JP6016109B2 - 流体浄化装置 - Google Patents

流体浄化装置 Download PDF

Info

Publication number
JP6016109B2
JP6016109B2 JP2012275549A JP2012275549A JP6016109B2 JP 6016109 B2 JP6016109 B2 JP 6016109B2 JP 2012275549 A JP2012275549 A JP 2012275549A JP 2012275549 A JP2012275549 A JP 2012275549A JP 6016109 B2 JP6016109 B2 JP 6016109B2
Authority
JP
Japan
Prior art keywords
fluid
catalyst
reaction tank
purification
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012275549A
Other languages
English (en)
Other versions
JP2014117669A (ja
Inventor
綾 宇津木
綾 宇津木
章悟 鈴木
章悟 鈴木
公生 青木
公生 青木
秀之 宮澤
秀之 宮澤
謙一 早川
謙一 早川
優 座間
優 座間
武藤 敏之
敏之 武藤
牧人 中島
牧人 中島
山田 茂
茂 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2012275549A priority Critical patent/JP6016109B2/ja
Publication of JP2014117669A publication Critical patent/JP2014117669A/ja
Application granted granted Critical
Publication of JP6016109B2 publication Critical patent/JP6016109B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

本発明は、浄化対象流体と酸化剤とを加熱及び加圧しながら、浄化対象流体中の有機物を酸化反応によって分解して浄化対象流体を浄化する反応槽を備える流体浄化装置に関するものである。
この種の流体浄化装置としては、例えば特許文献1に記載のものが知られている。この流体浄化装置は、反応槽の中で廃水と空気とを加熱及び加圧して、廃水中の水を超臨界水にする。超臨界水は、液体と気体との中間の性質を帯びた状態の水であり、その状態は、温度が水の臨界温度を超えるとともに圧力が水の臨界圧力を超えることによって起こる。反応槽の中においては、超臨界水の中で有機物が一瞬のうちに酸化分解される。
また、廃水を超臨界水にする代わりに、亜臨界水にした状態で空気と混合することにより、廃水中の有機物を酸化分解する流体浄化装置も知られている。亜臨界水は、超臨界水よりも液体に近い性質を帯びた状態であり、水をその臨界圧力よりも低い圧力で加圧しながら加熱することで起こる。廃水を反応槽の中で亜臨界水にすることによっても、有機物を一瞬のうちに酸化分解することが可能である。
このように廃水と空気とを高温高圧下でそれぞれ超臨界や亜臨界の状態にして廃水中の有機物を酸化分解する構成では、活性汚泥による生物処理では不可能であった高濃度有機溶剤廃水を良好に浄化することができる。また、活性汚泥による生物処理では不可能であったプラスチック微粒子含有廃水や難分解性有機物含有廃水なども、良好に浄化することができる。
有機物を効率的に酸化分解するためには、反応槽の中に、有機物の酸化分解を促進する触媒を配設することが望ましい。特許文献1に記載の流体浄化装置では、有機物を効率的に酸化分解する狙いで、有機物の酸化分解を促すための触媒を反応槽の中に配設している。この触媒は、蜂の巣状のハニカム構造をしており、複数の管状空間に廃水と酸化剤との混合流体を通す過程で、廃水中の有機物の酸化分解を促す。
一方、特許文献2には、家畜糞尿などからなるバイオマスをガス化して燃焼エネルギーとして取り出すバイオマスガス化システムが記載されている。このバイオマスガス化システムは、バイオマス中の有機物を完全に酸化分解せずに、メタンや水素などの燃焼ガスの状態で分解を停止させることで、バイオマス中の有機物を燃焼エネルギーとして再利用可能にするものである。得られた燃焼ガスの酸化分解を防止するために反応槽の中に酸化剤を導入しない点で特許文献1に記載の流体浄化装置とは異なっている。そして、有機物の分解によって燃焼ガスを得る反応を促進するために、反応槽に送る前のバイオマスに対して活性炭を触媒として混合している。バイオマスと活性炭との混合物を反応槽の中で加熱及び加圧することで、有機物を効率良く燃焼ガスに分解することを可能にしている。
本発明者らは、特許文献2に記載のバイオマスガス化システムにおける活性炭が、特許文献1に記載の流体浄化装置におけるハニカム構造の触媒に比べて、触媒性能を効率良く発揮していることに着目した。具体的には、特許文献1に記載の流体浄化装置におけるハニカム構造の触媒は、ある程度の表面積を有しているものの、バイオマスに多量に混合される活性炭の粒の表面積はそれよりもかなり大きい。しかも、ハニカム構造の触媒が反応槽の中で動かないように固定されているのに対し、バイオマスに混合される活性炭の粒は反応槽の中で自由に動き回る。これらのことから、特許文献2に記載のバイオマスガス化システムにおける活性炭は、ハニカム構造の触媒に比べて触媒性能を効率良く発揮している。
そこで、本発明者らは、次のような新規な流体浄化装置を開発中である。即ち、自由に動き回ることが可能な多量の触媒粒又は触媒片を浄化対象流体に混合してから、その混合物を反応槽に送る流体浄化装置である。かかる構成によれば、特許文献2に記載のバイオマスガス化システムにおける活性炭と同様に、反応槽の中で自由に動き回る触媒粒又は触媒片に触媒性能を効率良く発揮させることができる。反応槽の外で、浄化対象流体に対して有機物の酸化分解を促す材料からなる触媒を投入して両者を混合してから反応槽内に送る。そして、反応槽内で浄化対象流体と触媒と酸化剤とを搬送しながら加熱及び加圧して、浄化対象流体中の有機物を酸化分解する。かかる構成の流体浄化装置によれば、反応槽の中で触媒を浄化対象流体や酸化剤とともに搬送することで、浄化対象流体中の有機物を効率良く酸化分解することができる。
しかしながら、この流体浄化装置では、反応槽に送る前の浄化対象流体に対して予め触媒粒又は触媒片を混合する混合手段を設ける必要があることから、装置構成を複雑にしてしまうという問題があった。
なお、本発明者らは、反応槽の中で廃水や有機溶媒などの浄化対象流体を加熱及び加圧して過熱蒸気の状態にすることによっても、有機物を良好に酸化分解し得ることを実験によって見出した。このようにして浄化対象流体を浄化する構成においても、前述した混合手段を設けると、装置構成を複雑にしてしまう。
本発明は、以上の背景に鑑みてなされたものであり、その目的とするところは、反応槽に送る前の浄化対象流体に対して触媒を予め混合する混合手段を設けることなく、反応槽の中の触媒に対して触媒性能を効率良く発揮させることができる流体浄化装置を提供することである。
上記目的を達成するために、本発明は、浄化対象流体と酸化剤とを加熱及び加圧しながら、浄化対象流体中の有機物を酸化反応によって分解して浄化対象流体を浄化する反応槽を備える流体浄化装置において、前記反応槽内で浄化対象流体及び酸化剤とともに移動しながら有機物の酸化分解を促す扁平形状の触媒と、浄化対象流体酸化剤、及び前記触媒の混合体から、前記浄化対象流体及び酸化剤を分離して前記反応槽から排出するための分離排出手段を前記反応槽内に配設し、前記反応槽内で前記混合体を長手方向の一端側から他端側に向けて前記混合体を相対的に移動させながら、浄化対象流体中の有機物を酸化分解させるようにし、前記反応槽内に浄化対象流体を流入させるための流入管を、前記反応槽の前記長手方向における一端側の壁に、前記反応槽の内部で前記一端側から他端側に向けて突出させて設け、前記反応槽内で前記分離排出手段を前記長手方向にて前記流入管に対向させる位置に設け、且つ、前記流入管内の浄化対象流体を管外に排出するための排出口を、前記流入管の側壁に設けたことを特徴とするものである。
本発明においては、反応槽内の浄化対象流体や酸化剤の中で触媒を自由に動き回らせることで、ハニカム構造の触媒とは異なり、反応槽の中の触媒に対して触媒性能を効率良く発揮させることができる。また、反応槽内の浄化対象流体や酸化剤を分離排出手段によって触媒から分離してから反応槽の外に排出することで、触媒を反応槽内に残す。これにより、反応槽の中に触媒を常在させることで、反応槽に送る前の浄化対象流体に対して触媒を予め混合しておく必要がない。よって、混合手段を設けることなく、反応槽の中の触媒に対して触媒性能を効率良く発揮させることができる。
実施形態に係る流体浄化装置を示す概略構成図。 同流体浄化装置の反応槽を示す縦断面図。 同反応槽の内部の状態を模式的に示す模式斜視図。 第1変形例に係る流体浄化装置における反応槽の内部の状態を模式的に示す模式斜視図。 第2変形例に係る流体浄化装置における反応槽の出口側の端部を示す縦断面図。 実施例に係る流体浄化装置における触媒の第1例を示す拡大斜視図。 実施例に係る流体浄化装置における触媒の第2例を示す拡大斜視図。 実施例に係る流体浄化装置における触媒の第3例を示す拡大斜視図。 実施例に係る流体浄化装置における触媒の第4例を示す拡大斜視図。
以下、本発明を適用した流体浄化装置の実施形態について説明する。
図1は、実施形態に係る流体浄化装置を示す概略構成図である。実施形態に係る流体浄化装置は、原水タンク1、攪拌機2、原水供給ポンプ3、原水圧力計4、原水出口弁5、酸化剤圧送ポンプ6、酸化剤圧力計7、酸化剤出口弁8などを備えている。また、熱交換器9、熱媒体タンク10、熱交換ポンプ11、出口圧力計12、出口弁13、気液分離器14、安全弁15、反応槽20、反応槽ヒーター23、反応槽温度計24なども備えている。更には、予熱槽30、予熱槽ヒーター31、予熱槽電熱コイル32、図示しない制御部なども備えている。
制御部は、漏電ブレーカー、マグネットスイッチ、サーマルリレーなどの組み合わせからなる給電回路を、各駆動系機器にそれぞれ個別に対応する分だけ有している。そして、プログラマブルシーケンサーからの制御信号によって給電回路のマグネットスイッチをオンオフすることで、各駆動系機器に対する電源のオンオフを個別に制御する。
原水圧力計4、酸化剤圧力計7、出口圧力計12はそれぞれ、圧力の検知結果に応じた値の電圧を出力する。また、反応槽温度計24は、温度の検知結果に応じた電圧を出力する。それらの測定機器から出力される電圧は、それぞれ図示しないA/Dコンバーターによって個別にデジタルデータに変換された後、センシングデータとして制御部のプログラマブルシーケンサーに入力される。プログラマブルシーケンサーは、それらのセンシングデータに基づいて、各種の機器の駆動を制御する。
原水タンク1には、分子量の比較的大きな有機物を含む浄化対象流体たる廃水Wが未浄化の状態で貯留されている。廃水Wは、有機溶剤廃水、製紙工程で生ずる製紙廃水、及びトナー製造工程で生ずるトナー製造廃水のうち、少なくとも何れか1つからなるものである。製紙廃水やトナー製造廃水には、難分解性の有機物が含まれている可能性がある。
攪拌機2は、原水タンク1内に貯留されている廃水Wを撹拌することで、廃水中に含まれる浮遊物質(Suspended solids)を均等に分散せしめて、有機物濃度の均一化を図る。原水タンク1内の廃水Wは、原水供給ポンプ3によって反応槽20に向けて連続的に圧送される。原水供給ポンプ3から送り出された廃水Wは、原水出口弁5に流入する。原水出口弁5は、逆止弁の役割を担っており、原水供給ポンプ3から送り出される廃水Wについて、原水供給ポンプ3側から反応槽20側への流れを許容する一方で、逆方向の流れを阻止する。そして、原水出口弁5を通過した廃水Wは、後述する酸化剤として空気と合流する。
コンプレッサーからなる酸化剤圧送ポンプ6は、酸化剤として取り込んだ空気を、廃水Wの流入圧力と同程度の圧力まで圧縮しながら、酸化剤出口弁8に向けて送り出す。酸化剤出口弁8は、逆止弁の役割を担っており、酸化剤圧送ポンプ6から圧送されてくる空気Aについて、酸化剤圧送ポンプ6側から反応槽20側への流れを許容する一方で、逆方向の流れを阻止する。酸化剤出口弁8を通過した空気は、予熱槽30の中に流入する。予熱槽30は、金属などの熱伝導率の高い材料からなり、その外壁は予熱槽ヒーター31で覆われている。また、予熱槽30の中には、予熱槽電熱コイル32が配設されている。予熱槽30の中に流入した空気は、予熱槽ヒーター31や予熱槽電熱コイル32によって予備加熱された後、予熱槽30の外に出る。そして、廃水Wと合流した後、廃水Wとともに、反応槽20内に流入する。
原水供給ポンプ3の駆動による廃水Wの送出圧力は、原水出口弁5よりも上流側に配設された原水圧力計4によって検知されて、センシングデータとして制御部のプログラマブルシーケンサーに入力される。また、酸化剤圧送ポンプ6による空気Aの送出圧力は、酸化剤出口弁8よりも上流側にある酸化剤圧力計7によって検知され、その検知結果がプログラマブルシーケンサーに入力される。廃水Wの送出圧力や、空気の送出圧力は、反応槽20内の圧力とほぼ同じになる。プログラマブルシーケンサーは、原水供給ポンプ3や酸化剤圧送ポンプ6を駆動しているときに原水圧力計4による検知結果や酸化剤圧力計7による検知結果に基づいて、反応槽20の圧力の適否を判断する。
酸化剤圧送ポンプ6の駆動による空気の圧送量は、廃水W中の有機物を完全に酸化させるのに必要となる化学量論的な酸素量に基づいて決定されている。より詳しくは、廃水のCOD(Chemical Oxygen Demand)、全窒素(TN)、全リン(TP)など、廃水W中の有機物濃度、窒素濃度、リン濃度などに基づいて、有機物の完全酸化に必要な酸素量が算出される。そして、その結果に基づいて、空気の圧送量が設定されている。
空気の流入量の設定は作業員によって行われるが、廃水W中に含まれる有機物の種類が経時で安定しており、濁度、光透過度、電気伝導度、比重などの物性と、前述の酸素量との相関関係が比較的良好である場合には、次のようにしてもよい。即ち、その物性をセンサー等で検知した結果に基づいて、前述の制御範囲を自動で補正する処理を実施するように、プログラマブルシーケンサーを構成してもよい。
酸化剤としては、空気の他、酸素ガス、オゾンガス、過酸化水素水の何れか1つ、あるいは、それらの2種類以上を混合したもの、を用いることも可能である。
反応槽20の外周面は、反応槽20内の廃水Wや空気を加熱するためのヒーター23によって覆われている。反応槽20内の廃水Wや空気は、ヒーター23によって加熱されることで昇温することに加えて、有機物が酸化分解されることによる発熱によっても昇温する。廃水Wが有機物を高濃度に含むものである場合、多量の有機物が酸化分解される際の多量の発熱だけで、混合流体が所望の温度まで昇温することもある。この場合、装置の立ち上げ時のみ、ヒーター23による加熱を行い、酸化分解が開始された後には、ヒーター23に対する電源をオフにすることができる。
反応槽20内の混合流体に加える圧力としては、0.5〜30MPa(望ましくは2〜30MPa)の範囲を例示することができる。反応槽20内の圧力は、後述する出口弁13によって調整される。背圧弁からなる出口弁13は、反応槽20内の圧力が閾値よりも高くなると、自動で弁を開いて反応槽20内の廃水Wや空気を外部に排出することで、反応槽20内の圧力を閾値付近に維持する。
反応槽20内の廃水Wや空気の温度としては、100〜600℃(望ましくは200〜550℃)を例示することができる。温度の調整は、上述したヒーター23のオンオフや、後述する熱交換器9の動作のオンオフによって行われる。
温度及び圧力の条件として、温度=374.2℃以上、且つ、圧力=21.8MPa以上を採用した場合、水の臨界温度や臨界圧力をそれぞれ超え、且つ空気の臨界温度や臨界圧力もそれぞれ超える状態である。このため、廃水Wの水が液体と気体との中間的な性質を帯びる超臨界水になる。かかる超臨界水中では、有機物が良好に超臨界水に溶解するとともに、空気に良好に接触することから、有機物の酸化分解が急激に進行する。
温度及び圧力の条件として、温度=200℃以上(望ましくは374.2℃以上)、且つ、圧力=21.8MPa未満(望ましくは10MPa以上)の比較的高圧を採用して、反応槽20内で混合流体中の廃水を過熱水蒸気にしてもよい。
反応槽20内の廃水Wや空気の温度は、100〜700℃、望ましくは200〜550℃である。流体浄化装置の運転が開始されるときには、反応槽20の混合流体は、圧力がかけられているが、温度はそれほど高くなっていない。そこで、運転開始時には、プログラマブルシーケンサーがヒーター23を発熱させて、反応槽20内の廃水Wと空気との混合流体の温度を200〜550℃まで昇温させる。
反応槽20においては、混合流体を高温且つ高圧の状態にすることで、混合流体中の有機物やアンモニア態窒素の酸化分解を促す。反応槽20内で反応槽20の流体搬送方向の下流側端部まで移動した混合流体は、有機物や無機化合物がほぼ完全に酸化分解された状態になっている。そして、反応槽20内から浄化流体搬送管16に排出される。
浄化流体搬送管16内では、浄化済みの流体の水分が冷却されて、超臨界状態、あるいは過熱蒸気状態、から液体状態に態様を変化させる。一方、混合流体中の酸素や窒素は、常に気相である。浄化流体搬送管16を通り過ぎた混合流体は、気液分離器14によって処理水とガスとに分離される。
浄化済みの水は、活性汚泥による生物処理では除去し切れないごく低分子の有機物もほぼ完全に酸化分解されたものであるため、浮遊物質や有機物は殆ど含まれていない。酸化し切れなかったごく僅かな無機物が含まれているだけである。そのままの状態でも、用途によっては工業用水として再利用することが可能である。また、限外濾過膜による濾過処理を施せば、LSI洗浄液などに転用することも可能である。気液分離器14によって分離されたガスは、二酸化炭素、窒素ガス、及び酸素を主成分とするものである。
浄化流体搬送管16の外面には、熱交換器9が装着されている。熱交換器9の本体は、浄化流体搬送管16の外面を覆う外管で構成され、外管と浄化流体搬送管16の外面との間の空間を水などの熱交換流体で満たしている。そして、浄化流体搬送管16の外面と熱交換流体との熱交換を行う。反応槽20の運転時には、非常に高温の液体が浄化流体搬送管16の内部に流れるため、浄化流体搬送管16から熱交換器9内の熱交換流体に熱が移動して、熱交換流体が熱せられる。熱交換器9内における熱交換流体の搬送方向は、いわゆる向流型の熱交換を行うように、浄化流体搬送管16内の液体の搬送方向とは逆方向になっている。即ち、出口弁13側から反応槽20側に向けて熱交換流体を送っている。これは、熱媒体タンク10内の熱交換流体を吸引しながら熱交換器9に送る熱交換ポンプ11によって行われる。
熱交換器9を通過して熱せられた熱交換流体は、図示しないパイプを通って発電施設に送られる。発電施設の一例として、発電機を例示することができる。発電機では、熱せられたことによって圧力を高めている熱交換流体を液体から気体の状態にするときに発生する気流によってタービンを回転させることで発電が行われる。
浄化流体搬送管16における出口弁13の近傍には、浄化流体搬送管16の温度、又は浄化流体搬送管16内の液体の温度を検知する図示しない出口温度計が設けられている。制御部のプログラマブルシーケンサーは、出口温度計による検知結果が所定の数値範囲内に維持されるように、熱交換ポンプ11の駆動を制御する。具体的には、出口温度計による検知結果が所定の上限温度に達したときには、熱交換ポンプ11の駆動量を増加して熱交換器9への熱交換流体の供給量を増やすことで、熱交換器9による冷却機能を高める。これに対し、出口温度計による検知結果が所定の下限温度に達したときには、熱交換ポンプ11の駆動量を減少させて熱交換器9への熱交換流体の供給量を減らすことで、熱交換器9による冷却機能を低下させる。かかる構成では、熱交換量を適切に調整して浄化流体搬送管16内の液体の温度を一定範囲に維持することができる。なお、熱交換器9を、浄化流体搬送管16に取り付けることに加えて、あるいは代えて、反応槽20に取り付けてもよい。
廃水W中の有機物濃度が比較的高い場合には、有機物の酸化分解によって多量の熱が発生する。このため、運転初期にはヒーター23を作動させるものの、有機物の酸化分解が開始された後には、有機物の酸化分解によって発生する熱により、廃水Wと空気Aとの混合流体の温度を、所望の温度まで自然に昇温することができるようになる場合もある。そこで、制御部のプログラマブルシーケンサーは、反応槽20の温度を検知する反応槽温度計24による検知結果が、所定の温度よりも高くなった場合には、加熱手段としてのヒーター23をオフにする。これにより、無駄なエネルギーの消費を抑えることができる。
次に、実施形態に係る流体浄化装置の特徴的な構成について説明する。
図2は、反応槽20を示す縦断面図である。なお、同図では便宜上、反応槽20のうち、筒体21の外壁を覆う反応槽ヒーター(図1の23)の図示を省略している。反応槽20の基体は、筒状の筒体21から構成されている。筒体21は、高温高圧に耐え得るように、肉厚に形成されている。
原水供給ポンプ(図1の3)や酸化剤圧送ポンプ(図1の6)の駆動によって反応槽20に向けて圧送される廃液Wと空気Aとは、反応槽20の入口に接続された給送管15で合流する。この給送管15は、入口継手17により、反応槽20の入口側に設けられている流入管26に接続されている。給送管15から反応槽20内に圧送された廃液Wや空気Aは、反応槽20において、流入管26を通って筒体21の内部に流入する。そして、筒体21の内部をその長手方向に沿って鉛直方向上方から下方に向けて搬送される。
反応槽20の筒体21の中には、筒体21の中で廃水W及び空気Aとともに移動しながら有機物の酸化分解を促す複数の触媒25が配設されている。廃水Wと空気Aと触媒25との混合体が筒体21の中で加熱及び加圧されながら鉛直方向上方から下方に向けて搬送される過程で、触媒25によって有機物の酸化分解が促されて有機物が効率良く酸化分解される。
筒体21の長手方向における出口側には、出口継手18によって浄化流体搬送管16が接続されている。筒体21の内部においては、浄化流体搬送管16との接続部よりも少し上流側に、分離排出手段としての分離メッシュ29が固定されている。この分離メッシュ29は、触媒25よりも小さな複数のスリット(開口)を具備している。
筒体21の中で筒体21の下流側端部付近まで搬送された廃水Wと空気Aと触媒25との混合体は、分離メッシュ29の位置に到達する。分離排出手段としての分離メッシュ29は、混合体のうち、廃水W及び空気Aだけを自らのスリットに通すことで、廃水W及び空気Aを触媒25から分離して、浄化流体搬送管16に向けて排出する。これにより、筒体21の中に触媒25を常在させることで、補充用の触媒25を廃水Wと混合して筒体21の中に圧送する必要がない。よって、混合手段を設けることなく、反応槽20の中で有機物を効率良く酸化分解することができる。なお、流入管26の先端には、図示のように開口が設けられておらず、先端は閉塞した状態になっている。
図3は、反応槽20の内部の状態を模式的に示す模式斜視図である。図示のように、流入管26の側壁には、管長手方向に沿って延在するスリット26aが円周方向に複数並んで配設されている。流入管26内の廃水W及び空気Aは、それらのスリット26aを通過して筒体21内に流入する。この際、筒体21内の廃水Wや空気Aに対して、筒の法線方向に沿った流れを発生させる。一方、筒体21内の廃水Wや空気Aは全体的に、分離メッシュ29よりも下流側に存在する図示しない浄化流体搬送管(図2の16)に向けて移動する。このため、筒体21内の廃水Wや空気Aは、法線方向に向かう乱流を発生させながら、全体的に鉛直方向上方(入口側)から下方(出口側)に向けて移動する。
触媒25は、テープ状の扁平形状になっていることから、筒体21内の廃水Wや空気Aの流れの抵抗を受け易い。そして、上述した乱流に乗って、廃水Wや空気Aの中で拡散しようとすることから、分離メッシュ29の近傍に集中することなく、筒体21の中で広範囲に渡って存在する。そして、乱流に乗って積極的に移動することで、廃水W中の有機物を効率良く酸化分解させる。
筒体21の中の廃水W中には、廃水W中に溶解していたアルミナ、シリカ、ジルコニア、リンなどの無機物が固形物として高温高圧下で析出する。析出した無機固形物は、筒体21の内壁や触媒25の表面などに固着し易い。しかし、実施形態に係る浄化流体装置では、触媒25が上述した乱流に乗って積極的に移動する際に、筒体21の内壁や他の触媒25にぶつかることで、自らの表面、他の触媒25の表面、筒体21の内壁に固着している無機固形物を払い落とす。これにより、触媒25表面や筒体21の内壁での無機固形物の固着塊の成長を抑えて、析出した無機固形物を積極的に筒体21の外に排出することができる。
触媒25は、基材と、基材の表面に被覆されたRu、Pd、Rh、Pt、Au、Ir、Os、Fe、Cu、Zn、Ni、Co、Ce、Ti、Mn、及びCのうち少なくとも何れか1つを含む触媒材料からなる表面層とを具備するものである。表面層が触媒材料からなることで、触媒性能を発揮することができる。また、基材には、触媒材料よりも安価な材料を用いることが可能であることから、触媒25の全体を触媒材料で構成する場合に比べて、低コスト化を図ることができる。また、基材の材料として、適度な剛性や加工容易性のあるものを用いることで、触媒25の形状選択の幅を広げることができる。
図4は、第1変形例に係る流体浄化装置における反応槽20の内部の状態を模式的に示す模式斜視図である。第1変形例に係る流体浄化装置は、次に説明する点の他が、実施形態に係る流体浄化装置と同様の構成になっている。即ち、第1変形例に係る流体浄化装置の反応槽20は、廃水W及び空気Aを筒体21の内部に流入させるための管として、流入管26の他に、2つの補助流入管28を有している。2つの補助流入管28はそれぞれ、筒体21の側壁に設けられた貫通口を貫通している。そして、廃水W及び空気Aを自らの先端から吐出する。吐出された廃水W及び空気Aは、筒体21の外周面側から筒中心側に向けて移動することで、筒体21内の廃水W及び空気Aに乱流を発生させる。これにより、筒体21内でより多くの乱流を発生させて、筒体21内で触媒25をより拡散させることができる。なお、2つの補助流入管28はそれぞれ、図示しない領域で流入管26から分岐している。
図5は、第2変形例に係る流体浄化装置における反応槽20の出口側の端部を示す縦断面図である。第2変形例に係る流体浄化装置は、次に説明する点の他が、実施形態に係る流体浄化装置と同様の構成になっている。即ち、第2変形例に係る流体浄化装置では、筒体21内において、流入管26の先端部が分離メッシュ29を貫いている。そして、最先端箇所で2つに分岐して、それぞれの分岐が180[°]折り返している。それらの分岐の先端には吐出口が設けられている。流入管26内の廃水W及び空気Aは、2つの分岐の吐出口からそれぞれ吐出されて、分離メッシュ29のスリットを出口側から入口側に抜ける。そして、分離メッシュ29の上方に存在している触媒25を上方に向けて舞い上げる。これにより、触媒25をより活発に分散せしめることができる。
流入管26の2つの分岐から吐出された直後の廃水Wや空気Aは、前述したように分離メッシュ29のスリットを出口側から入口側に抜ける。その後、正反対に向きを変えて、分離メッシュ29のスリットを入口側から出口側に抜けた後、浄化流体搬送管16に排出される。
次に、実施形態に係る流体浄化装置に、より特徴的な構成を付加した実施例について説明する。なお、以下に特筆しない限り、実施例に係る流体浄化装置の構成は、実施形態と同様である。
実施例に係る流体浄化装置では、触媒として、扁平形状の扁平部が折り曲げ、ねじれ、又は複数組み合わせによって立体構造を形成している形状のものを用いている。扁平部の湾曲によって立体構造を形成している形状の触媒25としては、例えば、図6に示すものを例示することができる。同図では便宜上図示を省略しているが、触媒25の扁平部は、複数のスリットを具備するメッシュ状のものである。メッシュ状の基材の表面に触媒材料からなる表面層を被覆している。メッシュ状の基材は金属からなることから、その形状を長期間に渡って維持することが可能である。扁平形状の触媒25を円柱の外周面に押し付けることで、図示のような湾曲形状の癖を付けている。触媒25をメッシュ構造のものにすることで、触媒25の表面積をより増加させて触媒性能を向上させている。なお、触媒25におけるスリット間の肉厚は0.14[mm]であり、スリット径は0.28[mm]である。
扁平部のねじれによって立体構造を形成している形状の触媒25としては、例えば図7に示すものを例示することができる。メッシュ状の扁平な基材(金属製)と、これの表面に被覆された触媒材料からなる表面層とを具備する触媒25をねじることで、図示のようなねじれ状の癖を付けている。
扁平部の折り曲げによって立体構造を形成している形状の触媒25としては、例えば図8に示すものを例示することができる。メッシュ状の扁平な基材(金属製)と、これの表面に被覆された触媒材料からなる表面層とを具備する触媒25を型のエッジに押し当てながら折り曲げることで、図示のような折り曲げ形状の癖を付けている。
複数の扁平部の組み合わせによって立体構造を形成している形状の触媒25としては、例えば図9に示すものを例示することができる。2つの扁平の触媒25にそれぞれ切り込みを入れて、それら触媒25を互いに切り込みで噛み合わせることで、図示のような立体構造にしている。
図6、図7、図8、図9に示される触媒25は何れも、扁平部で廃水Wや空気Aを受けることで、内筒21内で良好に拡散することができる。また、立体構造になっていることから、分離メッシュ29に向けて移動している廃水Wや空気Aによって分離メッシュ29に向けて押し付けられたとしても、分離メッシュ29との接触面を少ない面積に留めて、スリットや反応槽の閉塞を抑えることができる。
以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
[態様A]
態様Aは、浄化対象流体(例えば廃水W)と酸化剤(例えば空気A)とを加熱及び加圧しながら、浄化対象流体中の有機物を酸化反応によって分解して浄化対象流体を浄化する反応槽(例えば反応槽20)を備える流体浄化装置において、前記反応槽内で浄化対象流体及び酸化剤とともに移動しながら有機物の酸化分解を促す触媒(例えば触媒25)を前記反応槽内に配設するとともに、浄化対象流体と、酸化剤と、前記触媒との混合体から、前記浄化対象流体及び酸化剤を分離して前記反応槽から排出するための分離排出手段(例えば分離メッシュ29)を前記反応槽内に配設したことを特徴とするものである。
[態様B]
態様Bは、態様Aにおいて、前記分離排出手段として、前記触媒よりも小さな開口(例えばスリット)を複数具備するものであって、前記混合体中の浄化対象流体、酸化剤及び前記触媒のうち、前記浄化対象流体及び酸化剤だけをそれら開口に通すことで触媒から分離するもの、を用いたことを特徴とするものである。かかる構成では、市販のメッシュを分離排出手段として用いて低コスト化を図ることができる。
[態様C]
態様Cは、態様A又はBにおいて、前記触媒を、扁平形状にしたことを特徴とするものである。かかる構成では、反応槽内で発生した乱流を触媒の扁平部に良好に受けさせて、触媒を反応槽内で良好に分散させることで、触媒による触媒作用をより向上させることができる。
[態様D]
態様Dは、態様A又はBにおいて、前記触媒を、扁平形状の扁平部が湾曲、折り曲げ、ねじれ、又は複数組み合わせによって立体構造を形成している形状にしたことを特徴とするものである。かかる構成では、触媒の立体構造によって触媒と分離排出手段との接触面積を低減することで、触媒による分離排出手段のメッシュの閉塞を抑えることができる。
[態様E]
態様Eは、態様C又はDにおいて、前記反応槽内で前記混合体を長手方向の一端側から他端側に向けて前記混合体を相対的に移動させながら、浄化対象流体中の有機物を酸化分解させるようにし、前記反応槽内に浄化対象流体を流入させるための流入管(例えば流入管26)を、前記反応槽の前記長手方向における一端側の壁に、前記反応槽の内部で前記一端側から他端側に向けて突出させて設け、前記反応槽内で前記分離排出手段を前記長手方向にて前記流入管に対向させる位置に設け、且つ、前記流入管内の浄化対象流体を管外に排出するための排出口(例えばスリット26a)を、前記流入管の側壁に設けたことを特徴とするものである。かかる構成では、排出口からの浄化対象流体の排出により、反応槽内の浄化対象流体や酸化剤に乱流を発生させることで、触媒を反応槽内に良好に分散させることができる。
[態様F]
態様Fは、態様Eにおいて、前記流入管の前記長手方向における前記他端側の壁を、開口の無い壁(例えば先端壁)にしたことを特徴とするものである。かかる構成では、流入管の先端に対向している反応槽出口に向けて、流入管の先端から浄化対象流体を勢い良く吐出させることを防止して、反応槽内における浄化対象流体の滞留時間を長く確保することができる。更には、浄化対象流体を流入管の先端から吐出することによる側壁の吐出口からの吐出力の低下を回避することで、浄化対象流体を側壁の吐出口から勢い良く吐出させて、乱流を良好に発生させることができる。
[態様G]
態様Gは、態様E又はFにおいて、前記流入管に対し、浄化対象流体及び酸化剤を圧送するようにしたことを特徴とするものである。かかる構成では、浄化対象流体と酸化剤との両方を流入管の側壁の吐出口から吐出させることで、一方しか吐出させない場合に比べて、乱流をより良好に発生させることができる。
[態様H]
態様Hは、態様A〜Gの何れかにおいて、前記触媒として、表面が、Ru、Pd、Rh、Pt、Au、Ir、Os、Fe、Cu、Zn、Ni、Co、Ce、Ti、Mn、及びCのうち、少なくとも何れか1つを含有する触媒材料からなるものを用いたことを特徴とするものである。かかる構成では、触媒材料からなる表面によって有機物の酸化分解を良好に促すことができる。
[態様I]
態様Iは、態様Hにおいて、前記触媒として、基材の表面に前記触媒材料からなる表面層を被覆したものを用いたことを特徴とするものである。かかる構成では、触媒の全体を触媒材料で構成する場合に比べて、低コスト化を図ることができる。また、基材の材料として、適度な剛性や加工容易性のあるものを用いることで、触媒の形状選択の幅を広げることができる。
W:廃水(浄化対象流体)
A:空気(酸化剤)
20:反応槽
25:触媒
26:流入管
26a:スリット(吐出口)
29:分離メッシュ(分離排出手段)
特開2001−205279号公報 特開2010−174190号公報

Claims (7)

  1. 浄化対象流体と酸化剤とを加熱及び加圧しながら、浄化対象流体中の有機物を酸化反応によって分解して浄化対象流体を浄化する反応槽を備える流体浄化装置において、
    前記反応槽内で浄化対象流体及び酸化剤とともに移動しながら有機物の酸化分解を促す扁平形状の触媒と、浄化対象流体酸化剤、及び前記触媒の混合体から、前記浄化対象流体及び酸化剤を分離して前記反応槽から排出するための分離排出手段を前記反応槽内に配設し
    前記反応槽内で前記混合体を長手方向の一端側から他端側に向けて前記混合体を相対的に移動させながら、浄化対象流体中の有機物を酸化分解させるようにし、
    前記反応槽内に浄化対象流体を流入させるための流入管を、前記反応槽の前記長手方向における一端側の壁に、前記反応槽の内部で前記一端側から他端側に向けて突出させて設け、
    前記反応槽内で前記分離排出手段を前記長手方向にて前記流入管に対向させる位置に設け、
    且つ、前記流入管内の浄化対象流体を管外に排出するための排出口を、前記流入管の側壁に設けたことを特徴とする流体浄化装置。
  2. 請求項1の流体浄化装置において、
    前記分離排出手段として、前記触媒よりも小さな開口を複数具備するものであって、前記混合体中の浄化対象流体、酸化剤及び前記触媒のうち、前記浄化対象流体及び酸化剤だけをそれら開口に通すことで触媒から分離するもの、を用いたことを特徴とする流体浄化装置。
  3. 請求項2の流体浄化装置において、
    前記触媒を、扁平形状の扁平部が湾曲、折り曲げ、ねじれ、又は複数組み合わせによって立体構造を形成している形状にしたことを特徴とする流体浄化装置。
  4. 請求項1乃至3の何れかの流体浄化装置において、
    前記流入管の前記長手方向における前記他端側の壁を、開口の無い壁にしたことを特徴とする流体浄化装置。
  5. 請求項1乃至4の何れかの流体浄化装置において、
    前記流入管に対し、浄化対象流体及び酸化剤を圧送するようにしたことを特徴とする流体浄化装置。
  6. 請求項1乃至の何れかの流体浄化装置において、
    前記触媒として、表面が、Ru、Pd、Rh、Pt、Au、Ir、Os、Fe、Cu、Zn、Ni、Co、Ce、Ti、Mn、及びCのうち、少なくとも何れか1つを含有する触媒材料からなるものを用いたことを特徴とする流体浄化装置。
  7. 請求項の流体浄化装置において、
    前記触媒として、基材の表面に前記触媒材料からなる表面層を被覆したものを用いたことを特徴とする流体浄化装置。
JP2012275549A 2012-12-18 2012-12-18 流体浄化装置 Expired - Fee Related JP6016109B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275549A JP6016109B2 (ja) 2012-12-18 2012-12-18 流体浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275549A JP6016109B2 (ja) 2012-12-18 2012-12-18 流体浄化装置

Publications (2)

Publication Number Publication Date
JP2014117669A JP2014117669A (ja) 2014-06-30
JP6016109B2 true JP6016109B2 (ja) 2016-10-26

Family

ID=51173014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275549A Expired - Fee Related JP6016109B2 (ja) 2012-12-18 2012-12-18 流体浄化装置

Country Status (1)

Country Link
JP (1) JP6016109B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284391A (ja) * 1988-05-12 1989-11-15 Toshiba Corp 廃水の湿式酸化処理方法および装置
JPH0326393A (ja) * 1989-06-22 1991-02-04 Toshiba Corp 水処理装置
JP2002052393A (ja) * 2000-08-09 2002-02-19 Emuzu Japan Kk 浄水装置
JP2011517618A (ja) * 2008-04-03 2011-06-16 シーメンス ウォーター テクノロジース コーポレイション 触媒湿式酸化システム及び方法
FR2949074B1 (fr) * 2009-08-17 2013-02-01 Arkema France Catalyseur bi-couche, son procede de preparation et son utilisation pour la fabrication de nanotubes

Also Published As

Publication number Publication date
JP2014117669A (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
US20130134106A1 (en) Waste liquid treatment apparatus and waste liquid treatment method
JP5988155B2 (ja) 廃液処理装置
US9260330B2 (en) Fluid purifying apparatus
JP2011121052A (ja) 酸化分解処理装置
WO2003076348A1 (fr) Procede de traitement des eaux usees
JP6446861B2 (ja) 流体処理装置
JP2008093539A (ja) 排水の処理方法
JP2013255905A (ja) 流体浄化装置
JP2015500738A (ja) 使用済みの硫化物含有苛性アルカリを処理するための方法
CN111491699B (zh) 用于废物处理的系统、方法和技术
JP6016109B2 (ja) 流体浄化装置
JP5930365B2 (ja) 廃水処理装置及び廃水処理方法
JP2014000527A (ja) 流体浄化装置
JP5850328B2 (ja) 流体浄化装置
JP6090658B2 (ja) 廃液処理装置
JP5850329B2 (ja) 流体浄化装置
JP4173708B2 (ja) 排水の湿式酸化処理法および装置
JP5888596B2 (ja) 流体浄化装置
JP2014004523A (ja) 流体浄化装置
JP2007075787A (ja) 排水処理装置
JP6016114B2 (ja) 流体浄化装置
JP2014136176A (ja) 流体浄化装置
JP6011916B2 (ja) 流体浄化装置
JP2015020133A (ja) 流体処理装置及び触媒配置構造
JP2002086166A (ja) 排水の処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160915

R151 Written notification of patent or utility model registration

Ref document number: 6016109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees