JP6048578B2 - 半導体受光素子及びその製造方法 - Google Patents

半導体受光素子及びその製造方法 Download PDF

Info

Publication number
JP6048578B2
JP6048578B2 JP2015512264A JP2015512264A JP6048578B2 JP 6048578 B2 JP6048578 B2 JP 6048578B2 JP 2015512264 A JP2015512264 A JP 2015512264A JP 2015512264 A JP2015512264 A JP 2015512264A JP 6048578 B2 JP6048578 B2 JP 6048578B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
type
light receiving
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015512264A
Other languages
English (en)
Other versions
JPWO2014171005A1 (ja
Inventor
奥村 滋一
滋一 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Application granted granted Critical
Publication of JP6048578B2 publication Critical patent/JP6048578B2/ja
Publication of JPWO2014171005A1 publication Critical patent/JPWO2014171005A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1808Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only Ge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Description

本発明は、半導体受光素子及びその製造方法に関するものであり、例えば、光通信及びデータ通信に用いられるSi基板上に設けたGeを光吸収層とする半導体受光素子及びその製造方法に関する発明である。
近年のサーバCPU間のデータ伝送量の増大に伴い、従来のCu配線を用いた電気信号による伝送での対応が限界に近づきつつある。このボトルネックを解消するためには、光インターコネクト、即ち、光信号によるデータ伝送が必要とされる。さらには、低消費電力、小面積化の観点から、光送受信に必要となる光送信器、光変調器、受信器等の光コンポーネントをSi基板上に集積化した素子が必要となる。
また、一方で、Si基板上に集積化された光コンポーネント間は光ファイバによって接続されるため、光ファイバでの損失が小さい波長1.55μmを伝送波長帯として使用することが好ましい。そこで、波長1.55μm帯での光伝送で適用されるフォトディテクターとしては、1.55μm近傍に吸収端をもつGeを吸収層として適用することが好ましい。
また、一方で、データ伝送量の増大に伴って波長多重伝送(WDM)の必要性がある。
そこで、波長多重伝送を実現するためには、1.55μmより長波長の広い領域で高い応答感度を有するGeフォトディテクターが必要とされる。
一般に、Si基板上のGe成長において、Geの成長温度から室温まで冷却した際に、SiとGeの熱膨張係数差に起因してGeエピタキシャル層が面内方向に引っ張り歪を受ける。その結果、バルク状態のGe層に比較してSi基板のGeは吸収端が長波化することが報告されている(例えば、非特許文献1参照)。これは、フォトディテクターの波長帯域拡大の観点からは有利な方向に働く。
一方で、フォトディテクターは高速応答特性の向上の観点から素子容量を低減することが要求され、そのためには素子面積(素子幅)を狭くする必要がある。また、応答感度特性の向上の観点からも、空乏層で発生したフォトキャリアのドリフト中の再結合や欠陥へのトラップを抑制することが要求され、そのためには、同様に素子面積(素子幅)を狭くする必要がある。
そこで、Si基板上のGeを吸収層とするフォトディテクターとして、幅が数μm程度のメサ型に加工することが報告されている(例えば、非特許文献2参照)。図20は、従来のGeを吸収層とするフォトディテクターの概略的断面図であり、SOI基板を用いてフォトディテクターが形成される。Si基板81上にBOX層82を介して設けられたSi層83を加工しp型Siメサ部84とその両脇のp型Siスラブ部85を形成する。この時、図示は省略するものの、p型Siメサ部84に対してテーパ部を介して接続するストライプ状導波路を形成する。
このp型Siメサ部84上に選択成長によりノンドープのGe層を形成し、その表面にn型不純物を注入してn++型Geコンタクト層87とするとともに、不純物の導入されなかった部分をi型Ge光吸収層86とする。一方、p型Siスラブ部85の一部にp型不純物を注入してp++型Siコンタクト部88を形成する。
次いで、ストライプ状導波路に対する上部クラッド層となる酸化膜89を形成し、プラグ90,91を形成し、n側電極92及びp側電極93を形成する。ストライプ状導波路を伝播してきた光はp型Siメサ部を介してエバネッセント結合によりi型Ge光吸収層86に伝播して吸収される。
Yasuhiko Ishikawa,Kazumi Wada,Jifeng Liu,Douglas D.Cannon,Hsin−Chiao Luan,Jurgen Michel,and Loinel C.Kimerling,Journal Of Applied Physics 98,013501(2005) Tao Yin,Rami Cohen,Mike M. Morse,Gadi Sarid,Yoel Chetrit,Doron Rubin,and Mario J.Paniccia,Optics Express,15,13966(2007) L.Ding,T.Y.Liow,A.E.J.Lim,N.Duan,M.B.Yu,and G.Q.Lo,OFC/NFOEC Technical Digest,OW3G.4(2012)
しかしながら、素子幅を狭くしていくと面内での格子緩和が進み、Ge層に導入されていた引っ張り歪が減少することが報告されている(例えば、非特許文献3参照)。その結果、素子容量低減或いはフォトキャリア消失低減のために素子幅を狭くすると、Geの吸収端が短波化し、長波長側での応答感度が低下することになる。
一方で、長波長での応答効率を高めることを目的に面内引っ張り歪の低減を抑制するために素子幅を広げると、素子容量が増大して高速応答特性が劣化し、さらにはフォトキャリアの消失の増大により応答効率が劣化する。つまり、図20に示した構造のフォトディテクターでは引っ張り歪導入による波長帯域幅の拡大と、微細化による高速応答特性及び応答効率の向上を同時に実現することはできないという問題がある。
したがって、半導体受光素子において広い波長帯域での動作と高い高速応答及び高い応答効率とを両立することを目的とする。
開示する一観点からは、表面が単結晶Si層である基板と、前記基板上に第1導電型Si層と、ノンドープGe層と、前記第1導電型とは反対導電型の第2導電型Ge層を順次積層したPIN型フォトダイオードと、前記ノンドープGe層/前記第2導電型Ge層からなる積層構造の周囲の少なくとも一部に設けられたGe電流ブロック機構と、前記第2導電型Ge層上に設けられた第2導電型用コンタクト電極と、前記第1導電型Si層に設けられた第1導電型用コンタクト電極とを有することを特徴とする半導体受光素子が提供される。
また、開示する別の観点からは、表面が単結晶Si層である基板の表面の少なくとも一部に第1導電型不純物をイオン注入して活性化するアニール工程と、少なくとも前記第1導電型不純物をイオン注入した第1導電型Si領域上にノンドープGe層を成長する工程と、前記ノンドープGe層の表面にフォトダイオード形成領域を覆う第1の誘電体マスクを形成する工程と、前記第1の誘電体マスクをマスクとして前記ノンドープGe層の露出部に前記第1導電型とは反対の導電型である第2導電型不純物をイオン注入する工程と、前記第1の誘電体マスクをマスクとして第2導電型不純物を注入した前記ノンドープGe層の露出部に第1導電型不純物を前記第2導電型不純物より浅く注入して表面を第1導電型不純物で補償する工程と、前記フォトダイオード形成領域のみを露出する第2の誘電体マスクを形成する工程と、前記第2の誘電体マスクをマスクとして露出する前記ノンドープGe層の表面に第2導電型不純物を注入する工程と、前記注入した各不純物を活性化するアニール工程とを含むことを特徴とする半導体受光素子の製造方法が提供される。
開示の半導体受光素子及びその製造方法によれば、広い波長帯域での動作と高い高速応答及び高い応答効率との両立が可能になる。
本発明の実施の形態の半導体受光素子の斜視図及び側断面図である。 本発明の実施の形態の半導体受光素子の上面図及び断面図である。 本発明の実施例1の半導体受光素子の製造工程の途中までの説明図である。 本発明の実施例1の半導体受光素子の製造工程の図3以降の途中までの説明図である。 本発明の実施例1の半導体受光素子の製造工程の図4以降の途中までの説明図である。 本発明の実施例1の半導体受光素子の製造工程の図5以降の途中までの説明図である。 本発明の実施例1の半導体受光素子の製造工程の図6以降の途中までの説明図である。 本発明の実施例1の半導体受光素子の製造工程の図7以降の途中までの説明図である。 本発明の実施例1の半導体受光素子の製造工程の図8以降の説明図である。 本発明の実施例1の半導体受光素子の構成説明図である。 本発明の実施例2の半導体受光素子の製造工程の途中までの説明図である。 本発明の実施例2の半導体受光素子の製造工程の図11以降の途中までの説明図である。 本発明の実施例2の半導体受光素子の製造工程の図12以降の途中までの説明図である。 本発明の実施例2の半導体受光素子の製造工程の図13以降の途中までの説明図である。 本発明の実施例2の半導体受光素子の製造工程の図14以降の途中までの説明図である。 本発明の実施例2の半導体受光素子の製造工程の図15以降の途中までの説明図である。 本発明の実施例2の半導体受光素子の製造工程の図16以降の説明図である。 本発明の実施例2の半導体受光素子の構成説明図である。 本発明の実施例3の半導体受光素子の構成説明図である。 従来のGeを光吸収層とするフォトダイオードの概略的断面図である。
ここで、図1及び図2を参照して、本発明の実施の形態の半導体受光素子を説明する。図1は本発明の半導体受光素子の斜視図及び側断面図であり、図2は本発明の半導体受光素子の上面図及び断面図である。表面が単結晶Si層14である基板11上に第1導電型Si層16と、ノンドープGe層17と、第2導電型Ge層18を順次積層したPIN型フォトダイオード15を形成する。
ノンドープGe層17/第2導電型Ge層18からなる積層構造の周囲の少なくとも一部にGe電流ブロック機構19を設け、第2導電型Ge層18上に第2導電型用コンタクト電極22を設ける。一方、第1導電型Si層16に接続する第1導電型用コンタクト電極23を設ける。
このGe電流ブロック機構は、典型的には、基板11側から順に第2導電型Ge層20と第1導電型Ge層21とを順次積層した構造である。その結果、第2導電型用コンタクト電極22と第1導電型用コンタクト電極23との間に第2導電型Ge層18/第1導電型Ge層21/第2導電型Ge層20/第1導電型Si層16からなるサイリスタ構造が形成される。
サイリスタ構造が形成されると、サイリスタ構造には逆方向降伏電圧以下の逆バイアス時には逆方向電流は流れない。従って、サイリスタ構造はノンドープGe層17で発生したフォトキャリアの周辺部への拡散を防止するキャリアブロック層として機能する。その結果、キャリアパスが狭窄化され、素子容量は低減される。同時に、フォトキャリアのドリフトによる空乏層内で再結合および欠陥によるトラップも低減することが可能になる。
PIN型フォトダイオード15の形状は、典型的には直方体状であり、一つの側面を除いた他の3つの側面がGe電流ブロック機構19に当接するようにしても良い。この場合、Ge電流ブロック機構19に当接していない1つの側面において、第1導電型Si層16にストライプ状単結晶Siコア層24がテーパ導波路25を介して接続するようにしても良い。
このように、PIN型フォトダイオード15の周囲をGeからなるGe電流ブロック機構19で囲むことにより、ノンドープGe層17の周辺部で発生する歪緩和はノンドープGe層17には伝搬しない。そのため、引っ張り歪の低減によるノンドープGe層17の吸収端の短波化は発生しない。
或いは、PIN型フォトダイオード15の全ての側面をGe電流ブロック機構19で囲んでも良く、その場合には、PIN型フォトダイオード15の頂面を光入射面とすれば良い。また、基板11は、単結晶Si基板でも良いが、典型的には。結晶のSi基板12上にSiO膜13を介して単結晶Si層14が設けられたSOI基板を用いる。
この半導体受光素子を形成する場合には、表面が単結晶Si層14である基板11の表面の少なくとも一部に第1導電型不純物をイオン注入して活性化するアニールを施し第1導電型不純物をイオン注入した第1導電型Si層16領域上にノンドープGe層17を成長させる。次いで、ノンドープGe層17の表面にフォトダイオード形成領域を覆う第1の誘電体マスクを形成し、第1の誘電体マスクをマスクとしてノンドープGe層17の露出部に2導電型不純物をイオン注入して、第2導電型Ge層20を形成する。
次いで、第1の誘電体マスクをマスクとして第2導電型不純物を注入したノンドープGe層17の露出部に第1導電型不純物を第2導電型不純物より浅く注入して表面を第1導電型不純物で補償して第1導電型Ge層21を形成する。次いで、フォトダイオード形成領域のみを露出する第2の誘電体マスクを形成して、この第2の誘電体マスクをマスクとして露出するノンドープGe層17の表面に第2導電型不純物を注入して第2導電型Ge層18を形成すれば良い。
なお、単結晶Si層14をエッチングしてフォトダイオード領域に接続するテーパ導波路25と、テーパ導波路25に接続するストライプ状単結晶Siコア層24を形成しても良い。
また、ノンドープGe層17の成長工程としては、二次元的成長により平坦な層を形成するために相対的に低温で成長する第1の成長工程と、高品質の結晶の成長が可能な相対的に高温で成長する第2の成長工程からなる二段成長工程を用いることが望ましい。なお、ノンドープGe層17の成長方法としては、減圧化学気相成長法或いは分子ビームエピタキシャル成長法が典型的なものである。
本発明の実施の形態によれば、光吸収層となるノンドープGe層17の周囲にはGe層が設けられているので、緩和歪は抑制され、ノンドープGe層17の吸収端の短波化を抑制される。それと同時に、素子容量の低減ならびに欠陥によるフォトキャリアのトラップを低減することが可能となる。その結果、広い波長帯域での動作と、高い高速応答・応答効率を同時に実現することが可能となる。
次に、図3乃至図10を参照して、本発明の実施例1の半導体受光素子の製造工程を説明する。なお、図3乃至図9における図(a)は概念的斜視図であり、図(b)は図(a)における一点鎖線の平行四辺形に沿った断面図である。まず、図3に示すように、主面が(001)のSi基板31上に厚さが3.0μmのBOX層32を介して厚さが0.3μmの単結晶のi型Si層33を設けたSOI基板を用意する。
次いで、i型Si層33上にレジストを塗布し、電子ビームリソグラフィーによりSiパッシブ導波路形状を露光し、ウエットエッチングによる現像を行う。次いで、ICP(誘導結合型プラズマ)ドライエッチングにより、コア層35とスラブ部36からなるSiリブ型導波路34を形成する。なお、i型Si層33と接する側にはテーパ部37を設ける。
次いで、図4に示すように、全面にCVD法によりSiO膜を堆積し、パターニングを行い、受光部及びサイリスタ部を形成する領域のみを開口するイオン注入マスク38を形成する。次いで、イオン注入マスク38をマスクとしてBをイオン注入する。この場合の注入エネルギーは40keVでドーズ量は5.0×1014cm−2である。次いで、イオン注入したBを活性化する1050℃で1秒間のアニール処理を行ってp型Si層39を形成する。p型Si層39の不純物濃度は、1.0×1018cm−3〜3.0×1019cm−3とする。
次いで、図5に示すように、SiO膜からなる選択成長マスク40を設け、減圧CVD法を用いて厚さが0.8μmのi型Ge層41を選択成長させる。この場合、原料ガスとしてGeHを用い、キャリアガスとしてHを用い、まず、400℃の低温において、0.1μm成長させ、次いで、700℃の高温において0.7μm成長させる。
次いで、図6に示すように、サイリスタ構造を形成する部分のみを開口させたSiO膜からなるイオン注入マスク42を形成する。次いで、このイオン注入マスク42をマスクとしてPをイオン注入することによってi型Ge層41全体をドーピングする。この場合の注入エネルギーは、600keVとし、ドーズ量は1.0×1014cm−2とする。その結果、n型Ge層43の不純物濃度は1.0×1018cm−3〜2.0×1018cm−3となる。
次いで、図7に示すように、同じイオン注入マスク42をマスクとして、Bを浅くイオン注入して、上側の0.5μmのみ補償してp型Ge層44とし、下側の0.3μmは補償されずにn型Ge層43として残る。なお、この場合の注入エネルギーは100keVとし、ドーズ量は3.0×1014cm-2とする。その結果、p型Ge層44における不純物濃度は1.0×1018cm-3〜1.0×1019cm-3となる。
次いで、図8に示すように、イオン注入マスク42をフッ酸で除去したのち、フォトダイオード形成領域のみを開口させたSiO膜からなるイオン注入マスク45を新たに形成する。このイオン注入マスク45をマスクとして、Pをイオン注入して上側の0.3μmの部分をn型Ge層46にする。この場合の注入エネルギーは、40keVとし、ドーズ量は1.0×1014cm−2とする。その結果、n型Ge層46の不純物濃度は4.0×1018cm−3〜1.0×1019cm−3となり、表面から0.3μmの位置における不純物濃度は1.0×1016cm−3となる。
次いで、図9に示すように、イオン注入マスク45をフッ酸で除去したのち、1050℃で1秒間の活性化アニールを行って注入した不純物を活性化する。次いで、減圧CVD法を用いて上部クラッド層47となるとともに素子部においてはパッシベーション膜となるSiO膜を堆積させた後、CMP(化学機械研磨)法によりSiO膜とGe層の表面を平坦化する。
次いで、図においては省略するものの、平坦化した表面にレジストを塗布して電子ビームリソグラフィーによりコンタクトホール形状を露光し、ウエットエッチングによる現像を行う。次いで、ICPドライエッチング法とHFによるウエットエッチング法により、コンタクトホールを形成する。
次いで、スパッタリング法によりバリアメタルとなるTiN膜を成膜した後、コンタクトホールをAlで埋め込む。次いで、コンタクトホールの形成に用いたレジストを除去すると同時に、レジスト上に堆積したAlをリフトオフしてn側電極48及びp側電極49を形成することによって、本発明の実施例1の半導体受光素子の基本構成が完成する。
図10は、本発明の実施例1の半導体受光素子の構成説明図であり、図10(a)は上面図であり、図10(b)は図10(a)におけるA−A′を結ぶ一点鎖線に沿った断面図である。図に示すように、n型Ge層46/i型Ge層41/p型Si層39からなるPIN型フォトダイオードの3つの側面はp型Ge層44/n型Ge層43で囲まれているので、3つの端面における歪緩和の影響がPIN型フォトダイオード部に及ぶことが抑制される。また、PIN型フォトダイオードの両側面には、n型Ge層46/p型Ge層44/n型Ge層43/p型Si層39からなるサイリスタ構造が形成され電流ブロック層として機能するのでリーク電流を低減することが可能になる。なお、光入射面と反対側では、n型Ge層46/p型Ge層44/n型Ge層43/i型Si層33/p型Si層39からなる疑似サイリスタ的な電流ブロック機構が形成される。
コア層35に入射した信号光は、テーパ部37を介してp型Si層39に伝播され、エバネッセント結合により、i型Ge層41に伝播して吸収され、電気信号としてn側電極48から取り出される。なお、p側電極49は通常は接地電位に設定される。
次に、図11乃至図18を参照して、本発明の実施例2の半導体受光素子を製造工程を説明するが、導電型を反転させただけで基本的な工程は上記の実施例1と同様である。なお、図11乃至図17における図(a)は概念的斜視図であり、図(b)は図(a)における一点鎖線の平行四辺形に沿った断面図である。まず、図11に示すように、主面が(001)のSi基板51上に厚さが3.0μmのBOX層52を介して厚さが0.3μmの単結晶のi型Si層53を設けたSOI基板を用意する。
次いで、i型Si層53上にレジストを塗布し、電子ビームリソグラフィーによりSiパッシブ導波路形状を露光し、ウエットエッチングによる現像を行う。次いで、ICPドライエッチングにより、コア層55とスラブ部56からなるSiリブ型導波路54を形成する。なお、i型Si層53と接する側にはテーパ部57を設ける。
次いで、図12に示すように、全面にCVD法によりSiO膜を堆積し、パターニングを行い、受光部及びサイリスタ部を形成する領域のみを開口するイオン注入マスク58を形成する。次いで、イオン注入マスク58をマスクとしてPをイオン注入する。この場合の注入エネルギーは150keVでドーズ量は5.0×1014cm−2である。次いで、イオン注入したBを活性化する1050℃で1秒間のアニール処理を行ってn型Si層59を形成する。n型Si層59の不純物濃度は、1.0×1018cm−3〜3.0×1019cm−3とする。
次いで、図13に示すように、SiO膜からなる選択成長マスク60を設け、減圧CVD法を用いて厚さが0.8μmのi型Ge層61を選択成長させる。この場合、原料ガスとしてGeHを用い、キャリアガスとしてHを用い、まず、600℃の低温において、0.1μm成長させ、次いで、700℃の高温において0.7μm成長させる。
次いで、図14に示すように、サイリスタ構造を形成する部分のみを開口させたSiO膜からなるイオン注入マスク62を形成する。次いで、このイオン注入マスク62をマスクとしてBをイオン注入することによってi型Ge層61全体をドーピングする。この場合の注入エネルギーは、200keVとし、ドーズ量は3.0×1014cm−2とする。その結果、p型Ge層63の不純物濃度は2.0×1018cm−3〜6.0×1018cm−3となる。
次いで、図15に示すように、同じイオン注入マスク62をマスクとして、Pを浅くイオン注入して、上側の0.5μmのみ補償してn型Ge層64とし、下側の0.3μmは補償されずにp型Ge層63として残る。なお、この場合の注入エネルギーは350keVとし、ドーズ量は8.0×1014cm-2とする。その結果、n型Ge層64における不純物濃度は1.0×1018cm-3〜3.0×1019cm-3となる。
次いで、図16に示すように、イオン注入マスク62をフッ酸で除去したのち、フォトダイオード形成領域のみを開口させたSiO膜からなるイオン注入マスク65を新たに形成する。このイオン注入マスク65をマスクとして、Bをイオン注入して上側の0.3μmの部分をp型Ge層66にする。この場合の注入エネルギーは、20keVとし、ドーズ量は2.0×1014cm−2とする。その結果、p型Ge層66の不純物濃度は50×1018cm−3〜2.0×1019cm−3となり、表面から0.3μmの位置における不純物濃度は1.0×1016cm−3となる。
次いで、図17に示すように、イオン注入マスク65をフッ酸で除去したのち、1050℃で1秒間の活性化アニールを行って注入した不純物を活性化する。次いで、減圧CVD法を用いて上部クラッド層67となるとともに素子部においてはパッシベーション膜となるSiO膜を堆積させた後、CMP法によりSiO膜とGe層の表面を平坦化する。
次いで、図においては省略するものの、平坦化した表面にレジストを塗布して電子ビームリソグラフィーによりコンタクトホール形状を露光し、ウエットエッチングによる現像を行う。次いで、ICPドライエッチング法とHFによるウエットエッチング法により、コンタクトホールを形成する。
次いで、スパッタリング法によりバリアメタルとなるTiN膜を成膜した後、コンタクトホールをAlで埋め込む。次いで、コンタクトホールの形成に用いたレジストを除去すると同時に、レジスト上に堆積したAlをリフトオフしてp側電極68及びn側電極69を形成することによって、本発明の実施例2の半導体受光素子の基本構成が完成する。
図18は、本発明の実施例2の半導体受光素子の構成説明図であり、図18(a)は上面図であり、図18(b)は図18(a)におけるA−A′を結ぶ一点鎖線に沿った断面図である。図に示すように、p型Ge層66/i型Ge層61/n型Si層59からなるPIN型フォトダイオードの3つの側面はn型Ge層64/p型Ge層63で囲まれているので、3つの端面における歪緩和の影響がPIN型フォトダイオード部に及ぶことが抑制される。また、PIN型フォトダイオードの両側面には、p型Ge層66/n型Ge層64/p型Ge層63/n型Si層59からなるサイリスタ構造が形成され電流ブロック層として機能するのでリーク電流を低減することが可能になる。なお、光入射面と反対側では、p型Ge層66/n型Ge層64/p型Ge層63/i型Si層53/n型Si層59からなる疑似サイリスタ的な電流ブロック機構が形成される。
コア層55に入射した信号光は、テーパ部57を介してn型Si層59に伝播され、エバネッセント結合により、i型Ge層61に伝播して吸収され、電気信号としてp側電極68から取り出される。なお、n側電極69は通常は接地電位に設定される。
次に、図19を参照して、本発明の実施例3の半導体受光素子を説明するが、Siリブ型導波路を設けずに単純な受光素子としたものである以外、基本的な製造工程は上記の実施例1と同様であるので、最終的な構造のみを示す。なお、図19(a)は、上面図であり、図19(b)は、図19(a)におけるA−A′を結ぶ一点鎖線に沿った断面図である。
主面が(001)のSi基板71上に厚さが3.0μmのBOX層72を介して厚さが0.3μmの単結晶のi型Si層を設けたSOI基板を用意する。次いで、i型Si層上に受光部及びサイリスタ部を形成する領域のみを開口するイオン注入マスクを形成し、このイオン注入マスクをマスクとしてBをイオン注入する。この場合の注入エネルギーは40keVでドーズ量は5.0×1014cm−2である。次いで、イオン注入したBを活性化する1050℃で1秒間のアニール処理を行ってp型Si層73を形成する。p型Si層73の不純物濃度は、1.0×1018cm−3〜3.0×1019cm−3とする。
次いで、SiO膜からなる選択成長マスクを設け、減圧CVD法を用いてp型Si層73上に厚さが0.8μmのi型Ge層74を選択成長させる。この場合、原料ガスとしてGeHを用い、キャリアガスとしてHを用い、まず、400℃の低温において、0.1μm成長させ、次いで、700℃の高温において0.7μm成長させる。
次いで、サイリスタ構造を形成する部分のみを開口させたSiO膜からなるイオン注入マスクを形成し、このイオン注入マスクをマスクとしてPをイオン注入することによってi型Ge層74全体をドーピングする。この場合の注入エネルギーは、600keVとし、ドーズ量は1.0×1014cm−2とする。その結果、n型Ge層75の不純物濃度は1.0×1018cm−3〜2.0×1018cm−3となる。
次いで、同じイオン注入マスクをマスクとして、Bを浅くイオン注入して、上側の0.5μmのみ補償してp型Ge層76とし、下側の0.3μmは補償されずにn型Ge層75として残る。なお、この場合の注入エネルギーは100keVとし、ドーズ量は3.0×1014cm-2とする。その結果、p型Ge層76における不純物濃度は1.0×1018cm-3〜1.0×1019cm-3となる。
次いで、イオン注入マスクをフッ酸で除去したのち、フォトダイオード形成領域のみを開口させたSiO膜からなるイオン注入マスクを新たに形成する。このイオン注入マスクをマスクとして、Pをイオン注入して上側の0.3μmの部分をn型Ge層77にする。この場合の注入エネルギーは、40keVとし、ドーズ量は1.0×1014cm−2とする。その結果、n型Ge層77の不純物濃度は4.0×1018cm−3〜1.0×1019cm−3となり、表面から0.3μmの位置における不純物濃度は1.0×1016cm−3となる。
次いで、イオン注入マスクをフッ酸で除去したのち、1050℃で1秒間の活性化アニールを行って注入した不純物を活性化する。次いで、パッシベーション膜78となるSiO膜を堆積させた後、CMP法によりSiO膜とGe層の表面を平坦化する。
次いで、平坦化した表面にレジストを塗布して電子ビームリソグラフィーによりコンタクトホール形状を露光し、ウエットエッチングによる現像を行う。次いで、ICPドライエッチング法とHFによるウエットエッチング法により、コンタクトホールを形成する。
次いで、スパッタリング法によりバリアメタルとなるTiN膜を成膜した後、コンタクトホールをAlで埋め込む。次いで、コンタクトホールの形成に用いたレジストを除去すると同時に、レジスト上に堆積したAlをリフトオフして環状のn側電極79及びp側電極80を形成することによって、本発明の実施例3の半導体受光素子の基本構成が完成する。
このように、本発明の実施例3においては、PIN型フォトダイオードの全ての側面がp型Ge層76/n型Ge層75で囲まれているので、端部における歪緩和の影響がPIN型フォトダイオード部に及ぶことが完全に抑制される。また、PIN型フォトダイオードの全周囲には、n型Ge層77/p型Ge層76/n型Ge層75/p型Si層73からなるサイリスタ構造が形成され電流ブロック層として機能するのでリーク電流を低減することが可能になる。
この実施例3の半導体受光素子においては、図において、上方から光が入射してn型Ge層77を透過してi型Ge層74で吸収され、電気信号としてn側電極79から取り出される。この場合、p側電極80は接地電位に設定しておく。
11 基板
12 Si基板
13 SiO
14 単結晶Si層
15 PIN型フォトダイオード
16 第1導電型Si層
17 ノンドープGe層
18 第2導電型Ge層
19 Ge電流ブロック機構
20 第2導電型Ge層
21 第1導電型Ge層
22 第2導電型用コンタクト電極
23 第1導電型用コンタクト電極
24 ストライプ状単結晶Siコア層
25 テーパ導波路
26 上部クラッド層
31,51,71 Si基板
32,52,72 BOX層
33,53 i型Si層
34,54 Siリブ型導波路
35,55 コア層
36,56 スラブ部
37,57 テーパ部
38,58 イオン注入マスク
39,73 p型Si層
40,60 選択成長マスク
41,61,74 i型Ge層
42,62 イオン注入マスク
43,75 n型Ge層
44,76 p型Ge層
45,65 イオン注入マスク
46,77 n型Ge層
47,67 上部クラッド層
48,79 n側電極
49,80 p側電極
59 n型Si層
63 p型Ge層
64 n型Ge層
66 p型Ge層
68 p側電極
69 n側電極
78 パッシベーション膜
81 Si基板
82 BOX層
83 Si層
84 p型Siメサ部
85 p型Siスラブ部
86 i型Ge光吸収層
87 n++型Geコンタクト層
88 p++型Siコンタクト部
89 酸化膜
90,91 プラグ
92 n側電極
93 p側電極

Claims (10)

  1. 表面が単結晶Si層である基板と、
    前記基板上に第1導電型Si層と、ノンドープGe層と、前記第1導電型とは反対導電型の第2導電型Ge層を順次積層したPIN型フォトダイオードと、
    前記ノンドープGe層/前記第2導電型Ge層からなる積層構造の周囲の少なくとも一部に設けられたGe電流ブロック機構と、
    前記第2導電型Ge層上に設けられた第2導電型用コンタクト電極と、
    前記第1導電型Si層に設けられた第1導電型用コンタクト電極と
    を有することを特徴とする半導体受光素子。
  2. 前記Ge電流ブロック機構が、基板側から順に第2導電型Ge層と第1導電型Ge層とが順次積層した構造であり、
    前記第2導電型用コンタクト電極と前記第1導電型用コンタクト電極との間に第2導電型Ge層−第1導電型Ge層−第2導電型Ge層−第1導電型Si層からなるサイリスタ構造が形成されていることを特徴とする請求項1に記載の半導体受光素子。
  3. 前記PIN型フォトダイオードの形状が直方体状であり、一つの側面を除いた他の3つの側面が前記Ge電流ブロック機構に当接していることを特徴とする請求項2に記載の半導体受光素子。
  4. 前記Ge電流ブロック機構に当接していない1つの側面において、前記第1導電型Si層にストライプ状単結晶Siコア層がテーパ導波路を介して接続していることを特徴とする請求項3に記載の半導体受光素子。
  5. 前記PIN型フォトダイオードの全ての側面が前記Ge電流ブロック機構に囲まれており、前記PIN型フォトダイオードの頂面が光入射面であることを特徴とする請求項1または請求項2に記載の半導体受光素子。
  6. 前記基板が、単結晶Si基板上にSiO膜を介して単結晶Si層が設けられたSOI基板であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の半導体受光素子。
  7. 表面が単結晶Si層である基板の表面の少なくとも一部に第1導電型不純物をイオン注入して活性化するアニール工程と、
    少なくとも前記第1導電型不純物をイオン注入した第1導電型Si領域上にノンドープGe層を成長する工程と、
    前記ノンドープGe層の表面にフォトダイオード形成領域を覆う第1の誘電体マスクを形成する工程と、
    前記第1の誘電体マスクをマスクとして前記ノンドープGe層の露出部に前記第1導電型とは反対の導電型である第2導電型不純物をイオン注入する工程と、
    前記第1の誘電体マスクをマスクとして前記ノンドープGe層の露出部に第1導電型不純物を前記第2導電型不純物より浅く注入して表面を第1導電型不純物で補償する工程と、
    前記フォトダイオード形成領域のみを露出する第2の誘電体マスクを形成する工程と、前記第2の誘電体マスクをマスクとして露出する前記ノンドープGe層の表面に第2導電型不純物を注入する工程と、
    前記注入した各不純物を活性化するアニール工程と
    を含むことを特徴とする半導体受光素子の製造方法。
  8. 前記単結晶Si層をエッチングして前記フォトダイオード領域に接続するテーパ導波路部と、前記テーパ導波路部に接続するストライプ状コア層を形成する工程を有することを特徴とする請求項7に記載の半導体受光素子の製造方法。
  9. 前記ノンドープGe層の成長工程が、相対的に低温で成長する第1の成長工程と、前記前記第1の成長工程より相対的に高温で成長する第2の成長工程からなる二段成長工程であることを特徴とする請求項7または請求項8に記載の半導体受光素子の製造方法。
  10. 前記ノンドープGe層の成長方法が、減圧化学気相成長法或いは分子ビームエピタキシャル成長法のいずれかであることを特徴とする請求項7乃至請求項9のいずれか1項に記載の半導体受光素子の製造方法。
JP2015512264A 2013-04-19 2013-04-19 半導体受光素子及びその製造方法 Expired - Fee Related JP6048578B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061625 WO2014171005A1 (ja) 2013-04-19 2013-04-19 半導体受光素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP6048578B2 true JP6048578B2 (ja) 2016-12-21
JPWO2014171005A1 JPWO2014171005A1 (ja) 2017-02-16

Family

ID=51730974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015512264A Expired - Fee Related JP6048578B2 (ja) 2013-04-19 2013-04-19 半導体受光素子及びその製造方法

Country Status (5)

Country Link
US (2) US9401447B2 (ja)
EP (1) EP2988338B1 (ja)
JP (1) JP6048578B2 (ja)
CN (1) CN105122469B (ja)
WO (1) WO2014171005A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201644A1 (de) * 2012-09-19 2014-03-20 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Germanium PIN-Fotodiode für die Integration in eine CMOS- oder BiCMOS-Technologie
US10283665B2 (en) * 2013-07-08 2019-05-07 Sifotonics Technologies Co., Ltd. Compensated photonic device structure and fabrication method thereof
JP6423159B2 (ja) * 2014-02-27 2018-11-14 富士通株式会社 Ge系半導体装置、その製造方法及び光インターコネクトシステム
CA2958754C (en) * 2014-08-15 2021-04-20 Aeponyx Inc. Methods and systems for microelectromechanical packaging
JP6696735B2 (ja) * 2015-06-18 2020-05-20 富士通株式会社 Ge系光素子及びその製造方法
WO2017019013A1 (en) * 2015-07-27 2017-02-02 Hewlett Packard Enterprise Development Lp Doped absorption devices
JP6641765B2 (ja) * 2015-08-05 2020-02-05 富士通オプティカルコンポーネンツ株式会社 光通信装置、及び、光モジュール
JP6127103B2 (ja) * 2015-09-30 2017-05-10 沖電気工業株式会社 半導体受光素子及びその製造方法
JP2017076651A (ja) * 2015-10-13 2017-04-20 富士通株式会社 半導体受光装置
JP6646559B2 (ja) * 2016-11-04 2020-02-14 日本電信電話株式会社 光検出器
US10809547B2 (en) * 2016-11-23 2020-10-20 Rockley Photonics Limited Electro-optically active device
US11105975B2 (en) * 2016-12-02 2021-08-31 Rockley Photonics Limited Waveguide optoelectronic device
US10473853B2 (en) * 2016-12-22 2019-11-12 Sifotonics Technologies Co., Ltd. Fully integrated avalanche photodiode receiver
US11049851B2 (en) * 2017-06-08 2021-06-29 Luxtera Llc Method and system for selectively illuminated integrated photodetectors with configured launching and adaptive junction profile for bandwidth improvement
CN110168433A (zh) * 2017-11-23 2019-08-23 洛克利光子有限公司 电光有源装置
JP7062276B2 (ja) * 2018-04-04 2022-05-06 国立研究開発法人産業技術総合研究所 光導波路型受光素子構造
WO2019220207A1 (en) 2018-05-16 2019-11-21 Rockley Photonics Limited lll-V/SI HYBRID OPTOELECTRONIC DEVICE AND METHOD OF MANUFACTURE
CN111211182A (zh) * 2018-11-19 2020-05-29 上海新微技术研发中心有限公司 一种波导型光电探测器及其制造方法
US10666353B1 (en) 2018-11-20 2020-05-26 Juniper Networks, Inc. Normal incidence photodetector with self-test functionality
JP7115305B2 (ja) * 2018-12-28 2022-08-09 日本電信電話株式会社 光検査回路
BE1027026B1 (nl) * 2019-02-04 2020-09-02 Caeleste Cvba Gradiënt fotodiode
US10852570B1 (en) 2019-10-16 2020-12-01 Inphi Corporation Dual-slab-layer low-loss silicon optical modulator
US11409034B2 (en) * 2020-01-29 2022-08-09 Marvell Asia Pte Ltd. Silicon photonics integration circuit
US11978812B2 (en) * 2020-02-26 2024-05-07 Mitsubishi Electric Corporation Waveguide photodetector
CN112201706A (zh) * 2020-08-31 2021-01-08 中国电子科技集团公司第三十八研究所 基于倏逝波耦合方式的波导集成光电探测器
US11869991B2 (en) * 2020-09-18 2024-01-09 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and method of making
US11588062B2 (en) * 2020-10-08 2023-02-21 Globalfoundries U.S. Inc. Photodetectors including a coupling region with multiple tapers
US11949030B2 (en) 2020-10-27 2024-04-02 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ cap for germanium photodetector
CN113176676B (zh) * 2021-04-16 2022-11-15 上海曦智科技有限公司 光学调制器和光学集成系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104411A1 (en) * 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Vertically-integrated waveguide photodetector apparatus and related coupling methods
WO2008080428A1 (en) * 2006-12-29 2008-07-10 Pgt Photonics S.P.A. Waveguide photodetector in germanium on silicon
JP2010271422A (ja) * 2009-05-19 2010-12-02 Nippon Telegr & Teleph Corp <Ntt> 光レベル等価器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264225B1 (en) * 1986-10-07 1994-01-19 Sharp Kabushiki Kaisha A semiconductor laser device and a method for the production of the same
JP3828179B2 (ja) * 1995-05-12 2006-10-04 富士通株式会社 半導体光検出装置およびその製造方法
JP3994655B2 (ja) 2000-11-14 2007-10-24 住友電気工業株式会社 半導体受光素子
US20070104441A1 (en) * 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Laterally-integrated waveguide photodetector apparatus and related coupling methods
US7418166B1 (en) * 2006-02-24 2008-08-26 The Board Of Trustees Of The Leland Stanford Junior University Device and approach for integration of optical devices and waveguides therefor
US7777290B2 (en) * 2006-06-13 2010-08-17 Wisconsin Alumni Research Foundation PIN diodes for photodetection and high-speed, high-resolution image sensing
US7875522B2 (en) * 2007-03-30 2011-01-25 The Board Of Trustees Of The Leland Stanford Junior University Silicon compatible integrated light communicator
US7745312B2 (en) * 2008-01-15 2010-06-29 Sandisk 3D, Llc Selective germanium deposition for pillar devices
JP5742345B2 (ja) * 2011-03-20 2015-07-01 富士通株式会社 受光素子および光受信モジュール
US8455292B2 (en) * 2011-09-09 2013-06-04 International Business Machines Corporation Deposition of germanium film
US8871600B2 (en) * 2011-11-11 2014-10-28 International Business Machines Corporation Schottky barrier diodes with a guard ring formed by selective epitaxy
FR3015114B1 (fr) * 2013-12-13 2016-01-01 Commissariat Energie Atomique Procede de fabrication d'un photo-detecteur

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104411A1 (en) * 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Vertically-integrated waveguide photodetector apparatus and related coupling methods
WO2008080428A1 (en) * 2006-12-29 2008-07-10 Pgt Photonics S.P.A. Waveguide photodetector in germanium on silicon
JP2010271422A (ja) * 2009-05-19 2010-12-02 Nippon Telegr & Teleph Corp <Ntt> 光レベル等価器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016040280; Tao Yin et al.: '"31GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate"' Optics Express Vol.15, No.21, 2007, p.13965-13971 *

Also Published As

Publication number Publication date
US20160043262A1 (en) 2016-02-11
CN105122469A (zh) 2015-12-02
WO2014171005A1 (ja) 2014-10-23
US9577136B2 (en) 2017-02-21
EP2988338A4 (en) 2016-05-25
JPWO2014171005A1 (ja) 2017-02-16
EP2988338B1 (en) 2017-08-30
US9401447B2 (en) 2016-07-26
CN105122469B (zh) 2017-03-08
US20160293788A1 (en) 2016-10-06
EP2988338A1 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP6048578B2 (ja) 半導体受光素子及びその製造方法
US7453132B1 (en) Waveguide photodetector with integrated electronics
WO2009110632A1 (ja) SiGeフォトダイオード
US20130202005A1 (en) Laser using locally strained germanium on silicon for opto-electronic applications
JP6793786B1 (ja) 半導体受光素子、光電融合モジュール及びアバランシェフォトダイオードの製造方法
US10121927B2 (en) Semiconductor device and method of manufacturing the same
JP2017201649A (ja) 半導体装置およびその製造方法
JP6378928B2 (ja) Ge系半導体装置、その製造方法及び光インターコネクトシステム
JP6091273B2 (ja) 半導体装置とその製造方法
JP2017076651A (ja) 半導体受光装置
JP5370857B2 (ja) ゲルマニウム受光器およびその製造方法
JP2017220581A (ja) 半導体装置及びその製造方法、光インターコネクトシステム
US10942315B2 (en) Reducing back reflection in a photodiode
US11415747B2 (en) Optical integrated device and production method therefor
JP6656016B2 (ja) 半導体装置及び光インターコネクトシステム
JP6423159B2 (ja) Ge系半導体装置、その製造方法及び光インターコネクトシステム
WO2015098027A1 (ja) 光導波路素子、及び、光導波路素子の製造方法
JP5824929B2 (ja) 光半導体素子の製造方法
JP6726248B2 (ja) 半導体受光素子、及び光電融合モジュール
JP6696735B2 (ja) Ge系光素子及びその製造方法
JP7443672B2 (ja) 光半導体素子及び光伝送装置
JP7125822B2 (ja) 光半導体素子及び光伝送装置
JP7275843B2 (ja) 光半導体素子
US11886003B2 (en) Optical waveguide
US20230307572A1 (en) Method of fabricating si photonics chip with integrated high speed ge photo detector working for entire c- and l-band

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6048578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees