることができる。
次に、トランジスタを構成する各層の特徴について説明する。
基板7011は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガラス基
板、石英基板、セラミック基板又はステンレスを含む金属基板等を用いることができる。
他にも、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)
、ポリエーテルサルフォン(PES)に代表されるプラスチック又はアクリル等の可撓性
を有する合成樹脂からなる基板を用いることも可能である。可撓性を有する基板を用いる
ことによって、折り曲げが可能である半導体装置を作製することが可能となる。可撓性を
有す基板であれば、基板の面積及び基板の形状に大きな制限はないため、基板7011と
して、例えば、1辺が1メートル以上であって、矩形状のものを用いれば、生産性を格段
に向上させることができる。このような利点は、円形のシリコン基板を用いる場合と比較
すると、大きな優位点である。
絶縁膜7012は、下地膜として機能する。基板7011からNaなどのアルカリ金属又
はアルカリ土類金属が、半導体素子の特性に悪影響を及ぼすのを防ぐために設ける。絶縁
膜7012としては、酸化珪素(SiO)、窒化珪素(SiN)、酸化窒化珪素(S
iO)(x>y)、窒化酸化珪素(SiN)(x>y)等の酸素又は窒素を
有する絶縁膜の単層構造若しくはこれらの積層構造で設けることができる。例えば、絶縁
膜7012を2層構造で設ける場合、1層目の絶縁膜として窒化酸化珪素膜を設け、2層
目の絶縁膜として酸化窒化珪素膜を設けるとよい。別の例として、絶縁膜7012を3層
構造で設ける場合、1層目の絶縁膜として酸化窒化珪素膜を設け、2層目の絶縁膜として
窒化酸化珪素膜を設け、3層目の絶縁膜として酸化窒化珪素膜を設けるとよい。
半導体層7013、半導体層7014、半導体層7015は、非晶質(アモルファス)半
導体、微結晶(マイクロクリスタル)半導体、又はセミアモルファス半導体(SAS)で
形成することができる。あるいは、多結晶半導体層を用いても良い。SASは、非晶質と
結晶構造(単結晶、多結晶を含む)の中間的な構造を有し、自由エネルギー的に安定な第
3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質な領域を含
んでいる。少なくとも膜中の一部の領域には、0.5〜20nmの結晶領域を観測するこ
とができ、珪素を主成分とする場合にはラマンスペクトルが520cm−1よりも低波数
側にシフトしている。X線回折では珪素結晶格子に由来するとされる(111)、(22
0)の回折ピークが観測される。未結合手(ダングリングボンド)を補償するものとして
水素又はハロゲンを少なくとも1原子%又はそれ以上含ませている。SASは、材料ガス
をグロー放電分解(プラズマCVD)して形成する。材料ガスとしては、SiH、その
他にもSi、SiHCl、SiHCl、SiCl、SiFなどを用いる
ことが可能である。あるいは、GeFを混合させても良い。この材料ガスをH、ある
いは、HとHe、Ar、Kr、Neから選ばれた一種又は複数種の希ガス元素で希釈し
てもよい。希釈率は2〜1000倍の範囲、圧力は概略0.1Pa〜133Paの範囲、
電源周波数は1MHz〜120MHz、好ましくは13MHz〜60MHz、基板加熱温
度は300℃以下でよい。膜中の不純物元素として、酸素、窒素、炭素などの大気成分の
不純物は1×1020cm−1以下とすることが望ましく、特に、酸素濃度は5×10
/cm以下、好ましくは1×1019/cm以下とする。ここでは、スパッタ法、
LPCVD法、プラズマCVD法等を用いてシリコン(Si)を主成分とする材料(例え
ばSiGe1−x等)で非晶質半導体層を形成し、当該非晶質半導体層をレーザ結晶化
法、RTA又はファーネスアニール炉を用いる熱結晶化法、結晶化を助長する金属元素を
用いる熱結晶化法などの結晶化法により結晶化させる。
絶縁膜7016は、酸化珪素(SiO)、窒化珪素(SiN)、酸化窒化珪素(Si
)(x>y)、窒化酸化珪素(SiN)(x>y)等の酸素又は窒素を有
する絶縁膜の単層構造、若しくはこれらの積層構造で設けることができる。
ゲート電極7017は、単層の導電膜、又は二層、三層の導電膜の積層構造とすることが
できる。ゲート電極7017の材料としては、導電膜を用いることができる。たとえば、
タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、クロム
(Cr)、シリコン(Si)などの元素の単体膜、あるいは、前記元素の窒化膜(代表的
には窒化タンタル膜、窒化タングステン膜、窒化チタン膜)、あるいは、前記元素を組み
合わせた合金膜(代表的にはMo−W合金、Mo−Ta合金)、あるいは、前記元素のシ
リサイド膜(代表的にはタングステンシリサイド膜、チタンシリサイド膜)などを用いる
ことができる。なお、上述した単体膜、窒化膜、合金膜、シリサイド膜などは、単層で用
いてもよいし、積層して用いてもよい。
絶縁膜7018は、スパッタ法又はプラズマCVD法等によって、酸化珪素(SiO
、窒化珪素(SiN)、酸化窒化珪素(SiO)(x>y)、窒化酸化珪素(S
iN)(x>y)等の酸素又は窒素を有する絶縁膜やDLC(ダイヤモンドライク
カーボン)等の炭素を含む膜の単層構造、若しくはこれらの積層構造で設けることができ
る。
絶縁膜7019は、シロキサン樹脂、あるいは、酸化珪素(SiO)、窒化珪素(Si
)、酸化窒化珪素(SiO)(x>y)、窒化酸化珪素(SiN)(x
>y)等の酸素又は窒素を有する絶縁膜やDLC(ダイヤモンドライクカーボン)等の炭
素を含む膜、あるいは、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノール、ベ
ンゾシクロブテン、アクリル等の有機材料、からなる単層若しくは積層構造で設けること
ができる。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロ
キサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基とし
て、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。
置換基として、フルオロ基を用いることもできる。あるいは、置換基として、少なくとも
水素を含む有機基と、フルオロ基とを用いてもよい。なお、絶縁膜7018を設けずにゲ
ート電極7017を覆うように直接絶縁膜7019を設けることも可能である。
導電膜7023は、Al、Ni、C、W、Mo、Ti、Pt、Cu、Ta、Au、Mnな
どの元素の単体膜、あるいは、前記元素の窒化膜、あるいは、前記元素を組み合わせた合
金膜、あるいは、前記元素のシリサイド膜などを用いることができる。例えば、前記元素
を複数含む合金として、C及びTiを含有したAl合金、Niを含有したAl合金、C及
びNiを含有したAl合金、C及びMnを含有したAl合金等を用いることができる。例
えば、積層構造で設ける場合、AlをMo又はTiなどで挟み込んだ構造とすることがで
きる。こうすることで、Alの熱や化学反応に対する耐性を向上することができる。
次に、図11(A)に示した、複数の異なる構造を有するトランジスタの断面図を参照し
て、各々の構造の特徴について説明する。
トランジスタ7001は、シングルドレイントランジスタであり、簡便な方法で製造でき
るため、製造コストが低く、歩留まりを高く製造できる利点がある。なお、テーパ角は、
45°以上95°未満、より好ましくは60°以上95°未満である。または、テーパ角
を45°未満とすることも可能である。ここで、半導体層7013、半導体層7015は
、それぞれ不純物の濃度が異なり、半導体層7013はチャネル領域、半導体層7015
はソース領域及びドレイン領域として用いる。このように、不純物の量を制御することで
、半導体層の抵抗率を制御できる。半導体層と導電膜7023との電気的な接続状態を、
オーミック接続に近づけることができる。なお、不純物の量の異なる半導体層を作り分け
る方法としては、ゲート電極7017をマスクとして半導体層に不純物をドーピングする
方法を用いることができる。
トランジスタ7002は、ゲート電極7017に一定以上のテーパ角を有するトランジス
タであり、簡便な方法で製造できるため、製造コストが低く、歩留まりを高く製造できる
利点がある。ここで、半導体層7013、半導体層7014、半導体層7015は、それ
ぞれ不純物濃度が異なり、半導体層7013はチャネル領域、半導体層7014は低濃度
ドレイン(Lightly Doped Drain:LDD)領域、半導体層7015
はソース領域及びドレイン領域として用いる。このように、不純物の量を制御することで
、半導体層の抵抗率を制御できる。半導体層と導電膜7023との電気的な接続状態を、
オーミック接続に近づけることができる。LDD領域を有するため、トランジスタ内部に
高電界がかかりにくく、ホットキャリアによる素子の劣化を抑制することができる。なお
、不純物の量の異なる半導体層を作り分ける方法としては、ゲート電極7017をマスク
として半導体層に不純物をドーピングする方法を用いることができる。トランジスタ70
02においては、ゲート電極7017が一定以上のテーパ角を有しているため、ゲート電
極7017を通過して半導体層にドーピングされる不純物の濃度に勾配を持たせることが
でき、簡便にLDD領域を形成することができる。なお、テーパ角は、45°以上95°
未満、より好ましくは60°以上95°未満である。または、テーパ角を45°未満とす
ることも可能である。
トランジスタ7003は、ゲート電極7017が少なくとも2層で構成され、下層のゲー
ト電極が上層のゲート電極よりも長い形状を有するトランジスタである。本明細書中にお
いては、上層のゲート電極及び下層のゲート電極の形状を、帽子型と呼ぶ。ゲート電極7
017の形状が帽子型であることによって、フォトマスクを追加することなく、LDD領
域を形成することができる。なお、トランジスタ7003のように、LDD領域がゲート
電極7017と重なっている構造を、特にGOLD構造(Gate Overlappe
d LDD)と呼ぶ。なお、ゲート電極7017の形状を帽子型とする方法としては、次
のような方法を用いてもよい。
まず、ゲート電極7017をパターニングする際に、ドライエッチングにより、下層のゲ
ート電極及び上層のゲート電極をエッチングして側面に傾斜(テーパ)のある形状にする
。続いて、異方性エッチングにより上層のゲート電極の傾斜を垂直に近くなるように加工
する。これにより、断面形状が帽子型のゲート電極が形成される。その後、2回、不純物
元素をドーピングすることによって、チャネル領域として用いる半導体層7013、LD
D領域として用いる半導体層7014、ソース領域及びドレイン領域として用いる半導体
層7015が形成される。
なお、ゲート電極7017と重なっているLDD領域をLov領域、ゲート電極7017
と重なっていないLDD領域をLoff領域と呼ぶことにする。ここで、Loff領域は
オフ電流値を抑える効果は高いが、ドレイン近傍の電界を緩和してホットキャリアによる
オン電流値の劣化を防ぐ効果は低い。一方、Lov領域はドレイン近傍の電界を緩和し、
オン電流値の劣化の防止には有効であるが、オフ電流値を抑える効果は低い。よって、種
々の回路毎に、求められる特性に応じた構造のトランジスタを作製することが好ましい。
たとえば、半導体装置を表示装置として用いる場合、画素トランジスタは、オフ電流値を
抑えるために、Loff領域を有するトランジスタを用いることが好適である。一方、周
辺回路におけるトランジスタは、ドレイン近傍の電界を緩和し、オン電流値の劣化を防止
するために、Lov領域を有するトランジスタを用いることが好適である。
トランジスタ7004は、ゲート電極7017の側面に接して、サイドウォール7021
を有するトランジスタである。サイドウォール7021を有することによって、サイドウ
ォール7021と重なる領域をLDD領域とすることができる。
トランジスタ7005は、半導体層にマスク7022を用いてドーピングすることにより
、LDD(Loff)領域を形成したトランジスタである。こうすることにより、確実に
LDD領域を形成することができ、トランジスタのオフ電流値を低減することができる。
トランジスタ7006は、半導体層にマスクを用いてドーピングすることにより、LDD
(Lov)領域を形成したトランジスタである。こうすることにより、確実にLDD領域
を形成することができ、トランジスタのドレイン近傍の電界を緩和し、オン電流値の劣化
を低減することができる。
次に、トランジスタの作製方法の例を、図11(B)乃至(G)に示す。
なお、トランジスタの構造及び作製方法は、図11(A)乃至(G)に示すものに限定さ
れず、様々な構造及び作製方法を用いることができる。
本実施の形態においては、基板7011の表面に、絶縁膜7012の表面に、半導体層7
013の表面に、半導体層7014の表面に、半導体層7015の表面に、絶縁膜701
6の表面に、絶縁膜7018の表面に、又は絶縁膜7019の表面に、プラズマ処理を用
いて酸化又は窒化を行うことにより、半導体層又は絶縁膜を酸化又は窒化することができ
る。このように、プラズマ処理を用いて半導体層又は絶縁膜を酸化又は窒化することによ
って、当該半導体層又は当該絶縁膜の表面を改質し、CVD法やスパッタ法により形成し
た絶縁膜と比較してより緻密な絶縁膜を形成することができるため、ピンホール等の欠陥
を抑制し半導体装置の特性等を向上させることが可能となる。なお、プラズマ処理を行う
ことで形成された絶縁膜7024を、プラズマ処理絶縁膜と呼ぶ。
なお、サイドウォール7021は、酸化珪素(SiO)又は窒化珪素(SiN)を用
いることができる。サイドウォール7021をゲート電極7017の側面に形成する方法
としては、たとえば、ゲート電極7017を形成した後に、酸化珪素(SiO)又は窒
化珪素(SiN)を成膜した後に、異方性エッチングによって酸化珪素(SiO)又
は窒化珪素(SiN)膜をエッチングする方法を用いることができる。こうすることで
、ゲート電極7017の側面にのみ酸化珪素(SiO)又は窒化珪素(SiN)膜を
残すことができるので、ゲート電極7017の側面にサイドウォール7021を形成する
ことができる。
ここまで、トランジスタの構造及びトランジスタの作製方法について説明した。ここで、
配線、電極、導電層、導電膜、端子、ビア、プラグなどは、アルミニウム(Al)、タン
タル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、ネオジム(
Nd)、クロム(Cr)、ニッケル(Ni)、白金(Pt)、金(Au)、銀(Ag)、
銅(Cu)、マグネシウム(Mg)、スカンジウム(Sc)、コバルト(Co)、亜鉛(
Zn)、ニオブ(Nb)、シリコン(Si)、リン(P)、ボロン(B)、ヒ素(As)
、ガリウム(Ga)、インジウム(In)、錫(Sn)、酸素(O)で構成された群から
選ばれた一つもしくは複数の元素、または、前記群から選ばれた一つもしくは複数の元素
を成分とする化合物、合金材料(例えば、インジウム錫酸化物(ITO)、インジウム亜
鉛酸化物(IZO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(Zn
O)、酸化錫(SnO)、酸化錫カドミウム(CTO)、アルミネオジム(Al−Nd)
、マグネシウム銀(Mg−Ag)、モリブデンニオブ(Mo−Nb)など)で形成される
ことが望ましい。または、配線、電極、導電層、導電膜、端子などは、これらの化合物を
組み合わせた物質などを有して形成されることが望ましい。もしくは、前記群から選ばれ
た一つもしくは複数の元素とシリコンの化合物(シリサイド)(例えば、アルミシリコン
、モリブデンシリコン、ニッケルシリサイドなど)、前記群から選ばれた一つもしくは複
数の元素と窒素の化合物(例えば、窒化チタン、窒化タンタル、窒化モリブデン等)を有
して形成されることが望ましい。
なお、シリコン(Si)には、n型不純物(リンなど)またはp型不純物(ボロンなど)
を含んでいてもよい。シリコンが不純物を含むことにより、導電率の向上、又は通常の導
体と同様な振る舞いをすることが可能となる。従って、配線、電極などとして利用しやす
くなる。
なお、シリコンは、単結晶、多結晶(ポリシリコン)、微結晶(マイクロクリスタルシリ
コン)など、様々な結晶性を有するシリコンを用いることが出来る。あるいは、シリコン
は非晶質(アモルファスシリコン)などの結晶性を有さないシリコンを用いることが出来
る。単結晶シリコンまたは多結晶シリコンを用いることにより、配線、電極、導電層、導
電膜、端子などの抵抗を小さくすることが出来る。非晶質シリコンまたは微結晶シリコン
を用いることにより、簡単な工程で配線などを形成することが出来る。
なお、アルミニウムまたは銀は、導電率が高いため、信号遅延を低減することができる。
さらに、エッチングしやすいので、パターニングしやすく、微細加工を行うことが出来る
なお、銅は、導電率が高いため、信号遅延を低減することが出来る。銅を用いる場合は、
密着性を向上させるため、積層構造にすることが望ましい。
なお、モリブデンまたはチタンは、酸化物半導体(ITO、IZOなど)またはシリコン
と接触しても、不良を起こさない、エッチングしやすい、耐熱性が高いなどの利点を有す
るため、望ましい。
なお、タングステンは、耐熱性が高いなどの利点を有するため、望ましい。
なお、ネオジムは、耐熱性が高いなどの利点を有するため、望ましい。特に、ネオジムと
アルミニウムとの合金にすると、耐熱性が向上し、アルミニウムがヒロックをおこしにく
くなる。
なお、シリコンは、トランジスタが有する半導体層と同時に形成できる、耐熱性が高いな
どの利点を有するため、望ましい。
なお、ITO、IZO、ITSO、酸化亜鉛(ZnO)、シリコン(Si)、酸化錫(S
nO)、酸化錫カドミウム(CTO)は、透光性を有しているため、光を透過させる部分
に用いることができる。たとえば、画素電極や共通電極として用いることができる。
なお、IZOは、エッチングしやすく、加工しやすいため、望ましい。IZOは、エッチ
ングしたときに、残渣が残ってしまう、ということも起こりにくい。したがって、画素電
極としてIZOを用いると、液晶素子や発光素子に不具合(ショート、配向乱れなど)を
もたらすことを低減出来る。
なお、配線、電極、導電層、導電膜、端子、ビア、プラグなどは、単層構造でもよいし、
多層構造になっていてもよい。単層構造にすることにより、配線、電極、導電層、導電膜
、端子などの製造工程を簡略化することができ、工程日数を少なくでき、コストを低減す
ることが出来る。あるいは、多層構造にすることにより、それぞれの材料のメリットを生
かしつつ、デメリットを低減させ、性能の良い配線、電極などを形成することが出来る。
たとえば、低抵抗材料(アルミニウムなど)を多層構造の中に含むことにより、配線の低
抵抗化を図ることができる。別の例として、低耐熱性の材料を、高耐熱性の材料で挟む積
層構造にすることにより、低耐熱性の材料の持つメリットを生かしつつ、配線、電極など
の耐熱性を高くすることが出来る。例えば、アルミニウムを含む層を、モリブデン、チタ
ン、ネオジムなどを含む層で挟む積層構造にすると望ましい。
ここで、配線、電極など同士が直接接する場合、お互いに悪影響を及ぼすことがある。例
えば、一方の配線、電極などの他方の配線、電極など材料の中に入っていって、性質を変
えてしまい、本来の目的を果たせなくなる。別の例として、高抵抗な部分を形成又は製造
するときに、問題が生じて、正常に製造できなくなったりすることがある。そのような場
合、積層構造により反応しやすい材料を、反応しにくい材料で挟んだり、覆ったりすると
よい。例えば、ITOとアルミニウムとを接続させる場合は、ITOとアルミニウムとの
間に、チタン、モリブデン、ネオジム合金を挟むことが望ましい。別の例として、シリコ
ンとアルミニウムとを接続させる場合は、シリコンとアルミニウムとの間に、チタン、モ
リブデン、ネオジム合金を挟むことが望ましい。
なお、配線とは、導電体が配置されているものを言う。配線の形状は、線状でもよいし、
線状ではなく短くてもよい。したがって、電極は、配線に含まれている。
なお、本実施の形態において、各々の図で述べた内容は、別の実施の形態で述べた内容に
対して、適宜、組み合わせ、又は置き換えなどを自由に行うことができる。
(実施の形態6)
本実施の形態においては、電子機器の例について説明する。
図12(A)乃至図12(H)、図13(A)乃至図13(D)は、電子機器を示す図で
ある。これらの電子機器は、筐体9630、表示部9631、スピーカ9633、LED
ランプ9634、操作キー9635、接続端子9636、センサ9637(力、変位、位
置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間
、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線
を測定する機能を含むもの)、マイクロフォン9638、等を有することができる。
図12(A)はモバイルコンピュータであり、上述したものの他に、スイッチ9670、
赤外線ポート9671、等を有することができる。図12(B)は記録媒体を備えた携帯
型の画像再生装置(たとえば、DVD再生装置)であり、上述したものの他に、第2表示
部9632、記録媒体読込部9672、等を有することができる。図12(C)はゴーグ
ル型ディスプレイであり、上述したものの他に、第2表示部9632、支持部9673、
イヤホン9674、等を有することができる。図12(D)は携帯型遊技機であり、上述
したものの他に、記録媒体読込部9672、等を有することができる。図12(E)はテ
レビ受像機能付きデジタルカメラであり、上述したものの他に、アンテナ9675、シャ
ッターボタン9676、受像部9677、等を有することができる。図12(F)は携帯
型遊技機であり、上述したものの他に、第2表示部9632、記録媒体読込部9672、
等を有することができる。図12(G)はテレビ受像器であり、上述したものの他に、チ
ューナ、画像処理部、等を有することができる。図12(H)は持ち運び型テレビ受像器
であり、上述したものの他に、信号の送受信が可能な充電器9678、等を有することが
できる。図13(A)はディスプレイであり、上述したものの他に、支持台9679、等
を有することができる。図13(B)はカメラであり、上述したものの他に、外部接続ポ
ート9680、シャッターボタン9676、受像部9677、等を有することができる。
図13(C)はコンピュータであり、上述したものの他に、ポインティングデバイス96
81、外部接続ポート9680、リーダ/ライタ9682、等を有することができる。図
13(D)は携帯電話機であり、上述したものの他に、送信部、受信部、携帯電話・移動
端末向けの1セグメント部分受信サービス用チューナ、等を有することができる。
図12(A)乃至図12(H)、図13(A)乃至図13(D)に示す電子機器は、様々
な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)
を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する
機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、
無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を
用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又
はデータを読み出して表示部に表示する機能、等を有することができる。さらに、複数の
表示部を有する電子機器においては、一つの表示部を主として画像情報を表示し、別の一
つの表示部を主として文字情報を表示する機能、または、複数の表示部に視差を考慮した
画像を表示することで立体的な画像を表示する機能、等を有することができる。さらに、
受像部を有する電子機器においては、静止画を撮影する機能、動画を撮影する機能、撮影
した画像を自動または手動で補正する機能、撮影した画像を記録媒体(外部又はカメラに
内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有することができる
。なお、図12(A)乃至図12(H)、図13(A)乃至図13(D)に示す電子機器
が有することのできる機能はこれらに限定されず、様々な機能を有することができる。
本実施の形態において述べた電子機器は、何らかの情報を表示するための表示部を有する
ことを特徴とする。電子機器は、表示部において、トランジスタの特性バラツキの影響が
低減されているため、非常に均一な画像を表示させることが出来る。
次に、半導体装置の応用例を説明する。
図13(E)に、半導体装置を、建造物と一体にして設けた例について示す。図13(E
)は、筐体9730、表示部9731、操作部であるリモコン装置9732、スピーカ9
733等を含む。半導体装置は、壁かけ型として建物と一体となっており、設置するスペ
ースを広く必要とすることなく設置可能である。
図13(F)に、建造物内に半導体装置を、建造物と一体にして設けた別の例について示
す。表示パネル9741は、ユニットバス9742と一体に取り付けられており、入浴者
は表示パネル9741の視聴が可能になる。
なお、本実施の形態において、建造物として壁、ユニットバスを例としたが、本実施の形
態はこれに限定されず、様々な建造物に半導体装置を設置することができる。
次に、半導体装置を、移動体と一体にして設けた例について示す。
図13(G)は、半導体装置を、自動車に設けた例について示した図である。表示パネル
9761は、自動車の車体9762に取り付けられており、車体の動作又は車体内外から
入力される情報をオンデマンドに表示することができる。なお、ナビゲーション機能を有
していてもよい。
図13(H)は、半導体装置を、旅客用飛行機と一体にして設けた例について示した図で
ある。図13(H)は、旅客用飛行機の座席上部の天井9781に表示パネル9782を
設けたときの、使用時の形状について示した図である。表示パネル9782は、天井97
81とヒンジ部9783を介して一体に取り付けられており、ヒンジ部9783の伸縮に
より乗客は表示パネル9782の視聴が可能になる。表示パネル9782は乗客が操作す
ることで情報を表示する機能を有する。
なお、本実施の形態において、移動体としては自動車車体、飛行機車体について例示した
がこれに限定されず、自動二輪車、自動四輪車(自動車、バス等を含む)、電車(モノレ
ール、鉄道等を含む)、船舶等、様々なものに設置することができる。
なお、本実施の形態において、各々の図で述べた内容は、別の実施の形態で述べた内容に
対して、適宜、組み合わせ、又は置き換えなどを自由に行うことができる。
101 トランジスタ
102 容量素子
103 配線
104 配線
105 表示素子
106 配線
107 配線
201 スイッチ
202 スイッチ
203 スイッチ
204 スイッチ
205 スイッチ
206 スイッチ
601 スイッチ
602 スイッチ
603 スイッチ
606 配線
901 スイッチ
101A トランジスタ
101B トランジスタ
101M トランジスタ
102A 容量素子
102B 容量素子
102M 容量素子
103M 配線
104M 配線
105M 発光素子
106M 配線
201M トランジスタ
202M トランジスタ
203M トランジスタ
402A 容量素子
402B 容量素子
402C A乃至容量素子
601M トランジスタ
602M トランジスタ
606M 配線
606N 配線
606P 配線
606Q 配線
7001 トランジスタ
7002 トランジスタ
7003 トランジスタ
7004 トランジスタ
7005 トランジスタ
7006 トランジスタ
7011 基板
7012 絶縁膜
7013 半導体層
7014 半導体層
7015 半導体層
7016 絶縁膜
7017 ゲート電極
7018 絶縁膜
7019 絶縁膜
7021 サイドウォール
7022 マスク
7023 導電膜
7024 絶縁膜
8601 陽極
8602 陰極
8603 正孔輸送領域
8604 電子輸送領域
8605 混合領域
8606 領域
8607 領域
8608 領域
8609 領域
9601 表示パネル
9602 画素部
9603 走査線駆動回路
9604 信号線駆動回路
9605 回路基板
9606 コントロール回路
9607 信号分割回路
9608 接続配線
9611 チューナ
9612 映像信号増幅回路
9613 映像信号処理回路
9614 信号線駆動回路
9615 音声信号増幅回路
9616 音声信号処理回路
9617 スピーカ
9618 制御回路
9619 入力部
9621 表示パネル
9622 コントロール回路
9623 信号分割回路
9624 走査線駆動回路
9630 筐体
9631 表示部
9632 表示部
9633 スピーカ
9634 LEDランプ
9635 操作キー
9636 接続端子
9637 センサ
9638 マイクロフォン
9670 スイッチ
9671 赤外線ポート
9672 記録媒体読込部
9673 支持部
9674 イヤホン
9675 アンテナ
9676 シャッターボタン
9677 受像部
9678 充電器
9679 支持台
9680 外部接続ポート
9681 ポインティングデバイス
9682 リーダ/ライタ
9730 筐体
9731 表示部
9732 リモコン装置
9733 スピーカ
9741 表示パネル
9742 ユニットバス
9761 表示パネル
9762 車体
9781 天井
9782 表示パネル
9783 ヒンジ部
1000M 画素
1000N 画素
1000P 画素
1000Q 画素
1001M 配線
1002M 配線
1002N 配線
1003M 配線
1004M 配線
1005M 配線
1005N 配線
402AA 容量素子
402AB 容量素子

Claims (1)

  1. 薄膜トランジスタと、表示素子と、第1乃至第4のスイッチと、容量素子と、を有し、
    前記第1のスイッチの第1の端子は、第1の配線と電気的に接続され、
    前記第1のスイッチの第2の端子は、前記薄膜トランジスタのソース又はドレインの一方と電気的に接続され、
    前記第2のスイッチの第1の端子は、第2の配線と電気的に接続され、
    前記第2のスイッチの第2の端子は、前記薄膜トランジスタのソース又はドレインの一方と電気的に接続され、
    前記第3のスイッチの第1の端子は、前記薄膜トランジスタのソース又はドレインの他方と電気的に接続され、
    前記第3のスイッチの第2の端子は、前記薄膜トランジスタのゲートと電気的に接続され、
    前記第4のスイッチの第1の端子は、前記薄膜トランジスタのソース又はドレインの他方と電気的に接続され、
    前記第4のスイッチの第2の端子は、前記表示素子と電気的に接続され、
    前記容量素子の第1の電極は、前記第1の薄膜トランジスタのゲートと電気的に接続され、
    前記容量素子の第2の電極は、前記第1の配線と電気的に接続され、
    前記第1の配線は、前記薄膜トランジスタに流れる電流を伝えることができる機能を有し、
    前記第2の配線は、映像信号を伝えることができる機能を有し、
    1フレーム期間は、第1の期間と、第2の期間と、を有し、
    前記第1の期間において、前記第2のスイッチ及び前記第3のスイッチはオンであり、
    前記第1の期間において、前記第1のスイッチ及び前記第4のスイッチはオフであり、
    前記第1の期間において、前記薄膜トランジスタのゲートの電位は第1の値を有し、
    前記第1の値は、前記映像信号及び前記薄膜トランジスタのしきい値電圧に基づいた値であり、
    前記第1の値は、前記第1の配線の電位よりも低く、
    前記第2の期間において、前記第1のスイッチ及び前記第3のスイッチはオンであり、
    前記第2の期間において、前記第2のスイッチ及び前記第4のスイッチはオフであり、
    前記第2の期間において、前記薄膜トランジスタのゲートの電位は、前記薄膜トランジスタの移動度に基づいて前記第1の値から変化することを特徴とする表示装置。
JP2016056855A 2008-03-05 2016-03-22 表示装置 Active JP6105780B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008054545 2008-03-05
JP2008054545 2008-03-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014167267A Division JP6027063B2 (ja) 2008-03-05 2014-08-20 表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017039079A Division JP6353945B2 (ja) 2008-03-05 2017-03-02 表示装置

Publications (3)

Publication Number Publication Date
JP2016122216A JP2016122216A (ja) 2016-07-07
JP2016122216A5 JP2016122216A5 (ja) 2016-11-24
JP6105780B2 true JP6105780B2 (ja) 2017-03-29

Family

ID=41053082

Family Applications (11)

Application Number Title Priority Date Filing Date
JP2009047760A Withdrawn JP2009237558A (ja) 2008-03-05 2009-03-02 半導体装置の駆動方法
JP2014167267A Active JP6027063B2 (ja) 2008-03-05 2014-08-20 表示装置
JP2016056855A Active JP6105780B2 (ja) 2008-03-05 2016-03-22 表示装置
JP2017039079A Active JP6353945B2 (ja) 2008-03-05 2017-03-02 表示装置
JP2018110974A Active JP6630778B2 (ja) 2008-03-05 2018-06-11 電子機器
JP2019221914A Active JP6896051B2 (ja) 2008-03-05 2019-12-09 電子機器
JP2020213748A Withdrawn JP2021056530A (ja) 2008-03-05 2020-12-23 発光装置
JP2020218174A Withdrawn JP2021063993A (ja) 2008-03-05 2020-12-28 発光装置
JP2021095790A Active JP7083946B2 (ja) 2008-03-05 2021-06-08 電子機器
JP2022089474A Withdrawn JP2022107733A (ja) 2008-03-05 2022-06-01 半導体装置の駆動方法
JP2024003669A Pending JP2024040185A (ja) 2008-03-05 2024-01-15 トランジスタ

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2009047760A Withdrawn JP2009237558A (ja) 2008-03-05 2009-03-02 半導体装置の駆動方法
JP2014167267A Active JP6027063B2 (ja) 2008-03-05 2014-08-20 表示装置

Family Applications After (8)

Application Number Title Priority Date Filing Date
JP2017039079A Active JP6353945B2 (ja) 2008-03-05 2017-03-02 表示装置
JP2018110974A Active JP6630778B2 (ja) 2008-03-05 2018-06-11 電子機器
JP2019221914A Active JP6896051B2 (ja) 2008-03-05 2019-12-09 電子機器
JP2020213748A Withdrawn JP2021056530A (ja) 2008-03-05 2020-12-23 発光装置
JP2020218174A Withdrawn JP2021063993A (ja) 2008-03-05 2020-12-28 発光装置
JP2021095790A Active JP7083946B2 (ja) 2008-03-05 2021-06-08 電子機器
JP2022089474A Withdrawn JP2022107733A (ja) 2008-03-05 2022-06-01 半導体装置の駆動方法
JP2024003669A Pending JP2024040185A (ja) 2008-03-05 2024-01-15 トランジスタ

Country Status (5)

Country Link
US (3) US8305304B2 (ja)
JP (11) JP2009237558A (ja)
KR (1) KR101604981B1 (ja)
CN (1) CN101527116B (ja)
TW (1) TWI457901B (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526475B1 (ko) * 2007-06-29 2015-06-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 구동 방법
JP2009271200A (ja) 2008-05-01 2009-11-19 Sony Corp 表示装置及びその駆動方法
JP2009271199A (ja) * 2008-05-01 2009-11-19 Sony Corp 表示装置及び表示装置の駆動方法
KR101491623B1 (ko) * 2008-09-24 2015-02-11 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
US9047815B2 (en) 2009-02-27 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
JP5736114B2 (ja) 2009-02-27 2015-06-17 株式会社半導体エネルギー研究所 半導体装置の駆動方法、電子機器の駆動方法
JP2011107692A (ja) * 2009-10-20 2011-06-02 Semiconductor Energy Lab Co Ltd 表示装置の駆動方法、表示装置、及び電子機器。
KR20230007544A (ko) 2009-11-06 2023-01-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR101035625B1 (ko) * 2009-11-12 2011-05-19 삼성모바일디스플레이주식회사 표시 장치 및 그 구동 방법
KR20180030255A (ko) * 2009-11-30 2018-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치, 액정 표시 장치의 구동 방법, 및 이 액정 표시 장치를 구비하는 전자기기
KR101040806B1 (ko) * 2009-12-31 2011-06-14 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치
US9984617B2 (en) 2010-01-20 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Display device including light emitting element
KR101800850B1 (ko) * 2010-01-29 2017-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 기억 장치
CN102782622B (zh) * 2010-03-12 2016-11-02 株式会社半导体能源研究所 显示装置的驱动方法
CN105824397B (zh) 2010-04-28 2018-12-18 株式会社半导体能源研究所 半导体显示装置及其驱动方法
US8854220B1 (en) * 2010-08-30 2014-10-07 Exelis, Inc. Indicating desiccant in night vision goggles
US8878589B2 (en) 2011-06-30 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8710505B2 (en) 2011-08-05 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10043794B2 (en) 2012-03-22 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
CN102881253B (zh) * 2012-09-21 2015-09-09 京东方科技集团股份有限公司 一种像素电路和薄膜晶体管背板
TWI782259B (zh) 2012-10-24 2022-11-01 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
JP2015025978A (ja) * 2013-07-26 2015-02-05 株式会社ジャパンディスプレイ 駆動回路、表示装置、及び駆動方法
CN103500556B (zh) * 2013-10-09 2015-12-02 京东方科技集团股份有限公司 一种像素电路及其驱动方法、薄膜晶体管背板
US10483293B2 (en) 2014-02-27 2019-11-19 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device, and module and electronic appliance including the same
US10055045B2 (en) 2014-05-31 2018-08-21 Synaptics Incorporated Current feedback digital charge accumulator
KR102244075B1 (ko) * 2014-10-29 2021-04-26 삼성디스플레이 주식회사 스캔 구동 장치 및 이를 이용한 표시 장치
US11128786B2 (en) * 2014-11-21 2021-09-21 Apple Inc. Bending a circuit-bearing die
CA3234008A1 (en) 2021-09-27 2023-03-30 Kyoto University Method for producing t cell

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744227B2 (ja) * 1998-09-24 2006-02-08 セイコーエプソン株式会社 電気光学装置及びその製造方法並びに電子機器
JP3687399B2 (ja) * 1999-03-16 2005-08-24 セイコーエプソン株式会社 電気光学装置及びその製造方法
US6847341B2 (en) 2000-04-19 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Electronic device and method of driving the same
JP3931547B2 (ja) * 2000-10-18 2007-06-20 セイコーエプソン株式会社 電気光学装置及びその製造方法
JP2003043995A (ja) * 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd アクティブマトリックス型oled表示装置およびその駆動方法
JP4498669B2 (ja) * 2001-10-30 2010-07-07 株式会社半導体エネルギー研究所 半導体装置、表示装置、及びそれらを具備する電子機器
JP4485119B2 (ja) 2001-11-13 2010-06-16 株式会社半導体エネルギー研究所 表示装置
KR100940342B1 (ko) 2001-11-13 2010-02-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 그 구동방법
JP2003216100A (ja) * 2002-01-21 2003-07-30 Matsushita Electric Ind Co Ltd El表示パネルとel表示装置およびその駆動方法および表示装置の検査方法とel表示装置のドライバ回路
JP3750616B2 (ja) 2002-03-05 2006-03-01 日本電気株式会社 画像表示装置及び該画像表示装置に用いられる制御方法
US7876294B2 (en) 2002-03-05 2011-01-25 Nec Corporation Image display and its control method
JP2004145278A (ja) 2002-08-30 2004-05-20 Seiko Epson Corp 電子回路、電子回路の駆動方法、電気光学装置、電気光学装置の駆動方法及び電子機器
JP2004145300A (ja) * 2002-10-03 2004-05-20 Seiko Epson Corp 電子回路、電子回路の駆動方法、電子装置、電気光学装置、電気光学装置の駆動方法及び電子機器
TWI470607B (zh) * 2002-11-29 2015-01-21 Semiconductor Energy Lab A current driving circuit and a display device using the same
CN102360538B (zh) * 2003-02-28 2015-09-02 株式会社半导体能源研究所 半导体装置及其驱动方法
KR100497246B1 (ko) * 2003-04-01 2005-06-23 삼성에스디아이 주식회사 발광 표시 장치 및 그 표시 패널과 구동 방법
JP4062179B2 (ja) * 2003-06-04 2008-03-19 ソニー株式会社 画素回路、表示装置、および画素回路の駆動方法
KR100560780B1 (ko) 2003-07-07 2006-03-13 삼성에스디아이 주식회사 유기전계 발광표시장치의 화소회로 및 그의 구동방법
US8085226B2 (en) 2003-08-15 2011-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2005227310A (ja) * 2004-02-10 2005-08-25 Sanyo Electric Co Ltd 発光素子の駆動方法、画素回路、および表示装置
US7173590B2 (en) 2004-06-02 2007-02-06 Sony Corporation Pixel circuit, active matrix apparatus and display apparatus
JP4103850B2 (ja) 2004-06-02 2008-06-18 ソニー株式会社 画素回路及、アクティブマトリクス装置及び表示装置
JP2005352398A (ja) * 2004-06-14 2005-12-22 Tohoku Pioneer Corp アクティブマトリクス型発光表示パネル
KR100592641B1 (ko) * 2004-07-28 2006-06-26 삼성에스디아이 주식회사 화소 회로 및 그것을 채용한 유기 발광 표시 장치
JP4327042B2 (ja) 2004-08-05 2009-09-09 シャープ株式会社 表示装置およびその駆動方法
CA2490858A1 (en) 2004-12-07 2006-06-07 Ignis Innovation Inc. Driving method for compensated voltage-programming of amoled displays
JP2006317600A (ja) * 2005-05-11 2006-11-24 Sony Corp 画素回路
KR101174784B1 (ko) 2005-09-06 2012-08-20 엘지디스플레이 주식회사 발광표시장치
EP1764770A3 (en) * 2005-09-16 2012-03-14 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method of display device
KR101324756B1 (ko) * 2005-10-18 2013-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 그의 구동방법
JP2007148129A (ja) 2005-11-29 2007-06-14 Sony Corp 表示装置及びその駆動方法
US8004477B2 (en) 2005-11-14 2011-08-23 Sony Corporation Display apparatus and driving method thereof
JP2007148128A (ja) 2005-11-29 2007-06-14 Sony Corp 画素回路
EP1806724A3 (en) * 2006-01-07 2009-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device and electronic device
KR100698703B1 (ko) * 2006-03-28 2007-03-23 삼성에스디아이 주식회사 화소 및 이를 이용한 유기전계발광 표시장치
EP2008264B1 (en) 2006-04-19 2016-11-16 Ignis Innovation Inc. Stable driving scheme for active matrix displays
JP4240059B2 (ja) * 2006-05-22 2009-03-18 ソニー株式会社 表示装置及びその駆動方法
KR100811332B1 (ko) 2006-06-19 2008-03-07 비오이 하이디스 테크놀로지 주식회사 유기 전계 발광 표시 장치
JP5245220B2 (ja) * 2006-07-26 2013-07-24 ソニー株式会社 表示装置
JP5055879B2 (ja) 2006-08-02 2012-10-24 ソニー株式会社 表示装置および表示装置の駆動方法
KR100748358B1 (ko) * 2006-08-08 2007-08-09 삼성에스디아이 주식회사 논리 게이트 및 이를 이용한 주사 구동부와 유기전계발광표시장치
KR100821055B1 (ko) * 2006-12-27 2008-04-08 삼성에스디아이 주식회사 유기전계발광 표시장치와 그의 구동방법
KR100876250B1 (ko) * 2007-01-15 2008-12-26 삼성모바일디스플레이주식회사 유기 전계 발광 표시 장치
JP2009276744A (ja) * 2008-02-13 2009-11-26 Toshiba Mobile Display Co Ltd El表示装置

Also Published As

Publication number Publication date
US20140327663A1 (en) 2014-11-06
JP2015018261A (ja) 2015-01-29
KR101604981B1 (ko) 2016-03-21
JP6027063B2 (ja) 2016-11-16
JP2021056530A (ja) 2021-04-08
TWI457901B (zh) 2014-10-21
US9824626B2 (en) 2017-11-21
US8791929B2 (en) 2014-07-29
JP2016122216A (ja) 2016-07-07
JP6896051B2 (ja) 2021-06-30
KR20090095519A (ko) 2009-09-09
US8305304B2 (en) 2012-11-06
TW200949805A (en) 2009-12-01
CN101527116A (zh) 2009-09-09
JP6630778B2 (ja) 2020-01-15
JP2009237558A (ja) 2009-10-15
JP2020052417A (ja) 2020-04-02
JP2017129870A (ja) 2017-07-27
JP2018151668A (ja) 2018-09-27
JP2021157187A (ja) 2021-10-07
CN101527116B (zh) 2014-06-11
JP2022107733A (ja) 2022-07-22
US20090225010A1 (en) 2009-09-10
JP6353945B2 (ja) 2018-07-04
JP7083946B2 (ja) 2022-06-13
US20130033470A1 (en) 2013-02-07
JP2024040185A (ja) 2024-03-25
JP2021063993A (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
JP6353945B2 (ja) 表示装置
JP6023839B2 (ja) 表示装置、電子機器および移動体
JP5786008B2 (ja) 液晶表示装置、表示モジュール及び電子機器
JP5386140B2 (ja) 表示装置
JP5300498B2 (ja) 表示装置
JP5366458B2 (ja) アクティブマトリクス型表示装置及びそれを用いた電子機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170302

R150 Certificate of patent or registration of utility model

Ref document number: 6105780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250