JP6033184B2 - エンジン駆動作業機 - Google Patents

エンジン駆動作業機 Download PDF

Info

Publication number
JP6033184B2
JP6033184B2 JP2013164144A JP2013164144A JP6033184B2 JP 6033184 B2 JP6033184 B2 JP 6033184B2 JP 2013164144 A JP2013164144 A JP 2013164144A JP 2013164144 A JP2013164144 A JP 2013164144A JP 6033184 B2 JP6033184 B2 JP 6033184B2
Authority
JP
Japan
Prior art keywords
engine
cooling
water
evaporator
cylinder head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013164144A
Other languages
English (en)
Other versions
JP2015031269A (ja
Inventor
格 岡部
格 岡部
裕樹 飯倉
裕樹 飯倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013164144A priority Critical patent/JP6033184B2/ja
Priority to IN1792DE2014 priority patent/IN2014DE01792A/en
Priority to CN201410381320.6A priority patent/CN104343579B/zh
Publication of JP2015031269A publication Critical patent/JP2015031269A/ja
Application granted granted Critical
Publication of JP6033184B2 publication Critical patent/JP6033184B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/141Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

本発明は、エンジンの廃熱で原水を蒸発させ、蒸発させた水蒸気を凝縮させて浄水を生成する水生成装置を備えたエンジン駆動作業機に関する。
エンジン駆動作業機として、河川などの水(原水)を水ポンプ内に取り込み、取り込んだ原水の一部を分岐し、分岐した原水をエンジンの廃熱で蒸発させ、蒸発させた蒸気を分岐した原水で凝縮して浄水を生成するものが知られている。
エンジン駆動作業機によれば、水ポンプの駆動中に、水ポンプ内に取り込んだ原水の一部を原水分岐管に案内し、案内した原水を原水分岐管を経てエンジンの排気管に導く。導いた原水を排気管の廃熱(すなわち、エンジンの廃熱)で蒸発させ、蒸発させた水蒸気を連通管に沿わせて原水分岐管まで上昇させる。上昇させた水蒸気を原水分岐管内の原水で凝縮させることにより浄水を生成する。生成した浄水を、例えば、飲料水として使用する(例えば、特許文献1参照。)。
特開2012−24699号公報
ここで、特許文献1のエンジン駆動作業機は、エンジンの廃熱で蒸発させた水蒸気を原水分岐管内の原水(すなわち、水冷で)で凝縮させることにより浄水を生成している。水蒸気を水冷で凝縮させることにより、水冷用の流路(すなわち、水冷用の構成)が複雑になり、そのことがエンジン駆動作業機の小型化を図る妨げになっていた。
また、水ポンプは水源が近くにないと使用することが難しく、使用地域が限定されていた。
本発明は、水蒸気を簡単な冷却手段で凝縮でき、かつ、使用地域を広範囲に確保できるエンジン駆動作業機を提供することを課題とする。
請求項1に係る発明は、エンジンの駆動中に該エンジンの廃熱で原水を蒸発させ、蒸発させた水蒸気を凝縮させて浄水を生成する水生成装置を備えたエンジン駆動作業機において、前記エンジンは、前記水生成装置の近傍に設けられるシリンダブロックおよびシリンダヘッド部と、該シリンダヘッド部に対して前記水生成装置の反対側に設けられ、前記シリンダブロックおよび前記シリンダヘッド部に向けて冷却風を送風する冷却ファンと、を備え、前記水生成装置は、前記原水を蓄える原水タンクと、該原水タンクから供給された前記原水を前記エンジンの廃熱で蒸発させて水蒸気とする蒸発器と、該蒸発器の上方に設けられ、前記蒸発器で蒸発させた水蒸気を凝縮させて浄水を生成する凝集器と、前記冷却ファンに隣接する部位に導出穴が形成され、前記シリンダブロックおよび前記シリンダヘッド部の上方に設けられ、前記冷却ファンから吹き出された冷却風を前記シリンダブロックおよび前記シリンダヘッド部の上方を経て前記蒸発器に導く第1加熱シュラウドと、前記シリンダブロックおよび前記シリンダヘッド部の下方に設けられ、前記冷却ファンから吹き出された冷却風を前記シリンダブロックおよび前記シリンダヘッド部の下方を経て前記蒸発器に導く第2加熱シュラウドと、第1加熱シュラウドの上方に設けられ、前記導出穴から導き出された冷却風を前記第1加熱シュラウドを経て前記凝集器に導く冷却シュラウドと、を備えたことを特徴とする。
請求項2に係る発明は、前記凝集器の上部が前記シリンダブロックおよび前記シリンダヘッド部のうち最上位の部位と同じ高さ位置に配置されることを特徴とする。
請求項3に係る発明は、前記蒸発器の下部が、前記シリンダブロックおよび前記シリンダヘッド部のうち最下位の部位と同じ高さ位置に配置されることを特徴とする。
請求項1に係る発明では、シリンダブロックおよびシリンダヘッド部の上方に第1加熱シュラウドを設け、シリンダブロックおよびシリンダヘッド部の下方に第2加熱シュラウドを設けた。さらに、冷却ファンから送風された冷却風を、第1加熱シュラウドでシリンダブロックおよびシリンダヘッド部の上方を経て蒸発器に導くとともに、第2加熱シュラウドでシリンダブロックおよびシリンダヘッド部の下方を経て蒸発器に導くようにした。
よって、シリンダブロックおよびシリンダヘッド部で加熱された冷却風で蒸発器を保温できる。これにより、蒸発器が必要以上に加熱されて破損することを防止できる。
また、第1加熱シュラウドの上方に冷却シュラウドを設けた。さらに、導出穴から導き出された冷却風を冷却シュラウドで凝集器に導くようにした。ここで、導出穴は冷却ファンに隣接する部位に形成されている。よって、導出穴から冷却シュラウドに導かれた冷却風はシリンダブロックやシリンダヘッド部で加熱されていない。
導出穴から導き出された冷却風を凝集器に導くことにより、凝集器を冷却風で冷却状態に保つことができ、凝集器に導かれた水蒸気を良好に凝縮することができる。このように、凝集器を冷却風で空冷することにより、水冷用の流路を不要にでき、冷却手段を簡単な構成にできる。
これにより、凝集器に導かれた水蒸気を簡単な冷却手段で良好に凝縮することができ、エンジン駆動作業機の小型化やコスト低減を図ることができる。
さらに、凝集器を冷却風で空冷することにより、水源が近くにない地域でもエンジン駆動作業機を使用することができる。これにより、エンジン駆動作業機の使用地域を広範囲に確保でき、エンジン駆動作業機の使い勝手の向上を図ることができる。
請求項2に係る発明では、凝集器の上部を、シリンダブロックおよびシリンダヘッド部のうち最下位の部位と同じ高さ位置に配置した。これにより、導出穴から導き出された冷却風を凝集器に円滑に導くことができ、凝集器を冷却風で効率よく冷却することができる。
請求項3に係る発明では、蒸発器の下部を、シリンダブロックおよびシリンダヘッド部のうち最下位の部位と同じ高さ位置に配置した。これにより、冷却ファンから送風された冷却風を蒸発器に円滑に導くことができ、蒸発器を冷却風で効率よく保温することができる。
本発明に係るエンジン駆動作業機を正面側から見た状態を示す斜視図である。 図1のエンジン駆動作業機を背面側から見た状態を示す斜視図である。 図2のエンジン、発電機および水生成部を示す平面図である。 図3のエンジンに備えたシリンダ部を示すリコイルスター側から見た状態を示す側面図である。 図2の5矢視図である。 本発明に係る加熱シュラウドユニットおよび冷却シュラウドを示す断面図である。 図2の水生成部を正面側から見た状態を示す斜視図である。 図7の8−8線断面図である。 本発明に係る蒸発器をシリンダブロックおよびシリンダヘッドで加熱された冷却風で保温する例を説明する図である。 本発明に係る凝集器を冷却風で冷却する例を説明する図である。
本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図中、前方、後方、左側方および右側方を「Fr」、「Rr」、「L」および「R」で示す。
実施例に係るエンジン駆動作業機10について説明する。
なお、エンジン駆動作業機10の構成の理解を容易にするために、図4、図5においては加熱シュラウドユニット101および冷却シュラウド104の図示を省略する。
図1、図2に示すように、エンジン駆動作業機10は、エンジン駆動作業機10の外枠を形成するフレーム11と、フレーム11の前左下部に設けられたエンジン12と、エンジン12に一体に設けられた発電機13と、発電機13およびエンジン12に隣接して設けられた水生成装置20と、エンジン12の燃料タンク22および水生成装置20の原水タンク41の前方に設けられた操作盤15とを備えたエンジン駆動用の発電機である。
フレーム11は、エンジン12、発電機13および水生成装置20の浄水タンク33を支持するベース17と、ベース17の左端部から上方に向けて折り曲げられた左フレーム18と、ベース17の右端部から上方に向けて折り曲げられた右フレーム19とを有する。
左フレーム18の把持部18aおよび右フレーム19の把持部19aを手で把持してエンジン駆動作業機10を持ち上げることにより、エンジン駆動作業機10を搬送(運搬)することができる。
図3、図4に示すように、エンジン12は、ベース17の前左下部17aに支持され、クランクシャフトの右端部が発電機13の駆動軸に同軸上に連結されている。
エンジン12は、クランクシャフトが収納されるクランクケース92と、クランクケース92に設けられたシリンダブロック93と、シリンダブロック93の先端部93aに設けられたシリンダヘッド部94とを備えている。
さらに、エンジン12は、クランクシャフトの左端部に連結された冷却ファン23(図6も参照)と、冷却ファン23を覆うファンカバー96と、冷却ファン23に連結されたリコイルスタータ24とを備えている。
シリンダブロック93は、クランクケース92から後方に向けて傾斜角θ1の上り勾配に延出され、ピストンが軸線方向に摺動自在に収納される。このシリンダブロック93は、水生成装置20の近傍に設けられている。
シリンダヘッド部94は、シリンダブロック93の先端部93aに設けられたシリンダヘッド(エンジンヘッド)25と、シリンダヘッド25の先端部25aを覆うヘッドカバー26とを備えている。
シリンダヘッド25は、シリンダブロック93の先端部93aに連結され、吸気弁や排気弁が支持されている。このシリンダヘッド25は、シリンダブロック93と同様に、水生成装置20の近傍に設けられている。
冷却ファン23は、シリンダヘッド25に対して水生成装置20の反対側(左側)に設けられ、シリンダブロック93およびシリンダヘッド25に向けて冷却風を送風するファンである。
ファンカバー96は、冷却ファン23、シリンダブロック93やシリンダヘッド25を覆うように形成されている。ファンカバー96は、冷却ファン23の回転で内部に外気(空気)を吸込み可能な吸込口と、内部に吸い込まれた空気をシリンダブロック93やシリンダヘッド25に送風可能な送風口96aとを有する。
冷却ファン23が回転することにより、ファンカバー96内に吸込口から外気(空気)が吸い込まれる。ファンカバー96内に吸い込まれた空気が、ファンカバー96の送風口96aからシリンダブロック93やシリンダヘッド25に向けて冷却風として送風される。
シリンダブロック93やシリンダヘッド25に冷却風が送風されることにより、冷却風でシリンダブロック93やシリンダヘッド25が冷却される。
リコイルスタータ24は、エンジン12を始動させる装置である。
発電機13は、エンジン12のクランクシャフトに連通する駆動軸と、駆動軸に設けられたロータとを備えている。クランクシャフトで駆動軸を回転することによりロータが回転し、ロータが回転することにより電力を発生する。
図5に示すように、水生成装置20(具体的には、水生成部32)の上方に原水供給手段31の原水タンク41が設けられている。また、エンジン12のシリンダブロック93およびシリンダヘッド25の上方に燃料タンク22が設けられている。
さらに、シリンダヘッド25の排気ポート28(図8参照)が排気管27を介して水生成装置20の蒸発器35に連通されている。よって、エンジン12が駆動することにより、排気ガスが排気ポート28、排気管27を経て水生成装置20の蒸発器35に導かれる。
図2に戻って、水生成装置20は、発電機13、シリンダブロック93(図3参照)、シリンダヘッド25およびヘッドカバー26で形成された空間に配置されている。
水生成装置20は、原水29(図8参照)を供給する原水供給手段31と、原水供給手段31から供給された原水29から浄水を生成する水生成部32と、水生成部32で生成された浄水を蓄える浄水タンク33とを含む(備えている)。
また、水生成装置20は、図6に示すように、ファンカバー96の送風口96aから吹き出された冷却風を蒸発器35に導く加熱シュラウドユニット101と、冷却ファン23から吹き出された冷却風を凝集器38に導く冷却シュラウド104とを含む(備えている)。
図2に示すように、水生成部32は、発電機13側に第1ブラケット34aおよび第2ブラケット34bを介して支持されている。
水生成部32は、図7、図8に示すように、原水供給手段31から供給された原水29を蒸発する蒸発器35と、蒸発器35の下部を覆うボトムカバー36と、蒸発器35で蒸発された水蒸気を凝縮する凝集器38と、凝集器38で生成された浄水(蒸留水)69を収集する(集める)セパレータ39とを含む(備えている)。
すなわち、水生成装置20は、蒸発器35で蒸発させた蒸気を凝集器38で凝縮させて浄水を生成する機能を備えている。
原水供給手段31は、水生成部32の上方に設けられて原水29を蓄える原水タンク41と、原水タンク41に蓄えられた原水29を蒸発器35に導く(供給する)原水供給路42と、蒸発器35の内部空間43および原水タンク41の内部空間を連通する空気抜き路45とを備えている。
蒸発器35は、外周壁52が略矩形の枠状に形成された蒸発容器51と、蒸発容器51内に設けられた加熱部(熱交換部)53とを備えている。
蒸発容器51の下部(蒸発器の下部)51aは、図4、図6に示すように、シリンダブロック93の基端下部(シリンダブロック93およびシリンダヘッド部94のうち最下位の部位)93bと同じ高さ位置に配置されている。
すなわち、下部51aおよび基端下部93bが水平な直線106上に配置されている。
図7、図8に戻って、蒸発容器51は、下部51aにボトムカバー36が取り付けられることにより、ボトムカバー36で下部51aが塞がれている。
蒸発容器51およびボトムカバー36で原水貯留槽48が形成される。原水貯留槽48に、原水タンク41から供給された原水29が蓄えられる。
蒸発容器51の外周壁52は、第1壁部55、第2壁部56、第3壁部57および第4壁部(図示せず)で略矩形の枠状に形成されている。
蒸発容器51(第1壁部55)に、加熱部53のガス取入部66が一体に設けられている。ガス取入部66の入口66aが排気管27を介してエンジン12の排気ポート28に連通されている。また、ガス取入部66の出口66bが加熱部53(加熱本体65)の加熱入口65aに連通されている。
また、第1壁部55に原水取入部63が設けられ、第2壁部56に空気抜き部64が設けられている。原水取入部63および空気抜き部64は各出口63a,64aが蒸発容器51の内部に連通されている。
原水取入部63の入口63bに原水供給路42の出口42aが連通されている。空気抜き部64の入口64bに空気抜き路45の出口45aが連通されている。
さらに、蒸発容器51に、加熱部53のガス排出部67が一体に設けられている。ガス排出部67の入口67aが加熱部53(加熱本体65)の加熱出口65bに連通され、ガス排出部67の出口67bが蒸発器35の外部68に開口されている。
加熱部53は、蒸発器35の内部に排気ガスを案内する熱交換器である。
この加熱部53は、蒸発器35の内部に収納された加熱本体65と、加熱本体65の加熱入口65aに連通されたガス取入部66と、加熱本体65の加熱出口65bに連通されたガス排出部67とを有する。
加熱本体65は、加熱入口65aがガス取入部66に連通され、加熱出口65bがガス排出部67に連通されている。よって、エンジン12の排気ガスが、排気管27およびガス取入部66を経て加熱本体65の加熱入口65aに導かれ、加熱入口65aを経て加熱本体65に導かれる。
加熱本体65に導かれた排気ガスが、加熱本体65の加熱出口65bを経てガス排出部67に導かれる。ガス排出部67に導かれた排気ガスが、ガス排出部67の出口67bから蒸発器35の外部68に排出される。
加熱部53にエンジン12の排気ガスを導くことにより、排気ガスの廃熱(エンジン12の廃熱)で加熱部53が加熱される。加熱部53が加熱されることにより、原水貯留槽48に蓄えられた原水29を加熱部53で蒸発させることができる。
すなわち、蒸発器35は、蒸発容器51(原水貯留槽48)に蓄えた原水29をエンジン12の廃熱を利用して蒸発させる機能を備えている。
凝集器38は、蒸発容器51の上方を覆う頂部76を有する凝集容器75と、頂部76の外面(上面)76aに設けられた複数の冷却フィン81と、頂部76の内面(下面)76bに設けられた複数の右凝縮フィン82および複数の左凝縮フィン84とを含む。
凝集容器75は、蒸発容器51の上方を覆う頂部76と、頂部76の外周縁に設けられた外周壁77とを有する。
凝集器38の頂部(上部)76は、図4、図6に示すように、ヘッドカバー26の先端上部(シリンダブロック93およびシリンダヘッド部94のうち最上位の部位)26aと同じ高さ位置に配置される。
すなわち、頂部76および先端上部26aが水平な直線107上に配置されている。
図7、図8に再び戻って、頂部76の外面76aおよび外周壁77の一部に複数の冷却フィン81が設けられている。よって、凝集器38は、大気(外部68)に対峙する面積が大きく確保される。これにより、複数の冷却フィン81により熱交換を効率よくおこない、凝集器38を好適な冷却状態に保つことができる。
また、頂部76の内面76bのうち、蒸発容器51(第3壁部57)上方の右凝縮部位76dに複数の右凝縮フィン82が設けられ、かつ、蒸発容器51(第1壁部55)上方の左凝縮部位76eに複数の左凝縮フィン84が設けられている。
よって、複数の右凝縮フィン82や複数の左凝縮フィン84が複数の冷却フィン81で好適な冷却状態に保たれる。
これにより、蒸発器35から凝集器38に導かれた水蒸気が、複数の右凝縮フィン82や複数の左凝縮フィン84に接触することにより凝縮され、各凝縮フィン82,84に浄水69として付着する。
すなわち、凝集器38は、蒸発器35の上方に設けられ、蒸発器35で蒸発させた水蒸気を右凝縮部位76dや左凝縮部位76eで凝縮させて浄水を生成する機能を備えている。
凝集器38で生成された浄水はセパレータ39で収集される。
セパレータ39は、蒸発器35および凝集器38間に介在され、中央39aに開口部88が形成されている。セパレータ39に開口部88を形成することにより、蒸発器35で蒸発させた水蒸気が開口部88を経て凝集器38に導かれる。
一方、蒸発器35および凝集器38間にセパレータ39を介在させることにより、凝集器38(複数の右凝縮フィン82や複数の左凝縮フィン84)から滴下する浄水69がセパレータ39で収集される。
セパレータ39で収集した浄水69は、浄水取出部89や浄水取出路91を経て浄水タンク33(図2参照)に蓄えられる。浄水タンク33に蓄えられた浄水69は、例えば、飲料水として使用される。
図6に示すように、加熱シュラウドユニット101は、シリンダブロック93およびシリンダヘッド25の上方に設けられた第1加熱シュラウド102と、シリンダブロック93およびシリンダヘッド25の下方に設けられた第2加熱シュラウド103とを備えている。
以下、「シリンダブロック93およびシリンダヘッド25」を「シリンダ部95」と称する。
図3、図6に示すように、第1加熱シュラウド102は、シリンダ部95に対して上方に所定間隔をおいて設けられる板状の部材である。
第1加熱シュラウド102の左端部102aがファンカバー96(開口端部96b)の上部96cに隣接(あるいは、接触)されている。また、第1加熱シュラウド102の右端部102bが蒸発容器51(上部51b)の左端部51cに隣接(あるいは、接触)されている。
よって、シリンダ部95の上方が第1加熱シュラウド102で覆われる。
シリンダ部95および第1加熱シュラウド102間に第1加熱風案内路108が形成される。
一方、ファンカバー96の開口端部96bで送風口96aが形成されている。よって、ファンカバー96の送風口96aのうち上部に、第1加熱風案内路108の左端部が連通される。
これにより、送風口96aの上部から吹き出された冷却風が、第1加熱風案内路108(すなわち、シリンダ部95の上方)を経て蒸発容器51の左端部51cに導かれる。
この第1加熱シュラウド102は、左端部102aに隣接する部位(冷却ファンに隣接する部位)102cに形成された導出穴111を有する。
よって、送風口96aの上部から吹き出された冷却風の一部が、導出穴111を経て第1加熱シュラウド102の上方に導かれる。
第2加熱シュラウド103は、シリンダ部95に対して下方に所定間隔をおいて設けられる板状の部材である。
第2加熱シュラウド103の左端部103aがファンカバー96(開口端部96b)の下部96dに隣接(あるいは、接触)され、第2加熱シュラウド103の右端部103bが蒸発容器51(下部51a)の左端部51cに隣接(あるいは、接触)されている。
よって、シリンダ部95の下方が第2加熱シュラウド103で覆われる。
シリンダ部95および第2加熱シュラウド103間に第2加熱風案内路109が形成される。よって、ファンカバー96の送風口96aのうち下部に、第2加熱風案内路109が連通される。
これにより、送風口96aの下部から吹き出された冷却風が、第2加熱風案内路109(すなわち、シリンダ部95の下方)を経て蒸発容器51の左端部51cに導かれる。
ここで、シリンダブロック93の基端下部93bが蒸発容器51の下部51aと同じ高さ位置に配置されている。これにより、冷却ファン23から送風された冷却風を蒸発容器51(すなわち、蒸発器35)に円滑に導くことができる。
冷却シュラウド104は、第1加熱シュラウド102に対して上方に所定間隔をおいて設けられる板状の部材である。
冷却シュラウド104の左端部104aがファンカバー96(開口端部96b)の上部96cに隣接(あるいは、接触)され、冷却シュラウド104の右端部104bが凝集容器75(複数の冷却フィン81の上部81a)の左端部81bに隣接(あるいは、接触)されている。よって、第1加熱シュラウド102の上方が冷却シュラウド104で覆われる。
第1加熱シュラウド102および冷却シュラウド104間に第1冷却風案内路113が形成される。第1冷却風案内路113が、導出穴111および第1加熱風案内路108を経てファンカバー96の送風口96a(上部)に連通される。
これにより、送風口96aの上部から第1加熱風案内路108に吹き出された冷却風の一部が、導出穴111(すなわち、第1加熱シュラウド102)を経て第1冷却風案内路113に導かれる。第1冷却風案内路113に導かれた冷却風が、第1冷却風案内路113を経て凝集容器75(複数の冷却フィン81)の左端部81bに導かれる。
また、凝集容器75(複数の冷却フィン81)の上方に所定間隔をおいて原水タンク41のタンク底部41aが配置されている。複数の冷却フィン81およびタンク底部41aで第2冷却風案内路114が形成されている。
よって、凝集容器75(複数の冷却フィン81)の左端部81bに導かれた冷却風が、第2冷却風案内路114で複数の冷却フィン81に沿って良好に導かれる。
ここで、シリンダ部95のうちヘッドカバー26の先端上部26aが凝集容器75の頂部76と同じ高さ位置に配置されている。
これにより、導出穴111から導き出された冷却風を凝集器38に円滑に導くことができる。
また、冷却シュラウド104の上方に所定間隔をおいて燃料タンク22の底部22aが配置されている。よって、シリンダ部95および燃料タンク22(底部22a)間に第1加熱シュラウド102および冷却シュラウド104が2層に設けられている。
これにより、シリンダ部95の熱を第1加熱シュラウド102および冷却シュラウド104で燃料タンク22(底部22a)に伝わり難くすることができる。
つぎに、シリンダブロック93およびシリンダヘッド25で加熱された冷却風で蒸発器35を保温する例を図9に基づいて説明する。
図9に示すように、冷却ファン23が回転することにより、ファンカバー96内に外気(空気)が矢印Aの如く吸い込まれる。ファンカバー96内に吸い込まれた空気が、ファンカバー96の送風口96aから第1加熱風案内路108および第2加熱風案内路109に略40℃の冷却風として送風される。
具体的には、冷却風が送風口96aから第1加熱風案内路108に矢印Bの如く送風され、第2加熱風案内路109に矢印Cの如く送風される。
第1加熱風案内路108に導かれた冷却風でシリンダ部95の上方が冷却され、第2加熱風案内路109に導かれた冷却風でシリンダ部95の下方が冷却される。
シリンダ部95を冷却風で冷却することにより、冷却風がシリンダ部95で略80〜100℃に加熱される。加熱された冷却風が、第1加熱風案内路108で蒸発容器51の左端部51cに矢印Bの如く導かれるとともに、第2加熱風案内路109で蒸発容器51の左端部51cに矢印Cの如く導かれる。
蒸発容器51の左端部51cに導かれた冷却風が蒸発容器51に沿って矢印Dの如く導かれる。
ここで、シリンダブロック93の基端下部93bが蒸発容器51の下部51aと同じ高さ位置に配置されている。これにより、冷却ファン23から送風された冷却風を蒸発容器51(すなわち、蒸発器35)に円滑に導くことができる。
ところで、原水貯留槽48に原水29(図8参照)が蓄えられた状態、すなわち、浄水69の生成中において蒸発器35が略100℃になる。
よって、蒸発容器51に沿って略100℃の冷却風が導かれることにより、冷却風で蒸発容器51(すなわち、蒸発器35)を略100℃に効率よく保温することができる。
これにより、蒸発器35が必要以上に加熱されて破損することを防止できる。
特に、蒸発容器51の左端部51cは、ガス取入部66(図8参照)が設けられる部位である。ガス取入部66は、排気管27に連通され、エンジン12の排気ガスが導入される。このため、蒸発容器51の左端部51cが比較的高温になることが考えられる。
蒸発容器51の左端部51cに略100℃の冷却風を導くことにより、左端部51cを略100℃に効率よく保温でき、左端部51cが必要以上に加熱されて破損することを防止できる。
一方、原水貯留槽48に原水29が蓄えられていない状態において蒸発器35が略105〜250℃になることが考えられる。
よって、蒸発容器51に沿って略100℃の冷却風が導かれることにより、冷却風で蒸発容器51(すなわち、蒸発器35)を冷却することができる。これにより、蒸発器35が必要以上に加熱されて破損することを防止できる。
つぎに、凝集器38を冷却風で冷却する例を図10に基づいて説明する。
図10(a)に示すように、ファンカバー96の送風口96aから第1加熱風案内路108に吹き出された冷却風の一部が、導出穴111(すなわち、第1加熱シュラウド102)を経て第1冷却風案内路113に矢印Eの如く導かれる。
ここで、導出穴111は、第1加熱シュラウド102の左端部102aに形成されている。よって、導出穴111は、シリンダ部95の上流側に配置されている。これにより、導出穴111から第1冷却風案内路113に導かれた冷却風は、シリンダ部95で加熱されていない。
第1冷却風案内路113に導かれた冷却風が、第1冷却風案内路113を経て凝集容器75(複数の冷却フィン81)の左端部81bに矢印Eの如く導かれる。
ここで、シリンダ部95のうちヘッドカバー26の先端上部26aが凝集容器75の頂部76と同じ高さ位置に配置されている。これにより、導出穴111から導き出された冷却風を凝集容器75に円滑に導くことができる。
複数の冷却フィン81の左端部81bに導かれた冷却風が、第2冷却風案内路114に導かれる。よって、冷却風が第2冷却風案内路114で複数の冷却フィン81に沿って矢印Fの如く良好に導かれる。
ところで、原水貯留槽48に原水29(図8参照)が蓄えられた状態、すなわち、浄水69の生成中において凝集器38が略100℃になる。
図10(b)に示すように、導出穴111から導き出された略40℃の冷却風を複数の冷却フィン81の左端部81bに導くことにより、凝集容器75(凝集器38)を冷却風で効率よく冷却状態に保つことができる。
よって、凝集器38に導かれた水蒸気を良好に凝縮することができる。
一方、原水貯留槽48に原水29(図8参照)が蓄えられていない状態において、凝集器38が略100℃になることが考えられる。
よって、導出穴111から導き出された略40℃の冷却風を凝集容器75(複数の冷却フィン81)の左端部81bに導くことにより、凝集器38を冷却風で冷却状態に保つことができる。
このように、凝集器38を冷却風で空冷することにより、水冷用の流路を不要にでき、冷却手段を簡単な構成にできる。
これにより、凝集器38に導かれた水蒸気を簡単な冷却手段で良好に凝縮することができ、エンジン駆動作業機10の小型化やコスト低減を図ることができる。
さらに、蒸発器35(図10(a)参照)の保温や凝集器38の冷却を空冷で実施することにより冷却水を不要にできる。よって、冷却水が蒸発器35や凝集器38の内部に残留することを防止できる。
これにより、エンジン駆動作業機10を運転停止した後のホットソーク時に加熱部53(図8参照)から廃熱を効果的に放熱することができ、蒸発器35や凝集器38の耐久性を高めることができる。
ここで、発電機13が駆動することにより発電機13の周囲温度が上昇することが考えられる。この状態において、導出穴111から導き出された略40℃の冷却風を凝集容器75(複数の冷却フィン81)の左端部81bに導くことにより、発電機13の周囲温度を下げることができる。
さらに、凝集器38を冷却風で空冷することにより、水源が近くにない地域でもエンジン駆動作業機10を使用することができる。
これにより、エンジン駆動作業機10の使用地域を広範囲に確保でき、エンジン駆動作業機10の使い勝手の向上を図ることができる。
図10(a)に戻って、冷却風が第2冷却風案内路114で複数の冷却フィン81に沿って良好に導かれることにより、略40℃の冷却風で原水タンク41内の原水29を予熱することができる。
これにより、蒸発器35において原水29を効率よく蒸発でき、浄水69を良好に生成することができる。
特に、原水タンク41のタンク底部41aを複数の冷却フィン81に沿わせて形成することにより、原水タンク41内の原水29および冷却風間の熱交換の効率を一層高めることができる。
また、第2冷却風案内路114に冷却風が導かれることにより、タンク底部41aおよび第1冷却風案内路113間の間隔116から燃料タンク22(底部22a)下方の空気が第2冷却風案内路114に矢印Gの如く導かれる。
これにより、燃料タンク22(底部22a)下方の空気を循環させることができるので、底部22aの下方に熱気がこもることを防止できる。
なお、本発明に係るエンジン駆動作業機は、前述した実施例に限定されるものではなく適宜変更、改良などが可能である。
例えば、前記実施例では、エンジン駆動作業機10を発電機に適用する例について説明したが、これに限らないで、エンジン駆動作業機10を除雪機、耕耘機や芝刈り機などのエンジン駆動用の他の作業機に適用することも可能である。
また、前記実施例では、加熱シュラウドユニット101でシリンダ部95(すなわち、シリンダブロック93およびシリンダヘッド25)を覆う例について説明したが、これに限らないで、シリンダブロック93およびシリンダヘッド部94(ヘッドカバー26を含む)を加熱シュラウドユニット101で覆うように構成することも可能である。
さらに、前記実施例で示したエンジン駆動作業機、エンジン、水生成装置、冷却ファン、シリンダヘッド、ヘッドカバー、蒸発器、凝集器、原水タンク、蒸発容器、シリンダブロック、シリンダヘッド部、第1加熱シュラウド、第2加熱シュラウド、冷却シュラウドおよび導出穴などの形状や構成は例示したものに限定するものではなく適宜変更が可能である。
本発明は、エンジンの廃熱で原水を蒸発させ、蒸発させた水蒸気を凝縮させて浄水を生成する水生成装置を備えたエンジン駆動作業機への適用に好適である。
10…エンジン駆動作業機、12…エンジン、20…水生成装置、23…冷却ファン、25…シリンダヘッド、26…ヘッドカバー、26a…ヘッドカバーの先端上部(シリンダブロックおよびシリンダヘッド部のうち最上位の部位)、29…原水、35…蒸発器、38…凝集器、41…原水タンク、51…蒸発容器、51a…蒸発容器の下部(蒸発器の下部)、69…浄水、76…凝集器の頂部(凝集器の上部)、93…シリンダブロック、93b…シリンダブロックの基端下部(シリンダブロックおよびシリンダヘッド部のうち最下位の部位)、94…シリンダヘッド部、102…第1加熱シュラウド、102c…第1加熱シュラウドの左端部に隣接する部位(冷却ファンに隣接する部位)、103…第2加熱シュラウド、104…冷却シュラウド、111…導出穴。

Claims (3)

  1. エンジンの駆動中に該エンジンの廃熱で原水を蒸発させ、蒸発させた水蒸気を凝縮させて浄水を生成する水生成装置を備えたエンジン駆動作業機において、
    前記エンジンは、
    前記水生成装置の近傍に設けられるシリンダブロックおよびシリンダヘッド部と、
    該シリンダヘッド部に対して前記水生成装置の反対側に設けられ、前記シリンダブロックおよび前記シリンダヘッド部に向けて冷却風を送風する冷却ファンと、を備え、
    前記水生成装置は、
    前記原水を蓄える原水タンクと、
    該原水タンクから供給された前記原水を前記エンジンの廃熱で蒸発させて水蒸気とする蒸発器と、
    該蒸発器の上方に設けられ、前記蒸発器で蒸発させた水蒸気を凝縮させて浄水を生成する凝集器と、
    前記冷却ファンに隣接する部位に導出穴が形成され、前記シリンダブロックおよび前記シリンダヘッド部の上方に設けられ、前記冷却ファンから吹き出された冷却風を前記シリンダブロックおよび前記シリンダヘッド部の上方を経て前記蒸発器に導く第1加熱シュラウドと、
    前記シリンダブロックおよび前記シリンダヘッド部の下方に設けられ、前記冷却ファンから吹き出された冷却風を前記シリンダブロックおよび前記シリンダヘッド部の下方を経て前記蒸発器に導く第2加熱シュラウドと、
    第1加熱シュラウドの上方に設けられ、前記導出穴から導き出された冷却風を前記第1加熱シュラウドを経て前記凝集器に導く冷却シュラウドと、
    を備えたことを特徴とするエンジン駆動作業機。
  2. 前記凝集器の上部が前記シリンダブロックおよび前記シリンダヘッド部のうち最上位の部位と同じ高さ位置に配置されることを特徴とする請求項1記載のエンジン駆動作業機。
  3. 前記蒸発器の下部が、前記シリンダブロックおよび前記シリンダヘッド部のうち最下位の部位と同じ高さ位置に配置されることを特徴とする請求項1記載のエンジン駆動作業機。
JP2013164144A 2013-08-07 2013-08-07 エンジン駆動作業機 Active JP6033184B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013164144A JP6033184B2 (ja) 2013-08-07 2013-08-07 エンジン駆動作業機
IN1792DE2014 IN2014DE01792A (ja) 2013-08-07 2014-07-02
CN201410381320.6A CN104343579B (zh) 2013-08-07 2014-08-05 发动机驱动的作业机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164144A JP6033184B2 (ja) 2013-08-07 2013-08-07 エンジン駆動作業機

Publications (2)

Publication Number Publication Date
JP2015031269A JP2015031269A (ja) 2015-02-16
JP6033184B2 true JP6033184B2 (ja) 2016-11-30

Family

ID=52499905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013164144A Active JP6033184B2 (ja) 2013-08-07 2013-08-07 エンジン駆動作業機

Country Status (3)

Country Link
JP (1) JP6033184B2 (ja)
CN (1) CN104343579B (ja)
IN (1) IN2014DE01792A (ja)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122465A (ja) * 1989-10-02 1991-05-24 Nkk Corp 地域冷暖房冷房補機電源用コジエネレーシヨンシステム
JPH0642406A (ja) * 1991-05-24 1994-02-15 Sekiyu Sangyo Kasseika Center 熱併給発電装置およびその排熱回収器
JPH06341731A (ja) * 1993-06-02 1994-12-13 Tokyo Gas Co Ltd エンジンの排熱回収方法及び装置
JP3173239B2 (ja) * 1993-08-09 2001-06-04 スズキ株式会社 スクータ型車両の強制冷却装置
JPH07151463A (ja) * 1993-11-30 1995-06-16 Tokyo Gas Co Ltd 真空乾燥機
JP2002130743A (ja) * 2000-10-30 2002-05-09 Mitsubishi Heavy Ind Ltd 室外熱交換器ユニット構造、室外機ユニット及びガスヒートポンプ式空気調和機
JP2002180902A (ja) * 2000-12-14 2002-06-26 Sagami Sekiyu Kk コージェネレーションシステム
FI114562B (fi) * 2001-10-09 2004-11-15 Waertsilae Finland Oy Järjestely ja menetelmä dieselmoottorin yhteydessä
EP1361348A1 (fr) * 2002-05-10 2003-11-12 S.F.T. Services Sa Dispositif de refroidissement et de dépollution d'un véhicule à moteur
NL2002567C2 (en) * 2009-02-26 2010-08-30 Hld Dejatech B V Heat exchanger and method for manufacturing such.
CN101566113B (zh) * 2009-06-03 2011-06-08 浙江银轮机械股份有限公司 基于有机朗肯循环的发动机废热回收系统
CN101792191B (zh) * 2010-03-11 2011-12-28 何宗彦 内燃机辅助海水淡化/劣质水净化方法及设备
JP5492695B2 (ja) * 2010-07-23 2014-05-14 本田技研工業株式会社 ポンプ
JP5581196B2 (ja) * 2010-12-24 2014-08-27 川崎重工業株式会社 エンジンの冷却装置
US9347303B2 (en) * 2011-04-08 2016-05-24 Amcol International Corporation Produced fluid heating and separation

Also Published As

Publication number Publication date
IN2014DE01792A (ja) 2015-06-19
CN104343579B (zh) 2015-11-25
JP2015031269A (ja) 2015-02-16
CN104343579A (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
JP6628651B2 (ja) エンジン駆動作業機
JP4523362B2 (ja) 燃料電池車両
US10224783B2 (en) Engine-driven working machine
US10260456B2 (en) Engine-driven working machine
US8446023B2 (en) Cogeneration apparatus case venting system
JP6033184B2 (ja) エンジン駆動作業機
CN103306797A (zh) 发动机动力工具
JP2004176968A (ja) 気液分離器
JP6116432B2 (ja) エンジン駆動作業機
JP6116433B2 (ja) エンジン駆動作業機
JP6116434B2 (ja) エンジン駆動作業機
JP6126934B2 (ja) エンジン駆動作業機
JP4594343B2 (ja) 低温液化ガス気化装置
JP6041767B2 (ja) エンジン駆動作業機
JP6687432B2 (ja) エンジン駆動作業機
JP2015029985A (ja) エンジン駆動作業機
JP6116435B2 (ja) エンジン駆動作業機
EP2202138B1 (en) Saddle-riding vehicle
JP5508924B2 (ja) タンク一体式空気圧縮機
JP2005263120A (ja) 車両の外気供給構造
JP6900896B2 (ja) 車両用の熱交換装置
CN102069260B (zh) 简易钎焊冷却汽化机
JP6041723B2 (ja) エンジン駆動作業機
JP2008206228A (ja) 車両
JP6041722B2 (ja) エンジン駆動作業機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161025

R150 Certificate of patent or registration of utility model

Ref document number: 6033184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250