JP6009966B2 - 油圧制御装置 - Google Patents

油圧制御装置 Download PDF

Info

Publication number
JP6009966B2
JP6009966B2 JP2013030142A JP2013030142A JP6009966B2 JP 6009966 B2 JP6009966 B2 JP 6009966B2 JP 2013030142 A JP2013030142 A JP 2013030142A JP 2013030142 A JP2013030142 A JP 2013030142A JP 6009966 B2 JP6009966 B2 JP 6009966B2
Authority
JP
Japan
Prior art keywords
oil
hydraulic pressure
oil pump
pump
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013030142A
Other languages
English (en)
Other versions
JP2014159761A (ja
Inventor
高木 登
登 高木
伊藤 慎一郎
慎一郎 伊藤
裕基 西田
裕基 西田
壽 小野
壽 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2013030142A priority Critical patent/JP6009966B2/ja
Publication of JP2014159761A publication Critical patent/JP2014159761A/ja
Application granted granted Critical
Publication of JP6009966B2 publication Critical patent/JP6009966B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Description

本発明は、内燃機関の動力により駆動されるオイルポンプを制御する油圧制御装置に関する。
従来、容量可変機構を備える内接歯車型のオイルポンプが知られている(たとえば、特許文献1参照)。
特許文献1のオイルポンプは、駆動軸に連結されたインナーロータと、インナーロータに対して偏心して配置されたアウターロータと、アウターロータを外周側から回転自在に保持する調整リングとを備えている。このオイルポンプは、調整リングを回動させることにより、ポンプ容量を調整可能に構成されている。具体的には、オイルポンプは、エンジン回転数の増大などにより吐出圧が高くなった場合に、調整リングが回動してポンプ容量を減少させることにより、オイルの吐出量を減少させる。
特開2012−132356号公報
ここで、一般的に、オイルポンプにあっては、オイルの吐出に必要な動力(エンジンから受ける動力)を必要最小限に抑えてエンジンの燃料消費率の改善を図ることが求められている。
しかしながら、オイルが低粘度である場合には、エンジンの各部からの漏れ量が増えるため、要求される吐出量が増加するとともに、オイルポンプ内での漏れによっても効率が下がるため、さらに高い能力が要求される。これに対して、オイルが高粘度である場合には、エンジンの各部およびオイルポンプ内での漏れが少ないため、過剰な能力になってしまう。
特に、上記のような内接歯車型のオイルポンプでは、インナーロータの精度に限りがあり、エンジンの低回転時、および、オイルの低粘度時にポンプ効率が悪化するという特性を有する。
本発明は、上記の課題を解決するためになされたものであり、本発明の目的は、オイルの粘度の変化に対応しながら、オイルの吐出に必要な動力を必要最小限に抑えることが可能な油圧制御装置を提供することである。
本発明による油圧制御装置は、容量可変機構を備える内接歯車型のオイルポンプから吐出されるオイルの油圧を制御するものである。この油圧制御装置は、オイルポンプの目標吐出油圧に対して、オイルポンプから実際に吐出された実吐出油圧をフィードバックしてPID制御を行うことにより、オイルポンプに要求する要求吐出油圧を算出するように構成されている。さらに、油圧制御装置は、PID制御における比例項、積分項および微分項に対して共通のゲインを設定し、共通のゲインは、オイルの油温に基づいて算出され、オイルの油温が低いほど小さくされるとともに、オイルの油温が高いほど大きくされる。
このように構成することによって、オイルの油温と相関関係のあるオイルの粘度に応じて共通のゲインを設定することができる。このため、オイルが高粘度である場合に共通のゲインを小さくし、オイルが低粘度である場合に共通のゲインを大きくすることにより、粘度の変化に対応しながら、オイルポンプの吐出油圧を制御することができる。すなわち、内接歯車型のオイルポンプであっても幅広い粘度領域で吐出油圧を適切に制御可能である。その結果、オイルの粘度の変化に対応しながら、オイルの吐出に必要な動力を必要最小限に抑えることができる。
上記油圧制御装置において、共通のゲインを補正するための学習値を記憶するように構成されていてもよい。
このように構成すれば、共通のゲインにエラー(誤差)が生じた場合に、そのエラーを補正することができる。
この場合において、積分項の値が0から所定値以上乖離した場合に、積分項の値が0に近づくように学習値を更新するようにしてもよい。
このように構成すれば、共通のゲインを直接学習する場合に比べて、安定した学習を行うことができる。
本発明の油圧制御装置によれば、オイルの粘度の変化に対応しながら、オイルの吐出に必要な動力を必要最小限に抑えることができる。
実施形態に係るエンジンのオイル供給系統の一例を示す全体構成図である。 オイルポンプの構造を示す断面図であって、ポンプ容量が最大の状態を示す図である。 オイルポンプの構造を示す断面図であって、ポンプ容量が最小の状態を示す図である。 制御系の概略構成を示すブロック図である。 オイルポンプの油温−油圧特性を示したグラフである。 本実施形態による吐出油圧の制御手順の一例を示したフローチャートである。
以下、本発明の実施形態を図面に基づいて説明する。本実施形態では、自動車用の4気筒ガソリンエンジン(内燃機関)に搭載されたオイルポンプの油圧を制御するECUに本発明を適用した場合について説明する。
−エンジンおよびオイル供給系統の概略−
まず、図1に仮想線で示すようにエンジン1は、シリンダブロック10の上部にシリンダヘッド11が組み付けられてなる。シリンダブロック10には4つのシリンダ(図示せず)が設けられ、それぞれに収容されているピストン12(図には1つのみ示す)は、コネクティングロッド12aを介してクランクシャフト13に連結されている。このクランクシャフト13は、図の例では5つのクランクジャーナル13aにおいてシリンダブロック10の下部(クランクケース)に回転自在に支持されている。
一方、シリンダヘッド11には、各シリンダ毎の吸気バルブ12bおよび排気バルブ12cを駆動する動弁系のカムシャフト14,15が配設されている。一例として動弁系は、吸気側および排気側の2本のカムシャフト14,15を備えたDOHCタイプのもので、これらのカムシャフト14,15は、それぞれ図の例では5つのカムジャーナル14a,15aにおいてシリンダヘッド11に回転自在に支持されている。
そして、それら2本のカムシャフト14,15がクランクシャフト13の回転に同期して回転され、吸気バルブ12bおよび排気バルブ12cを開閉させる。すなわち、クランクシャフト13の前端部(図1の左側の端部)にはクランクスプロケット(図示せず)が取り付けられる一方、2本のカムシャフト14,15の端部にはそれぞれカムスプロケット14b,15bが取り付けられ、それらに亘ってタイミングチェーン3が巻き掛けられている。これによりカムシャフト14,15は、クランクシャフト13の回転に同期して回転される。
また、前記クランクスプロケットの後側に隣接してオイルポンプ5を駆動するためのスプロケット(図示せず)も取り付けられている。すなわち、オイルポンプ5は、クランクシャフト13の前端部の下方に位置し、その入力軸5aにはポンプスプロケット5bが取り付けられていて、このポンプスプロケット5bと前記クランクシャフト13のスプロケットとの間にチェーン4が巻き掛けられている。
そうしてクランクシャフト13からの力によって入力軸5aが回転されると、オイルポンプ5から吐出されるエンジンオイル(以下、単にオイルともいう)がオイル供給系統2を介して、前記のピストン12やクランクジャーナル13a、カムジャーナル14a,15a、さらには、前記コネクティングロッド12aの軸受け部分などの被潤滑部に供給される。オイル供給系統2は、オイルポンプ5の動作によってオイルパン16から吸い上げたオイルを、オイルフィルタ6によって濾過した後にメインギャラリ20へと供給する。
すなわちオイルポンプ5は、オイルパン16内に貯留されているオイルを、図示しないオイルストレーナを介して吸い上げ、吐出ポート50e(図2を参照)から吐出して連通路6aによってオイルフィルタ6に送給する。オイルフィルタ6は、ハウジング内に収容されたフィルタエレメントによってオイル内の異物や不純物などを濾過するものであり、ここで濾過されたオイルがメインギャラリ20に送給される。
メインギャラリ20は、例えばシリンダブロック10の内部にシリンダ列方向に延びるように形成されて、オイルポンプ5から送られてくるオイルを複数の分岐オイル通路21〜23によって被潤滑部などに分配する。図の例ではメインギャラリ20の長手方向に等間隔で分岐しそれぞれ下方に延びる分岐オイル通路21によって、クランクジャーナル13a等にオイルが供給される。また、メインギャラリ20の両端からそれぞれ上方に延びる分岐オイル通路22,23によって、シリンダヘッド11のカムジャーナル14a,15aなどにオイルが供給される。
−オイルポンプの構造−
以下にオイルポンプ5の構造について図2を参照して詳細に説明する。オイルポンプ5は、内接歯車型である。具体的には、オイルポンプ5は、入力軸5aにより回転される外歯車のドライブロータ51と、これに噛み合って回転される内歯車のドリブンロータ52と、そのドリブンロータ52を外周から回転自在に保持する調整リング53と、をハウジング50内に収容してなる。調整リング53は、後述するようにドライブロータ51およびドリブンロータ52を変位させることにより、ポンプ容量を変更するために設けられている。
ハウジング50は全体としては厚肉の板状であり、図2に示すようにエンジン後方から見た場合に左右に長い楕円形状とされ、図の右上部から右側に向かって突出部50aが、また、図の左下部からは下方に向かって突出部50bが、それぞれ形成されている。また、ハウジング50の全体に後方、すなわちエンジン1の内方(図の手前側)に向かって開放された凹部50cが形成されている。
この凹部50cは前記ドライブロータ51、ドリブンロータ52、調整リング53等を収容するものであり(以下、収容凹部50cという)、ハウジング50に後方から重ね合わされるカバー(図示せず)によって閉止される。また、収容凹部50cの中央よりもやや右側位置には円形断面の貫通孔(図には示さず)が形成され、ここに挿通された入力軸5aがハウジング50の前方に突出している。
そうしてハウジング50の前方に突出する入力軸5aの前端部に、前記チェーン4の巻き掛けられるポンプスプロケット5bが取り付けられている一方、入力軸5aの後端部は、ドライブロータ51の中央部を貫通し、例えばスプラインによって嵌合されている。このドライブロータ51には、外周にトロコイド曲線またはトロコイド曲線に近似した曲線(例えばインボリュート、サイクロイドなど)を有する外歯51aが複数(図の例では11個)、形成されている。
一方、ドリブンロータ52は円環状に形成され、その内周には前記ドライブロータ51の外歯51aと噛み合うよう、これより歯数が1歯大きい(図の例では12個の)内歯52aが形成されている。ドリブンロータ52の中心は、ドライブロータ51の中心に対して所定量、偏心しており、その偏心している側(図2の左上側)でドライブロータ51の外歯51aとドリブンロータ52の内歯52aとが噛み合っている。
また、ドリブンロータ52は、調整リング53の円環状の本体部53aによって摺動自在に嵌合支持されている。この例では調整リング53には、その本体部53aの外周から周方向に所定の角度範囲(図の例では約50°)に亘って径方向外方に張り出す2つの張出部53b,53cと、径方向外方に大きく延びるアーム部53dと、小さな突起部53eとが一体に形成されている。調整リング53について詳しくは後述する。
そのようにして調整リング53に保持されたドライブロータ51およびドリブンロータ52によって、本実施形態では11葉12節のトロコイドポンプが構成されており、2つのロータ51,52の間の環状の空間には、互いに噛合する歯と歯の間に円周方向に並んだ複数の作動室Rが形成される。これらの各作動室Rは2つのロータ51,52の回転に連れてドライブロータ51の外周に沿うように移動しながら、その容積が増減する。
すなわち、2つのロータ51,52の歯が互いに噛み合う位置から、図に矢印で示すロータ回転方向に約180度に亘る範囲(図2では左下側の範囲)では、2つのロータ51,52の回転に連れて徐々に作動室Rの容積が増大してゆき、オイルを吸入する吸入範囲となる。一方、残りの約180度に亘る範囲(図2では右上側の範囲)では、ロータ51,52の回転に連れて徐々に作動室Rの容積が減少してゆき、オイルを加圧しながら吐出する吐出範囲となる。
そして、それらの吸入範囲および吐出範囲にそれぞれ対応するように、ハウジング50およびカバーに吸入ポートおよび吐出ポートが形成されている。図2にはハウジング50の吸入ポート50dおよび吐出ポート50eのみを示すが、この吸入ポート50dは、ハウジング50の収容凹部50cの底面において前記の吸入領域に対応するように開口し、同じく吐出領域に対応するように吐出ポート50eが開口している。
吸入ポート50dは、図ではハウジング50の左下側に位置して、図示しないカバーの吸入ポートと連通しており、これを介してオイルストレーナの吸入管路に連通している。一方、吐出ポート50eはハウジング50の右上側に位置して、図示しないカバーの吐出ポートと連通するとともに、ハウジング50の突出部50aに対応するように図の右側に向かって延びていて、オイルフィルタ6に向かう連通路6aに至る。
かかる構成によりオイルポンプ5は、ポンプスプロケット5bに伝達されるクランクシャフト13からの力を受けて入力軸5aが回転すると、ドライブロータ51およびドリブンロータ52が互いに噛み合いながら回転し、それらの間に形成される作動室Rに吸入ポート50dからオイルが吸入され、加圧されて吐出ポート50eから吐出される。
こうして吐出されるオイルの流量は、オイルポンプ5の回転数(入力軸5aの回転数)、すなわちエンジン回転数(エンジン回転速度)が高くなるほど多くなる。
−容量可変機構−
本実施形態のオイルポンプ5は、ドライブロータ51の1回転につき吐出するオイルの量、すなわちポンプ容量を変更可能な容量可変機構を備えている。本実施形態では、主に吐出ポート50eから導かれた油圧(吐出油圧)によって前記の調整リング53を変位させて、ドライブロータ51およびドリブンロータ52の吸入ポート50dおよび吐出ポート50eに対する相対的な位置を変更することにより、1回転当たりに吸入および吐出するオイルの流量を変更する。
詳しくは図2に表れているように、調整リング53の本体部53aから径方向外方に延びる前記アーム部53dには、圧縮コイルスプリング54からの押圧力が作用しており、これによって調整リング53が図の時計回り方向に回動しながら、少し上方に変位するように付勢されている。また、このような変位の際に調整リング53は、ガイドピン55,56によって案内される。
すなわち、調整リング53の張出部53b,53cはそれぞれ湾曲する楕円の枠状に形成されていて、ハウジング50の収容凹部50cの底面に突設されたガイドピン55,56を収容している。これらガイドピン55,56はそれぞれ枠状の張出部53b,53cの内周に接触して、その長手方向に摺動するようになっており、これにより調整リング53の変位の軌跡が規定される。
こうしてガイドピン55,56によって案内されて変位する調整リング53が、収容凹部50c内を図の右上側の高圧空間THと、左側から下側にかけての低圧空間TLとに仕切っており、高圧空間THの油圧を受けて動作される。すなわち、高圧空間THは、ハウジング50の収容凹部50c内において、調整リング53の張出部53cの外周とハウジング50の壁部とによって囲まれ、かつ、第1および第2シール材57,58によってオイルの流れが制限される領域に形成される。
そして、この高圧空間THには吐出ポート50eの開口の一部が臨み、オイルポンプ5の吐出油圧が高圧空間THに導かれて調整リング53の外周面に作用するようになる。これに対して、吸入ポート50dが連通する低圧空間TLには概ね大気圧が作用しているので、調整リング53は、高圧空間THからの油圧によって図の反時計回り方向に回動するように付勢されることになる。
一方で調整リング53は、前記したようにアーム部53dに作用する圧縮コイルスプリング54の弾発力を受けて時計回り方向に付勢されており、主にそれらの付勢力によって変位するようになる。
さらに、本実施形態では、図2および図3にそれぞれ示すように、ハウジング50内には高圧空間THに隣接するように制御空間TC(油圧室)を設けて、ここに電子制御式の制御弁60(Oil Control Vale:以下、OCVという)から制御油圧を供給し、前記のような調整リング53の変位を補助する力を発生させる。OCV60により制御油圧を高精度に調圧し、調整リング53の変位を補助する力の大きさを調整することで、前記のようなポンプ容量の制御性が高くなる。
具体的には、前記調整リング53の2つの張出部53b,53cのほぼ中間においてその外周には第2シール材58が配設され、収容凹部50cを取り囲むハウジング50の壁部の内面と摺接するようになっている。この第2シール材58は、高圧空間THと制御空間TCとの間のシール部であって、前記のような調整リング53の変位に伴いハウジング50の壁部の内面に沿って移動することになる。
同様に調整リング53のアーム部53dの先端には第3シール材59が配設されて、対向するハウジング50の壁部の内面と摺接するようになっている。この第3シール材59は、低圧空間TLと制御空間TCとの間のシール部である。なお、これら第2および第3シール材58,59、および、前記した第1シール材57は、いずれも調整リング53の厚み(図2および図3の紙面に直交する方向の寸法)と同程度の寸法を有し、耐摩耗性に優れた金属材や樹脂材にて形成されている。
こうして制御空間TCは、ハウジング50の収容凹部50c内において、調整リング53の外周(詳しくは張出部53bの外周)とアーム部53dと、それらに対向するハウジング50の壁部とによって囲まれ、かつ前記第2および第3シール材58,59によってオイルの流れが制限される領域に形成される。そして、この制御空間TCにおいて収容凹部50cの底面に開口する制御油路61によって、OCV60から制御油圧が供給される。
すなわち、制御油路61はその一端部が前記のように制御空間TCに臨む丸孔61aとして開口する一方、他端部がOCV60の制御ポート60aに連通している。OCV60は、後述するECU100(図4を参照)からの信号を受けてスプールの位置が変更され、供給ポート60bからのオイルを制御ポート60aから制御油路61へ送り出す状態と、制御油路61から排出されてきたオイルを制御ポート60aに受け入れて、ドレンポート60cから排出する状態とに切り換えられる。
また、一例としてリニアソレノイドバルブであるOCV60は、ECU100からの信号(Duty信号)に応じてスプールの位置が連続的に変化し、前記のように制御ポート60aから制御油路61へ送り出すオイルの圧力をリニアに増大または減少させることができる。よって、例えば前記のようにエンジン回転数の上昇に伴い調整リング53が図2の反時計回り方向に変位する際に、制御空間TCに供給する制御油圧を増大させて、調整リング53の変位を補助することができる。
一方、OCV60の制御によって制御空間TCに供給する制御油圧を低下させれば、調整リング53の反時計回り方向の変位を抑えることができる。これによりポンプ容量の制御性が向上する。なお、図2および図3に示すように本実施形態では、オイルポンプ5の吐出ポート50eからオイルフィルタ6への連通路6aの途中に分岐路6bを接続して、OCV60にオイルを供給するようにしているが、これに限らず、例えばオイルフィルタ6によって濾過されたオイルをOCV60に供給するようにしてもよい。
−制御系−
図4は、エンジン1における制御系の概略構成を示すブロック図である。この図4に示すように、ECU100は、CPU101、ROM102、RAM103およびバックアップRAM104などを備えている。なお、ECU100は、本発明の「油圧制御装置」の一例である。
ROM102は、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップ等が記憶されている。CPU101は、ROM102に記憶された各種制御プログラムやマップに基づいて演算処理を実行する。また、RAM103はCPU101での演算結果や各センサから入力されたデータ等を一時的に記憶するメモリであり、バックアップRAM104はエンジン1の停止時にその保存すべきデータ等を記憶する不揮発性のメモリである。これらROM102、CPU101、RAM103、および、バックアップRAM104はバス107を介して互いに接続されるとともに、入力インターフェース105および出力インターフェース106と接続されている。
入力インターフェース105には、エンジン1の冷却水温度を検出する水温センサ110、吸入空気量を計測するエアフロメータ111、吸入空気温度を計測する吸気温センサ112、排気系に備えられたOセンサ113、アクセル開度を検出するアクセルポジションセンサ114、スロットルバルブの開度を検出するスロットルポジションセンサ115、クランクシャフト13の回転位置を検出するクランクポジションセンサ116、カムシャフト14の回転位置を検出するカムポジションセンサ117、前記メインギャラリ20に配設されてメインギャラリ20内の油圧(実吐出油圧Pm)を検出する油圧センサ118、および、前記メインギャラリ20に配設されてメインギャラリ20内の油温を検出する油温センサ119などの各種センサが接続されている。
出力インターフェース106には、インジェクタ7、点火プラグのイグナイタ8、スロットルバルブのスロットルモータ9、および、前記オイルポンプ5の吐出油圧を制御する前記OCV60などが接続されている。そして、ECU100は、前記した各種センサの検出信号に基づいて、インジェクタ7の燃料噴射制御、点火プラグの点火時期制御、および、スロットルバルブの開度制御などを含むエンジン1の各種制御を実行する。
そして、ECU100は、エンジン1の運転状態などに応じてオイルポンプ5の吐出油圧を制御するとともに、その制御された吐出油圧となるようにOCV60によりポンプ容量を制御する。以下、本実施形態の特徴であるECU100によるオイルポンプ5の油圧制御について詳細に説明する。
−オイルポンプの油圧制御−
ここで、オイルポンプ5では、オイルの油温に応じてオイルの粘度が変化することから、図5に示すように、エンジン回転数が一定の場合であっても、油温が低い場合には吐出油圧が高くなるとともに、油温が高い場合には吐出油圧が低くなる。これは、油温が低い場合には、油温が高い場合に比べて、オイルの粘度が高くなるので、エンジン1の各部およびオイルポンプ5内でのオイルの漏れ量が減少するためである。
そこで、本実施形態では、油温すなわちオイルの粘度に応じて吐出油圧を制御している。具体的には、本実施形態によるECU100は、オイルポンプ5の目標吐出油圧Pfに対して、オイルポンプ5から実際に吐出された実吐出油圧PmをフィードバックしてPID制御を行うことにより、オイルポンプ5に要求する要求吐出油圧Poを算出する。この目標吐出油圧PfのPID制御では、オイルの油温に基づいて算出される共通のゲインGが設定されている。そして、要求吐出油圧Poを算出する式(1)は以下のようになる。
Po=(Pf+Tp+Ti+Td)×G×L ・・・(1)
ここで、式(1)において、Poは要求吐出油圧、Pfは目標吐出油圧、Tpは比例項、Tiは積分項、Tdは微分項、Gは共通のゲイン、Lは学習値である。なお、比例項Tpは、主に実吐出油圧Pmを目標吐出油圧Pfに追従させるためのものであり、積分項Tiは、主にオフセット(定常偏差)を解消するためのものであり、微分項Tdは、主に応答性の向上を図るためのものである。比例項Tp、積分項Tiおよび微分項Tdには、それぞれ、固有のゲイン(係数)が予め設定されており、その固有のゲインは、オイルが完全に暖められた状態(オイルの粘度が低い状態)に適応する値である。また、共通のゲインGは、オイルの油温などに基づいて算出される値であり、油温が低いほど小さくされる。また、学習値Lは、共通のゲインGのエラー(誤差)を補正するために設定されている。なお、エラーの原因は、オイルの粘度のばらつき、エンジン1の各部およびオイルポンプ5内でのオイルの漏れ量のばらつき、オイルの劣化度合いのばらつき、油種のばらつきなどである。
本実施形態では、上記した式(1)に示すように、基準となる目標吐出油圧Pfに補正量である比例項Tp、積分項Tiおよび微分項Tdを加えた後に、共通のゲインGを乗じるようにしている。すなわち、オイルが完全に暖められた状態に適応するPID制御を行い、そのPID制御の出力に対して、油温(オイルの粘度)に関する補正用の共通のゲインGを乗じている。これにより、オイルの粘度の変化(ばらつき)に応じて適合する吐出油圧(要求吐出油圧Po)を得ることが可能になる。すなわち、幅広い粘度領域に対応可能なPID制御を行うことが可能になる。
また、本実施形態では、上記した式(1)において、共通のゲインGのエラーを補正するための学習値Lが設定されている。この学習値Lは、更新可能な値であり、たとえばバックアップRAM104(図4参照)に記憶されている。このため、今回のトリップ中に更新された学習値Lは、次回のトリップに引き継がれて利用される。
また、学習値Lは、積分項Tiの値が0から所定値以上乖離した場合に、積分項Tiの値が0に近づくように所定量だけ更新される。すなわち、学習値Lは、所定量ずつ徐々に増減されるようになっている。このように、学習値Lの更新により、応答の遅い積分項Tiによる補正量が減少する、すなわち積分項Tiを0に近づけるように、共通のゲインGを補正することによって、実吐出油圧Pmを早期に目標吐出油圧Pfに収束させることが可能になる。なお、積分項Tiの値の乖離を判断するための所定値は、たとえば予め設定された一定値であり、学習値Lが更新される際の所定量は、たとえば予め設定された一定量である。
[吐出油圧の制御フロー]
図6は、本実施形態による吐出油圧の制御手順の一例を示したフローチャートである。次に、図6を参照して、本実施形態の吐出油圧のフィードバック制御の一例について説明する。なお、以下の制御フローは、ECU100により所定の時間間隔毎に繰り返し実行される。
まず、ステップST1において、各センサからの情報が取得される。たとえば、クランクポジションセンサ116の検出結果に基づいてエンジン回転数が算出され、油温センサ119によりメインギャラリ20内の油温が検出される。
そして、ステップST2において、各種パラメータ(たとえば、エンジン回転数、吸入空気量、燃料噴射量、エンジン1の冷却水温度、およびメインギャラリ20内の油温など)に基づいて目標吐出油圧Pfが算出される。
次に、ステップST3において、油圧センサ118の検出結果に基づいてメインギャラリ20内の油圧(実吐出油圧Pm)が算出される。
次に、ステップST4において比例項Tpが算出される。この比例項Tpは、たとえば、目標吐出油圧Pfと実吐出油圧Pmとの偏差にゲイン(比例項固有のゲインであって、オイルが完全に暖められた状態に適応するゲイン)を乗じて算出される。
次に、ステップST5において積分項Tiが算出される。この積分項Tiは、たとえば、目標吐出油圧Pfと実吐出油圧Pmとの偏差の積分値にゲイン(積分項固有のゲインであって、オイルが完全に暖められた状態に適応するゲイン)を乗じて算出される。
次に、ステップST6において微分項Tdが算出される。この微分項Tdは、たとえば、実吐出油圧Pmの変化速度にゲイン(微分項固有のゲインであって、オイルが完全に暖められた状態に適応するゲイン)を乗じて算出される。
次に、ステップST7において共通のゲインGが算出される。この共通のゲインGは、たとえば、目標吐出油圧Pf、オイルの油温およびエンジン回転数に基づいて算出される。なお、共通のゲインGは、油温が低いほど小さくされ、エンジン回転数が高いほど小さくされる。
次に、ステップST8において、積分項Tiの値が0から所定値以上乖離し、かつ、所定の学習条件が成立するか否かが判断される。そして、積分項Tiの値が0から所定値以上乖離し、かつ、所定の学習条件が成立すると判断された場合には、ステップST9において、学習値Lが更新され、ステップST10に移る。その一方、積分項Tiの値が0から所定値以上乖離していないと判断された場合、または、所定の学習条件が成立しないと判断された場合には、学習値Lの更新が行われることなく、ステップST10に移る。なお、所定の学習条件の一例としては、油温が所定の条件を満たすか否かなどである。
ここで、ステップST9では、積分項Tiの値が0に近づくように(オフセットが減少するように)所定量だけ学習値Lが更新される。たとえば、目標吐出油圧Pfに対して実吐出油圧Pmが低い場合には、共通のゲインGを大きくする側に補正するように、学習値Lが所定量だけ増加されて更新される。なお、更新された学習値Lは、たとえばバックアップRAM104に記憶される。
そして、ステップST10において、上記した式(1)を用いて要求吐出油圧Poが算出される。その後、オイルポンプ5が要求吐出油圧Poを出力するようにOCV60が制御される。すなわち、OCV60に供給するDuty信号を制御することにより、オイルポンプ5のポンプ容量を制御して、オイルポンプ5が要求吐出油圧Poを出力するように制御される。
上記した一連の制御が繰り返し行われることにより、実吐出油圧Pmが目標吐出油圧Pfに収束される。
−効果−
本実施形態では、上記のように、PID制御における比例項Tp、積分項Tiおよび微分項Tdに対して共通のゲインGを設定し、その共通のゲインGをオイルの油温に基づいて算出することによって、オイルの油温と相関関係のあるオイルの粘度に応じて共通のゲインGを設定することができる。このため、オイルが高粘度である場合に共通のゲインGを小さくし、オイルが低粘度である場合に共通のゲインGを大きくすることにより、粘度の変化に対応しながら、オイルポンプ5の吐出油圧を制御することができる。すなわち、内接歯車型のオイルポンプ5であっても幅広い粘度領域で吐出油圧を適切に制御可能である。その結果、オイルの粘度の変化に対応しながら、オイルの吐出に必要な動力を必要最小限に抑えてエンジン1の燃料消費率の改善を図ることができる。たとえば、油温が低い場合に、オイルポンプ5の能力が過剰になるのを抑制することができるので、エンジン1の燃料消費率の改善を図ることができる。
また、本実施形態では、共通のゲインGを補正するための学習値Lを設定することによって、共通のゲインGにエラーが生じた場合に、そのエラーを補正することができる。すなわち、オイルの粘度のばらつき、エンジン1の各部およびオイルポンプ5内でのオイルの漏れ量のばらつき、オイルの劣化度合いのばらつき、油種のばらつきなどに対処することが可能である。
また、本実施形態では、積分項Tiの値が0から所定値以上乖離した場合に、積分項Tiの値が0に近づくように学習値Lを更新することによって、共通のゲインGを直接学習する場合に比べて、安定した学習を行うことができる。
−他の実施形態−
なお、今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、本実施形態では、ガソリンエンジンに搭載されたオイルポンプ5を制御するECU100に本発明を適用する例を示したが、これに限らず、ディーゼルエンジンに搭載されたオイルポンプを制御するECUに本発明を適用してもよい。
また、本実施形態では、学習値Lの更新の際における所定量が予め設定された一定量である例を示したが、これに限らず、学習値Lの更新の際における所定量が積分項Tiの値の乖離などに基づいて調整(変更)されるようにしてもよい。
また、吐出油圧の制御フローの順番は、上記した順番以外であってもよい。
また、ポンプ容量を変更するオイルポンプとして図2のような歯車を用いるタイプを例示したが、本発明はこれに限るものではなく、漏れが発生するタイプであれば、本制御フローが有効に働く。
本発明は、内燃機関の動力により駆動されるオイルポンプを制御する油圧制御装置に利用可能であり、さらに詳しくは、容量可変機構を備える内接歯車型のオイルポンプを制御する油圧制御装置に有効に利用することができる。
5 オイルポンプ
100 ECU(油圧制御装置)

Claims (3)

  1. 容量可変機構を備える内接歯車型のオイルポンプから吐出されるオイルの油圧を制御する油圧制御装置において、
    前記オイルポンプの目標吐出油圧に対して、前記オイルポンプから実際に吐出された実吐出油圧をフィードバックしてPID制御を行うことにより、前記オイルポンプに要求する要求吐出油圧を算出するように構成され、
    前記PID制御における比例項、積分項および微分項に対して共通のゲインを設定し、
    前記共通のゲインは、オイルの油温に基づいて算出され、オイルの油温が低いほど小さくされるとともに、オイルの油温が高いほど大きくされることを特徴とする油圧制御装置。
  2. 請求項1に記載の油圧制御装置において、
    前記共通のゲインを補正するための学習値を記憶するように構成されていることを特徴とする油圧制御装置。
  3. 請求項に記載の油圧制御装置において、
    前記積分項の値が0から所定値以上乖離した場合に、前記積分項の値が0に近づくように前記学習値を更新することを特徴とする油圧制御装置。
JP2013030142A 2013-02-19 2013-02-19 油圧制御装置 Active JP6009966B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030142A JP6009966B2 (ja) 2013-02-19 2013-02-19 油圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030142A JP6009966B2 (ja) 2013-02-19 2013-02-19 油圧制御装置

Publications (2)

Publication Number Publication Date
JP2014159761A JP2014159761A (ja) 2014-09-04
JP6009966B2 true JP6009966B2 (ja) 2016-10-19

Family

ID=51611603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030142A Active JP6009966B2 (ja) 2013-02-19 2013-02-19 油圧制御装置

Country Status (1)

Country Link
JP (1) JP6009966B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6540421B2 (ja) * 2015-09-24 2019-07-10 アイシン精機株式会社 可変オイルポンプ
JP6485305B2 (ja) 2015-09-24 2019-03-20 アイシン精機株式会社 可変オイルポンプ
JP6493115B2 (ja) 2015-09-24 2019-04-03 アイシン精機株式会社 可変オイルポンプ
JP6468449B2 (ja) * 2017-04-27 2019-02-13 マツダ株式会社 エンジンの制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309077A (ja) * 2007-06-15 2008-12-25 Denso Corp 燃料噴射弁の診断装置及び情報取得装置
JP2010019138A (ja) * 2008-07-09 2010-01-28 Toyota Motor Corp 内燃機関の空燃比制御装置
JP5834509B2 (ja) * 2011-06-08 2015-12-24 日本電産トーソク株式会社 オイルポンプの制御装置

Also Published As

Publication number Publication date
JP2014159761A (ja) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5898107B2 (ja) 可変容量型オイルポンプの制御装置
JP3068806B2 (ja) 内燃機関のバルブタイミング制御装置
JP5960616B2 (ja) 可変容量形オイルポンプ
JP3477128B2 (ja) 内燃機関のバルブタイミング制御装置
KR100355123B1 (ko) 내연기관의 밸브타이밍 제어장치
JP6013223B2 (ja) エンジンの油圧制御装置
JP6056595B2 (ja) 可変容量型オイルポンプの制御装置
JP4225186B2 (ja) 内燃機関のバルブタイミング制御装置
KR100355121B1 (ko) 내연기관의 밸브타이밍 제어장치
JP6009966B2 (ja) 油圧制御装置
JP4049905B2 (ja) 油圧式バルブタイミング調節システム
JP5913140B2 (ja) 無端伝動帯の押圧力調整装置
JP3134763B2 (ja) 内燃機関のバルブタイミング制御装置
JP3264177B2 (ja) 内燃機関のバルブ特性制御装置
JP6352888B2 (ja) 内燃機関の制御装置
JP4775110B2 (ja) バルブタイミング制御装置
JP6092652B2 (ja) 可変容量型オイルポンプの制御装置
US9670800B2 (en) Control apparatus and control method for variable valve mechanism
JP5422141B2 (ja) エンジンのバルブタイミング調節装置
JP7517141B2 (ja) 可変動弁機構の油圧制御装置
EP1375834A1 (en) Compensating for VCT phase error over speed range
JP3075177B2 (ja) 内燃機関のバルブタイミング制御装置
JP6243304B2 (ja) 内燃機関の制御装置
JP2009085068A (ja) 内燃機関の制御装置
JP2004169573A (ja) 内燃機関の吸入空気量制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160915

R151 Written notification of patent or utility model registration

Ref document number: 6009966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250