JP6024201B2 - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP6024201B2
JP6024201B2 JP2012115273A JP2012115273A JP6024201B2 JP 6024201 B2 JP6024201 B2 JP 6024201B2 JP 2012115273 A JP2012115273 A JP 2012115273A JP 2012115273 A JP2012115273 A JP 2012115273A JP 6024201 B2 JP6024201 B2 JP 6024201B2
Authority
JP
Japan
Prior art keywords
switching element
inductor
current
output
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012115273A
Other languages
English (en)
Other versions
JP2013243838A (ja
Inventor
建 陳
建 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012115273A priority Critical patent/JP6024201B2/ja
Priority to US13/893,442 priority patent/US9276494B2/en
Publication of JP2013243838A publication Critical patent/JP2013243838A/ja
Application granted granted Critical
Publication of JP6024201B2 publication Critical patent/JP6024201B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Description

本発明は、整流した交流電圧を入力して安定した直流電圧を出力するスイッチング電源装置に係り、特にインダクタ電流がゼロとなる臨界点を正確に検出することで力率改善を図ったスイッチング電源装置に関する。
スイッチング電源装置の一種である昇圧チョッパ方式の力率改善コンバータ(PFC)は、インダクタの自励発振を利用して入力電圧に比例する入力電流を作りながら、安定な直流出力電圧を生成するもので、小型で高効率であり、しかも低コストである等の優れた特徴を有している。図4はこの種のスイッチング電源装置(力率改善コンバータ)の概略構成を示す図で、BDは交流電源から入力フィルタFを介して印加される交流電力を整流して該スイッチング電源装置に入力する整流回路である。
このスイッチング電源装置は、前記整流回路BDに接続されたインダクタLと、オン時に前記整流回路BDとの間で前記インダクタLを介する電流路を形成するスイッチング素子Qを備える。更にスイッチング電源装置は、前記スイッチング素子Qのオフ時に前記インダクタLと出力コンデンサC2との間に電流路を形成するダイオードDと、前記スイッチング素子Qをオン・オフ駆動して前記インダクタLに流れる電流を制御する制御回路CONTとを備える。尚、図中C1は入力コンデンサである。
前記スイッチング素子Qは、オン時に当該スイッチング電源装置に加わる入力電圧に比例した電流を前記インダクタLに流す役割を担う。このインダクタLに流れる電流(インダクタ電流)は前記スイッチング素子Qのオン期間に亘ってゼロから上昇する。その後、前記スイッチング素子Qがオフすると前記インダクタLの電圧極性が反転し、前記インダクタ電流は前記ダイオードDを介して出力側(出力コンデンサC2)に供給される。そして前記インダクタ電流(インダクタLから流れ出る電流)がゼロとなったときに前記スイッチング素子Qを再びオンすることで、次の動作サイクルに移行し、上述した動作を繰り返し実行する(例えば特許文献1,2を参照)。
このようなスイッチング素子Qのオン・オフ制御を担う前記制御回路CONTは、前記スイッチング素子Qとして用いられるMOS-FETを直接駆動する電源駆動用ICとして実現される。この制御回路CONTは、直列接続した抵抗R1,R2により分圧して検出される出力電圧Voと、予め設定した目標出力電圧との誤差Compを検出する誤差検出器11を備える。オン幅生成回路12は、前記誤差検出器11が求めた前記誤差Compに基づいて、前記スイッチング素子(MOS-FET)Qのオン幅Tonを規定する信号OFFを生成し、該信号OFFにてフリップフロップ(FF)13をリセットする。
このフリップフロップ13は、セットによりその出力qをハイ(High)とし、リセットにより上記出力qをロー(Low)とするもので、駆動回路14はこのフリップフロップ13の出力qを受けて前記スイッチング素子Qをオン・オフ駆動する。従って前記オン幅生成回路12は、上記出力信号OFFにてフリップフロップ(FF)13をリセットすることで、前記スイッチング素子Qをターンオフする役割を担う。
また前記制御回路CONTは、前記インダクタLを含む電流経路、特に負側の電源ラインに介装された抵抗R3に生じるマイナス電圧からインダクタ電流Irを検出するゼロ電流検出回路15を備える。このゼロ電流検出回路15は、インダクタ電流Irに比例して前記抵抗R3に生じる電圧Vcsを予め設定した基準電圧Vrefと比較し、前記インダクタ電流Irがゼロレベルに達したときにゼロ電流検出信号Vzcdを出力する。尚、前記基準電圧Vrefは、可能な限り0mVに近い値として設定されるが、電源ノイズや回路のバラつき等を考慮して一般的には−10mV〜−5mVとして設定される。
このゼロ電流検出回路15が出力するゼロ電流検出信号Vzcdは、前記スイッチング素子Qに加わる電圧が最低となるタイミング(電圧の谷)で該スイッチング素子Qをターンオンさせるために、遅延回路16にて一定時間Td遅延した後、前記フリップフロップ13に与えられて該フリップフロップ13をセットする。即ち、前記ゼロ電流検出回路15は、前記ゼロ電流検出信号Vzcdにて前記フリップフロップ13をセットすることで、前記スイッチング素子Qをターンオンする役割を担う。
ここで前記遅延回路16による前記ゼロ電流検出信号Vzcdの遅延について簡単に説明する。前記スイッチング素子Qのオフ時には該スイッチング素子Qには前記インダクタLに生じた高い電圧が加わっており、また前記インダクタLからの電流の流れ出しに伴って前記インダクタ電流Irは前述したように減少する。そしてインダクタ電流Irがゼロレベル(臨界点)に戻ると前記ゼロ電流検出回路15はこれを検出して前記ゼロ電流検出信号Vzcdを出力する。しかし前記インダクタLと、電流路をなす回路上の寄生容量成分との共振によって前記インダクタ電流Irは更にマイナス側まで振れ、これに伴って前記スイッチング素子Qに加わる電圧も振動する。そして前記インダクタ電流Irがマイナス(負)からプラス(正)に変化する時点で前記スイッチング素子Qに加わる電圧が最も低くなる(電圧振動の谷)。
前記遅延回路16は、前述したゼロ電流検出後に前記スイッチング素子Qに加わる電圧が最低となるタイミング(共振に伴う電圧振動の谷)で該スイッチング素子Qをターンオンするために前記ゼロ電流検出信号Vzcdを遅延する。この遅延回路16における遅延時間Tdは、一般的には当該スイッチング電源装置1の回路定数等に応じて固定的に設定される。このような遅延回路16による前記ゼロ電流検出信号Vzcdの遅延により、前記スイッチング素子Qをターンオンする際のスイッチング損失が最小限に抑えられ、また前記スイッチング素子Qのターンオン時に発生するサージ電流が最小限に抑えられる。
特開2010−220330号公報 特開2011−103737号公報
ところで前記スイッチング素子Qのオン・オフに伴う前記インダクタ電流Irの増減の大きさ(傾き)は、入力電圧Viや出力電圧Vo、更にはインダクタLのインダクタンス等に依存して変化する。従って前記インダクタ電流Irに比例する前記電圧Vcsの増減の大きさ(傾き)も変化する。この為、前述した如く基準電圧Vrefと前記電圧Vcsとを比較してゼロ電流検出信号Vzcdを生成しても、図5に示すように実際に前記インダクタ電流Irがマイナス(−)からゼロ(0)に戻る臨界点到達タイミングと、前記スイッチング素子Qに加わる電圧が最低となるタイミング(電圧振動の谷)との間にずれ時間Tzcdが生じる。
特に前記インダクタ電流Irは、図6に示すように位相によって変化する入力電圧Viの瞬時値の大きさに関連して変化するので、前記ずれ時間Tzcdも入力電圧Viによって変化する。具体的には位相Aで示すように入力電圧Viが低いときには前記電圧Vcsの傾きが大きいので前記ずれ時間Tzcdが小さくなる。また逆に位相Dで示すように入力電圧Viが高いときには前記電圧Vcsの傾きが小さいので前記ずれ時間Tzcdが大きくなる。
これにも拘わらず前記遅延回路16における遅延時間Tdは固定的に設定されているので、例えば入力電圧Viが高くなる位相のときには前記スイッチング素子Qが連続モードで動作する。また前記スイッチング素子Qに加わる電圧が最低となるタイミングで該スイッチング素子Qをターンオンするように前記ゼロ電流検出信号Vzcdに対する前記遅延時間Tdを調整したとしても、前記ずれ時間Tzcdの変動により、前記電圧振動の谷よりも早いタイミング、或いは遅いタイミングで前記スイッチング素子Qをターンオンすることになる。この為、スイッチング効率が悪化し、力率も低下すると言う問題が生じる。
本発明はこのような事情を考慮してなされたもので、その目的は、入力電圧Viの変化に拘わることなく、スイッチング素子を最適なタイミング(電圧振動の谷)でターンオンすることができ、効率の悪化や力率の低下を防ぐことのできる簡易な構成のスイッチング電源装置を提供することにある。
上述した目的を達成するべく本発明は、前述したインダクタ電流Irに比例する電圧Vcsの大きさに代えて、該電圧Vcsの傾きに着目してインダクタ電流がゼロとなる臨界点を検出し、これによってスイッチング素子を適切なタイミング(電圧振動の谷)でターンオンするようにしたことを特徴としている。
即ち、本発明に係るスイッチング電源装置は、交流電力を整流する整流回路に接続されたインダクタと、オン時に前記整流回路との間で前記インダクタを介する電流路を形成するスイッチング素子と、このスイッチング素子のオフ時に前記インダクタと出力コンデンサとの間に電流路を形成するダイオードと、前記スイッチング素子をオン・オフ駆動して前記インダクタに流れる電流を制御する制御回路とを備え、
前記制御回路は、前記スイッチング素子がオフのときに前記インダクタに流れる電流の傾きを検出し、検出した傾きに応じて前記インダクタに流れる電流がゼロとなるタイミングを検出して前記スイッチング素子をターンオンさせるゼロ電流検出回路と、
前記出力コンデンサに得られる出力電圧に基づいて生成される比較基準電圧と前記スイッチング素子のターンオンに伴って生成されるランプ電圧とを比較して前記スイッチング素子のオン幅を決定して前記スイッチング素子をターンオフさせるオン幅生成回路と
を具備したことを特徴としている。
具体的には前記ゼロ電圧検出回路は、前記インダクタに流れる電流(インダクタ電流)がゼロとなるタイミングを検出して出力する信号を、予め設定された時間だけ遅延する遅延回路を介して前記スイッチング素子をオン・オフ駆動する出力制御回路に与えるものであって、
該出力制御回路は、前記オン幅生成回路の出力によってリセットされると共に、前記遅延回路の出力によってセットされるフリップフロップと、該フリップフロップの出力に応じて前記スイッチング素子の駆動信号を生成する駆動回路とからなる。
好ましくは前記ゼロ電流検出回路は、前記スイッチング素子をオン・オフ駆動を制御する信号を入力して該スイッチング素子がオフのときにおける前記インダクタ電流に比例する電圧を入力し、この電圧を第1および第2の比較基準電圧と順に比較して前記インダクタ電流の傾きを検出し、検出したインダクタ電流の傾きに応じて該インダクタ電流がゼロとなるタイミング(臨界点)を検出するように構成される。
具体的には前記ゼロ電流検出回路は、好ましくは第1の定電流源により充電されると共に、第2の定電流源により放電されるコンデンサを備え、前記インダクタ電流に比例する電圧が前記第1の比較基準電圧を超えてから前記第2の比較基準電圧に達するまで前記第1の定電流源により前記コンデンサを充電した後に該コンデンサの充電電圧を前記第2の定電流源により放電し、放電に伴う前記コンデンサの充電電圧が第3の比較基準電圧に達するタイミングを前記インダクタ電流がゼロとなるタイミングとして検出するように構成される。
尚、前記ゼロ電流検出回路は、前記スイッチング素子がオフのときにおける前記インダクタ電流の微分値から該電流の傾きを検出し、検出した電流の傾きに応じて前記インダクタ電流がゼロとなるタイミングを検出するものであっても良い。
上記構成のスイッチング電源装置によれば、インダクタ電流の傾きに着目してインダクタに流れる電流がゼロとなるタイミング(臨界点)を検出するので、入力電圧の変化に拘わることなく前記スイッチング素子Qに加わる電圧が最低となるタイミングで該スイッチング素子をターンオンすることができる。従って入力電圧Viが高いときでも前記スイッチング素子Qが連続モードで動作することがない。また前記スイッチング素子に加わる電圧が最低となるタイミング(電圧振動の谷)で該スイッチング素子を確実にターンオンすることができるので、力率を向上させることができ、またスイッチング効率が悪化することもない。
しかもインダクタ電流の傾きに着目してゼロ電流検出を行うので、ゼロ電流検出の為の比較基準電圧の絶対値を高く設定することができる。従って比較基準電圧を可能な限り0Vに近付けて設定する場合に比較してゼロ電流検出の精度を高めることができ、更には電源ラインに重畳するノイズの影響を受け難くしてゼロ電流検出を行うことが可能となる等の効果が奏せられる。
本発明の一実施形態に係るスイッチング電源装置の概略構成図。 図1におけるゼロ電流検出回路の構成例を示す図。 図2に示すゼロ電流検出回路の動作を示すタイミング図。 従来のスイッチング電源装置の概略構成図。 ゼロ電流検出における問題を説明する為の、インダクタ電流に比例する検出電圧Vcsと遅延時間Tzcdとの関係を示す図。 位相によって瞬時値が変化する入力電圧Viと遅延時間Tzcdとの関係を示す図。
以下、図面を参照して本発明の一実施形態に係るスイッチング電源装置について説明する。
図1はこの実施形態に係る昇圧チョッパ方式のスイッチング電源装置(力率改善コンバータ)1の概略構成図であり、図2は図1に示すスイッチング電源装置1におけるゼロ電流検出回路20の概略構成を示す図である。尚、図1は、先に図4を参照して説明したスイッチング電源装置と同一部分には同一符号を付して示しており、入力フィルタFおよび整流回路BDについては省略してある。また従来のスイッチング電源装置と同一部分については、冗長な繰り返し説明を省略する。
さてこの実施形態に係るスイッチング電源装置1が特徴とするところは、前記フリップフロップ13の出力qをゼロ電流検出回路20に与えると共に、該ゼロ電流検出回路20を図2に示すように構成した点にある。このゼロ電流検出回路20は、前記抵抗R3を介して検出されるインダクタ電流Irに比例した電圧(負電圧)Vcsの傾きからゼロ電流検出を行うように構成される。
具体的にはゼロ電流検出回路20は、第1の定電流源21により一定電流Ichgで充電されると共に、第2の定電流源22により一定電流Idisで放電されるコンデンサ(Ccs)23を備える。前記第1の定電流源21によるコンデンサ23の充電は第1のスイッチ24によって制御され、また前記第2の定電流源22による前記コンデンサ23の放電は第2のスイッチ25によって制御される。これらの第1および第2のスイッチ24,25は、フリップフロップ(FF)26の出力によって相反的にオン・オフ制御される。尚、前記フリップフロップ26はリセット優先型のものである。
一方、前記インダクタ電流Irに比例した電圧Vcsが入力される第1の比較器(COM1)31には、第3のスイッチ32を介して第1の比較基準電圧Vref1が、或いは第4のスイッチ33を介して第2の比較基準電圧Vref2(>Vref1)が択一的に入力される。これらの第3および第4のスイッチ32,33もまた、前記フリップフロップ26の出力によって相反的にオン・オフ制御される。
具体的には前記フリップフロップ26がセットされたとき、その出力(Vchg)によって前記第1のスイッチ24がオンされて前記コンデンサ23が充電されると共に、前記第4のスイッチ33がオンされて前記第1の比較器31に第2の比較基準電圧Vref2が与えられる。またフリップフロップ26がリセットされたときには、インバータ27を介して該フリップフロップ26の出力(Vchg)を反転した信号(Vdis)によって前記第2のスイッチ25がオンされて前記コンデンサ23が放電されると共に、前記第3のスイッチ32がオンされて前記第1の比較器31に第1の比較基準電圧Vref1が与えられる。
従って前記第1の比較器31は、前記フリップフロップ26がリセットされているときには、前記インダクタ電流Irに比例した電圧Vcsを前記第1の比較基準電圧Vref1と比較し、該電圧Vcsが前記第1の比較基準電圧Vref1を超えたときに信号Vzcdrを出力する。また前記第1の比較器31は、前記フリップフロップ26がセットされているときには、前記インダクタ電流Irに比例した電圧Vcsを前記第2の比較基準電圧Vref2と比較し、該電圧Vcsが前記第2の比較基準電圧Vref2を超えたときに信号Vzcdrを出力する。
この第1の比較器31の出力信号Vzcdrは、第1のゲート回路34を介して前記フリップフロップ26のセット端子に入力されると共に、第2のゲート回路35を介して前記フリップフロップ26のリセット端子に入力される。前記第1のゲート回路34は、インバータ36を介して与えられる前記フリップフロップ13の出力qによってゲート制御される。従って前記第1のゲート回路34は、前記フリップフロップ13の出力qによって前記スイッチング素子Qがオンしている期間を除いて、つまり前記スイッチング素子Qがオフしているときにアクティブになる。また前記第2のゲート回路35は、後述する第2の比較器37の出力信号Vccomを受けてアクティブになる。
尚、前記第2の比較器37は、前述したコンデンサ23の充放電電圧Vccsと、予め設定した第3の比較基準電圧Vref3と比較し、該電圧Vccsが前記第3の比較基準電圧Vref3を超えたときに前記信号Vccomを出力する。この第2の比較器37の出力信号Vccomは、前述したように前記第2の比較器37のゲート制御に用いられると共に、インバータ38を介してD型フリップフロップ39のクロック端子に入力される。このD型フリップフロップ39は、そのD端子に電源電圧VDDを入力すると共に、リセット端子に前述した前記フリップフロップ13の出力qを入力し、クロック端子に入力される前記信号Vccomの立ち上がりタイミングにて前記D端子に加えられている電源電圧VDDを取り込んでゼロ電流検出を示す前記信号Vzcdを出力する。
次に上述した如く構成されたゼロ電流検出回路20の動作を、図3に示すタイミング図を参照して説明する。前記フリップフロップ13の出力qによってオン・オフ制御される前記スイッチング素子Qのオン時には、前記インダクタLに電流が流れ込むので、インダクタ電流Irに比例して前記抵抗R3に生じる電圧Vcsは0Vから減少する(負電圧が大きくなる)。そして前記スイッチング素子Qがオフすると、前記インダクタLから電流が流れ出すので、インダクタ電流Irに比例して前記抵抗R3に生じる電圧Vcsは増加する(負電圧が小さくなる)。そして前述したように前記インダクタLと、電流路をなす回路上の寄生容量成分との共振によって前記インダクタ電流Irは更にマイナス側まで振れ、これに伴って前記電圧Vcsは共振の弧を描いてプラス側まで振れる。
前記ゼロ電流検出回路20は、前記スイッチング素子Qがオフのときの前記インダクタ電流Irの傾きを検出する為に、該インダクタ電流Irに比例した前記電圧(負電圧)Vcsを前記第1および第2の比較基準電圧Vref1,Vref2とそれぞれ比較し、前記コンデンサ23の充放電を制御して前記インダクタ電流Irの傾きに相当するパルス幅の信号Vccomを生成する。
具体的には前記フリップフロップ26がリセット状態にある時、前記第2のスイッチ25をオンしてコンデンサ23を放電状態に保つと共に、前記第3のスイッチ32をオンして前記第1の比較器31に前記第1の比較基準電圧Vref1を設定する。この状態において前記フリップフロップ13の出力qがロー(Low)になったとき(タイミングt1)、インバータ36によって反転された信号(High)が前記第1のゲート回路34の入力信号として与えられる。そして前記電圧Vcsが第1の比較基準電圧Vref1を超えたとき(タイミングt2)に前記第1の比較器31が出力する信号Vzcdrを前記第1のゲート回路34を介してフリップフロップ26に与え、該フリップフロップ26をセットする。
すると前記フリップフロップ26のセットに伴って前記第2および第3のスイッチ25,32がオフ(遮断)し、これに代わって前記第1および第4のスイッチ24,33がオン(導通)する。この結果、前記第1スイッチ24を介して前記コンデンサ23の充電が開始され、また前記第1の比較器31には前記第4のスイッチ33を介して第2の比較基準電圧Vref2が設定される。そして前記第1の比較器31に設定する比較基準電圧の変更に伴って該第1の比較器31は前記信号Vzcdrの出力を停止する。従って前記信号Vzcdrは、前記電圧Vcsが第1の比較基準電圧Vref1を超えたとき(タイミングt2)、回路の応答遅延に相当する時間(例えば20n秒)だけ単発的に出力される。
また上述した如くして充電が開始される前記コンデンサ23の充放電電圧Vccsは、前記第2の比較器37に与えられ、該第2の比較器37に設定された第3の比較基準電圧Vref3と比較される。この第3の比較基準電圧Vref3は、前記コンデンサ23に充電される充放電電圧Vccsのピークよりも十分に低く設定されており、従って前記第2の比較器37は前記コンデンサ23の充電が開始されると直ぐに信号Vccomを出力する(タイミングt3)。この出力信号Vccomは、前記第2のゲート回路35の入力信号として与えられる。
その後、前記電圧Vcsが前記第2の比較基準電圧Vref2を超えると(タイミングt4)、前記第1の比較器31は再び前記信号Vzcdrを出力する。するとこの信号Vzcdrは、前記第1および第2のゲート回路34,35を介して前記フリップフロップ26のセット端子およびリセット端子にそれぞれ与えられる。しかし前述したように前記フリップフロップ26はリセット優先型なので、該フリップフロップ26は前記信号Vzcdrを受けてリセットされる。
するとフリップフロップ26のリセットに伴って前記第1〜第4のスイッチ24,25,32,33の切り替えが行われ、前記第1の比較器31には再び前記第1の比較基準電圧Vref1が設定される。また同時に前記コンデンサ23の充電が停止され、今度は前記第2の定電流源22による前記コンデンサ23の放電が開始される。尚、前記第1の定電流源21によるコンデンサ23の充電電流Ichgおよび前記第2の定電流源22によるコンデンサ23の放電電流Idisは、前記第1および第2の比較基準電圧Vref1,Vref2に関連して、例えば
Idis/Ichg =(Vref1−Vref2)/Vref2
として定められる。
そして前記コンデンサ23の充放電電圧Vccsが前記第3の比較基準電圧Vref3まで低下したとき(タイミングt5)、前記第2の比較器37は前記信号Vccomの出力を停止する。この第2の比較器37の出力信号Vccomの停止によって前記第2のゲート回路35は再び閉じられる。また前記インバータ38を介して前記信号Vccomをクロック端子に入力するD型フリップフロップ39は、そのD端子に加えられている電源電圧VDDを前記信号Vccomの出力停止に伴って取り込んでゼロ電流検出信号Vzcdを出力する。
従って前記ゼロ電流検出信号Vzcdが出力されるタイミングt5は、前記インダクタ電流Irに比例する前記電圧Vcsが前記第1の比較基準電圧Vref1を超えたタイミングt2から前記第2の比較基準電圧Vref2を超えるタイミングt4までの期間、つまり前記電圧Vcsの傾きに相当するタイミングとなる。故に、例えば前記第1の比較基準電圧Vref1を−20mVとし、また前記第2の比較基準電圧Vref2を−10mVとして設定しておけば、前記インダクタ電流Irに比例する前記電圧Vcsが0Vとなるタイミングで前記ゼロ電流検出信号Vzcdを正確に出力することができる。
このようにしてD型フリップフロップ39から、換言すればゼロ電流検出回路20から前記電圧Vcsが0Vとなるタイミングt5で出力されるゼロ電流検出信号Vzcdは、前述したように前記遅延回路16を介して一定時間(Td)遅延されて前記フリップフロップ13に与えられ(図3の信号ONを参照)、該フリップフロップ13をセットする。そして前記フリップフロップ13のセットに伴って前述したように前記スイッチング素子Qがターンオンされる(タイミングt6)。この結果、前記スイッチング素子Qは、該スイッチング素子Qに加わる電圧が最低となる前記共振に伴う電圧振動の谷のタイミングt6においてターンオンされる。従って前記スイッチング素子Qのスイッチング効率が悪化することがない。また前記インダクタ電流Irのピークを入力電圧Viの位相に応じた瞬時値に合わせることができ、前記インダクタ電流Irのピーク波形と前記入力電圧Viの波形とが同じになるので、その力率を向上させることができる。
また前記スイッチング素子Qのターンオン時(タイミングt6)には、同時に前記フリップフロップ13の出力qによって前記D型フリップフロップ39がリセットされ、また前記インバータ36を介して前記第1のゲート回路34がインアクティブになる。またこのタイミングt6においては前記第2のゲート回路35は、前記第2の比較器37からの前記信号Vccomの出力停止に伴ってインアクティブになっている。従って前記スイッチング素子Qがターンオンする際、前記インダクタ電流Irに比例する前記電圧Vcsが前記第1の比較基準電圧Vref1よりも高く、前記第1の比較器31が前記信号Vzcdrを出力したままの状態であっても、該信号Vzcdrが前記フリップフロップ26に入力されることがない。
そして前記スイッチング素子Qのオン期間には再び前記インダクタLに電流が流れ込むので、インダクタ電流Irに比例する前記電圧Vcsは該インダクタ電流Irの増加に伴って0Vから減少する(負電圧が大きくなる)。そして前記電圧Vcsが前記第1の比較基準電圧Vref1を下回ったとき(タイミングt7)、前記第1の比較器31は前記信号Vzcdrの出力を停止する。このようにして前記第1の比較器31の出力が変化しても前述したように前記第1および第2のゲート回路34,35が共に閉じられているので、前記前記フリップフロップ26の状態が変化することはない。従って前記スイッチング素子Qのオン期間に亘って前記コンデンサ23の放電状態が保たれ、前記スイッチング素子Qのオフ時における充放電に備えられる。
かくして上述した如く構成されたスイッチング電源装置によれば、スイッチング素子Qのオフに伴って前記インダクタLから流れ出る電流(インダクタ電流Ir)がゼロ(0)に戻ったタイミングを正確に検出することができる。しかもゼロ電流検出の為の閾値(第1および第2の比較基準電圧Vref1,Vref2)を大きく設定することができるので、電源ラインに重畳するノイズ等の影響を受けることなく、ゼロ電流のタイミングを精度良く検出することができる。従って力率の向上を図り、またスイッチング効率の向上を図ると共に、高精度で安定した動作が期待できる。
尚、本発明は上述した実施形態に限定されるものではない。例えば前記インダクタ電流Irに比例する電圧Vcsが予め設定した電圧に達したときに該電圧Vcsを微分処理して該インダクタ電流Irの傾きを求めるようにしても良い。そしてこの場合には、前記電圧Vcsが予め設定した電圧に達したタイミングから、前記インダクタ電流Irの傾きに応じて設定される時間が経過したタイミングで前記ゼロ電流検出信号Vzcdを出力するようにすれば良い。
またここでは第1の比較器31に第1および第2の比較基準電圧Vref1,Vref2を選択的に設定して前記電圧Vcsの傾きを検出するようにしたが、第1の比較基準電圧Vref1を設定した比較器と第2の比較基準電圧Vref2を設定した比較器とを用い、これらの2つの比較器の出力と前記フリップフロップ13の出力qとを論理処理して前記フリップフロップ26のセット・リセットを制御するように構成することも可能である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
L インダクタ
Q スイッチング素子(MOS-FET)
D ダイオード
BD 整流回路
R1,R2,R3 抵抗
C1 入力コンデンサ
C2 出力コンデンサ
CONT 制御回路(電源駆動用IC)
1 スイッチング電源装置(力率改善コンバータ)
11 誤差検出器
12 オン幅生成回路
13 フリップフロップ
14 駆動回路
15 ゼロ電流検出回路
16 遅延回路
20 ゼロ電流検出回路
21 定電流源(充電電流Ichg)
22 定電流源(放電電流Idis)
23 コンデンサ(Ccs)
24 第1のスイッチ
25 第2のスイッチ
26 フリップフロップ
31 第1の比較器
32 第3のスイッチ
33 第4のスイッチ
34,35 ゲート回路
37 第2の比較器
39 D型フリップフロップ

Claims (4)

  1. 交流電力を整流する整流回路に接続されたインダクタと、オン時に前記整流回路との間で前記インダクタを介する電流路を形成するスイッチング素子と、このスイッチング素子のオフ時に前記インダクタと出力コンデンサとの間に電流路を形成するダイオードと、前記スイッチング素子をオン・オフ駆動して前記インダクタに流れる電流を制御する制御回路とを備え、
    前記制御回路は、前記スイッチング素子がオフのときに前記インダクタに流れる電流の傾きを検出し、検出した傾きに応じて前記インダクタに流れる電流がゼロとなるタイミングを検出して前記スイッチング素子をターンオンさせるゼロ電流検出回路と、
    前記出力コンデンサに得られる出力電圧に基づいて生成される比較基準電圧と前記スイッチング素子のターンオンに伴って生成されるランプ電圧とを比較して前記スイッチング素子のオン幅を決定して前記スイッチング素子をターンオフさせるオン幅生成回路と
    を具備したスイッチング電源装置であって、
    前記ゼロ電流検出回路は、前記スイッチング素子をオン・オフ駆動を制御する信号を入力して該スイッチング素子がオフのときにおける前記インダクタに流れる電流に比例する電圧信号を入力し、この電圧信号を第1および第2の比較基準電圧と順に比較して前記インダクタに流れる電流の傾きを検出し、検出した電流の傾きに応じて前記インダクタに流れる電流がゼロとなるタイミングを検出することを特徴とするスイッチング電源装置。
  2. 前記ゼロ電流検出回路は、第1の定電流源により充電されると共に、第2の定電流源により放電されるコンデンサを備え、前記電圧信号が前記第1の比較基準電圧を超えてから前記第2の比較基準電圧に達するまで前記第1の定電流源により前記コンデンサを充電した後に該コンデンサの充電電圧を前記第2の定電流源により放電し、放電に伴う前記コンデンサの充電電圧が第3の比較基準電圧に達するタイミングを前記インダクタに流れる電流がゼロとなるタイミングとして検出することを特徴とする請求項に記載のスイッチング電源装置。
  3. 交流電力を整流する整流回路に接続されたインダクタと、オン時に前記整流回路との間で前記インダクタを介する電流路を形成するスイッチング素子と、このスイッチング素子のオフ時に前記インダクタと出力コンデンサとの間に電流路を形成するダイオードと、前記スイッチング素子をオン・オフ駆動して前記インダクタに流れる電流を制御する制御回路とを備え、
    前記制御回路は、前記スイッチング素子がオフのときに前記インダクタに流れる電流の傾きを検出し、検出した傾きに応じて前記インダクタに流れる電流がゼロとなるタイミングを検出して前記スイッチング素子をターンオンさせるゼロ電流検出回路と、
    前記出力コンデンサに得られる出力電圧に基づいて生成される比較基準電圧と前記スイッチング素子のターンオンに伴って生成されるランプ電圧とを比較して前記スイッチング素子のオン幅を決定して前記スイッチング素子をターンオフさせるオン幅生成回路と
    を具備したスイッチング電源装置であって、
    前記ゼロ電流検出回路は、前記スイッチング素子がオフのときにおける前記インダクタに流れる電流の微分値から該電流の傾きを検出し、検出した電流の傾きに応じて前記インダクタに流れる電流がゼロとなるタイミングを検出することを特徴とするスイッチング電源装置。
  4. 前記ゼロ電検出回路は、前記インダクタに流れる電流がゼロとなるタイミングを検出して出力する信号を、予め設定された時間だけ遅延する遅延回路を介して前記スイッチング素子をオン・オフ駆動する出力制御回路に与えるものであって、
    該出力制御回路は、前記オン幅生成回路の出力によってリセットされると共に、前記遅延回路の出力によってセットされるフリップフロップと、該フリップフロップの出力に応じて前記スイッチング素子の駆動信号を生成する駆動回路とを有することを特徴とする請求項1乃至3のいずれかに記載のスイッチング電源装置。
JP2012115273A 2012-05-21 2012-05-21 スイッチング電源装置 Active JP6024201B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012115273A JP6024201B2 (ja) 2012-05-21 2012-05-21 スイッチング電源装置
US13/893,442 US9276494B2 (en) 2012-05-21 2013-05-14 Switching power supply device, including a zero current detecting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115273A JP6024201B2 (ja) 2012-05-21 2012-05-21 スイッチング電源装置

Publications (2)

Publication Number Publication Date
JP2013243838A JP2013243838A (ja) 2013-12-05
JP6024201B2 true JP6024201B2 (ja) 2016-11-09

Family

ID=49581176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115273A Active JP6024201B2 (ja) 2012-05-21 2012-05-21 スイッチング電源装置

Country Status (2)

Country Link
US (1) US9276494B2 (ja)
JP (1) JP6024201B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760276B1 (ko) * 2010-11-16 2017-07-21 삼성전자주식회사 스위치 모드 전원 공급 장치 및 방법
JP6143110B2 (ja) * 2012-05-31 2017-08-16 国立大学法人 長崎大学 電力変換回路の制御装置
US20160105096A1 (en) * 2014-10-13 2016-04-14 Metal Industries Research & Development Centre Power factor correction controller and power supply apparatus using the same
JP6679851B2 (ja) * 2015-07-17 2020-04-15 富士電機株式会社 力率改善コンバータ
WO2017203687A1 (ja) * 2016-05-27 2017-11-30 富士電機株式会社 スイッチング電源制御回路及びスイッチング電源装置
KR20180094344A (ko) 2017-02-15 2018-08-23 엘에스산전 주식회사 전류 검출 장치
WO2021028972A1 (ja) * 2019-08-09 2021-02-18 オムロン株式会社 電力変換装置の制御回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165498A (ja) * 1992-11-20 1994-06-10 Matsushita Electric Works Ltd 電源装置
TW529231B (en) * 2000-09-28 2003-04-21 Fuji Electric Co Ltd Power supply circuit
US7936152B2 (en) * 2007-07-09 2011-05-03 Fuji Electric Systems Co., Ltd. Switching power source
JP5130937B2 (ja) * 2008-02-12 2013-01-30 株式会社デンソー 電流異常検出回路
JP5277952B2 (ja) * 2008-12-25 2013-08-28 富士電機株式会社 スイッチング電源回路
JP5332766B2 (ja) 2009-03-16 2013-11-06 富士電機株式会社 スイッチング電源回路
US8129958B2 (en) * 2009-03-25 2012-03-06 Evergreen Micro Devices Co., Ltd. Transition mode power factor correction device with built-in automatic total harmonic distortion reduction feature
JP2011030292A (ja) * 2009-07-22 2011-02-10 Sony Corp 電源装置
JP5343816B2 (ja) 2009-11-11 2013-11-13 富士電機株式会社 力率改善型スイッチング電源装置
KR20120079763A (ko) * 2011-01-05 2012-07-13 페어차일드코리아반도체 주식회사 스위치 제어 회로, 이를 이용하는 컨버터, 및 스위치 제어 방법

Also Published As

Publication number Publication date
US20130308359A1 (en) 2013-11-21
JP2013243838A (ja) 2013-12-05
US9276494B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6024201B2 (ja) スイッチング電源装置
JP6225602B2 (ja) スイッチング電源装置
JP6439484B2 (ja) スイッチング電源回路および力率改善回路
JP4748356B2 (ja) 誘導加熱装置
JP5966606B2 (ja) スイッチング電源装置
JP6702010B2 (ja) スイッチング電源装置
JP2012105424A (ja) スイッチング電源装置
KR20150143242A (ko) 도통 검출 회로, 이를 포함하는 정류 스위치 제어 회로, 및 정류 스위치 제어 회로가 적용된 전력 공급 장치
JP2014011814A (ja) スイッチング電源装置
JP2014023208A (ja) 擬似共振スイッチング電源装置の制御回路
JP6321533B2 (ja) Dc/dcコンバータ
US9647528B2 (en) Switch control circuit and resonant converter including the same
JP7101590B2 (ja) スイッチングレギュレータ
US20150009717A1 (en) Switching power supply
JP6142917B2 (ja) パワーデバイスの駆動回路
US8749999B2 (en) Controller and power converter using the same for clamping maximum switching current of power converter
JP5667761B2 (ja) スイッチング電源
US9071149B2 (en) Electric power conversion circuit
CN115603580A (zh) 集成电路及电源电路
JP2023009397A (ja) 集積回路、及び電源回路
JP6940010B2 (ja) 集積回路、電源回路
JP2021040429A (ja) 集積回路、電源回路
JP7031760B2 (ja) 集積回路、電源回路
JP6280782B2 (ja) スイッチング電源装置
JP2019009947A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6024201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250