JP6008187B2 - 廃棄物焼却炉及び廃棄物焼却方法 - Google Patents

廃棄物焼却炉及び廃棄物焼却方法 Download PDF

Info

Publication number
JP6008187B2
JP6008187B2 JP2012268062A JP2012268062A JP6008187B2 JP 6008187 B2 JP6008187 B2 JP 6008187B2 JP 2012268062 A JP2012268062 A JP 2012268062A JP 2012268062 A JP2012268062 A JP 2012268062A JP 6008187 B2 JP6008187 B2 JP 6008187B2
Authority
JP
Japan
Prior art keywords
combustion
gas
waste
grate
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012268062A
Other languages
English (en)
Other versions
JP2014114989A (ja
Inventor
中山 剛
剛 中山
知広 傳田
知広 傳田
規人 植竹
規人 植竹
厚志 長尾
厚志 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012268062A priority Critical patent/JP6008187B2/ja
Priority to MYPI2014702412A priority patent/MY192647A/en
Priority to CN201380012937.4A priority patent/CN104160214B/zh
Priority to PCT/JP2013/056039 priority patent/WO2013133290A1/ja
Publication of JP2014114989A publication Critical patent/JP2014114989A/ja
Application granted granted Critical
Publication of JP6008187B2 publication Critical patent/JP6008187B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

本発明は、都市ごみ等の廃棄物を焼却する火格子式の廃棄物焼却炉及び廃棄物焼却方法に関する。
都市ごみ等の廃棄物を焼却処理する焼却炉として、火格子式廃棄物焼却炉が広く用いられている。その代表的なものの構成の概要を以下に説明する。
火格子式廃棄物焼却炉は、廃棄物を燃焼する燃焼室の下部に廃棄物の移動方向に配置され三段から成る火格子(乾燥火格子、燃焼火格子そして後燃焼火格子)を有し、後燃焼火格子の上方に位置する燃焼室の出口に二次燃焼室が連設されている。上記燃焼室には乾燥火格子の上方に位置して廃棄物投入口が設けられている。そして後燃焼火格子の廃棄物の移動方向下流側下方には灰落下口が設けられている。通常、上記二次燃焼室は廃熱回収用の廃熱ボイラの一部でもあり、その入口近傍部分である。また、乾燥火格子、燃焼火格子そして後燃焼火格子それぞれの火格子下から燃焼用一次空気を吹き込む燃焼用一次空気吹込み機構が設けられている。
このような火格子式廃棄物焼却炉において、廃棄物投入口から燃焼室内に投入された廃棄物は、乾燥火格子上に堆積され、乾燥火格子の下からの空気と炉内の輻射熱により乾燥されると共に、昇温されて着火する。すなわち、上記乾燥火格子の直上方では、廃棄物の移動方向の上流側空間で乾燥領域が形成され、乾燥火格子の直上方の下流側空間から燃焼火格子の直上方の上流側空間にかけて燃焼開始領域が形成される。燃焼開始領域で着火して燃焼を開始した廃棄物は、乾燥火格子から燃焼火格子上に送られ、廃棄物が熱分解されて可燃性ガスが発生し、燃焼火格子の下から送られる燃焼用一次空気により可燃性ガスと固形分が燃焼し、燃焼火格子の直上方空間で主燃焼領域が形成される。そして、更に後燃焼火格子上で、固定炭素など未燃分が完全に燃焼し、該後燃焼火格子の直上方空間で後燃焼領域が形成される。しかる後、燃焼後に残った灰は、灰落下口より外部に排出される。
かくして、火格子式廃棄物焼却炉では、廃棄物は燃焼室にて三段の火格子の下から吹き込まれる燃焼用一次空気により燃焼する。さらに、燃焼室からの燃焼排ガスに含まれている可燃性ガスの未燃分は、二次燃焼室で二次燃焼用空気を受けて燃焼する。
従来の火格子式廃棄物焼却炉では、実際に焼却炉内に供給する空気量を廃棄物の燃焼に必要な理論空気量で除した比(空気比)は、通常、1.6程度である。これは、一般燃料の燃焼に必要な空気比である1.05〜1.2に比べて大きくなっている。その理由は、廃棄物には、一般燃料としての液体燃料や気体燃料に比べて不燃分が多く、かつ不均質なため、空気の利用効率が低く、燃焼を行うには多量の空気が必要となるためである。しかし、単に供給空気を多くすると、空気比が大きくなるにしたがって排ガス量も多くなるので、これに伴ってより大きな排ガス処理設備が必要となる。
廃棄物焼却炉において空気比を小さくした状態で、支障なく廃棄物を燃焼することができれば、排ガス量は低減し、排ガス処理設備がコンパクトになり、その結果、廃棄物焼却施設全体が小型化して設備費を低減できる。これに加えて、排ガス処理のための薬剤使用量も低減するので、運転費を低減できる。さらには、排ガス量の低減により廃熱ボイラの熱回収率を向上できるので、熱回収できずに大気に捨てられる熱量を低減させ、これに伴って廃棄物焼却廃熱を利用する発電の効率を上げることができる。
このように、低空気比燃焼を行う利点は大きいが、一方で、空気比が1.5以下の低空気比燃焼では燃焼が不安定になるという問題が生じる。すなわち、低空気比で廃棄物を燃焼させると、燃焼が不安定となり、COの発生が増加したり、火炎温度が局所的に上昇してNOxが急増したり、煤が大量に発生したりして排ガス中の有害物が増加するという問題が生じ、また、局所的な高温により廃棄物や灰が溶融して炉壁に付着してクリンカが発生したり、炉壁の耐火物の寿命が短くなるという問題点がある。
このような状況のもとで、空気比が1.5以下の低空気比で安定して燃焼することができる廃棄物焼却炉が検討されており、特許文献1に開示されている(段落0063)。この特許文献1では、廃棄物焼却炉の二次燃焼領域の出口側から高温排ガスを導出し除塵した後、空気と混合し高温ガスとし燃焼室内に吹き込むことにより、以下の効果が得られるとしている。
即ち、高温ガスの顕熱と輻射により廃棄物の熱分解を促進すること、酸素を含んだ高温ガスの吹込みにより廃棄物の熱分解により発生した可燃性ガスの燃焼を促進すること、さらに高温ガスを燃焼室の側壁に設けたノズルから燃焼室内に吹き込み(段落0040)、この高温ガスの流れと、廃棄物から発生した可燃性ガスと燃焼ガスとの上昇流とを衝突させ、廃棄物層直上に流れの遅いよどみ領域を形成することにより、可燃性ガスの流れが緩やかになり、可燃性ガスが酸化剤成分と十分に混合されるため安定した燃焼が行われることなどの効果があり、高温ガスを燃焼室内に吹き込むことにより、低空気比燃焼操業下で廃棄物の燃焼を安定して行わせることができるとしている。
特開2004−84981号公報
廃棄物焼却炉による廃棄物の燃焼においては、廃棄物が熱分解されて発生する可燃性ガスの燃焼を安定して行うことが、燃焼によって発生するCO,NOxなどの有害物質の発生量を抑制することに大きく寄与する。特許文献1に記載の廃棄物焼却炉では、燃焼室側壁に設けたノズルから高温ガスを燃焼室内に吹き込むようになっている。この場合、側壁から吹き込まれた高温ガスが、側壁近傍から中央部までの燃焼室全般に亘って、上記の効果を偏りなく奏して、低空気比燃焼操業下で廃棄物層から発生する可燃性ガスの燃焼を安定して行うことが、必ずしもできないことがある。
また,廃棄物の焼却処理量が多く、燃焼室幅(火格子上での廃棄物の移動方向に対して直角方向での幅)が広い焼却炉の場合には、側壁から吹き込まれた高温ガスが、燃焼室中央付近まで到達せず、上記の燃焼促進効果や燃焼安定化効果を発揮できない。そのため、低空気比燃焼操業が十分に行えないという問題がある。また、焼却炉の規模や燃焼室の形状に応じた高温ガスの適切な吹き込み条件が必ずしも明確になっていないことがある。
本発明は、かかる事情に鑑み、廃棄物焼却炉の燃焼室の大きさにかかわらず、空気比が1.5以下の低空気比燃焼操業を行った場合においても、燃焼室側壁近傍から中央部までの燃焼室全般に亘って、廃棄物の燃焼を安定して行うことができ、CO,NOx等の有害物質の発生量を抑制でき、低空気比燃焼操業を問題なく行うことが可能な火格子式廃棄物焼却炉及び廃棄物焼却方法を提供することを課題とする。
発明者らは、燃焼室天井に設けた吹込口から高温ガスを燃焼室内に下向きに吹き込む廃棄物焼却炉を検討し、下向きの高温ガスの流れと、廃棄物から発生した可燃性ガスと燃焼ガスとの上昇流とを衝突させることにより、燃焼室の大きさにかかわらず燃焼室内全般に亘って、廃棄物層直上に流れの遅いよどみ領域又は上下方向に循環する循環領域を形成することができ、燃焼促進効果や燃焼安定化効果が得られることを見出した。さらに、燃焼室天井の吹込口から高温ガスを下向きに吹き込む場合に、吹き込む高温ガスの流速を適切に定めることが重要であり、吹き込む高温ガスの流速を燃焼室高さに合わせて設定することが好ましいことを見出し、燃焼室高さに合わせた高温ガスの流速の適切な範囲を、廃棄物の燃焼安定性への影響を調べることにより定めた。
本発明によれば、上述の課題は、 火格子式廃棄物燃焼炉に関しては次の第一発明、その廃棄物焼却方法に関しては第二発明により解決される。
<火格子式廃棄物焼却炉>
(1)第一発明
火格子式廃棄物焼却炉であって、火格子を備え火格子上の廃棄物を燃焼する燃焼室と、
燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む一次空気吹込み手段と、高温ガスを上記燃焼室の天井から、火格子上の廃棄物の移動方向である炉長方向で上記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の領域に向かって下向きに吹き込む高温ガス吹込み手段とを具備し、上記高温ガス吹込み手段は、高温ガスの吹込み流速を、燃焼室高さとの関係において次の(1)式で表される範囲とするように、制御する高温ガス吹込み流速制御手段を備えることを特徴とする火格子式廃棄物焼却炉。
−0.107X2+4.70X+3.96 ≦ Y ≦ −0.199X2+8.73X+7.36…(1)
Y:高温ガスの吹込み流速(m/sec)
X:燃焼室高さ(m)
第一発明において、高温ガス吹込み手段は、温度が100〜400℃の範囲であり、酸素濃度が5〜30体積%の範囲である高温ガスを吹き込むことが好ましい。
また、第一発明において、高温ガス吹込み手段は、焼却炉から排出された排ガスの一部を返送した返送排ガス、返送排ガスと空気の混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つを高温ガスとして供給する高温ガス供給源を備えることが好ましい。
<火格子式廃棄物焼却方法>
(2)第二発明
燃焼室を備える火格子式廃棄物焼却炉による廃棄物焼却方法であって、燃焼用一次空気を火格子下から上記燃焼室内に吹き込み、高温ガスを上記燃焼室の天井から、火格子上の廃棄物の移動方向である炉長方向で上記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の領域に向かって下向きに吹き込み、高温ガスの吹込み流速を、燃焼室高さとの関係において次の(1)式で表される範囲とすることを特徴とする廃棄物焼却方法。
−0.107X2+4.70X+3.96 ≦ Y ≦ −0.199X2+8.73X+7.36…(1)
Y:高温ガスの吹込み流速(m/sec)
X:燃焼室高さ(m)
第二発明において、高温ガスは、温度が100〜400℃の範囲であり、酸素濃度が5〜30体積%の範囲であることが好ましい。
第二発明において、高温ガスを、燃焼室内ガス流量を炉長方向に対して直角な面での燃焼室内断面積で除した空塔速度の5〜20倍の流速で吹き込むことが好ましい。
また、第二発明においては、高温ガスは、焼却炉から排出された排ガスの一部を返送した返送排ガス、返送排ガスと空気の混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つであることが好ましい。
本発明では、以上のように、燃焼室の天井から高温ガスを吹き込むこととしたので、次のような効果を得る。
廃棄物焼却炉燃焼室の天井に設けた吹込口から高温ガスを下向きに吹き込み、吹き込む高温ガスの流速を燃焼室高さに対して適切な範囲にするので、高温ガスの下向きの流れと、廃棄物層から発生する可燃性ガスと燃焼ガスとの上向きの流れとを衝突させ、廃棄物層直上でガス流れが緩やかなよどみ領域又は上下方向に循環する循環領域を燃焼室の幅方向と長さ方向の広い範囲に亘って形成することができるので、平面状燃焼領域を定在させることができ、焼却炉の大きさ、すなわち、燃焼室の幅や高さに関わらず、空気比が1.5以下の低空気比燃焼においても廃棄物と、発生する可燃性ガスを安定して燃焼することができる。そして、燃焼が安定するため、廃棄物焼却炉から排出される排ガス中のCO,NOxなど有害物の発生量を抑制することができる。さらには、定在する平面状火炎の輻射などにより廃棄物の熱分解を促進することができるため、火格子に供給する廃棄物量(火格子負荷)および燃焼室内に供給する廃棄物の熱量(火炉負荷)を大きくすることができる。このため廃棄物焼却処理量に対して燃焼室内容積を小さくすることができ、焼却炉の炉高を低くすることができ廃棄物焼却設備をコンパクトにすることにより設備費用と運転費用を低減することができる。
本発明の一実施形態に係る廃棄物焼却炉の概要を示す構成図である。 図2(b)は焼却炉内燃焼状態を説明するための図1の廃棄物焼却炉の燃焼室幅方向の断面図であり、図2(a)の従来の焼却炉の対応断面図と対比して示されている。 廃棄物焼却炉に吹き込む高温ガスの吹込み流速の、燃焼室高さに対する適切な範囲を示す図である。
以下、本発明の種々の実施形態により本発明を詳細に説明する。なお、本発明の技術的範囲は、これらの実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶものである。
先ず、本実施形態の説明に先立ち、本発明による高温ガス吹込みによる燃焼安定化に関し、従来の廃棄物焼却炉と、本発明の廃棄物焼却炉との構造上の比較、そして本発明により得られる効果を要約して述べておく。
添付図面の図2(a)は、従来の廃棄物焼却炉(特許文献1に記載の廃棄物焼却炉)内の燃焼状態を示し、図2(b)は、本発明の一実施形態に係る廃棄物焼却炉内の燃焼状態を示しており、これを参照して、高温ガス吹込みによる燃焼安定化に関して、廃棄物焼却炉内の燃焼状態について、従来の廃棄物焼却炉と本発明の一実施形態に係る廃棄物焼却炉とを比較して説明する。
図2(a)に示すように、従来の廃棄物焼却炉20は、側壁(火格子5上の廃棄物Wの移動方向に直角方向となる炉幅方向で対向する側壁)21に吹込口23が設けられ、火格子5上の廃棄物Wを、下方からの燃焼用空気Aにより燃焼する。廃棄物Wの燃焼に際しては、燃焼室の側壁21に設けられた吹込口23から高温ガスBを斜め下方に吹き込み、高温ガスBと、火格子5上の廃棄物層Wから上昇してくる熱分解により発生した可燃性ガスと燃焼ガスとの上昇流とを衝突させ、廃棄物層W直上に流れの遅いよどみ領域を形成する。そこで可燃性ガスを燃焼し、平面状燃焼領域(平面火炎)Dを形成している。このような従来の焼却炉では、低空気比燃焼操業でも安定な燃焼が得られるが、燃焼室幅(上記側壁同士間距離)の大きい燃焼炉では、 図2(a)に示すように、側壁21の吹込口23から吹き込まれた高温ガスBが、燃焼室中央付近まで到達せず、中央部ではよどみ領域を形成できないため、中央部では、平面状燃焼領域を形成することができず、可燃性ガスが十分に燃焼されず、炉幅方向に不均質な燃焼となってしまうという問題がある。
これに対し、図2(b)に示すように、本発明の一実施形態に係る廃棄物焼却炉1は、天井22に吹込口13が炉幅方向に複数設けられ、火格子5上の廃棄物Wを、下方からの燃焼用空気Aにより燃焼するものである。廃棄物Wの燃焼に際しては、天井22に設けられた吹込口13から高温ガスBを下向きに吹き込み、高温ガスBと、廃棄物Wから上昇してくる可燃性ガスと燃焼ガスとの上昇流とを衝突させ、廃棄物層W直上に流れの遅いよどみ領域又は上下方向に循環する循環領域を形成し、平面状燃焼領域(平面火炎)Eを炉幅方向、炉長方向(廃棄物の移動方向)に均一に形成する。これにより、炉幅の大きい焼却炉でも、均一で安定した燃焼が可能となる。
本発明の廃棄物焼却炉は、燃焼室天井に設けた吹込口から高温ガスを燃焼室内に下向きに吹き込み、下向きの高温ガスの流れと、廃棄物から発生した可燃性ガスと燃焼ガスとの上昇流とを衝突させることにより、燃焼室の大きさにかかわらず燃焼室内全般に亘って、廃棄物層直上に流れの遅いよどみ領域を形成し、燃焼促進効果や燃焼安定化効果が得られる。さらに、燃焼室天井の吹込口から下向きに吹き込む高温ガスの流速を、燃焼室高さに合わせて設定することにより、燃焼室高さにかかわらず燃焼促進効果や燃焼安定化効果が確実に得られる。すなわち、このように、本発明では、高温ガスを燃焼室天井から下向きに吹き込むことにより、次のような効果を得る。
高温ガスを燃焼室天井から下向きに吹き込むことの効果を詳しく説明する。
(1)高温ガスの顕熱と輻射により廃棄物Wの熱分解を促進する。
(2)酸素を含んだ高温ガスの吹込みにより廃棄物Wの熱分解により発生した可燃性ガスの燃焼を促進する。
(3)高温ガスを燃焼室の天井22に設けた吹込口13から燃焼室内に下向きに吹き込み、高温ガスの下向きの流れと、廃棄物Wから発生する可燃性ガスと燃焼ガスとの上昇流とを対向させ、廃棄物層直上に流れの遅いよどみ領域又は流れが上下方向に循環する循環領域を形成することにより、可燃性ガスの流れが緩やかになり、可燃性ガスが燃焼用一次空気や高温ガスによって供給される酸化剤成分と十分に混合されるため安定した燃焼が行われる。この廃棄物層直上のよどみ領域又は循環領域で可燃性ガスが安定して燃焼し平面状燃焼領域(平面火炎)が形成され、定在する。
(4)定在する平面火炎の輻射により廃棄物Wの熱分解を促進する。
かくして、(1)〜(4)の作用により、低空気比燃焼操業下でも廃棄物Wの燃焼を安定して行わせることができる。そして、燃焼が安定するため可燃性ガスが十分に燃焼され、焼却炉から排出される排ガス中のCO,NOxなど有害物の発生量を抑制することができる。
さらに、定在する平面火炎Eの輻射などにより廃棄物Wの熱分解を促進することができるため、火格子5に供給する廃棄物Wの量(火格子負荷)および燃焼室内に供給する廃棄物Wの熱量(火炉負荷)を大きくすることができる。このため廃棄物焼却処理量に対して燃焼室内容積を小さくすることができ、焼却炉の炉高を低くすることができ、廃棄物焼却設備をコンパクトにすることにより設備費用及び運転費用を低減することができる。
次いで、本発明では、燃焼室高さに対応した高温ガス吹込み流速の適切な範囲の上限と下限を明らかにし、好ましい範囲を定めた。
廃棄物から発生する可燃ガス及び燃焼ガスの上昇流に対向して、燃焼室天井から下向きに高温ガスを吹き込むことにより、廃棄物層の直上に適切によどみ領域又は循環領域を形成して平面状燃焼領域を定在させるためには、吹込み高温ガスを廃棄物層からの上昇流に適切に衝突させる必要があり、燃焼室高さが高くなれば流速を速くする必要がある。ただし、流速を速くし過ぎてしまうと廃棄物層に直接吹込み高温ガスが衝突してしまい、廃棄物を冷却してしまったり、廃棄物を飛び散らかせてしまったりして、燃焼の不安定化、飛灰の増加等がおこり好ましくない。そこで、廃棄物層に悪影響を与えない流速を求め高温ガスの流速の上限を定める。また、よどみ領域又は循環領域を形成することができる限界の流速から高温ガスの流速の下限を定める。このようにして燃焼室高さに合わせて高温ガス流速の適切な範囲を定める。
廃棄物の燃焼安定性への影響を示す指標として、発生する有害物の発生量を調べることにより、燃焼室高さに合わせた高温ガスの流速の適切な範囲を定めた。詳しくは、ある燃焼室高さの廃棄物焼却炉について高温ガスの流速を様々に変えた場合に、廃棄物焼却炉から排出される排ガス中のCO,NOxなど有害物の濃度を調べ、有害物の発生量を抑制することができる、つまり安定した燃焼が行える高温ガスの流速の範囲を求め、さらに、燃焼室高さが異なる場合について同様に検討し、燃焼室高さに対する高温ガスの流速の好ましい範囲を明らかにした。このような範囲は、燃焼室高さに対する高温ガスの吹込み流速の関係を示す図3で、示されるような上限と下限をもつ範囲である。
高温ガスの吹込み流速の適切な範囲の上限と下限を示す線は、高温ガスの吹込み流速(Y)と燃焼室高さ(X)との関係式として、下記のようになる。
上限 Y=−0.199X2+8.73X+7.36
下限 Y=−0.107X2+4.70X+3.96
Y:高温ガスの吹込み流速(m/sec)
X:燃焼室高さ(m)
高温ガスの吹込み流速を燃焼室高さに対して、このような上限と下限を示す関係式により定められるような適切な範囲にすることにより、本発明の廃棄物焼却炉そして廃棄物焼却方法では、燃焼室高さに対して、燃焼室天井の吹込口から下向きに吹き込まれる高温ガスの適切な吹き込み条件が明確になり、広い範囲の燃焼室高さの焼却炉で、高温ガスの作用により、低空気比燃焼下でも廃棄物の燃焼が安定する。
以下、本発明の一実施形態の火格子式焼却炉の基本構成、各構成装置そして作用について説明する。
図1は本発明の一実施形態に係る廃棄物焼却炉を示す概略側断面図である。まず、本発明の一実施形態に係る廃棄物焼却炉の基本構成と焼却方法の概要を説明し、次いで各構成装置の詳細を説明する。この実施形態において、燃焼室内での廃棄物の移動方向における燃焼室の上流側を前部、下流側を後部という。
<火格子式焼却炉の基本構成>
図1に示す廃棄物焼却炉1は、高温ガスを天井等から下向きに吹き込むことにより低空気比燃焼を安定して行うことによって、火格子式廃棄物焼却炉設備をコンパクトにすることができ、設備費用、運転費用を大幅に低減できる。
本実施形態に係る廃棄物焼却炉1は、燃焼室2と、この燃焼室2の廃棄物の流れ方向の上流側(図1の左側)上方に配置され、廃棄物を燃焼室内に投入するための廃棄物投入口3と、燃焼室2の廃棄物の流れ方向の下流側(図1の右側)の上方に連設されるボイラ4とを備える火格子式の焼却炉である。
燃焼室2の底部には、廃棄物を移動させながら燃焼させる火格子(ストーカ)5が設けられている。この火格子5は、廃棄物投入口3に近い方から、すなわち、上流側から乾燥火格子5a、燃焼火格子5b、後燃焼火格子5cの順に設けられている。
乾燥火格子5aでは主として廃棄物の乾燥と着火が行われる。燃焼火格子5bでは主として廃棄物の熱分解、部分酸化が行われ、熱分解により発生した可燃性ガスと固形分の燃焼が行われる。後燃焼火格子5c上では、僅かに残った廃棄物中の未燃分を完全に燃焼させる。完全に燃焼した後の燃焼灰は、灰落下口6より排出される。
上記燃焼室2内の乾燥火格子5a、燃焼火格子5b及び後燃焼火格子5cの下部には、それぞれ風箱7a,7b,7c,7dが設けられている。ブロワ8により供給される燃焼用一次空気Aは、燃焼用一次空気供給管9を通って上記各風箱7a,7b,7c,7dに供給され、各火格子5a,5b,5cを通って燃焼室2内に供給される。なお、火格子下から供給される燃焼用一次空気Aは、火格子5a,5b,5c上の廃棄物の乾燥及び燃焼に使われるほか、火格子5a,5b,5cの冷却作用、廃棄物の攪拌作用を有する。
上記燃焼室2の下流側における出口には廃熱ボイラ4が連設され、廃熱ボイラ4の入口近傍が燃焼室2から排出されるガス中の未燃ガスを燃焼する二次燃焼領域10となっている。廃熱ボイラの一部である二次燃焼領域10内で未燃ガスを二次燃焼用ガスを吹き込み二次燃焼し、この二次燃焼の後に燃焼排ガスは廃熱ボイラ4で熱回収される。熱回収された後、廃熱ボイラから排出された燃焼排ガスは、図示しない排ガス処理装置系で消石灰等による酸性ガスの中和と、活性炭によるダイオキシン類の吸着が行われ、さらに図示しない除塵装置に送られ、中和反応生成物、活性炭、ダストなどが回収される。上記除塵装置で除塵され、無害化された後の燃焼排ガスは、図示しない誘引ファンにより誘引され、煙突から大気中に放出される。
このような基本構成である火格子式焼却炉において、本実施形態に係る廃棄物焼却炉1は、燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む一次空気吹込み手段と、高温ガスを燃焼室2の天井から、炉長方向で燃焼室2内の燃焼開始領域から主燃焼領域までの間の任意の領域に向かって下向きに吹き込む高温ガス吹込み手段と、二次燃焼用ガスを二次燃焼領域に吹き込む二次燃焼用ガス吹込み手段とを具備している。高温ガス吹込み手段は、複数の高温ガス吹込口を備え、高温ガスを廃棄物から発生する可燃性ガス及び燃焼ガスの上昇流に対向して吹き込むことにより、廃棄物層の直上によどみ領域又は循環領域を形成して平面状燃焼領域を定在させる。
<一次空気吹込み手段>
本実施形態では、廃棄物焼却炉1は、燃焼用空気となる一次空気の一次空気供給系を備えている。一次空気供給系は、空気供給源からの一次空気Aを管路9を経て、乾燥火格子5a、燃焼火格子5b及び後燃焼火格子5cのそれぞれの風箱7a,7b,7c,7dに分岐供給管から送り込むようになっており、上記管路9には、ブロワ8そして流量調整機構としてのダンパ11が設けられている。
<高温ガス吹込み手段>
高温ガス吹込み手段は、燃焼室2の外に設けられた高温ガス供給源12と、燃焼室2へ高温ガスBを吹き込む高温ガス吹込口13と、高温ガスBを上記高温ガス供給源12から上記高温ガス吹込口13へ導く管路14と、流量調整機構としてのダンパ15とを有している。
高温ガス吹込口13は、燃焼室2の天井の、乾燥火格子5aの廃棄物の移動方向下流側(後部)から燃焼火格子5bまでの範囲内の火格子直上の任意位置に設けられている。図1の例では、廃棄物の移動方向すなわち焼却炉2の長さ方向で、上記乾燥火格子5aの下流側位置の火格子直上方と燃焼火格子5bの火格子直上方の3列に設けられている。
上記高温ガス吹込口13は、焼却炉の幅方向(図1にて紙面に対して直角な方向)にも複数箇所に設けられている。したがって、高温ガス吹込口13は、焼却炉の長さ方向と幅方向の複数位置に配置される。また、高温ガスBが下方に吹き込まれるように、高温ガス吹込口13の向きが定められている。かくして、高温ガスは、乾燥火格子5aの下流側域と燃焼火格子5bの直上に形成される、燃焼開始領域から主燃焼領域に向かって吹き込まれる。
<二次燃焼用ガス供給手段>
また、本実施形態の廃棄物焼却炉1は、二次燃焼用ガスをボイラ4の入口近傍に相当する二次燃焼領域10に吹き込む二次燃焼用ガス(二次空気)供給系を備えている。二次燃焼用ガス供給系は、二次燃焼用ガス供給源からの二次燃焼用ガスCを管路19を経て、二次燃焼領域10に設けられた二次燃焼用ガス吹込口16に送り込むようになっており、上記管路19には、ブロワ17そして流量調整機構としてのダンパ18が設けられている。二次燃焼用ガス吹込口16は、ボイラ4の入口近傍にある二次燃焼領域10に二次燃焼用ガスCを吹き込むように、ボイラ4の周壁に設けられている。
なお、本発明において、上記燃焼用一次空気、高温ガスそして二次燃焼用ガスを供給するための管路等の構成は図示したものに限定されず、焼却炉の規模、形状、用途等により適宜選択され得る。
<燃焼室の諸領域>
このような本実施形態の焼却炉では、乾燥火格子5aと燃焼火格子5bの上に廃棄物の層が形成され、その燃焼により、燃焼室2内の空間には、廃棄物層の直上に下記のような諸領域が形成される。
乾燥火格子5aの直上方で廃棄物投入口3の下方に対応して位置する、乾燥火格子5aの上流側範囲には乾燥領域が形成され、乾燥火格子5aの下流側範囲から燃焼火格子5bの上流側範囲には燃焼開始領域が形成される。すなわち、乾燥火格子5a上の廃棄物は、上流側範囲で乾燥され、下流側範囲で着火して燃焼が開始する。
乾燥火格子5aから運ばれた燃焼火格子5b上の廃棄物はここで熱分解そして部分酸化が行われ、廃棄物から発生した可燃性ガスと廃棄物中の固形分が燃焼する。廃棄物はこの燃焼火格子5b上で実質的に殆んど燃焼される。こうして、上記燃焼火格子5b直上に主燃焼領域が形成される。しかる後、僅かに残った廃棄物中の固定炭素など未燃分が後燃焼火格子5c上で完全に燃焼される。この後燃焼火格子5c上に後燃焼領域が形成される。
燃焼室2内で発生した可燃性ガスはそのほとんどが燃焼室2内で燃焼され、残存する未燃ガスは、後燃焼火格子5cの上方に連接されるボイラ4の入口近傍に相当する二次燃焼領域10に流入して、ここで二次燃焼用ガスが供給され、二次燃焼する。
廃棄物が焼却される場合、まず水分の蒸発が起こり、次いで熱分解と部分酸化反応が起こり、可燃性ガスが生成し始める。ここで燃焼開始領域とは、廃棄物の燃焼が始まり、廃棄物の熱分解、部分酸化により可燃性ガスが生成し始める領域である。また、主燃焼領域とは、廃棄物の熱分解、部分酸化と燃焼が行われ、可燃性ガスが発生し、火炎を伴って燃焼している領域であり、火炎を伴う燃焼が完了する点(燃え切り点)までの領域である。燃え切り点より後の領域では、廃棄物中の固形未燃分(チャー)が燃焼するチャー燃焼領域(後燃焼領域)となる。火格子式廃棄物焼却炉では燃焼開始領域は乾燥火格子5aの上方空間であり、主燃焼領域は燃焼火格子5bの上方空間に相当する。
次に、このように構成される本実施形態の装置での焼却状況の概要、燃焼用一次空気、高温ガス、燃焼用二次空気の吹込みによる作用について順次説明する。
<焼却状況の概要>
先ず、廃棄物投入口3へ廃棄物を投入すると、落下する廃棄物は乾燥火格子5a上に堆積され、各火格子の動作により、燃焼火格子5b上そして後燃焼火格子5c上へと移動し、各火格子上に廃棄物の層を形成する。各火格子は、風箱7a,7b,7c,7dを経て、燃焼用の一次空気を受けており、これにより各火格子の廃棄物は乾燥そして燃焼される。
乾燥火格子5a上では主として廃棄物の乾燥と着火が行われる。すなわち、乾燥火格子5aの上流側域で乾燥がそして下流側域で着火(燃焼開始)が行われる。燃焼火格子5b上では主として廃棄物の熱分解、部分酸化が行われ、可燃性ガスと廃棄物中の固形分の燃焼が行われる。燃焼火格子5b上において廃棄物の燃焼は実質的に完了する。後燃焼火格子5c上では、僅かに残った廃棄物中の固定炭素など未燃分を完全燃焼させる。完全燃焼した後の燃焼灰は、灰落下口6より排出される。このように廃棄物が燃焼している状態で、各火格子5a,5b,5cの直上空間には、乾燥領域、燃焼開始領域、主燃焼領域そして後燃焼領域がそれぞれ形成される。
既述のごとく、燃焼室2の出口に、廃熱ボイラ4が連設されていて、廃熱ボイラ4の入口近傍が二次燃焼領域10となっている。したがって、燃焼室2内で発生した未燃ガスは、二次燃焼領域10に導かれ、そこで二次燃焼用ガスCと混合・攪拌され、二次燃焼する。二次燃焼の後に燃焼排ガスは廃熱ボイラ4で熱回収される。熱回収された後、廃熱ボイラ4から排出された燃焼排ガスは、消石灰等による酸性ガスの中和と、活性炭によるダイオキシン類の吸着が行われ、さらに除塵装置(図示せず)に送られ、中和反応生成物、活性炭、ダストなどが回収される。上記除塵装置で除塵され、無害化された後の燃焼排ガスは、誘引ファン(図示せず)により誘引され、煙突から大気中に放出される。なお、上記除塵装置としては、例えば、バグフィルタ方式、電気集塵方式等の除塵装置を用いることができる。
次に、一次燃焼用空気、高温ガス、二次燃焼用ガスの吹込みについて詳細に説明する。
<燃焼用一次空気の吹込み>
燃焼用一次空気Aは、ブロワ8から燃焼用一次空気供給管9を通って乾燥火格子5a、燃焼火格子5b及び後燃焼火格子5cのそれぞれの下部に設けられた風箱7a,7b,7c,7dに供給された後、各火格子5a,5b,5cを通って燃焼室2内に供給される。燃焼室2内に供給される燃焼用一次空気Aの流量は、燃焼用一次空気供給管9に設けられた流量調節ダンパ11により調整され、さらに、各風箱7a,7b,7c,7dに供給される流量は、各風箱に分岐して設けられたそれぞれの供給管に備える流量調節ダンパ(図示省略)により調節される。また、風箱7a,7b,7c,7d及び燃焼用一次空気Aを供給するための燃焼用一次空気供給管9等の構成は図示したものに限定されず、焼却炉の規模、形状、用途等により適宜選択され得る。
燃焼用一次空気Aとしては、温度が常温〜200℃の範囲であり、酸素濃度が15〜21体積%の範囲のガスを用いることが好ましい。燃焼用一次空気Aとして、空気、酸素を含有するガス及び返送排ガスのいずれかを用いてもよいし、これらの混合ガスを用いてもよい。
<高温ガス吹込みによる燃焼安定化>
図1に見られるように、高温ガスBは、燃焼室2内の燃焼開始領域から主燃焼領域までの間の任意の領域において,廃棄物層に向かって下向きに吹き込まれる。これは、火炎が存在し可燃性ガスが多く存在する領域に、高温ガスを吹き込むことが燃焼を安定させる上で好ましいためである。なお、火格子式廃棄物焼却炉において、可燃性ガスが多く存在する領域は、燃焼開始領域から主燃焼領域までである。
高温ガスBを燃焼室2内の燃焼開始領域から主燃焼領域までの領域に、かつ燃焼室天井から廃棄物層W直上に向かって下向きに吹き込むことにより、下向きに吹き込まれる高温ガスBは、廃棄物の熱分解・部分酸化により生じた可燃性ガスと燃焼ガスとの上昇流と対向し、双方のガス流れが衝突し、廃棄物層W直上に平面状の流れの遅いよどみ領域または上下方向に循環する循環領域が生じる。これらの領域はガス流れの速度が遅いため、可燃性ガスが燃焼する火炎が定在することになり、すなわち廃棄物層W直上に平面状燃焼領域(平面火炎)が定在し、可燃性ガスが安定して燃焼される。その結果、低空気比燃焼においてもCO,NOx、ダイオキシン類等の有害物質の発生を抑制すると共に煤の生成を抑制することができる。このため、低空気比燃焼を支障なく行うことができる。
また、高温ガスの熱輻射と顕熱によって廃棄物が加熱され、熱分解・部分酸化が促進されることに加えて、廃棄物層の直上に平面状燃焼領域(平面火炎)が定在するので、この平面状燃焼領域からの熱輻射と顕熱によって廃棄物が加熱され、熱分解・部分酸化がさらに促進される。
<高温ガス吹込み流速>
高温ガス吹込口13から吹き込まれる高温ガスBは、燃焼室高さに合わせた適切な範囲の吹込み流速で、燃焼室2内の燃焼開始領域から主燃焼領域までの間の任意の領域に吹き込むことが好ましい。高温ガスの吹込み流速の燃焼室高さに合わせた適切な範囲は、次の関係式で示す範囲である。
−0.107X2+4.70X+3.96 ≦ Y ≦ −0.199X2+8.73X+7.36…(1)
Y:高温ガスの吹込み流速(m/sec)
X:燃焼室高さ(m)
燃焼室天井の吹込口から下向きに吹き込む高温ガスの流速を、燃焼室高さに合わせて設定することにより、吹き込んだ高温ガスBを、廃棄物の熱分解・部分酸化によって生じる可燃性ガスと燃焼ガスの上昇流に適切に衝突させ、廃棄物層W直上に平面状の流れの遅いよどみ領域または上下方向に循環する循環領域を形成し、廃棄物層W直上に平面状燃焼領域を定在させることができ、可燃性ガスを安定して燃焼させて、燃焼室高さにかかわらず低空気比燃焼操業で燃焼促進効果や燃焼安定化効果が確実に得られる。
さらに、高温ガスの吹込み流速を、燃焼室内ガス流量を炉長方向に直角な面での燃焼室内断面積で除した空塔速度の5〜20倍の流速として吹き込むことが好ましく、燃焼室内ガス流れによる影響を受けずに、上記よどみ領域または循環領域を安定して形成することができる。
高温ガスBの吹込み速度は、例えば、高温ガスBを送るブロワの送風量調整や管路14に設けた流量調整機構としてのダンパ15の開度を調整し高温ガスBの吹込み流量を調整することなどにより調整される。
高温ガスガス吹込口13が複数ある場合,高温ガスBはそれぞれの高温ガス吹込口13から必ずしも等流速で吹き込まれる必要はなく,焼却炉2の規模、形状、用途或いは廃棄物性状、量、廃棄物層厚さ等により、各高温ガス吹込口13からの吹込み流速は異なるように適宜変更され得る。
燃焼室2で廃棄物から発生する可燃性ガスと燃焼ガスの発生量の変動に対応して、廃棄物層の直上に平面状燃焼領域を変動なく定在させるように、高温ガスBの吹込み流量を調整することが好ましい。平面状燃焼領域の状態が変動すると、可燃性ガスの燃焼状態が変化し燃焼排ガス中のCO濃度、酸素濃度などが変動するため、監視因子としてボイラから排出される排ガスのCO濃度、酸素濃度を計測しその変化に対応して、高温ガスBの吹込み流量を調整するようにしてもよい。
<高温ガスの調製>
高温ガス吹込口13,15から吹き込まれる高温ガスBの温度は、100〜400℃の範囲とすることが好ましく、200℃程度とすることがより好ましい。100℃未満の温度のガスを吹き込むと炉内温度が低下し、燃焼が不安定となりCO発生量が増加する。400℃を超えるガスを吹き込むと燃焼室内における火炎温度が著しく高温になり、クリンカの生成が助長されるなど問題が生じる。
また、高温ガスBの含有する酸素濃度は5〜30体積%程度、望ましくは5〜15体積%とすることが好ましい。これにより、上述の効果がより効果的に発揮され、排ガスの低NOx化、低CO化がより促進される。
上記のガス温度及び酸素濃度となるような高温ガスBとしては、二次燃焼領域10から下流側で排ガスの一部を抜き出し返送した返送排ガス、返送排ガスと空気の混合ガス、酸素を含有するガス、空気及び酸素富化空気のうちいずれかを用いることが好適である。返送排ガスとしては、廃棄物焼却炉から排出された排ガスを除塵、中和処理した排ガス、すなわち、バグフィルタから排出される排ガスの一部を返送して用いることが好ましい。返送排ガス、返送排ガスと空気の混合ガス、酸素を含有するガス、空気及び酸素富化空気のうちいずれかを必要に応じて廃熱ボイラで発生させた蒸気により加熱して、温度と酸素濃度が上記所定の条件を満たすような高温ガスとして燃焼室内に吹き込む。
高温ガスを調製する際の返送排ガスと空気の混合割合や、返送排ガス又は返送排ガスと空気の混合ガス等の加熱条件などを調整して、高温ガスの温度、酸素濃度を所望の範囲とする。
<高温ガスの吹込み領域>
図1において、高温ガス吹込口13は、燃焼室2内の燃焼開始領域から主燃焼領域に相当する乾燥火格子5aの上方及び燃焼火格子5bの上方において、燃焼室2の天井に設置されている。ここで、廃棄物の熱分解反応は温度が200℃程度で起こり、温度が400℃程度となった段階でほぼ完了する。高温ガスBを可燃性ガスが生成している領域において、燃焼室2の天井から廃棄物層直上に向かって下向きに吹き込むことにより、炉内の廃棄物層直上付近によどみ領域又は循環領域を形成させ、平面状燃焼領域を定在させて、安定した燃焼が行われる。
図1に示す例では、乾燥火格子5aの下流部及び燃焼火格子5bの上方は燃焼開始領域から主燃焼領域に相当するので、これらの位置の上方に高温ガス吹込口13を設けて高温ガスBを吹き込んでいる。廃棄物の組成、性状によっては、もっと高い温度で熱分解反応が完了するものがあり、この場合は、図1に示す位置より下流側(図の右側)にも、高温ガス吹込口を設けることが好ましい。
<高温ガス吹込口>
高温ガス吹込口13は、燃焼室2の天井の、乾燥火格子5aの廃棄物の移動方向下流側(後部)から燃焼火格子5bまでの範囲内での火格子直上の任意位置に設けられている。高温ガス吹込口13は、燃焼室2の幅方向と長さ方向との複数の列にそって配置される。高温ガス吹込口13は、ノズル型でもスリット型でもよい。
高温ガス吹込口13の配置位置、配置数、配置間隔、吹込み方向、吹込口の形状(吹き込まれた高温ガスBの広がり形状に関係する)、高温ガスBの吹込み流速、吹込み流量などの高温ガス吹込口13の設定及び操作条件は、廃棄物焼却炉の処理量、容積、形状、廃棄物の性状などに合わせ、平面状燃焼領域の状態を所望の状態に制御するように設定又は調整される。
燃焼室内の廃棄物層直上で幅方向と長さ方向の広い範囲に亘って平面状燃焼領域が形成されるように、廃棄物からの上昇流と対向させる高温ガスの流れの状況を好ましい状態に制御するように、高温ガス吹込口の配置位置、配置数、配置間隔、吹込み方向、吹込口の形状、高温ガスの吹込み流速及び吹込み流量のうち少なくとも一つを、設定又は調整する。
図1においては、燃焼室2の天井に高温ガス吹込口13を設け、ここから廃棄物層に向かって下向きに高温ガスBを吹き込んでいる。ここで、高温ガスBの吹込み方向としては、廃棄物層に対する垂線から20°までの角度範囲の吹込み方向で吹き込まれることが望ましい。これは、吹き込んだ高温ガスBと、廃棄物の熱分解・部分酸化によって生じる可燃性ガスと燃焼ガスの上昇流とが衝突して生じる流れ場を対向流場とするためであり、高温ガスBの吹込み方向が廃棄物層に対する垂線から20°より大きい範囲となると、適切な対向流場が形成されなくなるためである。
<二次燃焼用ガスの吹込み>
二次燃焼用ガスが二次燃焼領域10に吹き込まれ、燃焼室2からの未燃ガスが二次燃焼される。二次燃焼用ガスとして、温度は常温〜200℃の範囲であり、酸素濃度は15〜21体積%の範囲のガスを用いることが好ましい。二次燃焼用ガスとして、空気、酸素を含有するガス、返送排ガスを用いてよいし、これらの混合ガスを用いてもよい。
上記二次燃焼用ガスの吹込口16は、二次燃焼領域内に旋回流が生じる方向にガスを吹き込めるように1つ又は複数設置することが好ましい。二次燃焼用ガスCを二次燃焼領域10内に旋回流が生じる方向に吹き込むことにより、二次燃焼領域10内のガス温度及び酸素濃度分布を均一化、平均化でき、未燃ガスの二次燃焼が安定して行われ、局所高温領域の発生を抑制し、排ガスのさらなる低NOx化が可能となる。さらに、未燃ガスと酸化剤との混合が促進されるため燃焼安定性が向上し、完全燃焼が達成できるため、排ガスの低CO化も可能となる。
二次燃焼用ガスCとしては、ブロワにより供給される燃焼用二次空気のみ、ブロワ供給後の燃焼用二次空気に希釈剤を混合し酸素濃度を調整したガス、除塵装置を通過した後の排ガスの一部を抜き出した返送排ガスのみ、又は上記燃焼用二次空気と返送排ガスを混合したガス等を用いることができる。
希釈剤としては、窒素、二酸化炭素などが考えられる。
上記二次燃焼領域10内のガス温度が、800〜1050℃の範囲となるように、上記二次燃焼用ガスの流量を調整することが好ましい。二次燃焼領域10内のガス温度が800℃未満となると未燃ガスの燃焼が不十分となり、排ガス中のCOが増加する。また、二次燃焼領域10内のガス温度が1050℃を超えると二次燃焼領域10内におけるクリンカの生成が助長され、さらに、NOxが増加する。
<低空気比燃焼を実現するための酸素量比配分>
次に、本実施形態の廃棄物焼却炉において低空気比燃焼を実現するための吹き込むガスの酸素量比配分について説明する。
廃棄物の燃焼に必要な単位時間当たりの理論酸素量(X)に対する、火格子下から燃焼室内に吹き込まれる燃焼用一次空気により供給される単位時間当りの酸素量(Y1)の比Q1(=Y1/X)と、燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の領域に吹き込まれる高温ガスにより供給される単位時間当りの酸素量(Y2)の比Q2(=Y2/X)と、二次燃焼領域に吹き込まれる二次燃焼用ガスにより供給される単位時間当りの酸素量(Y3)の比Q3(=Y3/X)とは、下式(1)及び(2)、より好ましくは下式(3)及び(4)を満足するように、それぞれのガスを吹き込むことが好ましい。下式(3)及び(4)を満足するように、それぞれのガスを吹き込む比率を制御することにより、焼却炉全体へ供給する空気量を空気比1.3以下のより低空気比での燃焼を実現できる。
Q1:Q2:Q3=0.75〜1.10:0.05〜0.40:0.10〜0.40 ………(1)
1.0≦Q1+Q2+Q3≦1.5 …………………………………………(2)
Q1:Q2:Q3=0.80〜1.0:0.10〜0.30:0.10〜0.30…………(3)
1.1≦Q1+Q2+Q3≦1.3 ……………………………………… (4)
ここで、上記廃棄物の燃焼に必要な単位時間当りの理論酸素量(X)は、燃焼室内に投入される廃棄物の性状及び成分等から決定される廃棄物の単位質量当りの燃焼に必要な酸素量(Nm/kg)と、焼却炉における廃棄物の焼却処理速度(kg/hr)との積(Nm/hr)により決定される。
また、上記Q1の値は、火格子の下方から燃焼室内に供給される燃焼用一次空気により供給される単位時間当りの酸素量(Y1)の理論酸素量に対する比であり、上記燃焼用一次空気の流量を増減させることにより調整する。また、Q2の値は、燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の領域に吹き込まれる高温ガスの流量を増減させることにより調整される。また、Q3の値は、二次燃焼領域に吹き込まれる二次燃焼用ガスの流量を増減させることにより調整される。
なお、以下において、Q1+Q2+Q3をλと記載する。
上記比Q1,Q2,Q3を上式の範囲とすることにより、廃棄物焼却炉において低酸素比燃焼(1.0≦λ≦1.5)(すなわち、低空気比燃焼に相当する)を行った場合においても、COやNOx等の有害ガスの発生量が低減でき、焼却炉から排出される排ガス総量を大幅に低減できる。
<さらなる低空気比(空気比1.3以下で)の燃焼を実現するための酸素量比配分>
廃棄物の燃え残りや有害物質の発生を抑制して安定した低空気比燃焼を達成させることができるより好ましい配分比としては、Q1:Q2:Q3=0.90:0.15:015、λ=1.20を基準とし、焼却炉内に投入される廃棄物の組成や性状等に基づきλを1.1〜1.3の範囲でQ1,Q2,Q3を上記の範囲内で調整する。
Q1、Q2、Q3、λの具体例を以下に記載する。
Q1:Q2:Q3=0.90:0.05:0.25、λ=1.20
Q1:Q2:Q3=0.90:0.10:0.20、λ=1.20
Q1:Q2:Q3=0.90:0.20:0.10、λ=1.20
Q1:Q2:Q3=0.90:0.25:0.05、λ=1.20
Q1:Q2:Q3=1.00:0.05:0.15、λ=1.20
Q1:Q2:Q3=1.00:0.10:0.10、λ=1.20
Q1:Q2:Q3=1.00:0.15:0.05、λ=1.20
Q1:Q2:Q3=0.85:0.10:0.25、λ=1.20
Q1:Q2:Q3=0.85:0.20:0.15、λ=1.20
Q1:Q2:Q3=0.80:0.15:0.25、λ=1.20
Q1:Q2:Q3=0.80:0.20:0.20、λ=1.20
Q1:Q2:Q3=0.75:0.20:0.20、λ=1.15
Q1:Q2:Q3=0.80:0.15:0.20、λ=1.15
Q1:Q2:Q3=0.80:0.10:0.20、λ=1.10
Q1:Q2:Q3=0.80:0.15:0.15、λ=1.10
Q1:Q2:Q3=0.85:0.20:0.25、λ=1.30
Q1:Q2:Q3=0.90:0.15:0.25、λ=1.30
Q1:Q2:Q3=1.00:0.10:0.20、λ=1.30
以下、Q1、Q2、Q3の調整基準について説明する。
<燃焼用一次空気の比率Q1の調整基準>
通常の都市ごみ等の廃棄物を乾燥させ、燃焼させるには、Q1は0.90を基準とし、灰分の少ない廃棄物や水分の少ない廃棄物、例えばプラスチック等を燃焼する際には、Q1を0.75〜0.85程度に減らし、その代わりに高温ガスの比率Q2を増加させる。
<高温ガスの比率Q2の調整基準>
通常の都市ごみ等の廃棄物を燃焼させるには、Q2は0.15を基準とし、灰分や水分が少なく可燃分が大部分である廃棄物、例えばプラスチック等、或いは、揮発分の大きい廃棄物を燃焼させる場合には、Q2を0.20〜0.25程度に増加させる。Q2が少ないと、上述の高温ガス吹込みの効果が十分に得られないため、COが増加する。なお、上記範囲を超えてQ2を増加させると、低空気比燃焼が達成できず、高温ガスを調製するための燃料代などが嵩むと共に、燃焼室内の温度が過大となり、内壁にクリンカが生成したり、NOxが増加するなどの問題が生じるので好ましくない。
<二次燃焼用ガスの比率Q3の調整基準>
まず、廃棄物焼却炉の標準操業基準として、上記基準に基づき、廃棄物の組成や性状等を考慮してQ1及びQ2を決定し、次いでQ3の標準値を設定する。Q3は、0.15を基準とし、0.10〜0.40の範囲で調整する。
Q3の値を調整することで二次燃焼領域内での燃焼状態を調整する。
廃棄物焼却炉の実際の操業では標準操業基準で操業していても、焼却炉内の燃焼状況が変化し、排出される排ガス中の有害物質量が変動することがある。そこで、上記決定したQ1及びQ2の値は維持したまま、廃棄物焼却炉内の状況を監視する因子に基づいてQ3を増減するように調節する。このような燃焼制御方法をとることにより、焼却炉内の燃焼状況が変化しても、燃焼を安定して行うように調整でき、最終的に廃棄物焼却炉から排出される排ガス中の有害物質量を制御しやすくなり、さらに、焼却炉の燃焼制御系を簡単にすることができる。
ここで、上記廃棄物焼却炉内の状況を監視する因子としては、例えば、燃焼室から排出される未燃ガスの二次燃焼を行う二次燃焼領域出口近傍又はボイラ出口における、排ガス温度、排ガス中の酸素濃度、CO濃度、NOx濃度のいずれか一つ以上とすることが好ましい。
計測手段は、下記の通りである。
ガス温度:温度センサ(熱電対、放射温度計)
ガス中O2濃度:酸素濃度計
ガス中CO濃度:CO濃度計
ガス中NOx濃度:NOx濃度計
以上説明したように、本発明によれば、高温ガス吹き込みにより、燃焼室内の廃棄物層直上付近に安定なよどみ領域又は循環領域を形成させることができ、平面状燃焼領域を定在させ、廃棄物焼却炉の大きさにかかわらず、空気比が1.5以下の低空気比燃焼を行った場合においても、燃焼室内の幅方向と長さ方向の全域に亘って燃焼の安定性が維持され、COやNOx等の有害ガスの発生量が低減できる廃棄物焼却炉及び廃棄物焼却方法が提供される。さらに、従来よりさらに低空気比で燃焼を行えるので焼却炉から排出される排ガス総量をさらに大幅に低減でき、また、廃熱の回収効率を向上できる廃棄物焼却炉及び廃棄物焼却方法が提供される。
また、定在する平面火炎の輻射などにより廃棄物の熱分解を促進することができるため、火格子に供給する廃棄物の量(火格子負荷)および燃焼室内に供給する廃棄物の熱量(火炉負荷)を大きくすることができる。このため廃棄物焼却処理量に対して燃焼室内容積を小さくすることができ、焼却炉の炉高を低くすることができ、廃棄物焼却設備をコンパクトにすることにより設備費用及び運転費用を低減することができる。
1 廃棄物焼却炉
2 燃焼室
5a 乾燥火格子
5b 燃焼火格子
5c 後燃焼火格子
13 高温ガス吹込み手段

Claims (7)

  1. 火格子式廃棄物焼却炉であって、
    火格子を備え火格子上の廃棄物を燃焼する燃焼室と、
    燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む一次空気吹込み手段と、 高温ガスを上記燃焼室の天井から、火格子上の廃棄物の移動方向である炉長方向で上記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の領域に向かって下向きに吹き込む高温ガス吹込み手段とを具備し、
    上記高温ガス吹込み手段は、高温ガスの吹込み流速を、燃焼室高さとの関係において次の(1)式で表される範囲とするように、制御する高温ガス吹込み流速制御手段と、
    燃焼排ガスのCO濃度、酸素濃度を計測しその変化に対応して、高温ガスの吹込み流量を調整する高温ガス吹込み流量制御手段とを備えることを特徴とする火格子式廃棄物焼却炉。
    −0.107X2+4.70X+3.96 ≦ Y ≦ −0.199X2+8.73X+7.36…(1)
    Y:高温ガスの吹込み流速(m/sec)
    X:燃焼室高さ(m)
  2. 高温ガス吹込み手段は、温度が100〜400℃の範囲であり、酸素濃度が5〜30体積%の範囲である高温ガスを吹き込むこととする請求項1に記載の火格子式廃棄物焼却炉。
  3. 高温ガス吹込み手段は、焼却炉から排出された排ガスの一部を返送した返送排ガス、返送排ガスと空気の混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つを高温ガスとして供給する高温ガス供給源を備えることとする請求項1又は請求項2に記載の火格子式廃棄物焼却炉。
  4. 燃焼室を備える火格子式廃棄物焼却炉による廃棄物焼却方法であって、
    燃焼用一次空気を火格子下から上記燃焼室内に吹き込み、
    高温ガスを上記燃焼室の天井から、火格子上の廃棄物の移動方向である炉長方向で上記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の領域に向かって下向きに吹き込み、
    高温ガスの吹込み流速を、燃焼室高さとの関係において次の(1)式で表される範囲とし、
    燃焼排ガスのCO濃度、酸素濃度を計測しその変化に対応して、高温ガスの吹込み流量を調整することを特徴とする廃棄物焼却方法。
    −0.107X2+4.70X+3.96 ≦ Y ≦ −0.199X2+8.73X+7.36…(1)
    Y:高温ガスの吹込み流速(m/sec)
    X:燃焼室高さ(m)
  5. 高温ガスは、温度が100〜400℃の範囲であり、酸素濃度が5〜30体積%の範囲であることとする請求項4に記載の廃棄物焼却方法。
  6. 高温ガスを、燃焼室内ガス流量を炉長方向に対して直角な面での燃焼室内断面積で除した空塔速度の5〜20倍の流速で吹き込むこととする請求項4又は請求項5に記載の廃棄物焼却方法。
  7. 高温ガスは、焼却炉から排出された排ガスの一部を返送した返送排ガス、返送排ガスと空気の混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つであることとする請求項4乃至請求項6のいずれかに記載の廃棄物焼却方法。
JP2012268062A 2012-03-05 2012-12-07 廃棄物焼却炉及び廃棄物焼却方法 Active JP6008187B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012268062A JP6008187B2 (ja) 2012-12-07 2012-12-07 廃棄物焼却炉及び廃棄物焼却方法
MYPI2014702412A MY192647A (en) 2012-03-05 2013-03-05 Grate-type waste incinerator and waste incineration method
CN201380012937.4A CN104160214B (zh) 2012-03-05 2013-03-05 炉排式废弃物焚烧炉以及废弃物焚烧方法
PCT/JP2013/056039 WO2013133290A1 (ja) 2012-03-05 2013-03-05 火格子式廃棄物焼却炉及び廃棄物焼却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268062A JP6008187B2 (ja) 2012-12-07 2012-12-07 廃棄物焼却炉及び廃棄物焼却方法

Publications (2)

Publication Number Publication Date
JP2014114989A JP2014114989A (ja) 2014-06-26
JP6008187B2 true JP6008187B2 (ja) 2016-10-19

Family

ID=51171190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268062A Active JP6008187B2 (ja) 2012-03-05 2012-12-07 廃棄物焼却炉及び廃棄物焼却方法

Country Status (1)

Country Link
JP (1) JP6008187B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276838A (zh) * 2021-12-28 2022-04-05 张文斌 一种碳中和对称结构固定床多段式生物质气化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705204B1 (ko) * 2003-04-18 2007-04-06 제이에프이 엔지니어링 가부시키가이샤 화격자식(火格子式) 폐기물 소각로 및 그 연소 제어방법
JP2005201553A (ja) * 2004-01-16 2005-07-28 Jfe Engineering Kk 廃棄物焼却炉の燃焼制御方法及び装置、該燃焼制御装置を備えた廃棄物焼却炉
JP2005308272A (ja) * 2004-04-20 2005-11-04 Jfe Engineering Kk 火格子式廃棄物焼却炉
JP2007163078A (ja) * 2005-12-15 2007-06-28 Jfe Engineering Kk 廃棄物処理方法及び装置

Also Published As

Publication number Publication date
JP2014114989A (ja) 2014-06-26

Similar Documents

Publication Publication Date Title
JP6011295B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP4479655B2 (ja) 火格子式廃棄物焼却炉及びその燃焼制御方法
JP6824642B2 (ja) 廃棄物焼却装置及び廃棄物焼却方法
JP6146673B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP2016191539A (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP5861880B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP5818093B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
WO2013133290A1 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP6256859B2 (ja) 廃棄物焼却方法
JP6218117B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP3956862B2 (ja) 廃棄物焼却炉の燃焼制御方法及び廃棄物焼却炉
JP6090578B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6008187B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP7035356B2 (ja) 廃棄物焼却装置及び廃棄物焼却方法
JP6455717B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP5871207B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6146671B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6183787B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP6443758B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP2015209992A (ja) 廃棄物焼却処理装置及び廃棄物焼却処理方法
JP6103471B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP5892339B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP2005265410A (ja) 廃棄物焼却炉
JP6146672B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP3995237B2 (ja) 廃棄物焼却炉の操業方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6008187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350