(第1実施形態)
図1〜図11により、本発明の第1実施形態について説明する。本実施形態では、本発明の冷凍サイクル装置10を、車両走行用の駆動力を走行用電動モータから得る電気自動車に搭載される車両用空調装置1に適用している。この冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気を加熱あるいは冷却する機能を果たす。従って、本実施形態の送風空気は熱交換対象流体である。
さらに、冷凍サイクル装置10は、図1〜図3に示すように、送風空気を冷却して車室内を冷房する冷房モードの冷媒回路(図1参照)、冷却して除湿された送風空気を再加熱して車室内の除湿暖房を行う弱除湿暖房モードの冷媒回路(図1参照)、弱除湿暖房モードよりも高い加熱能力で送風空気を再加熱して車室内の除湿暖房を行う除湿暖房モード(図2参照)、および送風空気を加熱して車室内を暖房する暖房モードの冷媒回路(図3参照)を切替可能に構成されている。なお、図1〜図3では、それぞれの運転モードにおける冷媒の流れを実線矢印で示している。
また、この冷凍サイクル装置10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、HFO系冷媒(例えば、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
冷凍サイクル装置10の構成機器のうち、圧縮機11は、車両ボンネット内に配置され、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出するもので、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機として構成されている。圧縮機11の電動モータは、後述する空調制御装置から出力される制御信号によって、その作動(回転数)が制御される。
圧縮機11の吐出口側には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する室内空調ユニット30において車室内へ送風される送風空気の空気通路を形成するケーシング31内に配置されており、圧縮機11から吐出された高圧冷媒と後述する室内蒸発器23通過後の送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器である。なお、室内空調ユニット30の詳細については後述する。
室内凝縮器12の冷媒出口側には、第1三方継手13aが接続されている。この第1三方継手13aは、3つの流入出口のうち1つが冷媒流入口として用いられ、残りの2つが冷媒流出口として用いられている。従って、第1三方継手13aは、室内凝縮器12から流出した冷媒の流れを分岐する分岐部を構成している。
さらに、第1三方継手13aの一方の冷媒流出口には、第1三方継手13aと同様の構成の第2三方継手13bが接続されている。この第2三方継手13bの一方の冷媒流出口には、第1流量調整弁14aの入口側が接続され、他方の冷媒流出口には、第2流量調整弁14bの入口側が接続されている。
第1、第2流量調整弁14a、14bは、いずれも冷媒通路の開度を変化させる弁体と、この弁体の開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成される電気式の可変絞り機構であり、冷媒流量を調整する機能と冷媒を減圧膨張させる膨張弁としての機能を有している。
さらに、第1、第2流量調整弁14a、14bは、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒流路を閉塞する全閉機能を有している。
そして、この全開機能および全閉機能により、第1、第2流量調整弁14a、14bは、室内凝縮器12から流出した冷媒を第1流量調整弁14a側へ流入させる冷媒回路と、第2流量調整弁14b側へ流入させる冷媒回路とを切り替えることができる。
従って、本実施形態の第1、第2流量調整弁14a、14bは、冷房モード、弱除湿暖房モード、除湿暖房モード、および暖房モードにおける冷媒回路を切り替える冷媒回路切替手段を構成している。なお、第1、第2流量調整弁14a、14bは、いずれも空調制御装置から出力される制御信号によって、その作動が制御される。
また、第1流量調整弁14aの出口側には、加熱側エジェクタ15の加熱側ノズル部15aの入口側が接続されている。加熱側エジェクタ15は、除湿暖房モード時および暖房モード時に室内凝縮器12から流出した冷媒を減圧させる減圧手段としての機能を果たすとともに、高速で噴射される噴射冷媒の吸引作用によって冷媒を吸引(輸送)してサイクル内を循環させる冷媒循環手段(冷媒輸送手段)としての機能を果たすものである。
加熱側エジェクタ15の詳細構成については、図4を用いて説明する。加熱側エジェクタ15は、加熱側ノズル部15aおよび加熱側ボデー部15bを有して構成されている。まず、加熱側ノズル部15aは、冷媒の流れ方向に向かって徐々に先細る略円筒状の金属(例えば、ステンレス合金)で形成されており、内部に形成された冷媒通路(絞り通路)にて冷媒を等エントロピ的に減圧膨張させる機能を果たすものである。
加熱側ノズル部15aの内部に形成された冷媒通路には、冷媒通路面積が最も縮小した喉部(最小通路面積部)が設けられ、さらに、この喉部から冷媒を噴射する冷媒噴射口15cへ向かって冷媒通路面積が徐々に拡大する末広部が設けられている。つまり、本実施形態の加熱側ノズル部15aは、ラバールノズルとして構成されている。
また、本実施形態では、加熱側ノズル部15aとして、少なくとも後述する暖房モードの高加熱能力運転時に、冷媒噴射口15cから噴射される噴射冷媒の流速が二相音速αh以上(超音速状態)となるように設定されたものが採用されている。
ここで、二相音速αhとは、気相流体と液相流体が混合した気液混相状態の流体の音速であって、以下数式F1で定義される。
αh=[P/{α×(1−α)×ρl}]0.5 …(F1)
なお、数式F1中のαはボイド率であって、単位体積あたりに含まれるボイド(気泡)の容積割合を示している。
より詳細には、ボイド率αは以下数式F2で定義される。
α=x/{x+(ρg/ρl)×(1−x)}…(F2)
なお、数式F1、F2中のxは乾き度であって、ρgは気相冷媒密度、ρlは液相冷媒密度、Pは二相冷媒(二相流体)の圧力である。
次に、加熱側ボデー部15bは、略円筒状の金属(例えば、アルミニウム)で形成されており、内部に加熱側ノズル部15aを支持固定する固定部材として機能するとともに、加熱側エジェクタ15の外殻を形成するものである。より具体的には、加熱側ノズル部15aは、加熱側ボデー部15bの長手方向一端側の内部に収容されるように圧入にて固定されている。
また、加熱側ボデー部15bの外周側面のうち、加熱側ノズル部15aの外周側に対応する部位には、その内外を貫通して加熱側ノズル部15aの冷媒噴射口15cと連通するように設けられた加熱側冷媒吸引口15dが形成されている。この加熱側冷媒吸引口15dは、除湿暖房モード時および暖房モード時に、加熱側ノズル部15aの冷媒噴射口15cから噴射された噴射冷媒の吸引作用によって室外熱交換器17の一方の冷媒流入出口から流出した冷媒を加熱側エジェクタ15の内部へ吸引する貫通穴である。
さらに、加熱側ボデー部15bの内部には、加熱側ノズル部15aの冷媒噴射口15cから噴射された噴射冷媒と加熱側冷媒吸引口15dから吸引された吸引冷媒と混合させる混合部15e、加熱側冷媒吸引口15dから吸引された吸引冷媒を混合部15eへ導く吸引通路15f、および混合部15eにて混合された混合冷媒を昇圧させる加熱側昇圧部としての加熱側ディフューザ部15gが形成されている。
吸引通路15fは、加熱側ノズル部15aの先細り形状の先端部周辺の外周側と加熱側ボデー部15bの内周側との間の空間によって形成されており、吸引通路15fの冷媒通路面積は、冷媒流れ方向に向かって徐々に縮小している。これにより、吸引通路15fを流通する吸引冷媒の流速を徐々に増速させて、混合部15eにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(混合損失)を減少させている。
混合部15eは、加熱側ボデー部15bの内周側であって、加熱側ノズル部15aの冷媒噴射口15cから加熱側ディフューザ部15gの入口部15hへ至る範囲の空間によって形成されている。さらに、この混合部15eは、その冷媒通路面積が冷媒流れ方向に向かって徐々に縮小する円錐台形状に形成されており、加熱側ディフューザ部15gの入口部15hの冷媒通路面積は、冷媒噴射口15cの冷媒通路面積よりも小さくなっている。
これにより、混合部15eでは、混合冷媒の流速を徐々に減速させて、加熱側ディフューザ部15gの入口部15hへ到達するまでに、混合冷媒の流速を二相音速αhより低い値となるようにしている。換言すると、加熱側ディフューザ部15gへ流入する冷媒が亜音速状態となるようにしている。
加熱側ディフューザ部15gは、混合部15eの出口に連続するように配置されて、冷媒通路面積が徐々に拡大するように形成されている。これにより、混合部15eから流出した混合冷媒の速度エネルギを圧力エネルギに変換する機能、すなわち、混合冷媒の流速を減速させて混合冷媒を昇圧させる機能を果たす。
より具体的には、本実施形態の加熱側ディフューザ部15gの断面壁面形状は、図4に示すように、複数の曲線を組み合わせて形成されている。そして、加熱側ディフューザ部15gの冷媒通路面積の広がり度合が冷媒流れ方向に向かって徐々に大きくなった後に再び小さくなっていることで、冷媒を等エントロピ的に昇圧させることができる。
加熱側エジェクタ15の加熱側ディフューザ部15gの冷媒出口側には、アキュムレータ16の冷媒流入口が接続されている。アキュムレータ16は、内部に流入した冷媒の気液を分離する気液分離手段である。さらに、本実施形態のアキュムレータ16は、サイクル内の余剰液相冷媒を蓄える貯液手段としての機能を果たす。なお、このアキュムレータ16は、車両ボンネット内、つまり、外気に晒される外部空間に配置されている。
さらに、アキュムレータ16には、分離された液相冷媒を外部へ流出させることができるように配置された2つの液相冷媒流入出口と、分離された気相冷媒を流出させる1つの気相冷媒流出口が設けられている。
アキュムレータ16の一方の液相冷媒流入出口には、第3流量調整弁14cを介して室外熱交換器17の他方の冷媒流入出口が接続されている。第3流量調整弁14cの基本的構成は、第1、第2流量調整弁14a、14bと同様である。なお、この第3流量調整弁14cは、冷媒回路切替手段としての機能を発揮しないので、全閉機能を有していなくてもよい。
室外熱交換器17は、車両ボンネット内に配置され、その内部を流通する冷媒と図示しない送風ファンから送風された外気とを熱交換させるものである。より具体的には、室外熱交換器17は、冷房モードおよび弱除湿暖房モード時には高圧冷媒を放熱させる放熱器として機能し、除湿暖房モード時および暖房モード時には低圧冷媒を蒸発させる蒸発器として機能する。
送風ファンは、空調制御装置から出力される制御電圧によって稼働率、すなわち回転数(送風空気量)が制御される電動送風機である。さらに、前述の如く、室外熱交換器17の一方の冷媒流入出口には、第1開閉弁18aを介して加熱側エジェクタ15の加熱側冷媒吸引口15dが接続されている。
第1開閉弁18aは、室外熱交換器17の一方の冷媒流入出口から加熱側エジェクタ15の加熱側冷媒吸引口15dへ至る冷媒通路を開閉する電磁弁であって、第1、第2流量調整弁14a、14bとともに冷媒回路切替手段を構成している。なお、第1開閉弁18aは、空調制御装置から出力される制御電圧により、その作動が制御される。
また、室外熱交換器17の一方の冷媒流入出口と第1開閉弁18aとを接続する冷媒通路には、第3三方継手13cが配置されており、この第3三方継手13cには第2流量調整弁14bの出口側が接続されている。換言すると、第2流量調整弁14bの出口側には、第3三方継手13cを介して、室外熱交換器17の一方の冷媒流入出口が接続されている。
アキュムレータ16の他方の液相冷媒流入出口には、逆止弁19を介して第4流量調整弁14dの入口側が接続されている。この逆止弁19は、アキュムレータ16の他方の液相冷媒流入出口から第4流量調整弁14d側へ冷媒が流出することのみを許容している。なお、第4流量調整弁14dの基本的構成は、第3流量調整弁14cと同様である。
また、逆止弁19と第4流量調整弁14dとを接続する冷媒通路には、第4三方継手13dが配置され、この第4三方継手13dには前述した第1三方継手13aの他方の冷媒流出口が接続されている。さらに、第1三方継手13aの他方の冷媒流出口から第4三方継手13dへ至る冷媒通路には、この冷媒通路を開閉する第2開閉弁18bが配置されている。
アキュムレータ16の気相冷媒流出口には、第3開閉弁18cおよび第5三方継手13eを介して圧縮機11の吸入口が接続されている。なお、第2、第3開閉弁18b、18cの基本的構成は第1開閉弁18aと同様であり、第3〜第5三方継手13c〜13eの基本的構成は第1三方継手13aと同様である。さらに、第2、第3開閉弁18b、18cは、前述の第1開閉弁18a等とともに冷媒回路切替手段を構成している。
第4流量調整弁14dの出口側には、冷却側エジェクタ20の冷却側ノズル部20aの入口側が接続されている。冷却側エジェクタ20は、少なくとも除湿暖房モード時に第1三方継手13aにて分岐された他方の冷媒を減圧させる冷却側減圧手段である。この冷却側エジェクタ20の基本的構成は、加熱側エジェクタ15と同様である。
従って、冷却側エジェクタ20も、加熱側エジェクタ15と同様に、冷媒を減圧させる冷却側ノズル部20a、並びに、室内蒸発器23から流出した冷媒を吸引する冷却側冷媒吸引口20dおよび混合冷媒を昇圧させる冷却側ディフューザ部(冷却側昇圧部)20gが形成された冷却側ボデー部20bを有して構成されている。
さらに、冷却側エジェクタ20の冷却側ノズル部20aおよび冷却側ボデー部20bとしては、例えば、冷房モード時に飽和液相冷媒を流入させることによって冷凍サイクル装置10全体として高い成績係数(COP)を発揮できるように設定されたものが採用されている。
従って、加熱側エジェクタ15のように、冷却側ディフューザ部20gの入口部の冷媒通路面積が冷却側ノズル部20aの冷媒噴射口の冷媒通路面積よりも小さくなっている必要は無い。また、冷却側エジェクタ20の冷却側ディフューザ部20gの冷媒出口側には、冷却側気液分離器21の冷媒流入口が接続されている。
冷却側気液分離器21は、冷却側ディフューザ部20gから流出した冷媒の気液を分離し、分離した液相冷媒を内部に滞留させることなく液相冷媒および気相冷媒を外部に流出させるように構成されている。つまり、冷却側気液分離器21は貯液手段としての機能を殆ど有していない。
このような冷却側気液分離器21としては、例えば、遠心力の作用によって冷媒の気液を分離する遠心分離方式のもので、実質的に余剰冷媒を溜めることができない程度に内容積を小型化したものを採用すればよい。また、冷却側気液分離器21の液相冷媒流出口にはオリフィスあるいはキャピラリチューブからなる固定絞り22が配置されている。
固定絞り22の出口側には、室内蒸発器23の冷媒入口側が接続されている。室内蒸発器23は、室内空調ユニット30のケーシング31内であって、前述した室内凝縮器12よりも空気流れ上流側に配置されており、冷却側気液分離器21から流出した低圧液相冷媒を送風空気と熱交換させて蒸発させることによって、送風空気を冷却する冷却用熱交換器である。
室内蒸発器23の冷媒出口側には、冷却側エジェクタ20の冷却側冷媒吸引口20dが接続されている。さらに、冷却側気液分離器21の気相冷媒流出口には、前述の第5三方継手13eを介して、圧縮機11の吸入口が接続されている。
次に、室内空調ユニット30について説明する。室内空調ユニット30は、冷凍サイクル装置10によって温度調整された送風空気を車室内へ吹き出すためのもので、車室内最前部の計器盤(インストルメントパネル)の内側(車室内)に配置されている。さらに、室内空調ユニット30は、その外殻を形成するケーシング31内に送風機32、室内蒸発器23、室内凝縮器12、およびエアミックスドア34等を収容して構成されている。
ケーシング31は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。このケーシング31内の送風空気流れ最上流側には、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替手段としての内外気切替装置33が配置されている。
内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置から出力される制御信号によって、その作動が制御される。
内外気切替装置33の送風空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風手段としての送風機(ブロワ)32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置から出力される制御電圧によって回転数(送風量)が制御される。
送風機32の送風空気流れ下流側には、室内蒸発器23および室内凝縮器12が、送風空気の流れに対して、この順に配置されている。換言すると、室内蒸発器23は、室内凝縮器12よりも送風空気流れ上流側に配置されている。さらに、室内蒸発器23の空気流れ下流側であって、かつ、室内凝縮器12の送風空気流れ上流側には、室内蒸発器23通過後の送風空気のうち、室内凝縮器12を通過させる風量割合を調整するエアミックスドア34が配置されている。
また、室内凝縮器12の空気流れ下流側には、室内凝縮器12にて冷媒と熱交換して加熱された送風空気と室内凝縮器12を迂回して加熱されていない送風空気とを混合させる混合空間35が設けられている。さらに、ケーシング31の送風空気流れ最下流部には、混合空間35にて混合された送風空気(空調風)を、空調対象空間である車室内へ吹き出す開口穴が設けられている。
具体的には、この開口穴としては、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴、乗員の足元に向けて空調風を吹き出すフット開口穴、および車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴(いずれも図示せず)が設けられている。これらのフェイス開口穴、フット開口穴およびデフロスタ開口穴の送風空気流れ下流側には、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)が接続されている。
従って、エアミックスドア34が室内凝縮器12を通過させる風量の割合を調整することによって、混合空間35にて混合された空調風の温度が調整され、各開口穴から吹き出される空調風の温度が調整される。つまり、エアミックスドア34は、車室内へ送風される空調風の温度を調整する温度調整手段を構成している。
なお、エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータによって駆動され、このエアミックスドア駆動用の電動アクチュエータは、空調制御装置から出力される制御信号によって、その作動が制御される。
さらに、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モード切替手段を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。この吹出口モードドア駆動用の電動アクチュエータも、空調制御装置から出力される制御信号によって、その作動が制御される。
なお、吹出口モード切替手段によって切り替えられる吹出口モードとしては、具体的に、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出すフェイスモード、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すバイレベルモード、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出すフットモード、およびフット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出すフットデフロスタモード等がある。
さらに、乗員が操作パネルに設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。
次に、本実施形態の電気制御部について説明する。空調制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、14a〜14d、18a〜18c、32等の作動を制御する。
また、空調制御装置の入力側には、車室内温度(内気温)Trを検出する内気温検出手段としての内気センサ、車室外温度(外気温)Tamを検出する外気温検出手段としての外気センサ、車室内へ照射される日射量Asを検出する日射量検出手段としての日射センサ、圧縮機11吐出冷媒の吐出冷媒温度Tdを検出する吐出温度センサ、圧縮機11吐出冷媒の吐出冷媒圧力(高圧側冷媒圧力)Pdを検出する吐出圧力センサ、室内蒸発器23における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度センサ、混合空間から車室内へ送風される送風空気温度TAVを検出する送風空気温度センサ、室外熱交換器17の室外器温度Tsを検出する室外熱交換器温度センサ等の空調制御用のセンサ群が接続され、これらのセンサ群の検出信号が入力される。
なお、本実施形態の蒸発器温度センサは、室内蒸発器23の熱交換フィン温度を検出しているが、蒸発器温度センサとして、室内蒸発器23のその他の部位の温度を検出する温度検出手段を採用してもよい。
また、本実施形態の室外熱交換器温度センサは、室外熱交換器17の冷媒流出口の温度を検出しているが、室外熱交換器温度センサとして、室内蒸発器23のその他の部位の温度を検出する温度検出手段を採用してもよい。
また、本実施形態では、送風空気温度TAVを検出する送風空気温度センサを設けているが、この送風空気温度TAVとして、蒸発器温度Tefin、高圧側冷媒温度Td等に基づいて算出された値を採用してもよい。
さらに、空調制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が入力される。
操作パネルに設けられた各種操作スイッチとしては、具体的に、車両用空調装置1の自動制御運転を設定あるいは解除するオートスイッチ、車室内の冷房を行う冷房スイッチ(A/Cスイッチ)、送風機32の風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する目標温度設定手段としての温度設定スイッチ、吹出モードをマニュアル設定する吹出モード切替スイッチ等がある。
なお、本実施形態の空調制御装置は、その出力側に接続された各種制御対象機器を制御する制御手段が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。
例えば、空調制御装置のうち、圧縮機11の作動(冷媒吐出能力)を制御する構成(ハードウェアおよびソフトウェア)が圧縮機制御手段を構成し、冷媒回路切替手段を構成する各開閉弁18a〜18c等の作動を制御する構成(ハードウェアおよびソフトウェア)が冷媒回路制御手段を構成している。もちろん、圧縮機制御手段、冷媒回路制御手段等を空調制御装置に対して別体の空調制御装置として構成してもよい。
次に、上記構成における本実施形態の作動について説明する。前述の如く、本実施形態の車両用空調装置1では、冷房モード、暖房モード、弱除湿暖房モードおよび除湿暖房モードでの運転に切り替えることができる。これらの各運転モードの切り替えは、空調制御プログラムが実行されることによって行われる。この空調制御プログラムは、操作パネルのオートスイッチが投入(ON)された際に実行される。
より具体的には、空調制御プログラムのメインルーチンでは、上述の空調制御用のセンサ群の検出信号および各種空調操作スイッチからの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを、以下数式F3に基づいて算出する。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C…(F3)
なお、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気センサによって検出された車室内温度(内気温)、Tamは外気センサによって検出された外気温、Asは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
さらに、操作パネルの冷房スイッチが投入されており、かつ、目標吹出温度TAOが予め定めた冷房基準温度αよりも低くなっている場合には、冷房モードでの運転を実行する。また、冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが予め定めた除湿暖房基準温度βよりも高くなっている場合には、弱除湿暖房モードでの運転を実行する。
一方、冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが除湿暖房基準温度β以下になっている場合には、除湿暖房モードでの運転を実行する。そして、冷房スイッチが投入されていない場合には、暖房モードでの運転を実行する。
これにより、本実施形態では、冷房モードは、主に夏場のように比較的外気温が高い場合に実行され、弱除湿暖房モードは、主に春季あるいは秋季に実行され、除湿暖房モードは、主に早春季あるいは初冬季などで、送風空気を充分に加熱するために必要とされる総熱量が圧縮機11の圧縮仕事量と室内蒸発器23における吸熱量との合算値よりも多くなる場合や、弱除湿暖房モードよりも室内蒸発器23の着霜(フロスト)を抑制する必要が高くなる場合に実行されるようにしている。
さらに、暖房モードは、冬季の低外気温時(例えば、外気温が−10℃以下となる場合)に外気の絶対湿度が低下し、内外気切替装置33から外気を導入することで送風空気の除湿を行う必要が低くなっている際に実行されるようにしている。以下に各運転モードにおける作動を説明する。
(a)冷房モード
冷房モードでは、空調制御装置が、第1流量調整弁14aを全閉とし、第2流量調整弁14bを全開とし、第3流量調整弁14cを全開とし、第4流量調整弁14dを全開とするとともに、第1開閉弁18aを閉じ、第2開閉弁18bを閉じ、第3開閉弁18cを閉じる。
これにより、冷房モードでは、図1の実線矢印に示すように、圧縮機11→室内凝縮器12(→第2流量調整弁14b)→室外熱交換器17(→第3流量調整弁14c)→アキュムレータ16(→逆止弁19→第4流量調整弁14d)→冷却側エジェクタ20→冷却側気液分離器21→圧縮機11の順に冷媒が循環するとともに、冷却側気液分離器21→固定絞り22→室内蒸発器23→冷却側エジェクタ20の冷却側冷媒吸引口20dの順に冷媒が循環するエジェクタを用いた冷凍サイクル(エジェクタ式冷凍サイクル)が構成される。
さらに、空調制御装置が、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置に記憶された制御マップを参照して、室内蒸発器23の目標蒸発器吹出温度TEOを決定する。なお、目標蒸発器吹出温度TEOは、室内蒸発器23の着霜を抑制可能に決定された基準着霜防止温度(例えば、1℃)以上となるように決定される。
そして、この目標蒸発器吹出温度TEOと蒸発器温度センサによって検出された蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法を用いて蒸発器温度Tefinが目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。
また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、エアミックスドア34が室内凝縮器12側の空気通路を閉塞し、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12を迂回して流れるように決定される。なお、冷房モードでは、送風空気温度TAVが目標吹出温度TAOに近づくようにエアミックスドア34の開度を制御してもよい。
そして、上記の如く決定された制御信号等を各種制御対象機器へ出力する。その後、車両用空調装置の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種制御対象機器の作動状態決定→制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。
従って、冷房モード時の冷凍サイクル装置10では、図5のモリエル線図に示すように冷媒の状態が変化する。具体的には、圧縮機11から吐出された高圧冷媒(図5のa5点)が、室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12側の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は、殆ど送風空気と熱交換することなく室内凝縮器12から流出する。
室内凝縮器12から流出した冷媒(図5のb5点)は、第1、第2開閉弁18a、18bが閉じ、第1流量調整弁14aが全閉となり、第2流量調整弁14bが全開となっているので、第1三方継手13a、第2三方継手13b、第2流量調整弁14bおよび第3三方継手13cを介して、室外熱交換器17の一方の冷媒流入出口へ流入する。室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気へ放熱する(図5のb5点→j5点)。
室外熱交換器17の他方の冷媒流入出口から流出した冷媒は、全開となっている第3流量調整弁14cを介してアキュムレータ16へ流入して気液分離される。アキュムレータ16にて分離された液相冷媒は、第3開閉弁18cが閉じ、第4流量調整弁14dが全開となっているので、逆止弁19、第4三方継手13dおよび第4流量調整弁14dを介して、冷却側エジェクタ20の冷却側ノズル部20aへ流入する。
冷却側ノズル部20aへ流入した冷媒は等エントロピ的に減圧されて噴射される(図5のj5点→o5点)。そして、この噴射冷媒の吸引作用によって、室内蒸発器23から流出した冷媒が冷却側エジェクタ20の冷却側冷媒吸引口20dから吸引される。さらに、冷却側ノズル部20aから噴射された噴射冷媒および冷却側冷媒吸引口20dから吸引された吸引冷媒が、冷却側ディフューザ部20gへ流入する(図5のo5点→u5点、t5点→u5点)。
冷却側ディフューザ部20gでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する(図5のu5点→p5点)。冷却側ディフューザ部20gから流出した冷媒は冷却側気液分離器21へ流入して気液分離される(図5のp5点→q5点、p5点→r5点)。
さらに、冷却側気液分離器21にて分離された液相冷媒は、固定絞り22にて等エンタルピ的に減圧される(図5のr5点→s5点)。固定絞り22にて減圧された冷媒は、室内蒸発器23へ流入し、送風機32から送風された送風空気と熱交換して蒸発する(図5のs5点→t5点)。これにより、送風空気が冷却されて車室内の冷房が実現される。
室内蒸発器23から流出した冷媒は、冷却側エジェクタ20の冷却側冷媒吸引口20dから吸引される。また、冷却側気液分離器21にて分離された気相冷媒(図5のq5点)は、第5三方継手13eを介して、圧縮機11へ吸入されて再び圧縮される(図5のq5点→a5点)。
従って、冷房モードでは、室内蒸発器23にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。なお、本実施形態の冷房モードでは、第4流量調整弁14dを全開としているが、サイクルを循環する循環冷媒流量に応じて第4流量調整弁14dの弁開度を調整してもよい。
(b)弱除湿暖房モード
弱除湿暖房モードでは、空調制御装置が、第1流量調整弁14aを全閉とし、第2流量調整弁14bを減圧作用を発揮する絞り状態とし、第3流量調整弁14cを全開とし、第4流量調整弁14dを全開とするとともに、第1開閉弁18aを閉じ、第2開閉弁18bを閉じ、第3開閉弁18cを閉じる。
これにより、弱除湿暖房モードでは、図1の実線矢印に示すように、冷房モードと同様に冷媒が循環するエジェクタ式冷凍サイクルが構成される。さらに、空調制御装置が、この冷媒回路の構成で、目標吹出温度TAOおよびセンサ群の検出信号等に基づいて、各種制御対象機器の作動状態を決定する。
例えば、圧縮機11の冷媒吐出能力については、冷房モードと同様に決定される。また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、送風空気温度TAVが目標吹出温度TAOに近づくように決定される。また、第2流量調整弁14bの弁開度については、予め定めた所定の弁開度となるように決定される。
従って、弱除湿暖房モード時の冷凍サイクル装置10では、図6のモリエル線図に示すように冷媒の状態が変化する。なお、図6のモリエル線図にて冷媒の状態を示す各符号は、図5のモリエル線図に対してサイクル構成上同等の箇所の冷媒の状態を示すものは同一のアルファベットを用いて示し、添字のみ変更している。このことは、以下のモリエル線図においても同様である。
弱除湿暖房モードでは、エアミックスドア34が室内凝縮器12側の送風空気通路を開いているので、圧縮機11から吐出された高圧冷媒(図6のa6点)が、室内凝縮器12へ流入し、室内蒸発器23にて冷却されて除湿された送風空気の一部と熱交換して放熱する(図6のa6点→b6点)。これにより、送風空気の一部が加熱される。
室内凝縮器12から流出した冷媒は、第2開閉弁18bが閉じ、第1流量調整弁14aが全閉となり、第2流量調整弁14bが絞り状態となっているので、第2流量調整弁14bへ流入して等エンタルピ的に減圧される(図6のb6点→e6点)。さらに、第2流量調整弁14bから流出した冷媒は、第1開閉弁18aが閉じているので、第3三方継手13cを介して、室外熱交換器17の一方の冷媒流入出口へ流入する。
室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気へ放熱する(図5のe6点→j6点)。そして、室外熱交換器17の他方の冷媒流入出口から流出した冷媒は、全開となっている第3流量調整弁14cを介してアキュムレータ16へ流入して気液分離される。以降の作動は、冷房モードと同様である。
従って、弱除湿暖房モードでは、室内蒸発器23にて冷却されて除湿された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
なお、本実施形態の弱除湿暖房モードでは、第2流量調整弁14bを絞り状態とすることによって、冷房モードよりも室外熱交換器17へ流入する冷媒の温度を低下させている。従って、冷房モードよりも室外熱交換器17における冷媒の温度と外気温との温度差を縮小して、室外熱交換器17における冷媒の放熱量を低減できる。
その結果、単に冷房モード時に送風空気温度TAVが目標吹出温度TAOに近づくようにエアミックスドア34の作動を制御する場合に対して、サイクルを循環する循環冷媒流量を増加させることなく、室内凝縮器12における冷媒圧力を上昇させて室内凝縮器12における送風空気の加熱能力を向上させることができる。
(c)除湿暖房モード
除湿暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを全開とするとともに、第1開閉弁18aを開き、第2開閉弁18bを開き、第3開閉弁18cを開く。
これにより、除湿暖房モードでは、図2の実線矢印に示すように、圧縮機11→室内凝縮器12→第1流量調整弁14a→加熱側エジェクタ15→アキュムレータ16(→第3開閉弁18c)→圧縮機11の順に冷媒が循環するとともに、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第1開閉弁18a)→加熱側エジェクタ15の加熱側冷媒吸引口15dの順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。
同時に、圧縮機11→室内凝縮器12(→第2開閉弁18b→第4流量調整弁14d)→冷却側エジェクタ20→冷却側気液分離器21→圧縮機11の順に冷媒が循環するとともに、冷却側気液分離器21→固定絞り22→室内蒸発器23→冷却側エジェクタ20の冷却側冷媒吸引口20dの順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。
つまり、除湿暖房モードでは、室内凝縮器12から流出した冷媒の流れを第1三方継手13aにて分岐して、分岐された一方の冷媒を加熱側エジェクタ15の加熱側ノズル部15aへ流入させるとともに、他方の冷媒を冷却側エジェクタ20の冷却側ノズル部20aへ流入させる冷媒回路が構成される。
この冷媒回路では、加熱側エジェクタ15および冷却側エジェクタ20がサイクル全体としての冷媒流れに対して並列的に接続されることになるので、加熱側エジェクタ15に接続される室外熱交換器17および冷却側エジェクタ20に接続される室内蒸発器23もサイクル全体としての冷媒流れに対して並列的に接続されることになる。
さらに、空調制御装置が、この冷媒回路の構成で、目標吹出温度TAOおよびセンサ群の検出信号等に基づいて、弱除湿暖房モードと同様に、各種制御対象機器の作動状態を決定する。
また、第1流量調整弁14aの弁開度については、室内蒸発器23の冷媒蒸発温度が室内蒸発器23のフロストを防止できる基準着霜防止温度(例えば、1℃)以上となるように決定される。また、第3流量調整弁14cの弁開度については、室外熱交換器17における冷媒蒸発温度が外気温Tam以下(さらに、本実施形態では、0℃以下)となるように決定される。
ここで、一般的なエジェクタでは、噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引することによって、ノズル部にて冷媒が減圧される際の運動エネルギの損失を回収している。そして、ディフューザ部にて、回収した運動エネルギを圧力エネルギに変換している。従って、ノズル部へ流入させる冷媒流量を増加させることによって、回収エネルギ量を増加させ、ディフューザ部における昇圧量を増加させることができる。
そこで、本実施形態では、第1流量調整弁14aの弁開度を変化させることによって、第1三方継手13aから加熱側エジェクタ15の加熱側ノズル部15aへ流入させる冷媒流量および第1三方継手13aから冷却側エジェクタ20の冷却側ノズル部20aへ流入させる冷媒流量の流量比を変化させて、室内蒸発器23における冷媒蒸発温度を調整している。
より具体的には、例えば、蒸発器温度Tefinが基準着霜防止温度以下となった際には、第1流量調整弁14aの弁開度を増加させて加熱側ノズル部15aへ流入させる冷媒流量を増加させる。これにより、加熱側ディフューザ部15gにおける昇圧量を増加させて、室内蒸発器23の冷媒蒸発圧力(冷媒蒸発温度)を上昇させるようにしている。
従って、除湿暖房モード時の冷凍サイクル装置10では、図7のモリエル線図に示すように、圧縮機11から吐出された高圧冷媒(図7のa7点)が、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された送風空気と熱交換して放熱する(図7のa7点→b7点)。これにより、送風空気が加熱される。室内凝縮器12から流出した冷媒の流れは、第2開閉弁18bが開いているので、第1三方継手13aにて分岐される。
第1三方継手13aにて分岐された一方の冷媒は、第2三方継手13bを介して第1流量調整弁14aへ流入して等エンタルピ的に膨張される(図7のb7点→d7点)。第1流量調整弁14aにて減圧された冷媒は、加熱側エジェクタ15の加熱側ノズル部15aへ流入する。加熱側ノズル部15aへ流入した冷媒は等エントロピ的に減圧されて噴射される(図7のd7点→f7点)。
そして、この噴射冷媒の吸引作用によって、室外熱交換器17から流出した冷媒が、第3三方継手13cおよび第1開閉弁18aを介して加熱側エジェクタ15の加熱側冷媒吸引口15dから吸引される。さらに、加熱側ノズル部15aから噴射された噴射冷媒および加熱側冷媒吸引口15dから吸引された吸引冷媒が、加熱側ディフューザ部15gへ流入する(図7のe7→g7点、f7点→g7点)。
加熱側ディフューザ部15gでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する(図7のg7点→h7点)。加熱側ディフューザ部15gから流出した冷媒はアキュムレータ16へ流入して気液分離される(図7のh7点→k7点、h7点→j7点)。
さらに、アキュムレータ16にて分離された液相冷媒は、絞り状態となっている第3流量調整弁14cにて等エンタルピ的に減圧される(図7のj7点→i7点)。この際、第3流量調整弁14cでは、室外熱交換器17における冷媒蒸発温度が外気温Tam以下(さらに、本実施形態では、0℃以下)となるまで冷媒を減圧させる。
第3流量調整弁14cにて減圧された冷媒は、室外熱交換器17の他方の冷媒流入出口から流入し、送風ファンから送風された外気から吸熱して蒸発する(図7のi7点→e7点)。つまり、除湿暖房モード時の室外熱交換器17における冷媒の流れ方向は、冷房モードおよび弱除湿暖房モード時の流れ方向に対して逆転している。
室外熱交換器17の一方の冷媒流入出口から流出した冷媒は、第2流量調整弁14bが全閉となっているので、第3三方継手13cおよび第1開閉弁18aを介して加熱側エジェクタ15の加熱側冷媒吸引口15dから吸引される。また、アキュムレータ16にて分離された気相冷媒(図7のk7点)は、第3開閉弁18cを介して、圧縮機11へ吸入される。
また、第1三方継手13aにて分岐された他方の冷媒は、第2開閉弁18b、第4三方継手13dおよび第4流量調整弁14dを介して、冷却側エジェクタ20の冷却側ノズル部20aへ流入する。冷却側エジェクタ20の冷却側ノズル部20aへ流入した冷媒は等エントロピ的に減圧されて噴射される(図7のb7点→o7点)。以降の作動は、冷房モードおよび弱除湿暖房モードと同様である。
なお、除湿暖房モードでは、第3開閉弁18cが開いているので、冷却側気液分離器21から流出した気相冷媒(図7のq7点)とアキュムレータ16から流出した気相冷媒(図7のk7点)が第5三方継手13eにて合流して圧縮機11へ吸入される。
従って、除湿暖房モードでは、弱除湿暖房モードと同様に、室内蒸発器23にて冷却されて除湿された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
なお、本実施形態の除湿暖房モードでは、室外熱交換器17および室内蒸発器23をサイクル全体としての冷媒流れに対して並列的に接続し、室外熱交換器17を蒸発器として機能させている。従って、外気から吸熱した熱を熱源として送風空気を加熱することができるので、弱除湿暖房モードよりも、室内凝縮器12における放熱量を増加させて室内凝縮器12における送風空気の加熱能力を向上させることができる。
(d)暖房モード
暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを全閉とするとともに、第1開閉弁18aを開き、第2開閉弁18bを閉じ、第3開閉弁18cを開く。
これにより、暖房モードでは、図3の実線矢印に示すように、圧縮機11→室内凝縮器12→第1流量調整弁14a→加熱側エジェクタ15→アキュムレータ16(→第3開閉弁18c)→圧縮機11の順に冷媒が循環するとともに、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第1開閉弁18a)→加熱側エジェクタ15の加熱側冷媒吸引口15dの順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。
さらに、本実施形態の暖房モードには、サイクルに高いCOPを発揮させながら送風空気を加熱する通常運転と、サイクルに高い加熱能力Qcを発揮させながら送風空気を加熱する高加熱能力運転がある。
まず、通常運転について説明する。暖房モードの通常運転時には、空調制御装置が、図3に示す冷媒回路の構成で、目標吹出温度TAOおよびセンサ群の検出信号等に基づいて、各種制御対象機器の作動状態を決定する。例えば、圧縮機11の冷媒吐出能力については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置に記憶された制御マップを参照して、室内凝縮器12の目標凝縮器温度TCOを決定する。
そして、この目標凝縮器温度TCOと吐出温度センサによって検出された吐出冷媒温度Tdとの偏差に基づいて、フィードバック制御手法を用いて吐出冷媒温度Tdが目標凝縮器温度TCOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。
また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12側の空気通路を流れるように決定される。
また、第1流量調整弁14aへ出力される制御信号については、第1流量調整弁14aへ流入する冷媒の過冷却度が、COPが略最大値となるように定められた目標過冷却度に近づくように決定される。また、第3流量調整弁14cの弁開度については、室外熱交換器17における冷媒蒸発温度が外気温Tam以下となるように決定される。
従って、暖房モードの通常運転時の冷凍サイクル装置10では、図8のモリエル線図の破線で示すように、圧縮機11から吐出された高圧冷媒(図8のa8点)が、室内凝縮器12へ流入して、送風空気と熱交換して放熱する(図8のa8点→b8点)。これにより、送風空気が加熱される。室内凝縮器12から流出した冷媒は、第2流量調整弁14bが全閉となり、第2開閉弁18bが閉じているので、第1流量調整弁14aへ流入する。
第1流量調整弁14aへ流入した冷媒は等エンタルピ的に減圧膨張される(図8のb8点→d8点)。この際、第1流量調整弁14aの弁開度は、第1流量調整弁14aへ流入する冷媒の過冷却度が目標過冷却度に近づくように調整される。第1流量調整弁14aにて減圧された冷媒は、加熱側エジェクタ15の加熱側ノズル部15aへ流入して、等エントロピ的に減圧されて噴射される(図8のd8点→f8点)。
以降の作動は、除湿暖房モード時における加熱側エジェクタ15側と同様である。つまり、アキュムレータ16にて分離された液相冷媒が第3流量調整弁14cにて減圧され、第3流量調整弁14cにて減圧された冷媒が室外熱交換器17にて外気から吸熱して蒸発し、室外熱交換器17の一方の冷媒流入出口から流出した冷媒が加熱側エジェクタ15の加熱側冷媒吸引口15dから吸引される(図8のh8点→j8点→i8点→e8点→g8点)。
さらに、アキュムレータ16にて分離された気相冷媒が、第3開閉弁18cおよび第5三方継手13eを介して圧縮機11へ吸引されて再び圧縮される(図8のk8→a8)。る。なお、暖房モードでは、第4流量調整弁14dが全閉となり、第2開閉弁18bが閉じているので、冷媒が冷却側エジェクタ20側へ流入せず、冷却側気液分離器21から流出した気相冷媒が圧縮機11へ吸入されることはない。
従って、暖房モードの通常運転時には、室内凝縮器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、この通常運転時には、空調制御装置が第1流量調整弁14aの弁開度を調整することによって、COPの向上を狙うことができる。
次に、高加熱能力運転について説明する。高加熱能力運転は、例えば、低外気温時等のように車室内設定温度Tsetから内気温Trを減算した温度差が基準温度差以上に大きく乖離している場合(例えば、20℃以上乖離している場合)等に、冷凍サイクル装置10に高い加熱能力(暖房能力)Qcを発揮させて、内気温Trを速やかに車室内設定温度Tsetに近づけるために実行される。
この加熱能力Qcは、以下数式F4にて定義される。
Qc=Δicond×Gr…(F4)
なお、Δicondは、室内凝縮器12入口側冷媒のエンタルピから出口側冷媒のエンタルピを減算したエンタルピ差であり、Grは室内凝縮器12へ流入する冷媒流量である。
ここで、上記数式F4のエンタルピ差Δicondは、図9の太破線に示すように、室内凝縮器12出口側冷媒のエンタルピが低下するに伴って増加する。さらに、本実施形態の暖房モードの冷媒回路構成では、室内凝縮器12の出口側に加熱側エジェクタ15の加熱側ノズル部15aの入口側が接続されているので、室内凝縮器12出口側冷媒のエンタルピを低下させると、加熱側ノズル部15aへ流入する冷媒の乾き度xも低下する。
この種のエジェクタでは、ノズル部へ流入する冷媒の圧縮性が高くなるに伴って、ノズル部にて減圧される冷媒の断熱熱落差(例えば、図8のΔiej)が大きくなり、回収エネルギ量を増加させることができる。逆に、ノズル部へ流入する冷媒の乾き度xを低下させて、ノズル部へ流入する冷媒の圧縮性を低下させてしまうと、回収エネルギ量を減少させてしまうので、ディフューザ部における昇圧量も低下させてしまう。
そして、ディフューザ部における昇圧量が低下して、圧縮機11に吸入される冷媒密度が低下してしまうと、室内凝縮器12へ流入する冷媒流量Grが低下してしまう。つまり、図9の太一点鎖線に示すように、室内凝縮器12出口側冷媒のエンタルピが低下するに伴って、室内凝縮器12へ流入する冷媒流量Grが低下してしまう。
このことは、エンタルピ差Δicondと室内凝縮器12へ流入する冷媒流量Grとの積算値で表される加熱能力Qcには、図9に示すように、室内凝縮器12出口側冷媒のエンタルピの変化(すなわち、加熱側ノズル部15aへ流入する冷媒の乾き度xの変化)に応じて、極大値(ピーク値)が存在することを意味している。そこで、本実施形態の高加熱能力運転時には、加熱能力Qcが極大値に近づくように、空調制御装置が第1流量調整弁14aの弁開度を調整している。
より具体的には、空調制御装置は、圧縮機11の冷媒吐出能力(例えば、圧縮機11の電動モータに出力される制御信号)に基づいて、予め空調制御装置に記憶された制御マップを参照して、加熱側ノズル部15aへ流入する冷媒の乾き度xが0.5以上かつ0.8以下となるように、第1流量調整弁14aの弁開度を調整している。つまり、本実施形態の高加熱能力運転時では、第1流量調整弁14aが乾き度調整手段として機能する。
これにより、高加熱能力運転時には、図8のモリエル線図の太実線に示すように冷媒の状態が変化する。つまり、通常運転時に対して、エンタルピ差ΔicondがΔi’condに減ってしまうものの、断熱熱落差ΔiejがΔi’ejに増加して圧縮機11吸入冷媒の圧力を図8のk8点からk’8点へ上昇させることができる。その結果、通常運転時に対して冷媒流量Grを増加させて、加熱能力Qcを極大値に近づけることができる。
従って、暖房モードの高加熱能力運転時には、室内凝縮器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、この高加熱能力運転時には、空調制御装置が第1流量調整弁14aの弁開度を調整することによって、高い加熱能力Qcを発揮させることができる。
なお、高加熱能力運転時には、通常運転時に対して、圧縮機11の冷媒吐出能力が増加し、第1流量調整弁14aの弁開度も増加することが多い。そこで、図8の太実線で示すモリエル線図は、高加熱能力運転時に第1流量調整弁14aの弁開度を全開としたときの冷媒の状態を示している。
以上の如く、本実施形態の車両用空調装置1によれば、冷房モード、暖房モード、弱除湿暖房モードおよび除湿暖房モードでの運転に切り替えることで、車室内の適切な空調を実現することができる。さらに、本実施形態の冷凍サイクル装置10によれば、以下のような優れた効果を得ることができる。
(A)本実施形態の如く、貯液手段として機能するアキュムレータ16が外部空間に配置される冷凍サイクル装置では、アキュムレータ16内に貯液された冷媒の温度と外気温との温度差が大きくなると、アキュムレータ内の冷媒と外気との間で熱の授受が行われてしまうことがある。
例えば、外気温が比較的高温となる際に実行される冷房モード時にアキュムレータ16内の冷媒の温度が外気温よりも低くなると、アキュムレータ16内の冷媒が外気から吸熱してしまう。このような冷媒の外気からの吸熱は、送風空気からの吸熱量を減少させて、冷凍サイクル装置10の冷却能力を低下させてしまう原因となる。
そのため、貯液手段として機能するアキュムレータ16が外部空間に配置される冷凍サイクル装置では、アキュムレータ16内の冷媒と外気との間での不必要な熱の授受が行われることによって生じる性能低下を抑制する必要がある。
これに対して本実施形態では、冷房モード時および弱除湿暖房モード時には、室外熱交換器17から流出した冷媒をアキュムレータ16へ流入させるので、アキュムレータ16内の冷媒の温度と外気温とを同等として、アキュムレータ16内の冷媒と外気との間での不必要な熱の授受が行われてしまうことを効果的に抑制できる。
さらに、外気温が比較的低温となる際に実行される除湿暖房モード時あるいは暖房モード時には、加熱側エジェクタ15にて減圧された冷媒をアキュムレータ16へ流入させるので、アキュムレータ16内の冷媒と外気との温度差を縮小して、アキュムレータ16内の冷媒と外気との間での不必要な熱の授受が行われてしまうことを抑制できる。
従って、本実施形態の冷凍サイクル装置10によれば、外部空間に配置されるアキュムレータ16内の冷媒の温度と外気温との温度差の拡大を抑制することができ、アキュムレータ16内の冷媒と外気との間での不必要な熱の授受が行われてしまうことによる冷凍サイクル装置10の性能低下を抑制できる。
(B)本実施形態の除湿暖房モードの冷媒回路の如く、冷媒を蒸発させる蒸発器として機能する室外熱交換器17および室内蒸発器23が冷媒流れに対して並列に接続される冷媒回路構成では、双方の熱交換器の冷媒蒸発温度が一致してしまうと、室外熱交換器17にて充分な熱を吸熱できなくなってしまい、送風空気の加熱能力が不充分となってしまうことがある。
例えば、室外熱交換器17および室内蒸発器23を冷媒流れに対して並列に接続し、室内蒸発器23における冷媒蒸発温度を、室内蒸発器23の着霜を抑制できる温度に調整すると、室外熱交換器17における冷媒蒸発温度も同等の温度に調整されてしまう。このため、低外気温時には室外熱交換器17における冷媒蒸発温度と外気温との温度差が縮小して、冷媒が室外熱交換器17にて外気から充分な熱を吸熱できなくなってしまう。
そのため、除湿暖房モード時に、蒸発器として機能する室外熱交換器17および室内蒸発器23が並列に接続される冷媒回路構成となる冷凍サイクル装置では、室外熱交換器17における冷媒の吸熱量を増加させることによって、送風空気の加熱能力を充分に向上させる必要がある。
これに対して、本実施形態の除湿暖房モード時では、室外熱交換器17の冷媒出口側を加熱側エジェクタ15の加熱側冷媒吸引口15dに連通させるとともに、室内蒸発器23の冷媒入口側あるいは冷媒出口側を、加熱側エジェクタ15の加熱側ディフューザ部15gの出口側に連通させる冷媒回路を構成している。
従って、除湿暖房モード時に、室外熱交換器17における冷媒蒸発圧力を、加熱側ノズル部15aにて減圧された直後の最も低い冷媒圧力に近づけることができ、室内蒸発器23における冷媒蒸発圧力を、加熱側ディフューザ部15gにて昇圧された冷媒圧力に近づけることができる。
つまり、室外熱交換器17における冷媒蒸発圧力を室内蒸発器23における冷媒蒸発圧力よりも低くすることができる。従って、室内蒸発器23における冷媒蒸発圧力を室内蒸発器23の着霜を抑制できる温度に調整したとしても、室外熱交換器17における冷媒蒸発温度を外気温よりも低下させることができる。
その結果、本実施形態の除湿暖房モード時には、冷媒が室外熱交換器17にて外気から充分な熱を吸熱することができ、室内凝縮器12にて送風空気に充分な熱を放熱することができる。すなわち、除湿暖房モード時における送風空気の加熱能力を充分に向上させることができる。
(C)本実施形態の暖房モードの冷媒回路の如く、冷媒が室外熱交換器17にて外気から吸熱した熱を、室内凝縮器12にて送風空気へ放熱させる冷媒回路構成では、冷媒が室外熱交換器17にて外気から確実に吸熱できるように、室外熱交換器17における冷媒蒸発温度を外気温よりも低下させなければならない。このため、低外気温時等には、室外熱交換器17における冷媒蒸発温度(冷媒蒸発圧力)を大きく低下させなければならないことがある。
また、一般的な冷凍サイクル装置に適用される冷媒は、圧力の低下に伴って密度が低下するので、低外気温時等に室外熱交換器17の冷媒蒸発圧力が大きく低下してしまうと、圧縮機11へ吸入される冷媒の密度が低下して、圧縮機11から吐出される冷媒の流量が減少してしまう。
その結果、室内凝縮器12にて放熱できる総熱量が、車室内の暖房を行うために必要な熱量に対して不足してしまい、送風空気を十分に加熱することができなくなってしまう。そのため、暖房モード時に、冷媒が室外熱交換器17にて外気から吸熱した熱を熱源として送風空気を加熱する冷凍サイクル装置では、暖房モード時における送風空気の加熱能力を充分に向上させる必要がある。
これに対して、本実施形態の暖房モードでは、サイクルに高いCOPを発揮させる通常運転の他に、低外気温時等に室内凝縮器12出口側冷媒のエンタルピ(加熱側エジェクタ15の加熱側ノズル部15aへ流入する冷媒の乾き度x)を調整することによって、加熱能力Qcを極大値に近づける高加熱能力運転を行っているので、暖房モード時における送風空気の加熱能力を十分に向上させることができる。
ところで、本実施形態の高加熱能力運転では、加熱側ノズル部15aへ流入する冷媒の乾き度xを、0.5以上かつ0.8以下となるように制御している。これに対して、一般的なエジェクタ式冷凍サイクルの作動時(例えば、本実施形態の暖房モードの通常運転時)には、加熱側ノズル部15aへ流入する冷媒が過冷却度を有する液相冷媒あるいは極めて小さい乾き度xの気液二相冷媒となることが多い。
このため、通常運転時には、ノズル部から噴射される直前の冷媒の乾き度xも0.5より小さくなる。そして、ノズル部から噴射された噴射冷媒は、ほぼ気相状態となっている吸引冷媒と混合することによって、その流速を低下させながら急激に乾き度xを上昇させる。従って、図10の太破線で示すように、噴射冷媒と吸引冷媒との混合冷媒の二相音速αh(数式F1、F2参照)も急激に上昇する。
従って、通常運転時には、ノズル部から噴射された直後の冷媒の流速が、二相音速αhより低い値となるので、二相流体の流速が二相音速αh以上(超音速状態)から二相音速αhより低い値(亜音速状態)へ移行する際に生じる衝撃波が、ノズル部の冷媒噴射口極近傍で発生することになる。
ところが、本実施形態の高加熱能力運転では、ノズル部から噴射される直前の冷媒の乾き度xが0.5以上となるので、一般的なエジェクタ式冷凍サイクルの作動時よりも、噴射冷媒の乾き度xの上昇度合が小さくなる。従って、図11に示すように、噴射冷媒と吸引冷媒との混合冷媒の二相音速αhの上昇度合も小さくなる。
その結果、混合冷媒が二相音速αhより低い値となる箇所(衝撃波が発生する箇所)が、一般的なエジェクタ式冷凍サイクルの作動時よりも、ノズル部の冷媒噴射口から離れやすくなってしまう。
そして、衝撃波の発生する箇所がノズル部の冷媒噴射口から離れて、ディフューザ部の入口部近傍あるいはディフューザ部(昇圧部)内へ移動してしまうと、衝撃波の作用によって加熱側ディフューザ部15g内を流通する混合冷媒の流速が不安定になってしまい、ディフューザ部18gにおける冷媒昇圧性能が不安定になってしまうことが懸念される。
これに対して、本実施形態の加熱側エジェクタ15では、混合部15eにて、混合冷媒の流速を徐々に減速させて、加熱側ディフューザ部15gの入口部15hへ到達するまでに、混合冷媒の流速を二相音速αhより低い値となるようにしている。
従って、二相冷媒の流速が超音速状態から亜音速状態へ移行する際に生じる衝撃波を、混合部15e内で発生させ、加熱側ディフューザ部15g内で発生させないようにすることができる。その結果、加熱側ディフューザ部15gの昇圧能力が不安定になってしまうことを抑制できる。
さらに、二相冷媒の流速が二相音速αhとなるときは、スリップ比(すなわち、液相冷媒の流速に対する気相冷媒の流速の比)が1となる。従って、本実施形態の加熱用エジェクタ15では、混合部15e内で、混合冷媒中の液相冷媒の流速と気相冷媒の流速とを一致させて、混合冷媒を液相冷媒と気相冷媒が均質に混合された状態とすることができる。
これにより、混合冷媒が速度分布を持った状態で加熱側ディフューザ部15gへ流入してしまうことを抑制でき、加熱側ディフューザ部15gでは、混合冷媒が加熱側ディフューザ部15gへ流入した直後から効率的に速度エネルギを圧力エネルギへ変換することができる。その結果、加熱側ディフューザ部15gにおける昇圧性能を向上させることができる。
なお、図10、図11の上段には、一般的なエジェクタの構成を模式的に示しているが、図示の明確化のため、本実施形態の加熱側エジェクタ15と同一または均等の機能を果たす部位には、加熱側エジェクタ15と同一の符号を付している。
また、本実施形態の除湿暖房モードおよび暖房モードでは、加熱側エジェクタ15の昇圧作用によって圧縮機11の消費動力を低減できる。さらに、本実施形態の冷房モード、弱除湿暖房モード、および除湿暖房モードでは、冷却側減圧手段として冷却側エジェクタ20を採用しているので、冷却側エジェクタの昇圧作用によって、圧縮機11の消費動力を低減できる。
つまり、本実施形態の冷凍サイクル装置によれば、加熱側エジェクタ15および冷却側エジェクタ20の昇圧作用によって、いずれの運転モードにおいても冷凍サイクル装置10のCOPを向上させることができる。
(第2実施形態)
本実施形態では、図12の全体構成図に示すように、第1実施形態に対して、冷凍サイクル装置10の冷却側エジェクタ20、冷却側気液分離器21、および固定絞り22を廃止するとともに、第4流量調整弁14dの出口側を室内蒸発器23の冷媒入口側に接続し、室内蒸発器23の冷媒出口側を第5三方継手13eに接続した例を説明する。
つまり、本実施形態の冷凍サイクル装置10では、第4流量調整弁14dによって冷却側減圧手段を構成している。その他の冷凍サイクル装置10の構成は第1実施形態と同様である。なお、図12では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面においても同様である。
次に、上記構成における本実施形態の作動について説明する。本実施形態では、第1実施形態と同様に、各運転モードが切り替えられる。
(a)冷房モード
本実施形態の冷房モードでは、空調制御装置が、第1流量調整弁14aを全閉とし、第2流量調整弁14bを全開とし、第3流量調整弁14cを全開とし、第4流量調整弁14dを絞り状態とするとともに、第1開閉弁18aを閉じ、第2開閉弁18bを閉じ、第3開閉弁18cを閉じる。
これにより、冷房モードでは、圧縮機11→室内凝縮器12(→第2流量調整弁14b)→室外熱交換器17(→第3流量調整弁14c)→アキュムレータ16(→逆止弁19)→第4流量調整弁14d→室内蒸発器23→圧縮機11の順に冷媒が循環する通常の冷凍サイクルが構成される。
さらに、冷房モードにおける第4流量調整弁14dの弁開度は、室内蒸発器23流出冷媒の過熱度が予め定めた所定範囲内となるように決定される。その他の作動は第1実施形態の冷房モードと同様である。従って、本実施形態の冷房モードでは、室内蒸発器23にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
(b)弱除湿暖房モード
本実施形態の弱除湿暖房モードでは、空調制御装置が、第1流量調整弁14aを全閉とし、第2流量調整弁14bを絞り状態とし、第3流量調整弁14cを全開とし、第4流量調整弁14dを絞り状態とするとともに、第1開閉弁18aを閉じ、第2開閉弁18bを閉じ、第3開閉弁18cを閉じる。これにより、弱除湿暖房モードでは、冷房モードと同様の順で冷媒が循環する通常の冷凍サイクルが構成される。
さらに、弱除湿暖房モードにおける第4流量調整弁14dの弁開度は、冷房モードと同様に決定される。その他の作動は第1実施形態の弱除湿暖房モードと同様である。従って、本実施形態の弱除湿暖房モードでは、室内蒸発器23にて冷却された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
(c)除湿暖房モード
本実施形態の除湿暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを絞り状態とするとともに、第1開閉弁18aを開き、第2開閉弁18bを開き、第3開閉弁18cを開く。
これにより、除湿暖房モードでは、圧縮機11→室内凝縮器12→第1流量調整弁14a→加熱側エジェクタ15→アキュムレータ16(→第3開閉弁18c)→圧縮機11の順に冷媒が循環するとともに、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第1開閉弁18a)→加熱側エジェクタ15の加熱側冷媒吸引口15dの順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。
同時に、圧縮機11→室内凝縮器12(→第2開閉弁18b)→第4流量調整弁14d→室内蒸発器23→圧縮機11の順に冷媒が循環する通常の冷凍サイクルが構成される。
さらに、除湿暖房モードにおける第4流量調整弁14dの弁開度は、冷房モードと同様に決定される。その他の作動は第1実施形態の除湿暖房モードと同様である。従って、本実施形態の除湿暖房モードでは、室内蒸発器23にて冷却された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
(d)暖房モード
本実施形態の暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを全閉とするとともに、第1開閉弁18aを開き、第2開閉弁18bを閉じ、第3開閉弁18cを開く。これにより、暖房モードでは、第1実施形態と全く同様のエジェクタ式冷凍サイクルが構成され、第1実施形態と同様に車室内の暖房を行うことができる。
以上の如く、本実施形態の車両用空調装置1によれば、第1実施形態と同様に車室内の適切な空調を実現することができる。さらに、本実施形態の冷凍サイクル装置10によれば、冷房モード時および弱除湿暖房モード時にエジェクタの昇圧作用によるCOP向上効果を得ることができないものの、冷却側減圧手段を簡素に構成しつつ第1実施形態と同様の効果を得ることができる。
(第3実施形態)
本実施形態では、図13の全体構成図に示すように、第1実施形態の冷凍サイクル装置10に対して、圧縮機11吐出冷媒を室内蒸発器23の冷媒入口側へ導く補助加熱バイパス通路24、およびこの補助加熱バイパス通路24を開閉する第4開閉弁18dを追加するとともに、固定絞り22に代えて第5流量調整弁14eを採用した例を説明する。
さらに、本実施形態の冷凍サイクル装置10では、第4開閉弁18dが補助加熱バイパス通路24を開くことによって、第1実施形態で説明した各運転モードの冷媒回路に加えて、暖房モードよりも高い加熱能力で送風空気を加熱して車室内の暖房を行う強暖房モードの冷媒回路に切り替えることができる。従って、本実施形態の第4開閉弁18dは、第1開閉弁18a等とともに冷媒回路切替手段を構成している。
なお、図13では、強暖房モードにおける冷媒の流れを実線矢印で示している。また、第4開閉弁18dの基本的構成は、第1〜第3開閉弁18a〜17cと同様であり、第5流量調整弁14eの基本的構成は、第3、第4流量調整弁14c、14dと同様である。さらに、その他の冷凍サイクル装置10の構成は第1実施形態と同様である。
次に、上記構成における本実施形態の作動について説明する。本実施形態では、第1実施形態と同様に各運転モードが切り替えられ、さらに、 暖房モードが実行される運転条件が成立した状態で、操作パネルに設けられた強暖房スイッチが投入(ON)された場合に、強暖房モードに切り替えられる。
本実施形態の冷房モード、弱除湿暖房モード、除湿暖房モード、および暖房モードでは、空調制御装置が、第5流量調整弁14eの弁開度を、第1実施形態の固定絞り22と同等の減圧作用を発揮できる所定弁開度とし、第4開閉弁18dを閉じる。その他の各種制御対象機器の作動は第1実施形態と同様である。
従って、本実施形態の冷房モード、弱除湿暖房モード、除湿暖房モード、および暖房モードでは、第1実施形態と全く同様のサイクルが構成され、全く同様に作動する。その結果、第1実施形態と同様の効果を得ることができる。
また、強暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態または全開とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを全閉とし、第5流量調整弁14eを全開とするとともに、第1開閉弁18aを開き、第2開閉弁18bを閉じ、第3開閉弁18cを開き、第4開閉弁18dを開く。
これにより、強暖房モードでは、図13の実線矢印に示すように、圧縮機11→室内凝縮器12→第1流量調整弁14a→加熱側エジェクタ15→アキュムレータ16(→第3開閉弁18c)→圧縮機11の順に冷媒が循環するとともに、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第1開閉弁18a)→加熱側エジェクタ15の加熱側冷媒吸引口15dの順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。同時に、圧縮機11→室内蒸発器23(→第5流量調整弁14e)→冷却側気液分離器21→圧縮機11の順に冷媒が循環するホットガスサイクルが構成される。
従って、強暖房モードの冷凍サイクル装置10では、図14のモリエル線図に示すように冷媒の状態が変化する。つまり、圧縮機11から室内凝縮器12へ流入した冷媒は、第1実施形態の暖房モードと同様に、室内凝縮器12にて送風空気と熱交換して放熱する(図14のa14点→b14点)。これにより、送風空気が加熱される。室内凝縮器12から流出した冷媒の以降の作動は、第1実施形態の暖房モード時と同様に変化する。
一方、圧縮機11から補助加熱バイパス通路24側へ流入した冷媒は、室内蒸発器23にて室内凝縮器12通過前の送風空気を熱交換して放熱する(図14のq14点→k14点)。これにより、室内凝縮器12通過前の送風空気が加熱されるので、強暖房モード時に室内凝縮器12へ流入する送風空気の温度は、暖房モード時に室内凝縮器12へ流入する送風空気の温度よりも高くなる。
従って、強暖房モードでは、暖房モードに対して圧縮機11の回転数(冷媒吐出能力)を増加させることなく、室内凝縮器12における冷媒凝縮温度(冷媒凝縮圧力)を上昇させることができる。その結果、強暖房モードでは、暖房モードよりも高い加熱能力で送風空気を加熱して車室内の暖房を行うことができる。
以上の如く、本実施形態の車両用空調装置1によれば、第1実施形態にて説明した運転モードに加えて強暖房モードでの運転を実行できるので、より一層、車室内の適切な空調を実現することができる。
なお、図14のモリエル線図に示すように、本実施形態の強暖房モードは、第1実施形態で説明した暖房モードの高加熱能力運転と同時に実行されることが望ましい。その理由は、高加熱能力運転では、通常運転時よりも圧縮機11吸入冷媒の圧力が上昇して、圧縮機11吐出冷媒の温度(室内蒸発器23にて放熱する冷媒の温度)が上昇するので、より効果的に高い加熱能力で送風空気を加熱できるからである。
また、強暖房モードでは、室内蒸発器23に圧縮機11から吐出された高温高圧冷媒を流入させるので、室内蒸発器23に水分が付着した状態で強暖房モードを実行すると、室内蒸発器23に付着していた水分が蒸発して送風空気の湿度を上昇させてしまう。このような送風空気の湿度の上昇は車両窓ガラスに曇りを発生させてしまう原因となる。
そこで、強暖房モードが実行される条件が成立していても、例えば、アキュムレータ16内の冷媒の飽和圧力が0℃以上となるまで、強暖房モードの実行を禁止する、あるいは、送風機32の作動を禁止するといった制御を行うことが望ましい。
(第4実施形態)
本実施形態では、二段昇圧式の圧縮機41を採用して、冷凍サイクル装置10aを構成した例を説明する。この冷凍サイクル装置10aも、冷房モードおよび弱除湿暖房モードの冷媒回路(図15参照)、除湿暖房モードの冷媒回路(図16参照)、並びに、暖房モードの冷媒回路(図17参照)を切替可能に構成されている。なお、図15〜図17では、それぞれの運転モードにおける冷媒の流れを実線矢印で示している。
より具体的には、本実施形態の圧縮機41は、その外殻を形成するハウジングの内部に、固定容量型の圧縮機構からなる低段側圧縮機構と高段側圧縮機構との2つの圧縮機構、および、双方の圧縮機構を回転駆動する電動モータを収容して構成された二段昇圧式の電動圧縮機として構成されている。
さらに、圧縮機41のハウジングには、ハウジングの外部から低段側圧縮機構へ低圧冷媒を吸入させる吸入ポート41a、サイクル内の中間圧冷媒をハウジングの内部へ流入させて低圧から高圧への圧縮過程の冷媒に合流させる中間圧ポート41b、および、高段側圧縮機構から吐出された高圧冷媒をハウジングの外部へ吐出させる吐出ポート41cが設けられている。
なお、本実施形態では、2つの圧縮機構を1つのハウジング内に収容した圧縮機41を採用しているが、圧縮機の形式はこれに限定されない。つまり、中間圧ポート41bから中間圧冷媒を流入させて低圧から高圧への圧縮過程の冷媒に合流させることが可能であれば、ハウジングの内部に、1つの固定容量型の圧縮機構およびこの圧縮機構を回転駆動する電動モータを収容して構成された電動圧縮機であってもよい。
この他にも、2つの圧縮機を直列に接続して、低段側に配置される低段側圧縮機の吸入口を吸入ポート41aとし、高段側に配置される高段側圧縮機の吐出口を吐出ポート41cとし、低段側圧縮機の吐出口と高段側圧縮機との吸入口とを接続する接続部に中間圧ポート41bを設け、低段側圧縮機と高段側圧縮機との双方によって、1つの二段昇圧式の圧縮機41を構成してもよい。
また、本実施形態の冷凍サイクル装置10aでは、第2流量調整弁14bと第3三方継手13cとを接続する冷媒通路に、第6三方継手13fが接続されている。第6三方継手13fには、第5開閉弁18e、第7三方継手13g、第6開閉弁18fを介して、第8三方継手13hが接続されている。この第8三方継手13hは、第3開閉弁18cから第5三方継手13eへ至る冷媒通路に配置されている。
さらに、第7三方継手13gには圧縮機41の吸入ポート41aが接続されており、第5三方継手13eには、第7開閉弁18gを介して圧縮機41の中間圧ポート41bが接続されている。なお、第5〜第7開閉弁18e〜18gの基本的構成は、第1〜第3開閉弁18a〜18cと同様である。さらに、その他の冷凍サイクル装置10aの構成は、第1実施形態の冷凍サイクル装置10aと同様である。
次に、上記構成における本実施形態の作動について説明する。本実施形態では、第1実施形態と同様に、各運転モードが切り替えられる。
(a)冷房モード
本実施形態の冷房モードでは、空調制御装置が、第1流量調整弁14aを全閉とし、第2流量調整弁14bを全開とし、第3流量調整弁14cを全開とし、第4流量調整弁14dを全開とするとともに、第1開閉弁18aを閉じ、第2開閉弁18bを閉じ、第3開閉弁18cを閉じ、第5開閉弁18eを閉じ、第6開閉弁18fを開き、第7開閉弁18gを閉じる。
これにより、冷房モードでは、図15の実線矢印に示すように冷媒が循環するエジェクタ式冷凍サイクルが構成される。この際、第7開閉弁18gが閉じられているので、圧縮機41の中間圧ポート41bから圧縮機41の内部へ冷媒が流入することはなく、圧縮機41は、通常の単段圧縮型の圧縮機と同様に機能する。つまり、本実施形態の冷房モードでは、第1実施形態の冷房モードと全く同様の冷媒回路が構成される。その他の各種制御対象機器の作動は第1実施形態の冷房モードと同様である。
従って、本実施形態の冷房モードでは、第1実施形態の冷房モードと同様に、室内蒸発器23にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
(b)弱除湿暖房モード
本実施形態の弱除湿暖房モードでは、空調制御装置が、第1流量調整弁14aを全閉とし、第2流量調整弁14bを絞り状態とし、第3流量調整弁14cを全開とし、第4流量調整弁14dを全開とするとともに、第1開閉弁18aを閉じ、第2開閉弁18bを閉じ、第3開閉弁18cを閉じ、第5開閉弁18eを閉じ、第6開閉弁18fを開き、第7開閉弁18gを閉じる。
これにより、弱除湿暖房モードでは、図15の実線矢印に示すように冷媒が循環し、圧縮機41を通常の単段圧縮型の圧縮機と同様に機能させるエジェクタ式冷凍サイクルが構成される。つまり、本実施形態の弱除湿暖房モードでは、第1実施形態の弱除湿暖房モードと全く同様の冷媒回路が構成される。その他の各種制御対象機器の作動は第1実施形態の弱除湿暖房モードと同様である。
従って、本実施形態の弱除湿暖房モードでは、第1実施形態の弱除湿暖房モードと同様に、室内蒸発器23にて冷却されて除湿された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
(c)除湿暖房モード
本実施形態の除湿暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを全開とするとともに、第1開閉弁18aを開き、第2開閉弁18bを開き、第3開閉弁18cを開き、第5開閉弁18eを開き、第6開閉弁18fを閉じ、第7開閉弁18gを開く。
これにより、除湿暖房モードでは、図16の実線矢印に示すように、圧縮機41の吐出ポート41c→室内凝縮器12→第1流量調整弁14a→加熱側エジェクタ15→アキュムレータ16(→第3開閉弁18c→第7開閉弁18g)→圧縮機41の中間圧ポート41bの順に冷媒が循環し、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第1開閉弁18a)→加熱側エジェクタ15の加熱側冷媒吸引口15dの順に冷媒が循環し、さらに、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第5開閉弁18e)→圧縮機41の吸入ポート41aの順に冷媒が循環する二段昇圧式のエジェクタ式冷凍サイクルが構成される。
同時に、圧縮機41の吐出ポート41c→室内凝縮器12(→第2開閉弁18b→第4流量調整弁14d)→冷却側エジェクタ20→冷却側気液分離器21→圧縮機41の中間圧ポート41bの順に冷媒が循環するとともに、冷却側気液分離器21→固定絞り22→室内蒸発器23→冷却側エジェクタ20の冷却側冷媒吸引口20dの順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。その他の各種制御対象機器の作動は第1実施形態の除湿暖房モードと同様である。
つまり、除湿暖房モード時の冷凍サイクル装置10aでは、図18のモリエル線図に示すように、実質的に、第1実施形態の除湿暖房モード時と同様に冷媒の状態が変化する冷媒回路が構成される。換言すると、冷媒が室外熱交換器17および室内蒸発器23の双方で吸熱した熱を、室内凝縮器12にて送風空気へ放熱させる冷媒回路が構成される。
従って、本実施形態の除湿暖房モードでは、第1実施形態の除湿暖房モードと同様に、室内蒸発器23にて冷却されて除湿された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
さらに、本実施形態の除湿暖房モードの冷媒回路では、室外熱交換器17から流出した冷媒(図18のe18点)の一部が、圧縮機41の吸入ポート41aから吸入されて中間圧冷媒となるまで昇圧される(図18のe18点→a”18点)。これにより、加熱側エジェクタ15の加熱側ディフューザ部15gにおける冷媒の昇圧量を増大させることができる。
ここで、一般的なエジェクタでは、図19に示すように、ノズル部へ流入する冷媒流量Gnoz(駆動流の流量)に対する冷媒吸引口から吸引される冷媒流量Ge(吸引流の流量)の吸引流量比(Ge/Gnoz)が少なくなるに伴って、回収エネルギのうち圧力エネルギへ変換される割合が多くなる。従って、吸引流量比(Ge/Gnoz)が少なくなるに伴って、ディフューザ部における昇圧量を増大させることができる。
そこで、本実施形態では、室外熱交換器17から流出した冷媒、すなわち加熱側エジェクタ15の加熱側冷媒吸引口15dから吸引される冷媒の一部を圧縮機41の吸入ポート41aから吸入することによって、加熱側冷媒吸引口15dから吸引される冷媒流量Geを減少させ、加熱側ディフューザ部15gにおける昇圧量を増大させている。
また、本実施形態の除湿暖房モードの冷媒回路では、冷却側気液分離器21から流出した気相冷媒(図18のq18点)およびアキュムレータ16から流出した気相冷媒(図18のk18点)が、圧縮機41の中間圧ポート41bへ流入して低段側圧縮機構にて昇圧された中間圧冷媒と合流し(図18のq18点、k18点→a’18点、a”18点→a’18点)、高段側圧縮機構にて高圧冷媒となるまで昇圧される(図18のa’18点→a18点)。
つまり、本実施形態の除湿暖房モードの冷媒回路では、冷媒を多段階に昇圧して、サイクルの中間圧気相冷媒を低段側圧縮機構から吐出された冷媒と合流させて高段側圧縮機構へ吸入させる、いわゆるガスインジェクションサイクル(エコノマイザ式冷凍サイクル)が構成される。
(d)暖房モード
本実施形態の暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを全閉とするとともに、第1開閉弁18aを開き、第2開閉弁18bを閉じ、第3開閉弁18cを開き、第5開閉弁18eを開き、第6開閉弁18fを閉じ、第7開閉弁18gを開く。
これにより、暖房モードでは、図17の実線矢印に示すように、圧縮機41の吐出ポート41c→室内凝縮器12→第1流量調整弁14a→加熱側エジェクタ15→アキュムレータ16(→第3開閉弁18c→第7開閉弁18g)→圧縮機41の中間圧ポート41bの順に冷媒が循環し、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第1開閉弁18a)→加熱側エジェクタ15の加熱側冷媒吸引口15dの順に冷媒が循環し、さらに、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第5開閉弁18e)→圧縮機41の吸入ポート41aの順に冷媒が循環する二段昇圧式のエジェクタ式冷凍サイクルが構成される。その他の各種制御対象機器の作動は第1実施形態の暖房モードと同様である。
つまり、暖房モード時の冷凍サイクル装置10aでは、図20のモリエル線図に示すように、実質的に、第1実施形態の暖房モード時と同様に冷媒の状態が変化する冷媒回路が構成される。換言すると、冷媒が室外熱交換器17にて吸熱した熱を、室内凝縮器12にて送風空気へ放熱させる冷媒回路を構成できる。なお、図20では、第1実施形態にて説明した高加熱能力運転時の冷媒の状態の変化を示している。
従って、本実施形態の暖房モードでは、第1実施形態の暖房モードと同様に、室内凝縮器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。
さらに、本実施形態の暖房モードの冷媒回路では、室外熱交換器17から流出した冷媒(図20のe20点)の一部が、圧縮機41の吸入ポート41aから吸入されて中間圧冷媒となるまで昇圧される(図20のe20点→a”20点)。これにより、除湿暖房運転モード時と同様に、加熱側エジェクタ15の加熱側ディフューザ部15gにおける冷媒の昇圧量を増大させることができる。
また、本実施形態の暖房モードの冷媒回路では、アキュムレータ16から流出した気相冷媒(図20のk20点)が、圧縮機41の中間圧ポート41bへ流入して低段側圧縮機構にて昇圧された中間圧冷媒と合流し(図20のk20点→a’20点、a”20点→a’20点)、高段側圧縮機構にて高圧冷媒となるまで圧縮される(図20のa’20点→a20点)。
つまり、本実施形態の暖房モードの冷媒回路では、除湿暖房運転モードと同様に、ガスインジェクションサイクルが構成される。
以上の如く、本実施形態の車両用空調装置1によれば、第1実施形態と同様に、車室内の適切な空調を実現することができる。また、本実施形態の冷凍サイクル装置10aによれば、第1実施形態の(A)〜(C)にて説明した優れた効果を得ることができる。さらに、加熱側エジェクタ15および冷却側エジェクタ20の昇圧作用によって、いずれの運転モードにおいても冷凍サイクル装置10aのCOPを向上させることができる。
さらに、本実施形態の除湿暖房モードおよび暖房モードでは、二段昇圧式の圧縮機41の吸入ポート41aに低圧冷媒を吸入させることによって、加熱側エジェクタ15の加熱側ディフューザ部15gの昇圧量を大幅に向上させている。
従って、第1実施形態のように単段昇圧式の圧縮機11を採用する場合に対して、室外熱交換器17における冷媒蒸発温度を低下させることができ、除湿暖房モード時および暖房モード時に冷媒が室外熱交換器17にて外気から吸熱する吸熱量を増加させることができる。
さらに、室外熱交換器17から流出した冷媒の一部(気相冷媒)を圧縮機41の吸入ポート41aへ吸入させるので、アキュムレータ16から第3流量調整弁14cを介して室外熱交換器17へ供給できる液相冷媒の流量を増加させることもできる。その結果、室内凝縮器12における冷媒の放熱量を増加させて送風空気の加熱能力を向上させることができる。
これに加えて、加熱側エジェクタ15の加熱側ディフューザ部15gから流出して圧縮機41の中間圧ポート41bへ流入する中間圧冷媒の圧力を上昇させることができ、中間圧ポート41bへ流入する中間圧冷媒の密度を上昇させることができる。その結果、室内凝縮器12へ流入する冷媒流量Grを増加させて加熱能力を向上させることができる。
さらに、本実施形態の除湿暖房モードおよび暖房モードでは、ガスインジェクションサイクルを構成しているので、圧縮機41の機械効率(圧縮効率)を向上させて、より一層COPを向上させることができる。
(第5実施形態)
本実施形態では、図21の全体構成図に示すように、第4実施形態の冷凍サイクル装置10aに対して、圧縮機41の中間圧ポート41bと室内蒸発器23の冷媒出口側とを接続する中間圧バイパス通路25、およびこの中間圧バイパス通路25を開閉する第8開閉弁18hを追加した例を説明する。なお、第8開閉弁18hの基本的構成は、第1開閉弁18a等と同様である。
次に、上記構成における本実施形態の作動について説明する。本実施形態では、第1実施形態と同様に、各運転モードが切り替えられる。
(a)冷房モード
本実施形態の冷房モードでは、空調制御装置が、第1流量調整弁14aを全閉とし、第2流量調整弁14bを全開とし、第3流量調整弁14cを全開とし、第4流量調整弁14dを全開とするとともに、第1開閉弁18aを閉じ、第2開閉弁18bを閉じ、第3開閉弁18cを閉じ、第5開閉弁18eを閉じ、第6開閉弁18fを閉じ、第7開閉弁18gを開き、さらに、第8開閉弁18hを開く。
これにより、冷房モードでは、図21の実線矢印に示すように、圧縮機41の吐出ポート41c→室内凝縮器12(→第2流量調整弁14b)→室外熱交換器17(→第3流量調整弁14c)→アキュムレータ16(→逆止弁19→第4流量調整弁14d)→冷却側エジェクタ20→冷却側気液分離器21→圧縮機41の中間圧ポート41bの順に冷媒が循環し、冷却側気液分離器21→固定絞り22→室内蒸発器23→冷却側エジェクタ20の冷却側冷媒吸引口20dの順に冷媒が循環し、さらに、冷却側気液分離器21→固定絞り22→室内蒸発器23→圧縮機41の吸入ポート41aの順に冷媒が循環する二段昇圧式のエジェクタ式冷凍サイクルが構成される。その他の各種制御対象機器の作動は第1実施形態の冷房モードと同様である。
つまり、冷房モード時の冷凍サイクル装置10aでは、図22のモリエル線図に示すように、実質的に、第1実施形態の冷房モード時と同様に冷媒の状態が変化する冷媒回路が構成される。換言すると、冷媒が室内蒸発器23にて吸熱した熱を、室外熱交換器17にて外気へ放熱させる冷媒回路を構成できる。
従って、本実施形態の冷房モードでは、第1実施形態の冷房モードと同様に、室内蒸発器23にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
さらに、本実施形態の冷房モードの冷媒回路では、室内蒸発器23から流出した冷媒(図22のt22点)の一部が、圧縮機41の吸入ポート41aから吸入されて中間圧冷媒となるまで昇圧される(図20のt22点→a”22点)。これにより、第4実施形態の除湿暖房運転モード時および暖房モード時と同様に、加熱側エジェクタ15の加熱側ディフューザ部15gにおける冷媒の昇圧量を増大させることができる。
また、本実施形態の冷房モードの冷媒回路では、冷却側気液分離器21から流出した気相冷媒(図22のq22点)が、圧縮機41の中間圧ポート41bへ流入して低段側圧縮機構にて昇圧された中間圧冷媒と合流し(図22のq22点→a’22点、a”22点→a’22点)、高段側圧縮機構にて高圧冷媒となるまで圧縮される(図22のa’22点→a22点)。
つまり、本実施形態の冷房モードの冷媒回路では、第4実施形態の除湿暖房運転モード時および暖房モードと同様に、ガスインジェクションサイクルが構成される。
(b)弱除湿暖房モード
本実施形態の弱除湿冷房モードでは、空調制御装置が、第1流量調整弁14aを全閉とし、第2流量調整弁14bを絞り状態とし、第3流量調整弁14cを全開とし、第4流量調整弁14dを全開とするとともに、第1開閉弁18aを閉じ、第2開閉弁18bを閉じ、第3開閉弁18cを閉じ、第5開閉弁18eを閉じ、第6開閉弁18fを閉じ、第7開閉弁18gを開き、さらに、第8開閉弁18hを開く。
これにより、弱除湿暖房モードでは、図21の実線矢印に示すように、冷房モードと同様に冷媒が循環する二段昇圧式のエジェクタ式冷凍サイクルが構成される。その他の各種制御対象機器の作動は第1実施形態の弱除湿暖房モードと同様である。
つまり、除湿暖房モード時の冷凍サイクル装置10aでは、図23のモリエル線図に示すように、実質的に、第1実施形態の除湿暖房モード時と同様に冷媒の状態が変化する冷媒回路が構成される。換言すると、冷媒が室内蒸発器23にて吸熱した熱を、室内凝縮器12にて送風空気へ放熱させるとともに、室外熱交換器17にて外気へ放熱させる冷媒回路を構成できる。
従って、本実施形態の弱除湿暖房モードでは、第1実施形態の弱除湿暖房モードと同様に、室内蒸発器23にて冷却されて除湿された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
さらに、本実施形態の弱除湿暖房モードの冷媒回路では、室内蒸発器23から流出した冷媒(図23のt23点)の一部が、圧縮機41の吸入ポート41aから吸入されて中間圧冷媒となるまで昇圧される(図23のt23点→a”23点)。これにより、冷房モードと同様に、加熱側エジェクタ15の加熱側ディフューザ部15gにおける冷媒の昇圧量を増大させることができる。
また、本実施形態の除湿暖房モードの冷媒回路では、冷却側気液分離器21から流出した気相冷媒(図23のq23点)が、圧縮機41の中間圧ポート41bへ流入して低段側圧縮機構にて昇圧された中間圧冷媒と合流し(図23のq23点→a’23点、a”23点→a’23点)、高段側圧縮機構にて高圧冷媒となるまで圧縮される(図23のa’23点→a23点)。
つまり、本実施形態の冷房モードの冷媒回路では、冷房モードと同様に、ガスインジェクションサイクルが構成される。
(c)除湿暖房モード
本実施形態の除湿暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを全開とするとともに、第1開閉弁18aを開き、第2開閉弁18bを開き、第3開閉弁18cを開き、第5開閉弁18eを開き、第6開閉弁18fを閉じ、第7開閉弁18gを開き、第8開閉弁18hを閉じる。
これにより、除湿暖房モードでは、第4実施形態の除湿暖房モードと全く同様の冷媒回路が構成される。その他の各種制御対象機器の作動は第4実施形態の除湿暖房モードと同様である。従って、本実施形態の除湿暖房モードでは、第4実施形態の除湿暖房モードと同様に、室内蒸発器23にて冷却されて除湿された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
(d)暖房モード
本実施形態の暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを全閉とするとともに、第1開閉弁18aを開き、第2開閉弁18bを閉じ、第3開閉弁18cを開き、第5開閉弁18eを開き、第6開閉弁18fを閉じ、第7開閉弁18gを開き、第8開閉弁18hを閉じる。
これにより、暖房モードでは、第4実施形態の暖房モードと全く同様の冷媒回路が構成される。その他の各種制御対象機器の作動は第4実施形態の暖房モードと同様である。従って、本実施形態の除湿暖房モードでは、第4実施形態の暖房モードと同様に、室内凝縮器12にて送風空気を加熱して車室内へ吹き出すことによって、車室内の暖房を行うことができる。
以上の如く、本実施形態によれば、第4実施形態と同様と効果を得ることができる。 さらに、本実施形態では、いずれの運転モードにおいても、ガスインジェクションサイクルを構成しているので、いずれの運転モードにおいても、圧縮機41の機械効率(圧縮効率)を向上させてCOPの向上を図ることができる。
(第6実施形態)
本実施形態では、図24の全体構成図に示すように、第4実施形態に対して、冷凍サイクル装置10の冷却側エジェクタ20、冷却側気液分離器21、および固定絞り22を廃止するとともに、第4流量調整弁14dの出口側を室内蒸発器23の冷媒入口側に接続し、室内蒸発器23の冷媒出口側を第5三方継手13eに接続した例を説明する。
つまり、本実施形態の冷凍サイクル装置10aでは、第4流量調整弁14dによって冷却側減圧手段を構成している。その他の冷凍サイクル装置10aの構成は第4実施形態と同様である。次に、上記構成における本実施形態の作動について説明する。本実施形態では、第1実施形態と同様に、各運転モードが切り替えられる。
(a)冷房モード
本実施形態の冷房モードでは、空調制御装置が、第1流量調整弁14aを全閉とし、第2流量調整弁14bを全開とし、第3流量調整弁14cを全開とし、第4流量調整弁14dを絞り状態とするとともに、第1開閉弁18aを閉じ、第2開閉弁18bを閉じ、第3開閉弁18cを閉じ、第5開閉弁18eを閉じ、第6開閉弁18fを開き、第7開閉弁18gを閉じる。
これにより、冷房モードでは、圧縮機41の吐出ポート41c→室内凝縮器12(→第2流量調整弁14b)→室外熱交換器17(→第3流量調整弁14c)→アキュムレータ16(→逆止弁19)→第4流量調整弁14d→室内蒸発器23→圧縮機41の吸入ポートの順に流れる通常の冷凍サイクルが構成される。
さらに、冷房モードにおける第4流量調整弁14dの弁開度は、室内蒸発器23流出冷媒の過熱度が予め定めた所定範囲内となるように決定される。その他の作動は第4実施形態の冷房モードと同様である。従って、本実施形態の冷房モードでは、室内蒸発器23にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
(b)弱除湿暖房モード
本実施形態の弱除湿暖房モードでは、空調制御装置が、第1流量調整弁14aを全閉とし、第2流量調整弁14bを絞り状態とし、第3流量調整弁14cを全開とし、第4流量調整弁14dを絞り状態とするとともに、第1開閉弁18aを閉じ、第2開閉弁18bを閉じ、第3開閉弁18cを閉じ、第5開閉弁18eを閉じ、第6開閉弁18fを開き、第7開閉弁18gを閉じる。これにより、弱除湿暖房モードでは、冷房モードと同様の順で冷媒が循環する通常の冷凍サイクルが構成される。
さらに、弱除湿暖房モードにおける第4流量調整弁14dの弁開度は、冷房モードと同様に決定される。その他の作動は第4実施形態の弱除湿暖房モードと同様である。従って、本実施形態の弱除湿暖房モードにおいても、第4実施形態と同様に、室内蒸発器23にて冷却された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
(c)除湿暖房モード
本実施形態の除湿暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを絞り状態とするとともに、第1開閉弁18aを開き、第2開閉弁18bを開き、第3開閉弁18cを開き、第5開閉弁18eを開き、第6開閉弁18fを閉じ、第7開閉弁18gを開く。
これにより、除湿暖房モードでは、圧縮機41の吐出ポート41c→室内凝縮器12→第1流量調整弁14a→加熱側エジェクタ15→アキュムレータ16(→第3開閉弁18c→第7開閉弁18g)→圧縮機41の中間圧ポート41bの順に冷媒が循環し、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第1開閉弁18a)→加熱側エジェクタ15の加熱側冷媒吸引口15dの順に冷媒が循環し、さらに、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第5開閉弁18e)→圧縮機41の吸入ポート41aの順に冷媒が循環する二段昇圧式のエジェクタ式冷凍サイクルが構成される。
同時に、圧縮機41の吐出ポート41c→室内凝縮器12(→第2開閉弁18b)→第4流量調整弁14d→圧縮機41の中間圧ポート41bの順に冷媒が循環する通常の冷凍サイクルが構成される。
さらに、除湿暖房モードにおける第4流量調整弁14dの弁開度は、冷房モードと同様に決定される。その他の作動は第4実施形態の除湿暖房モードと同様である。従って、本実施形態の除湿暖房モードでは、室内蒸発器23にて冷却された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
(d)暖房モード
実施形態の暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを全閉とするとともに、第1開閉弁18aを開き、第2開閉弁18bを閉じ、第3開閉弁18cを開き、第5開閉弁18eを開き、第6開閉弁18fを閉じ、第7開閉弁18gを開く。これにより、暖房モードでは、第4実施形態と全く同様の二段昇圧式のエジェクタ式冷凍サイクルが構成され、第4実施形態と同様に車室内の暖房を行うことができる。
以上の如く、本実施形態の車両用空調装置1によれば、第1実施形態と同様に、車室内の適切な空調を実現することができる。さらに、本実施形態の冷凍サイクル装置10aによれば、冷房モード時および弱除湿暖房モード時にエジェクタの昇圧作用によるCOP向上効果を得ることができないものの、冷却側減圧手段を簡素に構成しつつ第4実施形態と同様の効果を得ることができる。
(第7実施形態)
本実施形態では、図25の全体構成図に示すように、第4実施形態に対して、第3実施形態と同様の補助加熱バイパス通路24および第4開閉弁18dを追加するとともに、固定絞り22に代えて第5流量調整弁14eを採用した例を説明する。さらに、本実施形態の冷凍サイクル装置10aにおいても、第3実施形態と同様に、強暖房モードの冷媒回路に切り替えることができる。なお、図25では、強暖房モードにおける冷媒の流れを実線矢印で示している。
次に、上記構成における本実施形態の作動について説明する。本実施形態の冷房モード、弱除湿暖房モード、除湿暖房モード、および暖房モードでは、空調制御装置が、第5流量調整弁14eの弁開度を、第4実施形態の固定絞り22と同等の減圧作用を発揮できる所定弁開度とし、第4開閉弁18dを閉じる。その他の各種制御対象機器の作動は第4実施形態と同様である。
従って、本実施形態の冷房モード、弱除湿暖房モード、除湿暖房モード、および暖房モードでは、第4実施形態と全く同様のサイクルが構成され、全く同様に作動する。その結果、第4実施形態と同様の効果を得ることができる。
また、強暖房モードでは、空調制御装置が、第1流量調整弁14aを絞り状態または全開とし、第2流量調整弁14bを全閉とし、第3流量調整弁14cを絞り状態とし、第4流量調整弁14dを全閉とし、第5流量調整弁14eを全開とするとともに、第1開閉弁18aを開き、第2開閉弁18bを閉じ、第3開閉弁18cを開き、第4開閉弁18dを開き、第5開閉弁18eを開き、第6開閉弁18fを閉じ、第7開閉弁18gを開く。
これにより、強暖房モードでは、図25の実線矢印に示すように、圧縮機41の吐出ポート41c→室内凝縮器12→第1流量調整弁14a→加熱側エジェクタ15→アキュムレータ16(→第3開閉弁18c→第7開閉弁18g)→圧縮機41の中間圧ポート41bの順に冷媒が循環し、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第1開閉弁18a)→加熱側エジェクタ15の加熱側冷媒吸引口15dの順に冷媒が循環し、さらに、アキュムレータ16→第3流量調整弁14c→室外熱交換器17(→第5開閉弁18e)→圧縮機41の吸入ポート41aの順に冷媒が循環する二段昇圧式のエジェクタ式冷凍サイクルが構成される。
同時に、圧縮機41の吐出ポート41c→室内蒸発器23(→第5流量調整弁14e)→冷却側気液分離器21(→第7開閉弁18g)→圧縮機41の中間圧ポート41bの順に冷媒が循環するホットガスサイクルが構成される。
従って、強暖房モードの冷凍サイクル装置10aでは、図26のモリエル線図に示すように冷媒の状態が変化する。つまり、圧縮機41から室内凝縮器12へ流入した冷媒は、第4実施形態の暖房モードと同様に、室内凝縮器12にて送風空気と熱交換して放熱する(図26のa26点→b26点)。これにより、送風空気が加熱される。室内凝縮器12から流出した冷媒の以降の作動は、第4実施形態の暖房モード時と同様に変化する。
一方、圧縮機11から補助加熱バイパス通路24側へ流入した冷媒は、室内蒸発器23にて室内凝縮器12通過前の送風空気を熱交換して放熱して中間圧ポート41bへ流入する(図26のq26点→a’26点)。
これにより、室内凝縮器12通過前の送風空気が加熱されるので、強暖房モード時に室内凝縮器12へ流入する送風空気の温度は、暖房モード時に室内凝縮器12へ流入する送風空気の温度よりも高くなる。従って、強暖房モードでは、第3実施形態と同様に、暖房モードよりも高い加熱能力で送風空気を加熱して車室内の暖房を行うことができる。
(第8実施形態)
上述した各実施形態で説明した冷凍サイクル装置10、10aでは、除湿暖房モード時および暖房モード時に、室外熱交換器17を、冷媒を蒸発させる蒸発器として機能させている。そして、室外熱交換器17における冷媒蒸発温度を、外気温よりも低い温度となるまで低下させることによって、車室内の暖房(除湿暖房を含む)を実現するために必要な熱を外気から冷媒に吸熱させている。
従って、例えば、暖房モードの高加熱能力運転が実行される低外気温時等には、室外熱交換器17における冷媒蒸発温度が0℃より低くなってしまい、室外熱交換器17に着霜が生じてしまうことがある。そして、このような着霜が生じて室外熱交換器17の外気通路が霜によって閉塞されてしまうと、室外熱交換器17における冷媒の吸熱量が減少して車室内の充分な暖房を実現できなくなってしまうおそれがある。
そこで、本実施形態では、図27に示すように、第2実施形態で説明した冷凍サイクル10の室外熱交換器17の構成等を変更して、室外熱交換器17に着霜が生じてしまうことを抑制する例を説明する。
具体的には、本実施形態の室外熱交換器17は、冷媒と外気とを熱交換させる2つの第1、第2熱交換部17a、17bを有して構成されている。これら2つの第1、第2熱交換部17a、17bとしては、互いに同等の熱交換能力を有する同様の熱交換器構造のものを採用することができる。また、第1、第2熱交換部17a、17bは、それぞれの一方の冷媒流入出口同士が接続されることによって、互いに直列的に接続されている。
さらに、第1熱交換部17aおよび第2熱交換部17bの一方の冷媒流入出口同士を接続する冷媒流路には、当該冷媒流路を流通する冷媒を減圧させる中間減圧手段としての第6流量調整弁14fが配置されている。この第6流量調整弁14fの基本的構成は、第3、第4流量調整弁14c、14dと同様である。
また、第1熱交換部17aおよび第2熱交換部17bの他方の冷媒流入出口には、電気式の四方弁26の1つの冷媒流入出口が接続されている。この四方弁26は、空調制御装置から出力される制御信号によって、その作動が制御される冷媒流路切替手段である。
より詳細には、四方弁26は、第3流量調整弁14cの冷媒出口と第1熱交換部17aの他方の冷媒流入出口との間および第2熱交換部17bの他方の冷媒流入出口と第3三方継手13cの一つの冷媒流入出口との間を同時に接続する第1冷媒流路と、第3流量調整弁14cの冷媒出口と第2熱交換部17bの他方の冷媒流入出口との間および第1熱交換部17aの他方の冷媒流入出口と第3三方継手13cの一つの冷媒流入出口との間を同時に接続する第2冷媒流路とを切り替える。その他の構成は第1実施形態と同様である。
次に、上記構成における本実施形態の作動について説明する。まず、本実施形態の冷房モード、弱除湿暖房モード、除湿暖房モード、および暖房モードの通常運転では、空調制御装置が、第6流量調整弁14fを全開とし、第1冷媒流路および第2冷媒流路のいずれか一方の冷媒流路とするように四方弁26の作動を制御する。その他の作動は、それぞれ第2実施形態と同様である。
従って、本実施形態の冷房モード、弱除湿暖房モード、除湿暖房モード、および暖房モードの通常運転では、室外熱交換器17が互いに直列的に接続された2つの第1、第2熱交換部17a、17bによって構成されることになるものの、実質的に第2実施形態と同様の冷凍サイクルを構成することができ、第2実施形態と同様に作動させることができる。
次に、本実施形態の暖房モードの高加熱能力運転では、空調制御装置が、第3流量調整弁14cを全開とし、第6流量調整弁14fを第2実施形態の第3流量調整弁14cと同程度の減圧作用を発揮する絞り状態とする。さらに、空調制御装置は、予め定めた所定時間毎に第1冷媒流路と第2冷媒流路とを交互に切り替えるように四方弁26の作動を制御する。
これにより、本実施形態の暖房モードの高加熱能力運転では、四方弁26が第1冷媒流路に切り替えた際には、図28に示すように、アキュムレータ16から流出した液相冷媒が、第3流量調整弁14cを介して、第1熱交換部17a→第6流量調整弁14f→第2熱交換部17b→第3三方継手13cの順に流れる。つまり、四方弁26が第1冷媒流路に切り替えた際には、第1熱交換部17aが冷媒流れ上流側の熱交換部となり、第2熱交換部17bが冷媒流れ下流側の熱交換部となる。
一方、四方弁26が第2冷媒流路に切り替えた際には、図29に示すように、アキュムレータ16から流出した液相冷媒が、第3流量調整弁14cを介して、第2熱交換部17b→第6流量調整弁14f→第1熱交換部17a→第3三方継手13cの順に流れる。つまり、四方弁26が第2冷媒流路に切り替えた際には、第2熱交換部17bが冷媒流れ上流側の熱交換部となり、第1熱交換部17aが冷媒流れ下流側の熱交換部となる。その他の作動は、第2実施形態と同様である。
従って、本実施形態の暖房モードの高加熱能力運転の冷凍サイクル装置10では、図30のモリエル線図に示すように、圧縮機11から吐出された高圧冷媒(図30のa30点)が、室内凝縮器12へ流入し、送風空気と熱交換して放熱する(図30のa30点→b30点)。これにより、送風空気が加熱される。この際、第1流量調整弁14aの弁開度は、冷凍サイクル装置10の加熱能力Qcが極大値に近づくように調整される。
室内凝縮器12から流出した冷媒は、第2実施形態と同様に、加熱側エジェクタ15の加熱側ノズル部15aにて等エントロピ的に減圧されて噴射される(図30のb30点→f30点)。そして、この噴射冷媒の吸引作用によって、第1、第2熱交換部17a、17bのうち冷媒流れ下流側の熱交換部から流出した冷媒が、加熱側冷媒吸引口15dから吸引される。
さらに、加熱側ノズル部15aから噴射された噴射冷媒および加熱側冷媒吸引口15dから吸引された吸引冷媒が、加熱側ディフューザ部15gへ流入して混合されて昇圧される(図30のe30→g30点→h30点、f30点→g30点→h30点)。加熱側ディフューザ部15gから流出した冷媒はアキュムレータ16へ流入して気液分離される(図30のh30点→k30点、h30点→j30点)。
アキュムレータ16にて分離された液相冷媒は、第3流量調整弁14cが全開となっているので、第3流量調整弁14cにて減圧されることなく第1熱交換部17aおよび第2熱交換部17bのうち冷媒流れ上流側の熱交換部へ流入する。
ここで、本実施形態では、加熱用エジェクタ15の加熱側ディフューザ部15gとして、図30のモリエル線図に示すように、少なくとも暖房モードの高加熱能力運転時に、加熱側ディフューザ部15gから流出する冷媒の飽和温度が0℃よりも高くなるまで混合冷媒を昇圧可能なものが採用されている。
従って、アキュムレータ16から第1熱交換部17aおよび第2熱交換部17bのうち冷媒流れ上流側の熱交換部へ流入する液相冷媒は、0℃よりも高い温度の冷媒となる。そ
して、冷媒流れ上流側の熱交換部にて、外気に放熱してエンタルピを低下させる(図30のj30点→j’30点)。この際、冷媒流れ上流側の熱交換部の温度も0℃より高い温度となるので、冷媒流れ上流側の熱交換部に着霜が生じていたとしても、これを除霜することができる。
さらに、冷媒流れ上流側の熱交換部から流出した冷媒は、絞り状態となっている第6流量調整弁14fにて等エンタルピ的に減圧される(図30のj’30点→i30点)。この際、第6流量調整弁14fでは、第6流量調整弁14fから流出する冷媒の温度が外気温Tam以下(さらに、本実施形態では、0℃より低い温度)となるまで冷媒を減圧させる。
第6流量調整弁14fにて減圧された冷媒は、第1熱交換部17aおよび第2熱交換部17bのうち冷媒流れ下流側の熱交換部へ流入し、送風ファンから送風された外気から吸熱して蒸発する(図30のi30点→e30点)。下流側の熱交換部から流出した冷媒は、四方弁26、第3三方継手13cおよび第1開閉弁18aを介して、加熱側冷媒吸引口15dから吸引される。
一方、アキュムレータ16にて分離された気相冷媒(図30のk30点)は、第3開閉弁18cを介して圧縮機11に吸入されて再び圧縮される。本実施形態の暖房モードの高加熱能力運転においても、第2実施形態と同様に、室内凝縮器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。
以上の如く、本実施形態の車両用空調装置1によれば、第2実施形態と同様に車室内の適切な空調を実現することができる。また、本実施形態の冷凍サイクル装置10では、暖房モードの高加熱能力運転時に、第1熱交換部17aおよび第2熱交換部17bのうち冷媒流れ上流側の熱交換部へ流入させる冷媒の温度を、0℃よりも高い温度とすることができる。従って、上流側の熱交換部に着霜が生じていても、これを除霜することができる。
さらに、本実施形態の冷凍サイクル装置10は、冷媒流路切替手段としての四方弁26を備えているので、空調制御装置が、所定時間毎に第1冷媒流路と第2冷媒流路とを交互に切り替えることによって、上流側の熱交換部となる熱交換部を切り替えることができる。従って、第1熱交換部17aおよび第2熱交換部17bを交互に連続的に除霜して、室外熱交換部17全体としての着霜を抑制することができる。
このように着霜を抑制できることは、特に、高加熱能力運転が実行される運転条件時のように、室外熱交換器17における冷媒蒸発温度が0℃よりも大きく下回り、室外熱交換器17に着霜が生じやすい運転条件では効果的である。
また、本実施形態では、暖房モードの高加熱能力運転時に、空調制御装置が、第6流量調整弁14fを絞り状態として、さらに、第1冷媒流路と第2冷媒流路とを切り替えるように四方弁26の作動を制御する例を説明したが、もちろん、このような切替作動制御は、除湿暖房モード時あるいは暖房モードの通常運転時に行ってもよい。
また、本実施形態の切替作動制御時では、所定時間毎に第1冷媒流路と第2冷媒流路とを切り替えた例を説明したが、第1冷媒流路と第2冷媒流路との切り替えタイミングはこれに限定されない。
例えば、第1熱交換部17aに着霜が生じていることを判定する第1着霜判定手段と、第2熱交換部17bに着霜が生じていることを判定する第2着霜判定手段とを設け、第1着霜判定手段によって第1熱交換部17aに着霜が生じていることが判定された際に第1
冷媒流路に切り替え、第2着霜判定手段によって第2熱交換部17aに着霜が生じていることが判定された際に第2冷媒流路に切り替えるようにしてもよい。
さらに、第1、第2着霜判定手段としては、それぞれ第1、第2熱交換部の温度を検出する第1、第2熱交換部温度検出手段を設け、第1、第2熱交換部温度検出手段によって検出された各熱交換部の温度が予め定めた着霜判定温度(例えば、0℃)以下となって、所定時間経過した場合に各熱交換部に着霜が生じたと判定するものを採用すればよい。
また、本実施形態の冷凍サイクル装置10では、冷媒流路切替手段として四方弁26を採用した例を説明したが、冷媒流路切替手段は、これに限定されない。例えば、複数の開閉弁あるいは三方弁を組み合わせて構成してもよい。
また、本実施形態では、第2実施形態にて説明した冷凍サイクル装置10の室外熱交換器17の構成等を変更するとともに、上述した冷媒流路の切替作動制御を行うことによって、室外熱交換器17に着霜が生じてしまうことを抑制しているが、第1、第3〜第7実施形態にて説明した冷凍サイクル装置10、10aにおいても同様の手段で室外熱交換器17に着霜が生じてしまうことを抑制することができる。
具体的には、図27の一点鎖線で囲まれた構成(第1、第2熱交換部17a、17b、第6流量調整弁14f、および四方弁26)を1つのユニットとして一体化し、各実施形態の冷凍サイクル装置10、10aの室外熱交換器17に代えて、このユニットを採用して除湿暖房モード時あるいは暖房モード時に切替作動制御を実行すればよい。
(第9実施形態)
本実施形態では、第1実施形態に対して、図31〜図33に示すように、加熱側エジェクタ15の構成を変更した例を説明する。具体的には、本実施形態の加熱側エジェクタ15では、加熱側ノズル部15aの冷媒流れ上流側に、冷媒流入口15jから流入した冷媒を加熱側ノズル部15aの軸周りに旋回させる旋回空間15kを設けている。
より詳細には、この旋回空間15kは、加熱側ノズル部15aの冷媒流れ上流側に設けられた筒状部15oの内部に形成されている。従って、この筒状部15oは、特許請求の範囲に記載された旋回空間形成部材を構成しており、本実施形態では、旋回空間形成部材とノズル部が一体的に構成されていることになる。
旋回空間15kは、回転体形状に形成され、その中心軸が加熱側ノズル部15aと同軸上に延びている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸)の周りに回転させた際に形成される立体形状である。より具体的には、本実施形態の旋回空間15kは、略円柱状に形成されている。
さらに、冷媒流入口15jと旋回空間15kとを接続する冷媒流入通路15lは、旋回空間15kの中心軸方向から見たときに、図32に示すように、旋回空間15kの内壁面の接線方向に延びている。これにより、冷媒流入口15jから旋回空間15kへ流入した冷媒は、旋回空間15kの内壁面に沿って流れ、旋回空間15k内を旋回する。
ここで、旋回空間15k内で旋回する冷媒には遠心力が作用するので、旋回空間15k内では中心軸側の冷媒圧力が外周側の冷媒圧力よりも低下する。そこで、本実施形態では、除湿暖房モードおよび暖房モードの通常運転時に、旋回空間15k内の中心軸側の冷媒圧力が、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させるようにしている。
このような旋回空間15k内の中心軸側の冷媒圧力の調整は、旋回空間15k内で旋回する冷媒の旋回流速を調整することによって実現することができる。さらに、旋回流速の調整は、例えば、冷媒流入通路15lの通路断面積と旋回空間15kの軸方向垂直断面積との流路断面積の比率を調整することや、加熱側ノズル部15aの上流側に配置される第1流量調整弁14aの弁開度を調整することによって行うことができる。
さらに、本実施形態の加熱側ノズル部15aでは、内部に形成される冷媒通路として、冷媒噴射口15cへ向かって冷媒通路面積を徐々に縮小させる先細部15p、および先細部15pから冷媒噴射口15cへ冷媒を導く噴射部15qが形成されている。つまり、本実施形態の加熱側ノズル部15aは、いわゆる先細ノズルとして構成されている。
噴射部15qは、先細部15pの最下流部から冷媒噴射口15cへ向かって冷媒を導く空間である。従って、噴射部15qの加熱側ノズル部15aの軸方向断面における拡がり角度θnによって、冷媒噴射口15cから噴射される噴射冷媒の噴霧形状あるいは拡がり方向を変化させることができる。つまり、噴射部15qは、冷媒噴射口15cから噴射される冷媒の噴射方向を規定する空間であると表現することができる。
さらに、本実施形態では、加熱側ノズル部15aの軸方向断面における噴射部15qの拡がり角度θnを0°としている。つまり、本実施形態の噴射部15qは、加熱側ノズル部15aの軸方向に延びて、冷媒通路面積を一定とする円柱形状の空間によって形成されている。なお、図31では、拡がり角度θnの明確化のために、拡がり角度θnを1°程度として図示している。
また、図31に示すように、加熱側ノズル部15a内に形成される冷媒通路のうち噴射部15qが形成される軸方向長さをLcとし、冷媒噴射口15cの開口面積の相当直径をφDcとしたときに、以下数式F5を満たすように軸方向長さLcが決定されている。
Lc/φDc≦1…(F5)
なお、本実施形態では、具体的に、Lc/φDc=1としている。
本実施形態の加熱側ノズル部15aでは、内部に形成される冷媒通路を上記の如く形成することによって、冷媒噴射口15cから混合部15eへ噴射される冷媒を自由膨張させるようにしている。
さらに、本実施形態の混合部15eは、冷媒流れ下流側に向かって徐々に冷媒通路面積を縮小させる円錐台形状と冷媒通路面積を一定とする円柱形状とを組み合わせた形状に形成されている。
より詳細には、図33の拡大図に示すように、混合部15eのうち円柱形状の部位の加熱側ノズル部15aの軸方向長さをLbとし、円柱形状の部位の直径(加熱側ディフューザ部15gの入口部15hの直径に相当)をφDbとしたときに、以下数式F6を満たすように距離Lbが決定されている。
Lb/φDb≦1…(F6)
なお、本実施形態では、具体的に、Lb/φDb=1としている。
その他の加熱側エジェクタ15および冷凍サイクル装置10の構成および作動は、第1実施形態と同様である。従って、本実施形態の冷凍サイクル装置10および加熱側エジェクタ15においても、第1実施形態と同様の効果を得ることができる。
さらに、本実施形態の加熱側エジェクタ15によれば、加熱側ノズル部15aに噴射部15qが設けられていることによって、冷媒噴射口15cから混合部15eへ噴射される冷媒を自由膨張させている。これにより、加熱側ディフューザ部15gの昇圧性能を低下させてしまうことを抑制できる。
より詳細には、暖房モードの高加熱能力運転では、除湿暖房モード時や暖房モードの通常運転時に対して、加熱側エジェクタ15の加熱側ノズル部15aへ流入させる冷媒の乾き度xが高い値に制御される。このため、高加熱能力運転では、通常運転時よりも加熱側ノズル部15aへ流入させる冷媒のエンタルピが上昇し、前述の図8で説明したように、回収エネルギ量も増加する(図8のΔiej→Δi’ej)。
さらに、一般的なエジェクタでは、ノズル部の冷媒噴射口から噴射された直後の噴射冷媒の流速Vの最大値は、以下数式F7で表される。
V=V0+(2×Δiej)0.5…(F7)
なお、V0は、ノズル部へ流入する冷媒の初速である。
つまり、一般的に、ノズル部へ流入させる冷媒のエンタルピが高くなるに伴って、噴射冷媒の流速Vが高くなりやすく、冷媒とノズル部内に形成される冷媒通路との壁面摩擦も増加しやすくなる。
さらに、気液密度比の高い気液二相冷媒(例えば、気液密度比が200以上の気液二相冷媒)が、ノズル部内に形成される冷媒通路を高速度で流れると、冷媒と冷媒通路との壁面摩擦が大きく増加して、冷媒の有する運動エネルギの損失を招いてしまう。このような運動エネルギの損失は、噴射冷媒の流速を低下させてしまい、ディフューザ部の昇圧性能を低下させてしまう。
これに対して、本実施形態の加熱側エジェクタ15によれば、先細ノズルとして構成された加熱側ノズル部15aに噴射部15qが設けられており、冷媒噴射口15cから混合部15eへ噴射される混合冷媒を自由膨張させるので、ラバールノズルのように末広部を設けることなく、混合部15eにて噴射冷媒を加速することができる。
つまり、ラバールノズルの末広部にて冷媒を超音速加速する際に生じる冷媒と冷媒通路との壁面摩擦を生じさせることなく冷媒を加速することができる。従って、冷媒と冷媒通路との壁面摩擦を低下させて、冷媒通路を流れる冷媒の有する運動エネルギの損失を抑制することができる。
さらに、暖房モードの高加熱能力運転時には、除湿暖房モード時や暖房モードの通常運転時よりも、加熱側ノズル部15aへ流入する冷媒の乾き度xが高くなるだけでなく、加熱側ノズル部15aへ流入する冷媒流量が増加する。このため、高加熱能力運転時に加熱側ノズル部15aの冷媒噴射口15cから噴射される冷媒の密度は除湿暖房モード時等よりも低くなりやすい。
従って、高加熱能力運転時における冷媒の密度変化に応じて加熱側ノズル部15aの冷媒通路形状を決定すると、除湿暖房モード時や暖房モードの通常運転時には、加熱側ノズル部15aの最下流側の冷媒通路面積が不必要に広がってしまうことになり、冷媒の過膨張が生じやすい。
さらに、このような過膨張は、いわゆる斜め衝撃波を発生させて、加熱側ノズル部15aの冷媒噴射口15cから噴射される噴射冷媒の流速を低下させる原因となる。その理由は、過膨張によって斜め衝撃波が発生すると、冷媒が加熱側ノズル部15a内の冷媒通路壁面から剥れてしまうので、ラバールノズルとして構成された加熱側ノズル部15aの末広部の冷媒通路面積を実質的に縮小させてしまうからである。
これに対して、本実施形態の加熱側エジェクタ15によれば、先細ノズルとして構成された加熱側ノズル部15aに噴射部15qが設けられており、冷媒噴射口15cから混合部15eへ噴射される混合冷媒を自由膨張させるので、除湿暖房モード時や暖房モードの通常運転時には、冷媒の過膨張を抑制し、斜め衝撃波の発生を抑制できる。
その結果、本実施形態の加熱側エジェクタ15によれば、いずれの運転モードにおいても、噴射冷媒の流速が低下してしまうことを抑制でき、加熱側ディフューザ部15gの昇圧性能を低下させてしまうことを抑制できる。
なお、本実施形態では、加熱側ノズル部15aの軸方向断面における噴射部15qの拡がり角度θnを0°とした例を説明したが、冷媒噴射口15cから噴射される冷媒を自由膨張させることができれば、拡がり角度θnを0°よりも大きく設定してもよい。つまり、噴射部15qは、冷媒流れ方向に向かって冷媒通路断面積が徐々に拡大する円錐台形状の空間によって形成されていてもよい。
また、本実施形態の加熱側エジェクタ15によれば、旋回空間15kを形成する旋回空間形成部材15oを備えているので、この旋回空間15kの内部で冷媒を加熱側ノズル部15aの軸周りに旋回させることができる。
これにより、除湿暖房モードおよび暖房モードの通常運転時には、旋回空間15k内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させることができるので、液相冷媒の沸騰を促進することができ、ノズル効率を向上させることができる。なお、ノズル効率とは、ノズル部にて、冷媒の圧力エネルギを運動エネルギへ変換する際のエネルギ変換効率である。
一方、暖房モードの高加熱能力運転時には、旋回空間15k内で旋回する冷媒に遠心力を作用させて、密度の高い液相冷媒を加熱側ノズル部15a内に形成される冷媒通路の内周壁面側へ偏在させることができる。従って、液相冷媒と冷媒通路の内周壁面との摩擦によって、液相冷媒の沸騰を促進することができ、ノズル効率を向上させることができる。
また、本発明者らの検討によれば、混合部15eの形状を、冷媒流れ下流側に向かって徐々に冷媒通路面積を縮小させる円錐台形状と冷媒通路面積を一定とする円柱形状とを組み合わせた形状とし、上記数式F6を満たすように、距離Lbを決定することで、混合冷媒の流速を効果的に減速させることができることが判っている。
従って、二相冷媒の流速が超音速状態から亜音速状態へ移行する際に生じる衝撃波を、確実に、混合部15e内で発生させて、加熱側ディフューザ部15g内で発生させないようにすることができる。その結果、加熱側ディフューザ部15gの昇圧能力が不安定になってしまうことを効果的に抑制できる。
なお、本実施形態では、混合部15eの形状を、円錐台形状と円柱形状とを組み合わせた形状としているが、これは加熱側ディフューザ部15gの形状を冷媒流れ方向に向かって冷媒通路面積が徐々に拡大する形状と定義しているからである。つまり、加熱側ディフューザ部15gの入口側に冷媒通路面積の変化しない円柱状の空間を設けても上述の昇圧性能安定化効果を得ることができる。
(第10実施形態)
第9実施形態では、加熱側エジェクタ15の加熱側ノズル部15aとして、噴射部15qの入口部に形成される最小通路面積部の冷媒通路面積が固定された固定ノズルを採用した例を説明したが、本実施形態では、図34に示すように、最小通路面積部の冷媒通路面積を変更可能に構成された可変ノズルを採用した例を説明する。
具体的には、本実施形態の加熱側エジェクタ15は、加熱側ノズル部15aの冷媒通路面積を変化させる弁体としてのニードル弁15m、このニードル弁15mを変位させる駆動手段としてのステッピングモータ15nを有して構成されている。
ニードル弁15mは、その中心軸が加熱側ノズル部15aの中心軸と同軸上に配置された針状に形成されている。より具体的には、ニードル弁15mは、冷媒流れ下流側に向かって先細る形状に形成されており、最下流側の先細先端部が加熱側ノズル部15aの冷媒噴射口15cよりも冷媒流れ下流側に向かって突出するように配置されている。つまり、本実施形態の加熱側ノズル部15aは、いわゆるプラグノズルとして構成されている。
ステッピングモータ15nは、加熱側ノズル部15aの冷媒流入口15j側に配置されており、ニードル弁15mを加熱側ノズル部15aの軸方向に変位させる。これにより、加熱側ノズル部15aの内周壁面とニードル弁15mの外周壁面との間に形成される断面円環状の冷媒通路の面積が変更される。なお、ステッピングモータ15nは、制御装置から出力される制御信号によってその作動が制御される。
その他の加熱側エジェクタ15および冷凍サイクル装置10の構成および作動は、第10施形態と同様である。
従って、本実施形態の冷凍サイクル装置10および加熱側エジェクタ15においても、第9実施形態と同様の効果を得ることができる。さらに、本実施形態の加熱側エジェクタ15によれば、加熱側ノズル部15aを可変ノズルとして構成しているので、加熱側エジェクタ15の加熱側ノズル部15aへ冷凍サイクル装置10の負荷に応じた適切な流量の冷媒を供給することができる。
また、本実施形態の加熱側エジェクタ15によれば、加熱側ノズル部15aを可変ノズルとして構成しているので、加熱側エジェクタ15の加熱側ノズル部15aへ冷凍サイクル装置10の負荷に応じた適切な流量な冷媒を流入させることができる。
また、本実施形態の加熱側ノズル部15aはプラグノズルとして構成されているので、噴射冷媒を冷媒噴射口15cからニードル弁15mの外表面に沿うように混合部15eへ噴射することができる。従って、加熱側ノズル部15aへ流入させる冷媒流量が変化しても、噴射冷媒を容易に自由膨張させることができる。
なお、図34に示す加熱側ノズル部15aでは、ニードル弁15mとして、冷媒流れ下流側に向かって先細る形状のものを採用しているが、図35に示す変形例のように、加熱側ディフューザ部15g側から、冷媒流れ上流側に向かって先細る形状のものを採用してもよい。この場合は、最上流側の先細先端部が噴射部15qよりも先細部15p側へ突出するように配置すればよい。
さらに、図35に示す変形例によれば、ニードル弁15mが旋回空間内を貫通しないので、旋回空間15k内における冷媒の旋回流れ妨げることがない。また、弁体として加熱側ノズル部15a内に形成される冷媒通路から加熱側ディフューザ部15gの内部へ亘って延びる円錐形状のものを採用し、加熱側ノズル部15aの最小通路面積部と同時に加熱側ディフューザ部15gの冷媒通路面積を変更させる構成としてもよい。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の実施形態では、本発明の冷凍サイクル装置10、10aを電気自動車用の空調装置に適用した例を説明したが、冷凍サイクル装置10、10aの適用はこれに限定されない。
例えば、内燃機関(エンジン)から車両走行用の駆動力を得る通常の車両や、内燃機関と走行用電動モータとの双方から車両走行用の駆動力を得るハイブリッド車両の空調装置に適用してもよい。また、内燃機関を有する車両に適用する場合は、車両用空調装置1に送風空気の補助加熱手段として内燃機関の冷却水を熱源として送風空気を加熱するヒータコアを設けてもよい。さらに、車両用に限定されることなく定置型空調装置に適用してもよい。
(2)上述の実施形態では、室内凝縮器12にて高圧冷媒と送風空気とを熱交換させることによって送風空気を加熱した例を説明したが、室内凝縮器12に代えて、例えば、熱媒体を循環させる熱媒体循環回路を設け、この熱媒体循環回路に高圧冷媒と熱媒体とを熱交換させる水−冷媒熱交換器、および水−冷媒熱交換器にて加熱された熱媒体と送風空気とを熱交換させて送風空気を加熱する加熱用熱交換器等を配置してもよい。
つまり、高圧冷媒を熱源として、熱媒体を介して間接的に送風空気を加熱するようにしてもよい。さらに、内燃機関を有する車両に適用する場合は、内燃機関の冷却水を熱媒体として、熱媒体循環回路を流通させるようにしてもよい。また、電気自動車においては、バッテリや電気機器を冷却する冷却水を熱媒体として、熱媒体循環回路を流通させるようにしてもよい。
(3)上述の実施形態では、複数の三方継手、流量調整弁、および開閉弁を用いることによって、様々な運転モードの冷媒回路を切替可能に構成された冷凍サイクル装置10、10aについて説明したが、冷凍サイクル装置10、10aは、少なくとも上述した除湿暖房モードでの運転を実行することができれば、冷媒回路を切替可能に構成されたものに限定されない。
また、冷凍サイクル装置10、10aの構成は、上述の実施形態で説明したものに限定されず、同様の効果を得ることのできるサイクルを構成できれば、各種変形可能である。
例えば、第1三方継手13aと第2三方継手13bとを一体化させて四方継手構造のものを採用してもよい。同様に、第4実施形態等では、第3三方継手13cと第6三方継手13fとを一体化させてよいし、第5三方継手13eと第8三方継手13hとを一体化させてもよい。
さらに、第1流量調整弁14a、第2流量調整弁14bおよび第2三方継手13bを一体化させて電気式の三方式の流量調整弁を採用してもよい。また、逆止弁19に代えて電気式の開閉弁を採用し、冷房モードおよび弱除湿暖房モードに当該開閉弁を開き、除湿暖房モードおよび暖房モードに当該開閉弁を閉じるようにしてもよい。
また、上述の実施形態では、例えば、第1流量調整弁14aとして全開機能付の可変絞り機構を採用しているが、これを、全開機能を有していない絞り機構(固定絞りを含む)、この絞り機構をバイパスさせるバイパス通路、および、このバイパス通路を開閉する開閉弁によって構成してもよい。このことは、その他の全開機能付きの流量調整弁についても同様である。
さらに、例えば、第1流量調整弁14aとして全閉機能付の可変絞り機構を採用しているが、これを、全閉機能を有していない絞り機構(固定絞りを含む)、および、これに直列的に接続されて冷媒通路を開閉する開閉弁によって構成してもよい。このことは、その他の全閉機能付きの流量調整弁についても同様である。
また、上述の第10、第11実施形態では、加熱側エジェクタ15の加熱側ノズル部15aとして絞り通路面積を変更可能に構成された可変ノズルを採用した例を説明したが、もちろん、冷却側エジェクタ20の冷却側ノズル部20aとして可変ノズルを採用してもよい。
さらに、加熱側エジェクタ15の加熱側ノズル部15aをニードル弁によってノズル部を閉塞させることのできる全閉機能付きの可変ノズルとした場合には、第1流量調整弁14aを廃止して加熱側エジェクタ15を冷媒回路切替手段として機能させてもよい。もちろん、可変ノズルを乾き度調整手段として機能させてもよい。
同様に、冷却側エジェクタ20の冷却側ノズル部20aを全閉機能付きの可変ノズルとした場合には、第4流量調整弁14dを廃止して冷却側エジェクタ20を冷媒回路切替手段として機能させてもよい。
さらに、加熱側エジェクタ15の加熱側ディフューザ部15gの出口側にアキュムレータ16を一体化させてもよいし、冷却側エジェクタ20の冷却側ディフューザ部20gの出口側に冷却側気液分離器21を一体化させてもよい。
また、上述の実施形態では、加熱側エジェクタ15および冷却側エジェクタ20の構成部材を金属で形成した例を説明したが、それぞれの構成部材の機能を発揮可能であれば材質は限定されない。つまり、これらの構成部材を樹脂にて形成してもよい。
また、上述の実施形態では、圧縮機11とした電動圧縮機を採用した例を説明したが、圧縮機の形式はこれに限定されない。例えば、固定容量型の圧縮機構あるいは可変容量型の圧縮機構をエンジンにて回転駆動するエンジン駆動式の圧縮機を採用してもよい。
(4)上述の各実施形態の冷凍サイクル装置10、10aの室内蒸発器23の冷媒出口側に、室内蒸発器23の冷媒圧力を予め定めた所定値以上とする蒸発圧力調整弁を配置してもよい。
この種の蒸発圧力調整弁としては、具体的に、内部に形成された冷媒通路の開度を調整する弁体と、この弁体に対して冷媒通路を閉塞させる側に付勢する荷重をかける弾性部材とを有し、冷媒通路の入口側冷媒圧力から弾性部材側に加わる外気圧を減算した圧力差の拡大に伴って、弁開度を増加させる構成のもの等を採用できる。
(5)上述の実施形態の除湿暖房モードでは、第1流量調整弁14aの弁開度を調整することによって、第1三方継手13aから加熱側ノズル部15aへ流入させる冷媒流量および第1三方継手13aから冷却側ノズル部20aへ流入させる冷媒流量の流量比を変化させ、室内蒸発器23における冷媒蒸発圧力を調整した例を説明したが、室内蒸発器23の冷媒蒸発圧力の調整はこれに限定されない。
例えば、冷却側ノズル部20aの上流側に配置される第4流量調整弁14dの弁開度を調整することによって、流量比を変化させて室内蒸発器23の冷媒蒸発圧力を調整してもよい。また、第1、第4流量調整弁14a、14dの双方の弁開度を調整することによって、流量比を変化させて室内蒸発器23の冷媒蒸発圧力を調整してもよい。
(6)上述の実施形態の暖房モードの高加熱能力運転時には、圧縮機11の冷媒吐出能力に基づいて第1流量調整弁14aの弁開度を調整した例を説明したが、第1流量調整弁14aの弁開度の調整はこれに限定されない。例えば、室内凝縮器12出口側冷媒の乾き度を検出する乾き度センサを設け、この乾き度センサの検出値が0.5以上かつ0.8以下となるように第1流量調整弁14aの弁開度を調整してもよい。
(7)上述の第4〜第7実施形態では、第5開閉弁18eを開くことによって、加熱側エジェクタ15の加熱側冷媒吸引口15dから吸引される冷媒の一部を圧縮機41の吸入ポート41aから吸入した例を説明したが、さらに、第5開閉弁18eを、第1流量調整弁14a等と同様の構成の流量調整弁で構成してもよい。そして、この流量調整弁の弁開度を調整することによって、圧縮機41の吸入ポート41aから吸入される冷媒の流量を調整して、加熱側エジェクタ15における昇圧量を制御するようにしてもよい。
(8)上述の第3、第7実施形態では、それぞれ第1、第4実施形態の冷凍サイクル装置10、10aに対して、補助加熱バイパス通路24および第4開閉弁18dを追加することによって、強暖房モードでの運転を実行可能に構成した例を説明したが、例えば、第2、第5、第6実施形態の冷凍サイクル装置10、10aに対して、同様の構成を追加することによって強暖房モードでの運転を行うようにしてもよい。
(9)上述の各実施形態では、空調制御プログラムを実行することによって、各運転モードを切り替えた例を説明したが、各運転モードの切り替えはこれに限定されない。例えば、操作パネルに各運転モードを設定する運転モード設定スイッチを設け、当該運転モード設定スイッチの操作信号に応じて、冷房モード、弱除湿暖房モード、除湿暖房モードおよび暖房モードを切り替えるようにしてもよい。
(10)また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。例えば、第3実施形態で採用した補助加熱バイパス通路24および第4開閉弁18dを第2実施形態の冷凍サイクル装置10に適用してもよい。
例えば、第9、第10実施形態で説明した旋回空間形成部材15oを第1実施形態で説明した図4に示す加熱側エジェクタ15に適用してもよい。同様に、第9、第10実施形態で説明したニードル弁15mおよびステッピングモータ15nを第1実施形態で説明した加熱側エジェクタ15に適用してもよい。
(11)上述の実施形態では、冷媒としてR134aあるいはR1234yfを採用可能であることを説明したが、冷媒はこれに限定されない。例えば、R600a、R410A、R404A、R32、R1234yfxf、R407C等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。