WO2013133290A1 - 火格子式廃棄物焼却炉及び廃棄物焼却方法 - Google Patents

火格子式廃棄物焼却炉及び廃棄物焼却方法 Download PDF

Info

Publication number
WO2013133290A1
WO2013133290A1 PCT/JP2013/056039 JP2013056039W WO2013133290A1 WO 2013133290 A1 WO2013133290 A1 WO 2013133290A1 JP 2013056039 W JP2013056039 W JP 2013056039W WO 2013133290 A1 WO2013133290 A1 WO 2013133290A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
gas
waste
grate
combustion chamber
Prior art date
Application number
PCT/JP2013/056039
Other languages
English (en)
French (fr)
Inventor
知広 傳田
中山 剛
内山 武
敏彦 岩崎
規人 植竹
厚志 長尾
Original Assignee
Jfeエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012268062A external-priority patent/JP6008187B2/ja
Priority claimed from JP2012268065A external-priority patent/JP5892339B2/ja
Priority claimed from JP2012268604A external-priority patent/JP6011295B2/ja
Priority claimed from JP2012268066A external-priority patent/JP6103471B2/ja
Application filed by Jfeエンジニアリング株式会社 filed Critical Jfeエンジニアリング株式会社
Priority to MYPI2014702412A priority Critical patent/MY192647A/en
Priority to CN201380012937.4A priority patent/CN104160214B/zh
Publication of WO2013133290A1 publication Critical patent/WO2013133290A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/106Combustion in two or more stages with recirculation of unburned solid or gaseous matter into combustion chamber

Definitions

  • the present invention relates to a grate-type waste incinerator and a waste incineration method for incinerating waste such as municipal waste.
  • a grate-type waste incinerator is widely used as an incinerator for incinerating waste such as municipal waste.
  • An outline of a typical configuration of such a grate-type waste incinerator will be described below.
  • Such a conventional grate-type waste incinerator has three-stage inclined grate (dry grate, combustion grate and post-combustion) arranged side by side in the combustion chamber for burning waste. Grate).
  • the grate has a mechanism for transporting the accumulated waste.
  • a waste inlet is provided above the dry grate opposite to the combustion grate.
  • an ash drop opening is provided below the opposite side of the combustion grate.
  • a secondary combustion chamber is connected to the gas outlet of the combustion chamber located above the post-combustion grate.
  • the secondary combustion chamber is a part of a waste heat boiler for waste heat recovery, and is an inlet part of the waste heat boiler.
  • a primary gas blowing unit for blowing a primary gas for combustion (usually air) from below to above each of the dry grate, the combustion grate and the post-combustion grate is provided.
  • the waste thrown into the combustion chamber from the waste inlet at the start of use is deposited on the dry grate and used for combustion from below the dry grate.
  • the primary gas After being dried by the primary gas, it is ignited by a known igniter not shown.
  • the waste that has been dried, lightened and ignited is transferred from the dry grate onto the combustion grate.
  • the waste is pyrolyzed on the combustion grate to generate a gas containing a combustible gas (combustion gas), and the primary gas for combustion sent from the bottom to the top of the combustion grate in the combustible gas and the waste. Solids burn.
  • the remainder of the waste whose solids are burned on the combustion grate is transferred onto the post-combustion grate, and unburned components such as fixed carbon are completely burned on the post-burning grate and remain on the combustion grate.
  • the ash falls to the ash drop and is discharged out of the incinerator from the ash drop.
  • Wastes that have started to ignite in the combustion start region on the dry grate are transferred onto the combustion grate.
  • the waste is pyrolyzed on the combustion grate to generate a combustion gas containing a combustible gas, and the combustible gas and the solid content in the waste are generated by the primary gas for combustion sent from the bottom to the top of the combustion grate.
  • Burns and a main combustion region is formed on the combustion grate.
  • the remainder of the solid waste burned in the main combustion zone on the combustion grate slides down on the post-combustion grate, and unburned components such as fixed carbon are completely burned on the post-combustion grate.
  • a post-combustion region is formed on the grate.
  • the ash remaining on the combustion grate falls to the ash drop and is discharged out of the waste incinerator from the ash drop.
  • the waste is burned in the combustion chamber with the aid of the combustion primary gas blown upward from the bottom of the three-stage grate. Further, the unburned portion of the combustible gas generated from the waste in the combustion chamber is blown into the secondary combustion chamber in the above-described secondary combustion chamber connected to the gas outlet of the combustion chamber above the post-combustion grate. It is burned together with the secondary combustion gas.
  • the ratio of the amount of air actually supplied to the combustion chamber divided by the theoretical amount of air required for combustion of the waste introduced into the combustion chamber is usually It is about 1.6. This is larger than 1.05 to 1.2, which is an air ratio necessary for combustion of general liquid fuel and gaseous fuel.
  • air ratio the ratio of the amount of air actually supplied to the combustion chamber divided by the theoretical amount of air required for combustion of the waste introduced into the combustion chamber.
  • waste contains a larger amount of non-combustible material and is inhomogeneous compared to general liquid fuels and gaseous fuels, so the efficiency of air utilization is low, and a large amount of air is required for combustion. Because. However, if the amount of supplied air is simply increased, the amount of exhaust gas discharged to the outside from the waste combustion furnace increases as the air ratio increases, and accordingly, a larger exhaust gas treatment facility is required.
  • waste incineration facility can be made compact.
  • the entire waste incineration facility can be reduced in size compared to the conventional one, so that the equipment cost can be reduced.
  • the amount of chemicals used for exhaust gas treatment can be reduced, the operating cost of the entire waste incineration facility can be reduced.
  • the heat recovery rate of the waste heat boiler can be improved by reducing the amount of exhaust gas. As a result, if the waste heat energy generated by incineration of the waste recovered by the waste heat boiler is used for power generation, the efficiency of power generation can be increased.
  • the problem that the combustion becomes unstable in the combustion with the low air ratio with the air ratio of 1.5 or less remains.
  • the instability of combustion of waste generated at a low air ratio increases the generation of CO, rapidly increases the amount of NOx generated during combustion due to a local rise in flame temperature, and generates a large amount of soot Causing a problem of an increase in harmful substances in the exhaust gas from the grate-type waste incinerator.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-84981. It is disclosed.
  • Patent Document 2 After removing the high-temperature exhaust gas derived from the outlet side of the secondary combustion region of the grate-type waste incinerator, The gas is mixed to form a hot gas, and this hot gas is blown into the combustion chamber.
  • the sensible heat and radiation of the high-temperature gas promotes the thermal decomposition of the waste in the combustion chamber of the grate-type waste incinerator; the combustible gas generated by the thermal decomposition of the waste by the oxygen contained in the high-temperature gas
  • the combustion gas containing the combustible gas generated from the waste is increased.
  • a stagnation region of the combustion gas containing the combustible gas is formed on the waste in the combustion chamber, and the combustible gas is stably burned. As a result, combustion of waste at a low air ratio can be performed stably.
  • the combustion of the combustible gas generated by pyrolyzing the waste is stably performed. CO, NOx, etc. generated by this combustion This greatly contributes to reducing the amount of harmful substances generated.
  • high-temperature gas is blown into the combustion chamber from a nozzle provided on the side wall of the combustion chamber. Therefore, depending on the state of the waste supplied to the grate-type waste incinerator, the high-temperature gas blown from the side wall may cause the combustion promoting effect over the entire combustion chamber from the vicinity of the side wall to the central part. It may not always be possible to stabilize the combustion of the combustible gas generated from the waste due to the combustion at a low air ratio by causing the combustion stabilizing effect evenly.
  • the present invention has been made under such circumstances, and the object of the present invention is to burn waste at a low air ratio of 1.5 or less regardless of the size of the combustion chamber of the grate-type waste incinerator. Even in the case where the combustion is performed, the combustion of the waste can be stably performed over the entire combustion chamber from the vicinity of the side wall of the combustion chamber to the central portion, and the generation amount of harmful substances such as CO and NOx can be suppressed.
  • An object of the present invention is to provide a grate-type waste incinerator and a waste incineration method capable of performing sufficient combustion of waste at a low air ratio without problems.
  • a grate-type waste incinerator is: There is a combustion chamber provided with a grate on which waste is supplied and burned while the supplied waste is moved, on the grate along the direction of waste movement.
  • a grate-type waste incinerator with a post-combustion zone to be performed A primary gas blowing unit for blowing a combustion primary gas from under the grate into the combustion chamber; and A plurality of hot gas injection ports are provided, and a high temperature gas from the plurality of high temperature gas injection ports is placed in a combustion start region in the combustion chamber from a position spaced within a range of 1 m to 3 m upward from the grate in the combustion chamber. And a hot gas blowing unit that blows downward toward an arbitrary portion between the main combustion region and the main combustion region.
  • This grate-type waste incinerator The hot gas blown downward from a plurality of hot gas blowing ports of the hot gas blowing unit suppresses an upward flow of combustion gas containing combustible gas generated from waste on the grate, and A stagnation or circulation of hot gas and combustion gas is formed on the waste on the grid to form a planar combustion region.
  • the combustion chamber includes a ceiling having a height of 3 m or less from the grate, and a plurality of high-temperature gas injection ports of the high-temperature gas injection unit are provided in the ceiling. It can be done.
  • the plurality of high-temperature gas injection ports of the high-temperature gas injection unit extends in the width direction of the combustion chamber intersecting the direction of movement of the waste on the grate. It is preferable that the hot gas blowing unit is arranged and adjusts the hot gas blowing flow rate or flow rate at each hot gas blowing port according to the state of waste on the grate.
  • a state grasping unit that grasps the state of the combustion chamber or the state of waste on the grate by measuring the grate temperature or the gas temperature in the combustion chamber, and grasped It is preferable to include an adjustment unit that adjusts the flow velocity or flow rate of the hot gas from the hot gas blowing port according to the state in the combustion chamber or the state of the waste on the grate.
  • the high temperature gas blown by the high temperature gas blowing unit has a temperature in the range of 100 ° C. to 400 ° C. and an oxygen concentration of 5% by volume to 30% by volume. The range is preferable.
  • the high-temperature gas blowing unit includes a cross-sectional area of the combustion chamber perpendicular to the direction in which the gas flows in the combustion chamber and the gas flow rate in the combustion chamber. It is preferable to blow in at a flow rate of 5 to 20 times the superficial velocity divided by.
  • the high-temperature gas blowing unit includes a part of the exhaust gas discharged from the incinerator (circulated exhaust gas), a mixed gas of the circulating exhaust gas and air, air It is preferable to provide a high-temperature gas supply source that supplies at least one of a gas containing oxygen and oxygen-enriched air as a high-temperature gas.
  • the grate-type waste incinerator as described above is arranged above the grate in the combustion chamber, and injects secondary combustion gas into the secondary combustion chamber and the secondary combustion chamber that communicate with the combustion chamber.
  • a secondary combustion gas blowing unit and a boiler connected to the secondary combustion chamber are further provided, and in the secondary combustion chamber, unburned combustible gas generated from waste on the grate in the combustion chamber The portion can be burned with the secondary combustion gas to heat the boiler.
  • a waste incineration method comprises: There is a combustion chamber provided with a grate on which waste is supplied and burned while the supplied waste is moved, on the grate along the direction of waste movement.
  • the hot gas blown downward suppresses the upward flow of the combustion gas containing combustible gas generated from the waste, and stagnation or circulation of the hot gas and the combustion gas on the waste on the grate. Forming a planar combustion region.
  • the combustion chamber includes a ceiling having a height of 3 m or less from the grate, and the hot gas is blown downward into the combustion chamber from a plurality of positions on the ceiling. be able to.
  • the plurality of positions into which the high temperature gas is blown into the combustion chamber are arranged in the width direction of the combustion chamber intersecting the moving direction of the waste on the grate,
  • the high-temperature gas blowing flow rate or blowing flow rate at each position is adjusted and blown in accordance with the state of the waste on the grate.
  • the grate temperature or the combustion chamber gas temperature is measured to grasp the state in the combustion chamber or the state of the waste on the grate and grasp it. It is preferable to adjust the blowing flow rate or blowing flow rate of the hot gas according to the state in the combustion chamber or the state of the waste on the grate.
  • the high temperature gas blown in the high temperature gas blowing step has a temperature in the range of 100 ° C. to 400 ° C. and an oxygen concentration in the range of 5% by volume to 30% by volume. It is preferable.
  • the high-temperature gas is divided by a superficial velocity of 5 obtained by dividing the gas flow rate in the combustion chamber by the cross-sectional area of the combustion chamber orthogonal to the gas flow direction. It is preferable to blow at a flow rate twice to 20 times.
  • the high-temperature gas blown in the high-temperature gas blowing step is a part of the exhaust gas discharged from the incinerator (circulated exhaust gas), a mixed gas of the circulating exhaust gas and air, air
  • the gas is at least one of an oxygen-containing gas and oxygen-enriched air.
  • the waste incineration method as described above is A step of blowing secondary combustion gas into the secondary combustion region;
  • the waste incineration method as described above is A step of blowing secondary combustion gas into the secondary combustion region;
  • equation (4) 1.1 ⁇ Q1 + Q2 + Q3 ⁇ 1.3 It is preferable to satisfy
  • a grate-type waste incinerator is combusted while waste is supplied thereon and the supplied waste is moved.
  • Combustion chambers are provided that are provided with a grate and a ceiling with a ceiling on the grate where the supplied waste begins to burn along the direction of waste movement
  • a grate having a start region, a main combustion region in which full-scale combustion of the waste that has started combustion is performed, and a post-combustion region in which further combustion of the unburned portion of the waste in the main combustion region is performed
  • the high-temperature gas blowing unit uses the following equation (5): ⁇ 0.107X 2 + 4.70X + 3.96 ⁇ Y ⁇ ⁇ 0.199X in relation to the height of the combustion chamber. 2 + 8.73X + 7.36 (5)
  • Y flow velocity of hot gas (m / sec)
  • X Combustion chamber height (m)
  • a high-temperature gas blowing flow rate control unit that controls the pressure to be in the range represented by
  • the hot gas blown by the hot gas blowing unit preferably has a temperature in the range of 100 ° C. to 400 ° C. and an oxygen concentration in the range of 5% by volume to 30% by volume.
  • the high-temperature gas blowing unit includes a part of the exhaust gas discharged from the incinerator (circulated exhaust gas), the circulating exhaust gas and air. It is preferable to provide a high-temperature gas supply source that supplies at least one of a mixed gas, air, a gas containing oxygen, and oxygen-enriched air as a high-temperature gas.
  • a waste incineration method includes: There is a combustion chamber provided with a grate on which waste is supplied and burned while the supplied waste is moved, on the grate along the direction of waste movement.
  • the hot gas blown into the combustion chamber in the hot gas blowing step preferably has a temperature in the range of 100 ° C. to 400 ° C. and an oxygen concentration in the range of 5% by volume to 30% by volume.
  • the flow rate of the hot gas blown into the combustion chamber in the hot gas blowing step is 5 to 20 times the superficial velocity obtained by dividing the gas flow rate in the combustion chamber by the cross-sectional area of the combustion chamber orthogonal to the gas flow direction. It is preferable to blow in.
  • the high-temperature gas is a part of exhaust gas discharged from the incinerator (circulation exhaust gas), a mixed gas of the circulation exhaust gas and air, air, oxygen Preferably, at least one of a gas containing oxygen and oxygen-enriched air.
  • the range from 1 m to 3 m upward from the grate in the combustion chamber of the grate-type waste incinerator.
  • the hot gas from a plurality of hot gas inlets is blown downward toward any part between the combustion start region and the main combustion region of the waste on the grate in the combustion chamber, Suppress the upward flow of combustion gas containing combustible gas generated from waste on the grid, and the flow of hot gas and combustion gas forms a slow stagnation or circulation on the waste on the grate, A planar combustion region can be formed.
  • the planar combustion zone is stable and the thermal decomposition of waste can be promoted by the radiation of the planar flame in the planar combustion zone, the amount of waste supplied to the grate (grate load) and combustion It is possible to increase the amount of heat (furnace load) supplied from the waste to the combustion chamber. For this reason, the volume of the combustion chamber can be reduced with respect to the amount of waste incineration, the height of the grate-type waste incinerator can be reduced, and the grate-type waste incinerator can be made compact. I can do it. This means that equipment and operating costs for the grate-type waste incinerator can be reduced.
  • the combustion of the grate waste incinerator with respect to the height of the combustion chamber from the grate to the ceiling Since the appropriate range of the flow velocity of the hot gas that blows downward toward any part between the combustion start region of the waste on the grate in the combustion chamber and the main combustion region has been defined, With the appropriate amount of downward flow of hot gas depending on the height from the grate to the ceiling, the upward flow of combustion gas including flammable gas generated from waste on the grate can be suppressed sufficiently, The stagnation or circulation in which the flow of the hot gas and the combustion gas is gently formed on the waste can be surely formed, and the planar combustion region can be sufficiently reliably formed.
  • the air ratio is 1.5 or less regardless of the size of the combustion chamber of the grate-type waste incinerator.
  • the combustible gas contained in the waste and the combustion gas generated from the waste can be burned sufficiently reliably and stably.
  • production amount of harmful substances such as soot discharged
  • the planar combustion zone is stable and the thermal decomposition of waste can be promoted by the radiation of the planar flame in the planar combustion zone, the amount of waste supplied to the grate (grate load) and combustion It is possible to increase the amount of heat (furnace load) supplied from the waste to the combustion chamber. For this reason, the internal volume of a combustion chamber can be made small with respect to the incineration processing amount of a waste. For this reason, the volume of the combustion chamber can be reduced relative to the amount of waste incineration, the height of the grate waste incinerator can be lowered, and the grate waste incinerator can be made compact. I can do it. This means that equipment and operating costs for the grate-type waste incinerator can be reduced.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a grate-type waste incinerator according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the arrangement different from the arrangement of the high temperature gas inlet and the secondary combustion gas inlet in the grate-type waste incinerator shown in FIG. It is.
  • FIG. 3 is a schematic longitudinal sectional view for explaining the combustion state of waste in the width direction in the combustion chamber of a conventional grate-type waste incinerator.
  • FIG. 4 is a schematic longitudinal sectional view for explaining the combustion state of the waste in the width direction in the combustion chamber of the grate-type waste incinerator shown in FIG.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a grate-type waste incinerator according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the arrangement different from the arrangement of the high temperature gas inlet and the secondary combustion gas in
  • FIG. 5 is a schematic longitudinal sectional view for explaining the combustion state of the waste in the width direction in the combustion chamber of the modified example of the grate-type waste incinerator shown in FIG.
  • FIG. 6 is a longitudinal sectional view schematically showing a configuration of a grate-type waste incinerator according to the second embodiment of the present invention.
  • FIG. 7 is a diagram showing an appropriate range of the flow velocity of the hot gas blown into the combustion chamber of the grate-type waste incinerator with respect to the combustion chamber height.
  • FIG. 8 is a longitudinal sectional view schematically showing a configuration of a grate-type waste incinerator according to the third embodiment of the present invention.
  • FIG. 9 is a schematic longitudinal sectional view for explaining the combustion state of waste in the longitudinal direction in the combustion chamber of the grate-type waste incinerator shown in FIG.
  • FIG. 10 is a longitudinal sectional view schematically showing a configuration of a grate-type waste incinerator according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic longitudinal sectional view for explaining the combustion state of waste in the longitudinal direction in the combustion chamber of the grate-type waste incinerator shown in FIG.
  • a grate-type waste incinerator 1 shown in FIG. 1 has a combustion chamber 2 provided with a grate 5 on which waste W is supplied and burned while the supplied waste W is moved. Contains.
  • the height from the grate 5 to the ceiling in the combustion chamber 2 is in the range of 1 to 3 m, and the combustion chamber height of the conventional grate-type waste incinerator of about 100 tons / day of waste incineration is 5 m. It is 1/2 or less compared to about ⁇ 6 m.
  • the volume of the combustion chamber 2 of the grate-type waste incinerator 1 of this embodiment is 90 m 3
  • the volume of the combustion chamber of the conventional grate-type waste incinerator as described above is about 190 m 3. Compared to the above, it is about 1 ⁇ 2 or less.
  • the height of the combustion chamber 2 is 3 m or less, and high-temperature gas, which will be described later, is blown downward into the combustion chamber 2 from a position away from the grate 5 in the combustion chamber 2 within a range of 1 m to 3 m.
  • the combustion of the waste W at a low air ratio can be performed stably.
  • the overall equipment relating to the grate-type waste incinerator 1 can be made compact, and the equipment costs and operating costs relating to the grate-type waste incinerator 1 can be greatly reduced.
  • the waste input port 3 is disposed above the upstream side (left side in FIG. 1) in the movement direction of the waste W on the grate 5 in the combustion chamber 2.
  • the gas outlet of the combustion chamber 2 is disposed above the downstream side (the right side in FIG. 1) in the moving direction of the waste W on the grate 5.
  • a secondary combustion chamber 10 is connected to the gas outlet, and a boiler 4 is connected to the secondary combustion chamber 10.
  • a grate (stoker) 5 for burning the waste W supplied from the waste input port 3 while moving it downwardly from the gas outlet.
  • the grate 5 is arranged in the order of the dry grate 5a, the combustion grate 5b, and the post-combustion grate 5c from the side closer to the waste inlet 3.
  • an ash drop port 6 is provided below the downstream end of the post-combustion grate 5c in the moving direction of the waste W.
  • Wind boxes 7a, 7b, 7c, and 7d are respectively provided below the dry grate 5a, the combustion grate 5b, and the post-combustion grate 5c.
  • a primary gas for combustion (usually air) A is sent from a gas delivery mechanism 8 such as a blower to each of the wind boxes 7a, 7b, 7c, 7d through a primary gas supply pipe 9 for combustion with a flow rate adjusting mechanism 11. Supplied and blown upward from the wind boxes 7a, 7b, 7c, 7d through the drying grate 5a, the combustion grate 5b, and the rear combustion grate 5c in the combustion chamber 2.
  • the primary gas A for combustion blown upward from the bottom of the grate 5 is used for drying and burning the waste W on the dry grate 5a, the combustion grate 5b, and the post-combustion grate 5c, as well as drying.
  • the grate 5a, the combustion grate 5b, and the post-combustion grate 5c are cooled and the waste W is stirred on the grate 5a, 5b, 5c.
  • the air boxes 7a, 7b, 7c, 7d, the gas delivery mechanism 8, and the combustion primary gas supply pipe 9 are provided with a primary gas blowing unit FABU for blowing the combustion primary gas A from below the grate 5 into the combustion chamber 2. providing.
  • the waste W is generated mainly by the radiant heat in the combustion chamber 2 and the combustion primary gas A, and the waste W.
  • the combustible gas contained in the combustion gas is ignited. That is, on the dry grate 5a, the waste W is dried on the upstream side along the moving direction of the waste W (drying region), and the combustion of the waste W is started on the downstream side (combustion start region). .
  • the thermal decomposition and partial oxidation of the waste W that has been moved after being ignited by the dry grate 5a are performed mainly by the radiant heat in the combustion chamber 2 and the primary gas A for combustion, and discarded by thermal decomposition.
  • Combustion gas and solid content contained in the combustion gas generated from the object W are combusted. That is, on the entire combustion grate 5b, full-scale combustion of the waste W is performed, and substantially all of the waste W is burned (main combustion region).
  • unburned components such as fixed carbon in the slightly remaining waste moved from the combustion grate 5b after combustion in the combustion grate 5b are completely burned.
  • the secondary combustion gas C from the gas delivery mechanism 16 such as a blower is supplied with a secondary combustion gas supply pipe with a flow rate adjusting mechanism 17.
  • a secondary combustion gas inlet 15 that is fed through 18 is arranged.
  • the secondary combustion gas C blown into the secondary combustion chamber 10 from the secondary combustion gas blow-in port 15 is the secondary combustion gas combusted from the combustion chamber 2 in the secondary combustion chamber 10.
  • the heat generated by the secondary combustion is heated by the boiler 4 connected to the secondary combustion chamber 10 and recovered by the boiler 4.
  • the gas delivery mechanism 16, the secondary combustion gas supply pipe 18, and the secondary combustion gas blow-in port 15 are a secondary combustion gas blow-in unit that blows the secondary combustion gas C into the secondary combustion chamber 10. SABU is provided.
  • the exhaust gas discharged to the outside from the boiler 4 is, for example, neutralized with acid gas by slaked lime and adsorbed dioxins by activated carbon, and further known in the drawing (not shown) It is sent to a dust remover, and neutralization reaction products, activated carbon, dust, etc. are recovered by the dust remover.
  • the exhaust gas that has been dedusted and detoxified by the dust removing device is attracted to a chimney (not shown) by an attracting fan (not shown), and is discharged from the chimney to the atmosphere.
  • dust removal apparatuses such as a bag filter system and an electrostatic dust collection system, can be used, for example.
  • a hot gas blowing unit HGBU for blowing hot gas into the combustion chamber 2 downward from a position within the range of 1 m to 3 m upward from the grate 5 in the combustion chamber 2 is provided outside the combustion chamber 2.
  • a high-temperature gas supply source 12 a plurality of high-temperature gas injection ports 13 for blowing the high-temperature gas B into the combustion chamber 2, and a conduit 14 for guiding the high-temperature gas B from the high-temperature gas supply source 12 to the plurality of high-temperature gas injection ports 13.
  • a flow rate adjusting mechanism 25 interposed in the conduit 14.
  • the plurality of high-temperature gas inlets 13 is a range from the downstream side in the movement direction of the waste W on the dry grate 5a to the downstream side in the movement direction of the waste W on the combustion grate 5b in the ceiling of the combustion chamber 2. It is provided at any position above the inside.
  • the three portions are arranged side by side in the direction intersecting the moving direction of the waste W, that is, in the width direction of the combustion chamber 2.
  • FIG. 2 shows an arrangement different from the arrangement of the plurality of high-temperature gas injection ports 13 and the secondary combustion gas injection ports 15 in the grate-type waste incinerator 1 shown in FIG.
  • the plurality of high-temperature gas inlets 13 are located on the ceiling of the combustion chamber 2 from above the downstream side (combustion start region) on the dry grate 5 a in the moving direction of the waste W on the grate 5. It is provided over the entire width direction of the combustion chamber 2 at three or more positions over the (main combustion region) up to the downstream side on the combustion grate 5b.
  • the plurality of hot gas inlets 13 are directed downward.
  • the high-temperature gas B from the plurality of high-temperature gas injection ports 13 is directed to an arbitrary portion from the downstream combustion start region on the dry grate 5a to the entire main combustion region on the combustion grate 5b. Infused.
  • a plurality of secondary combustion gas inlets 15 are provided on both the front wall and the rear wall of the secondary combustion chamber 10.
  • the secondary combustion chamber 10 and the boiler 4 may be bent and connected so as to cover the combustion chamber 2 as shown in FIG.
  • the height of the grate-type waste incinerator 1 with the secondary combustion chamber 10 and the boiler 4 is set to the conventional grate type. Compared with a waste incinerator, the cost can be reduced, and the equipment cost can be reduced.
  • the configurations of the primary gas blowing unit FABU and the secondary combustion gas blowing unit SABU are not limited to those shown in the drawings, and are appropriately selected depending on the scale and shape of the grate-type waste incinerator 1 and the type of waste. Can be done.
  • the primary gas A for combustion passes through the primary gas supply pipe 9 for combustion from the gas delivery mechanism 8 and wind boxes 7a and 7b provided under the dry grate 5a, the combustion grate 5b, and the post-combustion grate 5c, respectively. , 7c, 7d and then supplied into the combustion chamber 2 through the grate 5a, 5b, 5c.
  • the total flow rate of the primary combustion gas A supplied into the combustion chamber 2 is adjusted by a flow rate adjusting mechanism 11 provided in the main body portion of the primary combustion gas supply pipe 9, and each wind box 7a, 7b, 7c is further adjusted.
  • 7d the partial flow rate of the primary gas A for combustion supplied to the branch portion of the primary gas supply pipe 9 for combustion branched from the main body portion to each of the wind boxes 7a, 7b, 7c, 7d. It is adjusted by an adjustment mechanism (not shown).
  • the configurations of the wind boxes 7a, 7b, 7c, 7d, the primary gas supply pipe 9 for combustion, etc. are not limited to those shown in the figure, and are appropriately selected depending on the scale and shape of the grate-type waste incinerator 1, the type of waste, etc. Can be done.
  • the primary gas A for combustion it is preferable to use a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume.
  • a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume any one of air, oxygen-containing gas, and part of exhaust gas (circulated exhaust gas) discharged from the incinerator may be used, or a mixed gas thereof may be used.
  • the hot gas B passes through the grate in the combustion chamber 2 from the plurality of hot gas injection ports 13 of the high temperature gas injection unit HGBU located in a position 1 m to 3 m above the grate 5 in the combustion chamber 2. 5 is blown downward toward the waste W at an arbitrary portion between the combustion start region and the main combustion region. This is because it is preferable to blow the high temperature gas B into these regions where there is a flame and a large amount of combustible gas, because the combustion of the waste W in these regions is stabilized.
  • the region where a large amount of combustible gas exists is from the combustion start region to the main combustion region.
  • the combustion start region is a region where combustion of waste starts and combustible gas begins to be generated by thermal decomposition and partial oxidation of the waste.
  • the main combustion region is a region where waste is thermally decomposed, partially oxidized and burned, combustible gas is generated and burned with a flame, and combustion with a flame is completed ( This is the area up to the burnout point. In a region after the burn-out point, a char combustion region (post-combustion region) in which solid unburnt (char) in the waste is combusted is obtained.
  • the combustion start area is an upper space on the downstream side of the dry grate 5a in the moving direction of the waste W on the grate 5, and the main combustion area is on the combustion grate 5b. It corresponds to the upper space of the whole area.
  • a plurality of high-temperature gas injection ports 13 are located above the downstream side on the dry grate 5 a corresponding to the main combustion region and above the entire area on the combustion grate 5 b from the combustion start region in the combustion chamber 2.
  • the height of the combustion chamber 2 from the grate 5 is 3 m or less on the ceiling.
  • a high temperature gas inlet 13 is provided above these positions to provide a high temperature gas. B is blowing.
  • the pyrolysis reaction may be completed at a higher temperature. In this case, the waste W on the grate 5 moves further downstream than the position shown in FIG. However, it is preferable to provide the hot gas inlet 13.
  • the hot gas B By blowing the hot gas B downward toward the waste W at any part between the combustion start region and the main combustion region in the combustion chamber 2, the hot gas B is thermally decomposed and partially oxidized by the waste W.
  • the upward flow of the combustion gas containing the combustible gas generated by the above is suppressed, the flows of both the hot gas B and the combustion gas collide, and the hot gas B and the combustion gas are fired from the combustion start region to the main combustion region.
  • a slow stagnation or vertical circulation of a planar flow is generated above the waste W on the grid 5.
  • the plurality of high-temperature gas inlets 13 are grate within the range of the entire area on the combustion grate 5b from the downstream side on the dry grate 5a along the moving direction of the waste W on the grate 5 of the dry grate 5a. It can be provided at an arbitrary position away from 5 within a range of 1 m to 3 m.
  • the combustion chambers 2 are arranged along a plurality of rows in the width direction and the length direction of the combustion chambers 2 within a range corresponding to the above range of the ceiling within 3 m in height. Yes.
  • the hot gas inlet 13 may be a nozzle type or a slit type.
  • a desired planar combustion region is set or adjusted so as to be uniformly and stably formed in the width direction and the length direction of the combustion chamber 2 on the main combustion region.
  • a plurality of hot gas inlets 13 and a plurality of hot gas blows are provided in the above range in the combustion chamber 2.
  • a high-temperature gas supply pipe that supplies the high-temperature gas B from the high-temperature gas supply source 12 is arranged in the mouth 13.
  • the plurality of high-temperature gas injection ports 13 and the high-temperature gas supply pipe are formed of a heat-resistant material that can withstand the high temperature in the combustion chamber 2 or a material that is heat-resistant coated. There must be.
  • the blowing direction of the high temperature gas B from the high temperature gas blowing port 13 is preferably a conical range with a development angle up to 20 ° centered on the perpendicular from the high temperature gas blowing port 13.
  • the blowing direction becomes larger than this range, the hot gas B blown into the combustion chamber 2 from the hot gas blowing port 13 is discarded in the combustion start region and the main combustion region on the grate 5 in the combustion chamber 2.
  • the upward flow of the combustion gas including the combustible gas generated by the thermal decomposition and partial oxidation of W cannot be stably suppressed, and the stable planar combustion region may not be formed.
  • FIG. This will be described in more detail with reference to FIGS.
  • FIG. 3 shows a waste W in the width direction in the combustion chamber 2 ′ of a conventional grate-type waste incinerator (Patent Document 1: grate-type waste incinerator described in Japanese Patent Application Laid-Open No. 2004-84981) 20.
  • FIG. 4 is a schematic longitudinal sectional view for explaining the combustion state of the gas; and
  • FIG. 4 is a diagram showing waste in the width direction in the combustion chamber 2 of the grate-type waste incinerator 1 according to the first embodiment of the present invention. It is a schematic longitudinal cross-sectional view for demonstrating the combustion state of the thing W.
  • FIG. 1 grate-type waste incinerator described in Japanese Patent Application Laid-Open No. 2004-84981
  • the conventional grate-type waste combustion furnace 20 is provided with a high-temperature gas inlet 23 on the side wall 21 of the combustion chamber 2 ′, and the waste W on the grate 5 Is burned with the aid of a combustion primary gas (usually air) A from below the grate 5.
  • a combustion primary gas usually air
  • the hot gas B is blown obliquely downward from the hot gas blow-in port 23 provided in the side wall 21 of the combustion chamber 2 '.
  • the hot gas B blown obliquely downward into the combustion chamber 2 ′ collides with an upward flow of combustion gas including combustible gas generated from the waste W that is burned and pyrolyzed on the grate 5.
  • the hot gas B blown from the hot gas blowing port 23 of the side wall 21 of the combustion chamber 2 ′ becomes the combustion chamber 2 ′. It does not reach the central part in the width direction.
  • the high-temperature gas B is sufficient for the upward flow of the combustion gas including the combustible gas generated from the waste W burned on the grate 5 and thermally decomposed. There is no collision, and the stagnation of the slow flow of the high temperature gas B and the combustion gas containing the combustible gas is not formed on the waste W in the central portion. And in the said center part, the planar combustion area
  • the ceiling of the combustion chamber 2 is used.
  • a plurality of hot gas inlets 13 are provided at 22 in the width direction of the combustion chamber 2 so as to be separated from each other.
  • the waste W on the grate 5 is provided on the ceiling 22 while burning with the assistance of the primary gas A for combustion from below.
  • Hot gas B is blown downward into the combustion chamber 2 from a plurality of hot gas blowing ports 13.
  • the waste W can be reliably and stably burned in the combustion chamber 2 over the entire width of the combustion chamber 2.
  • Hot gas B is blown downward into the combustion chamber 2 from a hot gas inlet 13 provided at a position 1 m to 3 m upward from the grate 5 in the combustion chamber 2, for example, the ceiling 22 of the combustion chamber 2.
  • the upward flow of the combustion gas containing the combustible gas generated from the waste W above is suppressed, and the slow stagnation or the vertical circulation of the flow of the combustion gas containing the combustible gas and the high-temperature gas on the waste W ,
  • the flow of the combustible gas becomes gentle, and the combustible gas is sufficiently mixed with the primary gas A for combustion injected into the combustion chamber 2 from below the grate 5 to perform stable combustion. .
  • a flammable gas stably burns in the stagnation or in the circulation on the waste W, so that a planar combustion region (planar flame) E is formed and stays on the waste W.
  • the grate-type waste combustion furnace 1 of the first embodiment can stably burn the waste W even when the waste W is burned at a low air ratio. Since the waste W is stably combusted, the combustible gas generated from the waste W is sufficiently burned, so that harmful substances such as soot discharged from the grate-type waste incinerator 1 and CO and NOx in the exhaust gas The generation amount can be suppressed.
  • the thermal decomposition of the waste W can be promoted by radiation of the standing planar combustion region (planar flame) E, the amount of the waste W supplied to the grate 5 (grate load) can be reduced.
  • the amount of heat (furnace load) of the waste W generated in the combustion chamber 2 can be increased.
  • the volume of the combustion chamber 2 can be reduced with respect to the amount of waste W that can be incinerated in the grate-type waste incinerator 1, the height of the combustion chamber 2 can be reduced, and the grate-type
  • the temperature of the hot gas B blown into the combustion chamber 2 from the hot gas blowing port 13 is preferably in the range of 100 ° C. to 400 ° C., more preferably about 200 ° C.
  • a gas having a temperature of less than 100 ° C. is blown into the combustion chamber 2 from the high temperature gas inlet 13
  • the temperature in the combustion chamber 2 is lowered, and the combustion of the waste W in the combustion chamber 2 becomes unstable. CO generated by combustion increases.
  • gas exceeding 400 ° C. is blown into the combustion chamber 2 from the high temperature gas inlet 13, the flame temperature in the combustion chamber 2 becomes extremely high, and the generation of clinker from the waste W is promoted.
  • the oxygen concentration contained in the high temperature gas B is preferably about 5% to 30% by volume, and preferably 5% to 15% by volume.
  • the high-temperature gas B at least one of a part of the exhaust gas downstream of the secondary combustion chamber 10 (circulated exhaust gas), a mixed gas of this exhaust gas and air, air, a gas containing oxygen, and oxygen-enriched air. It is preferable to use one.
  • the circulating exhaust gas is a part of the exhaust gas after neutralizing the exhaust gas discharged from the grate-type waste incinerator 1 and removing dust with, for example, a bag filter.
  • the hot gas supply source 12 When at least one of such circulating exhaust gas, a mixed gas of such circulating exhaust gas and air, air, a gas containing oxygen, and oxygen-enriched air is used as the hot gas B, the hot gas supply source 12
  • the one gas used as the high temperature gas B is heated to the preferred temperature as the high temperature gas B by the steam generated in the boiler 4 connected to the secondary combustion chamber 10. Further, by adjusting the mixing ratio of the various gases used as the high temperature gas B in the high temperature gas supply source 12, the oxygen concentration of the high temperature gas B can be adjusted to the preferred value described above.
  • the hot gas B blown into the combustion chamber 2 from the hot gas inlet 13 is between the combustion start region on the grate 5 in the combustion chamber 2 and the main combustion region at a blowing speed of about 5 m / s to 20 m / s. It is preferable to blow into any part.
  • the blowing speed of the high temperature gas B is set to about 5 m / s to 20 m / s because the blowing speed of the high temperature gas B is set to the superficial velocity in the combustion chamber 2 (the gas flow rate in the combustion chamber 2 with respect to the direction of gas flow).
  • the relative velocity is 5 to 20 times the flow velocity divided by the cross-sectional area of the orthogonal combustion chambers (maximum of about 1 m / s). Due to such injection of the hot gas B, the stagnation or circulation described above is performed on the combustion start region on the grate 5 and the waste W in the main combustion region without being affected by the gas flow in the combustion chamber 2. It can be formed stably.
  • the flow rate of the hot gas B into the combustion chamber 2 is adjusted by adjusting the flow rate of the hot gas B sent from the hot gas supply source 12 to the plurality of hot gas inlets 13 via the pipelines 14, for example, It is adjusted by adjusting the delivery amount of the high temperature gas B by a gas delivery mechanism (not shown) provided in the gas supply source 12 and the opening degree of the flow rate adjustment mechanism 25 interposed in the pipe 14.
  • FIG. 5 is a cross-sectional view for explaining the combustion state of the waste W in the width direction in the combustion chamber 2 of the modified example of the grate-type waste incinerator 1 shown in FIG.
  • the calorific value of the waste W is combusted.
  • the chamber 2 is not uniform in the width direction, the amount and composition of the combustible gas generated by the thermal decomposition of the waste W are not uniform depending on the position in the width direction in the combustion chamber 2.
  • the state is grasped, and depending on the state in the combustion chamber 2 or the state of the waste W on the grate 5, the hot gas flow rate adjusting mechanism 26a connected to the hot gas inlets 13a, 13b at a plurality of positions, The opening degree of 26b is adjusted, and the hot gas blowing flow rate or blowing flow rate from the hot gas blowing ports 13a and 13b is individually adjusted. Thereby, even if the waste W on the grate 5 along the width direction of the combustion chamber 2 is in a non-uniform state, the waste W can be stably burned.
  • the amount of the waste W deposited on the grate 5 is large or when the amount of heat generated by the waste W is high, the amount of combustible gas generated from the waste W increases, and the combustible gas
  • the combustion calorie generated by the combustion of becomes higher, and the temperature of the grate 5 and the temperature of the gas in the combustion chamber 2 rise.
  • the thickness of the left-side waste W layer on the grate 5 is thicker than the right-side waste W layer, and the generation of combustible gas from the left-side waste W layer.
  • the amount of combustible gas generated from the layer of the waste W on the right side is larger, the temperature of the left gas in the combustion chamber 2 is 800 to 900 ° C., and 700 to the temperature of the right gas in the combustion chamber 2
  • the flow rate of the hot gas B from the left hot gas blowing port 13a in the combustion chamber 2 where the gas temperature is high is set to be the same as that in the combustion chamber 2 where the gas temperature is relatively low.
  • the opening degree of the hot gas flow rate adjusting mechanism 26a on the left side is adjusted so that it increases 1.2 to 1.5 times the flow rate of the hot gas B from the hot gas gas inlet 13b on the right side.
  • a high-temperature gas with a sufficiently balanced flow rate is blown into the upward flow of a large combustible gas or the like.
  • the stagnation or circulation of the injected hot gas B and the combustion gas containing the combustible gas from the layer of the waste W can be uniformly and stably formed in the entire region in the width direction in the combustion chamber 2.
  • a planar combustion region (planar flame) E can be fixed on the waste W layer in the entire width direction of the interior of the combustion chamber 2, and the waste W layer can be stabilized in the entire width direction of the combustion chamber 2. Combustion can be performed.
  • FIG. 1 shows a state grasping unit CS for measuring the temperature of the grate 5 or the temperature in the combustion chamber 2 to grasp the state in the combustion chamber 2 or the state of the waste W on the grate 5, and the grasped combustion.
  • An adjustment unit that adjusts the blowing flow rate or flow rate of the hot gas B from the hot gas blowing port 13 according to the state in the chamber 2 or the state of the waste W on the grate 5 is shown.
  • the adjustment unit is provided by controlling the operation of the flow rate adjustment mechanism 25 interposed in the pipeline 14 of the hot gas B connected to the state grasping unit CS.
  • the temperature of the grate 5 and the temperature of the gas in the combustion chamber 2 are measured, and fluctuations in these temperatures are detected.
  • the CO concentration, oxygen concentration, etc. in the exhaust gas from the combustion chamber 2 change, so the CO concentration, oxygen concentration of the exhaust gas discharged from the boiler 4
  • the secondary combustion gas C is blown into the secondary combustion chamber 10, and unburned combustible gas from the combustion chamber 2 is subjected to secondary combustion in the secondary combustion chamber 10.
  • the secondary combustion gas C it is preferable to use a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume.
  • the secondary combustion gas C for example, only secondary combustion air supplied by a gas delivery mechanism 16 such as a blower, a gas in which a diluent is mixed with secondary combustion air, and an oxygen concentration is adjusted, a secondary combustion chamber Only a part of the exhaust gas (circulated exhaust gas) after passing through the 10 dust removing devices downstream of the exhaust gas, or a gas in which the secondary air for combustion and the circulating exhaust gas are mixed can be used. Nitrogen, carbon dioxide, etc. can be considered as the diluent.
  • One or a plurality of secondary combustion gas inlets 15 in the secondary combustion chamber 10 may be installed so that the secondary combustion gas C can be blown in a direction in which a swirling flow is generated in the secondary combustion chamber 10. preferable.
  • the temperature distribution and oxygen concentration distribution of the gas in the secondary combustion chamber 10 can be made uniform, and the secondary combustion chamber 10 Secondary combustion of unburned combustible gas in the inside is performed stably. As a result, the generation of a local high temperature region in the secondary combustion chamber 10 is suppressed, and NOx in the exhaust gas discharged from the secondary combustion chamber 10 can be reduced.
  • the combustion stability of the combustible gas in the secondary combustion chamber 10 is improved. As a result, complete combustion of the combustible gas in the secondary combustion chamber 10 can be achieved, so that CO in the exhaust gas discharged from the secondary combustion chamber 10 can also be reduced.
  • the flow rate of the secondary combustion gas C so that the gas temperature in the secondary combustion chamber 10 is in the range of 800 ° C. to 1050 ° C.
  • the temperature of the gas in the secondary combustion chamber 10 is less than 800 ° C.
  • the combustion of the combustible gas becomes insufficient, and CO in the exhaust gas discharged from the secondary combustion chamber 10 increases.
  • the gas temperature in the secondary combustion chamber 10 exceeds 1050 ° C., generation of clinker in the secondary combustion chamber 10 is promoted, and NOx in the exhaust gas discharged from the secondary combustion chamber 10 increases.
  • the ratio Q3 of the amount of oxygen per unit time supplied by the injected secondary combustion gas C satisfies the following formulas (1) and (2), more preferably the following formulas (3) and (4).
  • each gas is blown.
  • the gas is supplied to the entire grate-type waste incinerator 1.
  • Sufficient combustion of the waste W can be realized at a lower low air ratio where the air amount is 1.3 or less.
  • Q1 is the ratio of the amount of oxygen per unit time supplied by the combustion primary gas A supplied from below the grate 5 into the combustion chamber 2, and is used for combustion supplied into the combustion chamber 2. Adjustment is performed by increasing or decreasing the flow rate of the primary gas A. Further, Q2 is adjusted by increasing or decreasing the flow rate of the hot gas B that is blown into an arbitrary portion between the combustion start region and the main combustion region in the combustion chamber 2. Q3 is adjusted by increasing or decreasing the flow rate of the secondary combustion gas C blown into the secondary combustion chamber 10.
  • Q1 and Q2 are determined as the standard combustion standard of the waste W in the grate-type waste incinerator 1 in consideration of the composition and properties of the waste W, and then the standard value of Q3 is set. Q3 is adjusted within a range of 0.10 to 0.40 with 0.15 as a reference.
  • the outlet of the secondary combustion chamber 10 that performs secondary combustion of unburned combustible gas discharged from the combustion chamber 2 is used.
  • the grate-type waste incinerator 1 According to the waste incineration method using the grate-type waste incinerator 1, even when the waste W is burned in the grate-type waste incinerator 1 at a lower air ratio than before, the waste The stability of the combustion of W is maintained, the generation of local high temperatures is suppressed, and the amount of harmful gases such as CO and NOx generated in the grate-type waste incinerator 1 can be reduced.
  • the furnace volume (combustion chamber 2 volume) can be reduced to about 1 ⁇ 2 of the comparative example, and even if the air ratio is lower, the waste can be combusted sufficiently. It can also be seen that the amount of harmful gases such as CO and NOx can be reduced.
  • the outline of the grate-type waste incinerator according to the second embodiment is as follows.
  • Combustion gas containing combustible gas and high temperature on waste on the grate by blowing high temperature gas downward from the ceiling of the combustion chamber facing the upward flow of combustion gas containing combustible gas generated from waste.
  • the hot gas it is necessary for the hot gas to be blown to impinge properly on the upward flow from the waste. If the height of the combustion chamber increases, it is necessary to increase the flow velocity of the hot gas blown downward into the combustion chamber. However, if the flow rate is increased too much, the high-temperature gas directly collides with the waste, which cools the waste and scatters the waste. As a result, waste combustion becomes unstable and fly ash increases, which is not preferable.
  • the flow rate of the high-temperature gas that does not adversely affect the waste is obtained, and the upper limit of the flow rate of the high-temperature gas is determined. Further, the lower limit of the flow rate of the hot gas was determined from the limit of the flow rate of the hot gas capable of forming the stagnation or circulation. In this way, an appropriate range of the hot gas blowing flow rate was determined in accordance with the height of the combustion chamber.
  • Such a range is a range having an upper limit and a lower limit shown in FIG. 7, which shows the relationship of the hot gas blowing flow rate with respect to the height of the combustion chamber.
  • the line indicating the upper and lower limits of the appropriate range of the hot gas blowing flow rate is expressed by the following relational expression between the hot gas blowing flow rate (Y) and the combustion chamber height (X).
  • the grate-type waste according to the second embodiment is achieved by setting the flow velocity of hot gas to an appropriate range as defined by the relational expression indicating the upper and lower limits with respect to the height of the combustion chamber.
  • an appropriate amount of hot gas blown downward from the hot gas inlet on the ceiling of the combustion chamber is appropriate for the height of the combustion chamber.
  • FIG. 6 is a longitudinal sectional view schematically showing a configuration of a grate-type waste incinerator according to the second embodiment of the present invention.
  • a basic configuration of a grate-type waste incinerator according to the second embodiment of the present invention and an outline of an incineration method in the incinerator will be described, and then details of a plurality of configurations in the incinerator will be described.
  • the upstream side of the combustion chamber in the movement direction of the waste in the combustion chamber is referred to as a front portion, and the downstream side is referred to as a rear portion.
  • the grate-type waste incinerator 100 shown in FIG. 6 can stably burn the waste W at a low air ratio by blowing the high-temperature gas B downward from the ceiling of the combustion chamber 102.
  • the entire equipment of the grate-type waste incinerator 100 can be made compact, and equipment costs and operating costs can be greatly reduced.
  • the waste incinerator 100 is disposed above the combustion chamber 102 and the upstream side (left side in FIG. 6) in the flow direction of the waste W in the combustion chamber 102.
  • a waste charging port 103 for charging into the inside of the combustion chamber 102 and a boiler 104 provided continuously above the downstream side (the right side in FIG. 6) in the flow direction of the waste W in the combustion chamber 102 are provided.
  • a grate (stoker) 105 for burning the waste W while moving it.
  • the grate 105 is provided in the order of the dry grate 105a, the dry grate 105a, the main combustion grate 105b, and the post-combustion grate 105c from the side closer to the waste inlet 103, that is, from the upstream side.
  • the waste W is mainly dried and ignited.
  • the combustion grate 105b mainly performs thermal decomposition and partial oxidation of the waste W, and combustible combustible gas and solid content contained in the combustion gas generated by the thermal decomposition.
  • the remaining unburned matter in the waste W is completely burned.
  • the combustion ash after complete combustion is discharged from the ash drop opening 106.
  • the wind box 107a, 107b, the combustion grate 105b, and the lower part of the post-combustion grate 105c are respectively wind boxes. 107a, 107c, and 107d are provided.
  • the combustion primary gas (usually air) A supplied by the blower 108 is supplied to the wind boxes 107a, 107b, 107c, and 107d through the combustion primary gas supply pipe 109, and the grate 105a, 105b, It is supplied into the combustion chamber 102 through 105c.
  • the primary gas A for combustion supplied from below the grate 105 is used for drying and burning the waste W on the grate 105a, 105b, 105c, cooling the grate 105a, 105b, 105c, Stir the waste W.
  • a boiler 104 is connected to a gas outlet on the downstream side of the ceiling of the combustion chamber 102, and the vicinity of the inlet of the boiler 104 burns unburned combustible gas in the gas discharged from the gas outlet of the combustion chamber 102.
  • Combustion chamber 110 is formed.
  • a secondary combustion gas C is blown into the secondary combustion chamber 110, and the combustible gas is secondary-combusted together with the secondary combustion gas C in the secondary combustion chamber 110.
  • the exhaust gas after the secondary combustion is the boiler 104. The heat is recovered.
  • the exhaust gas discharged from the boiler 104 is subjected to neutralization of acid gas by slaked lime and the like and adsorption of dioxins by activated carbon in an exhaust gas treatment device (not shown), and further sent to a dust removal device (not shown). Neutralization reaction products, activated carbon, dust, etc. are recovered.
  • the exhaust gas that has been dedusted and detoxified by the dust remover is attracted from the dust remover by an attraction fan (not shown) and released from the chimney into the atmosphere.
  • the primary gas blowing unit FABU that blows the primary gas A for combustion into the combustion chamber 102 from below the grate 105, and the high temperature gas B in the combustion chamber.
  • High-temperature gas blowing that blows downward from the ceiling of 102 toward any portion between the combustion start region and the main combustion region in the combustion chamber 102 along the length direction (waste movement direction) of the combustion chamber 102
  • a unit HGBU and a secondary combustion gas blowing unit SABU for blowing the secondary combustion gas C into the secondary combustion chamber 110 are provided.
  • the high-temperature gas blowing unit HGBU has a plurality of high-temperature gas blowing ports 113 on the ceiling of the combustion chamber 102 and blows the high-temperature gas B opposite to the upward flow of the combustion gas containing the combustible gas generated from the waste W.
  • the stagnation or circulation of the high temperature gas B and the combustion gas containing the combustible gas is formed on the waste W to make the planar combustion region exist.
  • the primary gas blowing unit FABU passes a combustion primary gas (usually air) A from a combustion primary gas supply source (not shown) through a main portion of the combustion primary gas supply pipe 109, a drying grate 105a, combustion A main portion of the combustion primary gas supply pipe 109 is fed into the respective wind boxes 107a, 107b, 107c, and 107d of the grate 105b and the post-combustion grate 105c from a branch portion of the combustion primary gas supply pipe 109.
  • a gas delivery mechanism 108 such as a blower and a flow rate adjusting mechanism 111.
  • the high temperature gas injection unit HGBU includes a high temperature gas supply source 112 provided outside the combustion chamber 102, a plurality of high temperature gas injection ports 113 for injecting the high temperature gas B into the combustion chamber 102, and a high temperature gas B as a high temperature gas supply source.
  • a conduit 114 leading from 112 to a plurality of hot gas inlets 113 and a flow rate adjusting mechanism 115 are provided.
  • the plurality of high-temperature gas inlets 113 are arbitrarily arranged on the ceiling of the combustion chamber 102 within the range from the downstream side (rear part) in the moving direction of the waste W on the dry grate 105a to the entire area on the combustion grate 105b. It is provided in the position.
  • the upper side on the downstream side on the dry grate 105a and the upper side on the upstream side and the downstream side on the combustion grate 105b. are provided at three positions.
  • the plurality of hot gas inlets 113 are provided at a plurality of positions spaced from each other in the width direction of the combustion chamber 102 (the direction perpendicular to the paper surface in FIG. 6) in each of the three positions. Therefore, the plurality of hot gas inlets 113 are arranged at a plurality of positions in the length direction and the width direction of the combustion chamber 102. Further, the directions of the plurality of hot gas blowing ports 113 are determined so that the hot gas B is blown downward from the ceiling of the combustion chamber 102. Thus, the hot gas B is blown toward the combustion start region and the main combustion region formed on the downstream side on the dry grate 105a and the entire region on the combustion grate 105b.
  • the grate-type waste incinerator 101 of the present embodiment includes a secondary combustion gas blowing unit SABU that blows the secondary combustion gas C into the secondary combustion chamber 110 corresponding to the vicinity of the inlet of the boiler 104.
  • the secondary combustion gas blowing unit SABU is provided in the secondary combustion chamber 110 with a secondary combustion gas C from a secondary combustion gas supply source (not shown) via a secondary combustion gas supply pipe 119.
  • the secondary combustion gas inlet 116 is fed with a gas delivery mechanism 117 such as a blower and a flow rate adjusting mechanism 118.
  • the secondary combustion gas inlet 116 is provided on the peripheral wall of the secondary combustion chamber 110 so as to blow the secondary combustion gas C into the secondary combustion chamber 110 in the vicinity of the inlet of the boiler 4.
  • the configurations of the primary gas blowing unit FABU, the high-temperature gas blowing unit HGBU, and the secondary combustion gas blowing unit SABU are not limited to those shown in the figure, and the scale and shape of the grate-type waste incinerator 100 are combusted there. Can be appropriately selected depending on the type of waste W to be used.
  • a dry region is formed on the dry grate 105a on the upstream side corresponding to the lower side of the waste inlet 103, and the upstream on the dry grate 105a.
  • a combustion start region is formed on the side. That is, the waste W on the dry grate 105a is dried in the upstream drying region, ignited in the downstream combustion start region, and combustion starts.
  • the waste W moved from the dry grate 105a to the entire area of the combustion grate 105b is thermally decomposed and partially oxidized, and combustible gas and waste contained in the combustion gas generated from the waste W are discarded.
  • the solid content in the product W is burned.
  • the waste W is substantially burned almost throughout the combustion grate 105b.
  • a main combustion region is formed over the entire area of the combustion grate 105b.
  • Unburned matter such as fixed carbon in the waste W slightly remaining on the combustion grate 105b is moved onto the post-combustion grate 105c and is completely burned here.
  • the post-combustion grate 105c becomes a post-combustion region.
  • the combustion start region is a region where combustion of the waste W starts and combustion gas containing combustible gas starts to be generated from the waste W due to thermal decomposition and partial oxidation of the waste W.
  • the main combustion region is the thermal decomposition, partial oxidation, and combustion of the waste W, the combustion gas containing the combustible gas is generated from the waste W, and the waste W and the combustible gas are accompanied by the flame.
  • combustion start area is located above the downstream side on the dry grate 105a, and the main combustion area is located above the entire area on the combustion grate 105b.
  • the waste W is mainly dried and ignited on the dry grate 105a. That is, the waste W is dried on the upstream side of the drying grate 105a, and ignition (combustion start) is performed on the downstream side.
  • ignition combustion start
  • the combustion grate 105b the thermal decomposition and partial oxidation of the waste W are mainly performed, and the combustible gas contained in the combustion gas generated from the waste W and the solid content in the waste W are combusted. Combustion of the waste W is substantially completed on the combustion grate 105b.
  • On the post-combustion grate 105c a small amount of unburned carbon such as fixed carbon in the waste W is completely burned.
  • the combustion ash after complete combustion is discharged from the ash drop port 106 to the outside of the combustion chamber 102.
  • a dry region, a combustion start region, a main combustion region, and a post-combustion region are formed on each grate 105a, 105b, 105c.
  • the boiler 104 is connected to the gas outlet on the ceiling of the combustion chamber 102, and the vicinity of the inlet of the boiler 104 is the secondary combustion chamber 110.
  • the unburned combustible gas generated from the waste W in the combustion chamber 102 is guided to the secondary combustion chamber 110 where it is mixed and stirred with the secondary combustion gas C and then subjected to secondary combustion.
  • the heat in the exhaust gas generated by the secondary combustion is recovered by the boiler 104.
  • the exhaust gas discharged from the boiler 104 is neutralized with acidic gas by slaked lime, etc., and adsorbed dioxins by activated carbon. Further, neutralization reaction products, activated carbon, dust, etc. are recovered by a dust remover (not shown). Is done.
  • the exhaust gas that has been dedusted and detoxified by the dust remover is attracted from the dust remover by an attracting fan (not shown) and released from the chimney into the atmosphere.
  • an attracting fan not shown
  • well-known dust removal apparatuses such as a bag filter system and an electrostatic dust collection system, can be used, for example.
  • the primary gas A for combustion passes through the primary gas supply pipe 109 for combustion from a gas delivery mechanism 108 such as a blower, for example, and is provided below the dry grate 105a, the combustion grate 105b, and the post-combustion grate 105c. After being supplied to the boxes 107a, 107b, 107c, 107d, they are supplied into the combustion chamber 102 through the grate 105a, 105b, 105c.
  • a gas delivery mechanism 108 such as a blower, for example
  • the total flow rate of the combustion primary gas A supplied into the combustion chamber 102 is adjusted by a flow rate adjusting mechanism 111 provided in the main body portion of the combustion primary gas supply pipe 109, and further, the wind boxes 107a and 107b are adjusted. , 107c, 107d, the flow rate of the primary gas A for combustion supplied to the branch portions branched from the main body portion of the primary gas supply pipe 109 for combustion into the wind boxes 107a, 107b, 107c, 107d (illustrated) (Omitted).
  • the configuration of the primary gas blowing unit FABU is not limited to that shown in FIG. 6, and the scale and shape of the grate-type waste incinerator 100 and the waste W to be incinerated in the grate-type waste incinerator 100 It can be appropriately selected depending on the type and the like.
  • the primary gas A for combustion it is preferable to use a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume.
  • a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume any one of air, oxygen-containing gas, and part of exhaust gas derived from the secondary combustion chamber 110 (circulated exhaust gas) may be used, or a mixed gas thereof may be used. Good.
  • the hot gas B is directed to the waste W at any part between the ceiling of the combustion chamber 102 and the combustion start region on the grate 105 in the combustion chamber 102 to the main combustion region. And blown downward. This is because in order to stabilize the combustion of the waste W, it is preferable to blow the high temperature gas B into these regions where there is a flame and there are many combustible gases generated from the waste W.
  • the hot gas B is blown downward toward the waste W at an arbitrary position from the combustion start area on the grate 105 in the combustion chamber 102 to the main combustion area from the ceiling of the combustion chamber 102, so that the high temperature gas B is blown downward.
  • B opposes the upward flow with the combustion gas containing the combustible gas generated by the thermal decomposition and partial oxidation of the waste W, suppresses the upward flow, and the high temperature gas B and the waste gas W on the waste W in these regions Slow stagnation or vertical circulation of the planar flow with the combustion gas occurs. In these regions, the flow rates of the high temperature gas B and the combustion gas are slow, so that a flame in which the combustible gas contained in the combustion gas burns is fixed.
  • planar combustion region planar flame
  • the combustible gas is stably combusted.
  • the waste W in the above-described region is heated by the thermal radiation and sensible heat of the high-temperature gas B, and in addition to promoting the thermal decomposition and partial oxidation of the waste W, a planar shape is formed on the waste W. Since the combustion region (planar flame) is fixed, the waste W is also heated by heat radiation and sensible heat from the planar combustion region, and thermal decomposition and partial oxidation of the waste W are further promoted.
  • ⁇ Blowing flow velocity of hot gas B into combustion chamber 102> The hot gas B blown into the combustion chamber 102 from the hot gas blow-in port 113 starts combustion in the combustion chamber 102 at a blowing flow rate in an appropriate range according to the height from the grate 105 to the ceiling in the combustion chamber 102. It is preferable to be blown into an arbitrary portion between the region and the main combustion region.
  • An appropriate range of the flow velocity of the hot gas B in accordance with the height of the combustion chamber 102 can be expressed by the following relational expression.
  • Y Blowing flow velocity of hot gas B (m / sec)
  • X height of combustion chamber 102 (m)
  • the flow rate of the hot gas B blown downward from the hot gas blow-in port 113 on the ceiling of the combustion chamber 102 is set according to the height of the combustion chamber 102 using the above equation (1), so that the blown hot gas B is blown. Is appropriately collided with the upward flow of the combustion gas containing the combustible gas generated by the thermal decomposition and partial oxidation of the waste W, and the planar shape of the hot gas B and the combustion gas is disposed on the waste W in the region.
  • a planar combustion region can be established on the waste W.
  • the combustible gas can be stably combusted, and the combustion promoting effect and combustion stabilizing effect of the waste W can be reliably obtained at a low air ratio regardless of the height of the combustion chamber 102.
  • the flow velocity of the hot gas B is 5 to 20 times the superficial velocity (the flow velocity obtained by dividing the flow rate of the gas in the combustion chamber 102 by the cross-sectional area of the combustion chamber 102 orthogonal to the gas flow direction). Is preferably blown into the combustion chamber 102.
  • the stagnation or the circulation i.e., the planar combustion region
  • the waste W in the main combustion region without being affected by the gas flow in the combustion chamber 102. Can be formed.
  • the blowing speed of the high temperature gas B is controlled by adjusting the opening degree of the flow rate adjusting mechanism 115 provided in the pipe 114 or adjusting the high temperature gas delivery mechanism such as a blower for sending the high temperature gas B from the high temperature gas supply source 112, for example. It can be adjusted by adjusting the flow rate of the gas B.
  • the hot gas B does not necessarily have to be blown from each hot gas blowing port 113 at an equal flow rate.
  • the hot gas B is blown from the hot gas inlets 113.
  • the included flow rate can be appropriately changed so as to be different from each other.
  • the flat combustion region can be made constant on the waste W without fluctuation. It is preferable to adjust the flow rate of the gas B.
  • the combustion state in the planar combustion region changes, the combustion state of the combustible gas changes, and the CO concentration, NOx concentration, oxygen concentration, etc. in the exhaust gas discharged from the grate-type waste incinerator 100 change.
  • the CO concentration, NOx concentration, and oxygen concentration of the exhaust gas discharged from 104 may be measured, and the blowing flow rate of the high temperature gas B may be adjusted in accordance with these changes.
  • the temperature of the hot gas B blown into the combustion chamber 102 from the hot gas blowing port 113 is preferably in the range of 100 ° C. to 400 ° C., more preferably about 200 ° C.
  • a gas of less than 100 ° C. is blown into the combustion chamber 102 as the high temperature gas B, the temperature in the combustion chamber 102 decreases, the combustion of the waste W becomes unstable, and the amount of CO generated increases.
  • a gas exceeding 400 ° C. is blown into the combustion chamber 102 as the high-temperature gas B, the flame temperature in the combustion chamber 102 becomes extremely high, which causes problems such as promotion of clinker generation.
  • the oxygen concentration contained in the high temperature gas B is preferably about 5% to 30% by volume, and preferably 5% to 15% by volume.
  • a part of exhaust gas extracted from the secondary combustion chamber 110 on the downstream side (circulated exhaust gas), a part of this exhaust gas (circulated exhaust gas), and air It is preferable to use any one of a gas mixture containing oxygen, a gas containing oxygen, air, and oxygen-enriched air.
  • a part of the exhaust gas (circulated exhaust gas) it is preferable to use a part of the exhaust gas after the exhaust gas discharged from the secondary combustion chamber 110 is dust-removed and neutralized.
  • a part of the exhaust gas (circulated exhaust gas), a mixed gas of a part of this exhaust gas (circulated exhaust gas) and air, a gas containing oxygen, air, or oxygen-enriched air is used as required. It can be heated by the steam generated in 104 and blown into the combustion chamber 102 as a high-temperature gas B whose temperature and oxygen concentration satisfy the aforementioned predetermined conditions.
  • the mixing ratio of the aforementioned exhaust gas part (circulating exhaust gas) and air when preparing the high temperature gas B, the aforementioned exhaust gas part (circulating exhaust gas) or the aforementioned exhaust gas part (circulating exhaust gas) and air can be adjusted to a desired range by adjusting the heating conditions of the mixed gas.
  • a plurality of hot gas inlets 113 are installed on the ceiling of the combustion chamber 102 so as to face these regions above the main combustion region from the combustion start region on the grate 105 in the combustion chamber 102. ing. In these regions, the thermal decomposition reaction of the waste W occurs at about 200 ° C. and is almost completed when the temperature reaches about 400 ° C. These regions in the combustion chamber 102 are blown downward from the ceiling of the combustion chamber 102 over these regions where the waste W is producing combustion gases containing flammable gases. The stagnation or circulation of the high temperature gas B and the combustion gas is formed near the upper part of the waste W in the inside, and the planar combustion region is made to stand, so that the waste W in these regions performs stable combustion. I can do it.
  • the downstream side of the dry grate 105a and the upper part of the whole area of the combustion grate 105b correspond to the main combustion area from the combustion start area.
  • a plurality of hot gas blowing ports 13 are provided above these regions, and the hot gas B is blown downward toward these regions.
  • the hot gas B is blown downward toward these regions.
  • the hot gas inlet 113 it is preferable to provide the hot gas inlet 113.
  • the plurality of high-temperature gas inlets 113 are arranged on the ceiling of the combustion chamber 102 in the range from the downstream side (rear part) in the moving direction of the waste W on the dry grate 105a to the entire area on the combustion grate 105b. It is provided at an arbitrary position. In the region corresponding to the above range in the ceiling of the combustion chamber 102, the plurality of hot gas inlets 113 extend in the length direction and a plurality of rows each extending in the width direction of the combustion chamber 102. Are arranged along multiple rows.
  • the hot gas inlet 113 may be a nozzle type or a slit type.
  • the flow rate and flow rate of hot gas B are related to the amount of waste W treated in the combustion chamber 102 of the grate-type waste incinerator 100 and the volume of the combustion chamber 102.
  • the planar combustion region is set or adjusted in accordance with the shape, the property of the waste W, and the like.
  • the arrangement position, the number of arrangements, the arrangement interval of the plurality of high temperature gas injection ports 113 on the ceiling of the combustion chamber 102, and the plurality of high temperature gas injection ports 113 respectively.
  • At least one of the blowing direction, the shape of the blowing port, the blowing flow rate of the hot gas B, and the blowing flow rate is set or adjusted.
  • a plurality of high-temperature gas inlets 113 are provided on the ceiling of the combustion chamber 102, and the high-temperature gas B is blown downward from here toward the waste W on the grate 105.
  • the blowing direction of the hot gas B from each hot gas blowing port 113 is desirably blown in an angle range from the perpendicular to the waste W to 20 °.
  • the secondary combustion gas C it is preferable to use a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume.
  • air, oxygen-containing gas, a part of exhaust gas discharged from the secondary combustion chamber 110 (circulated exhaust gas), or a mixed gas thereof may be used.
  • the secondary combustion gas inlet 116 of the secondary combustion gas C in the secondary combustion chamber 110 causes the secondary combustion gas C to flow in the direction in which the swirling flow of the secondary combustion gas C occurs in the secondary combustion chamber 110. It is preferable that one or more are installed so as to blow. By blowing the secondary combustion gas C into the secondary combustion chamber 110 in the direction in which the swirling flow of the secondary combustion gas C occurs, the gas temperature distribution and oxygen concentration distribution in the secondary combustion chamber 110 are made uniform. Therefore, secondary combustion of unburned combustible gas can be performed stably, local high temperature generation can be suppressed, and NOx in the exhaust gas from the secondary combustion chamber 110 can be reduced.
  • the secondary combustion gas C for example, only the secondary combustion air supplied to the secondary combustion chamber 110 via the secondary combustion gas supply pipe 119 by the gas delivery mechanism 117 such as a blower is used for the secondary combustion.
  • a gas in which diluent is mixed with air to adjust the oxygen concentration, only a part of the exhaust gas extracted from the exhaust gas after being discharged from the secondary combustion chamber 110 and passing through the dust removing device (circulated exhaust gas), or the secondary A mixed gas in which combustion air and a part of the exhaust gas (circulated exhaust gas) are mixed can be used.
  • the diluent may be nitrogen, carbon dioxide, etc.
  • the temperature of the gas in the secondary combustion chamber 110 is in the range of 800 ° C to 1050 ° C.
  • the temperature of the gas in the secondary combustion chamber 110 is less than 800 ° C.
  • the combustion of the unburned combustible gas becomes insufficient, and the CO in the exhaust gas discharged from the secondary combustion chamber 110 increases.
  • the temperature of the gas in the secondary combustion chamber 110 exceeds 1050 ° C., the generation of clinker in the secondary combustion chamber 110 is promoted and the NOx in the exhaust gas increases.
  • the hot gas B is blown in.
  • a stable stagnation or circulation of the combustion gas containing the combustible gas generated from the waste W and the high-temperature gas B is formed near the top of the waste W on the grate waste W 105 in the combustion chamber 102.
  • a planar combustion region can be established above the waste W on the grate 105.
  • the width direction in the combustion chamber 102 is The stability of the combustion of the waste W is maintained over the entire region in the length direction, and the generation amount of harmful gases such as CO and NOx due to this combustion can be reduced. Furthermore, according to the grate-type waste incinerator 100 and the waste incineration method using the grate-type waste combustion furnace 100 according to the second embodiment, the air is further reduced from the conventional grate-type waste combustion furnace.
  • the waste W can be burned at a high ratio, the total amount of exhaust gas discharged from the grate-type waste incinerator 100 can be greatly reduced as compared with the conventional grate-type waste incinerator, and the waste heat recovery efficiency Can be improved.
  • the waste W on the grate 105 in the combustion chamber 102 Since the thermal decomposition of the waste W can be promoted by radiation from a flat flame in a flat combustion region standing on the surface, the amount of waste W supplied to the grate 105 (grate load) and combustion The amount of heat (furnace load) that can be generated from the waste W in the chamber 102 can be increased. Therefore, the volume of the combustion chamber 102 can be reduced with respect to the waste incineration amount, the height of the grate waste incinerator 100 can be reduced, and the grate waste incinerator 100 can be made compact. Thus, the equipment cost and operating cost of the grate-type waste incinerator 100 can be reduced.
  • the grate-type waste incinerator 100 also measures the temperature of the grate 105 or the temperature in the combustion chamber 102 to determine the state in the combustion chamber 102 or the fire.
  • the state grasping unit CS for grasping the state of the waste W on the lattice 105, and the hot gas B from the hot gas blowing port 113 according to the grasped state in the combustion chamber 102 or the state of the waste W on the grate 105
  • an adjusting unit for adjusting the blowing flow rate or the blowing flow rate.
  • the adjusting unit is provided by controlling the operation by connecting the flow rate adjusting mechanism 115 interposed in the pipe 114 of the high-temperature gas B to the state grasping unit CS.
  • the outline of the grate-type waste incinerator according to the third embodiment and the waste incineration method using this grate-type waste incinerator is as follows.
  • An example of a grate-type waste incinerator according to the third embodiment is: a combustion chamber that includes a grate and burns waste on the grate; and a primary gas for combustion from under the grate into the combustion chamber A primary gas blowing unit for blowing; and a hot gas blowing unit for blowing the hot gas downward from the ceiling of the combustion chamber.
  • the high-temperature gas blowing unit has two stages of high temperatures, a front stage and a rear stage, in the furnace length direction that is the moving direction of the waste on the grate.
  • a gas injection port is provided, and the front-stage high-temperature gas injection port is disposed at a position where high-temperature gas is blown in the furnace length direction toward the region from the combustion start region to the front of the main combustion region.
  • An inlet is disposed at a position where hot gas is blown in the furnace length direction from the rear part of the main combustion region to the front part of the rear combustion region, and a flue for discharging the gas in the combustion chamber is provided.
  • it is characterized in that it is provided in the middle of the front stage high temperature gas inlet and the rear stage hot gas inlet on the ceiling of the combustion chamber.
  • the grate-type waste incinerator according to the third embodiment is: a combustion chamber provided with a grate and burning the waste on the grate; and a primary gas for combustion from below the grate into the combustion chamber And a hot gas blowing unit for blowing hot gas downward from the ceiling of the combustion chamber.
  • the high-temperature gas blowing unit has two stages, a front stage and a rear stage, in the furnace length direction that is the movement direction of the waste on the grate.
  • a hot gas inlet is provided on the ceiling from the rear of the drying stage grate to the front of the combustion stage grate, and the rear hot gas inlet is from the rear of the combustion stage grate It is provided on the ceiling up to the front of the rear combustion stage grate, and the flue for discharging the gas in the combustion chamber is located between the hot gas inlet at the front stage and the hot gas inlet at the rear stage of the ceiling of the combustion chamber. It is characterized by being prepared for.
  • the flue is in the region from the combustion start region to the front of the main combustion region and the gas containing the reducing gas generated in the region from the combustion start region to the front of the main combustion region and from the rear of the main combustion region to the front of the rear combustion region. It can be provided at a position where it is mixed with a gas containing the generated oxidizing gas and burned.
  • the flue may be provided with a secondary combustion gas inlet. Furthermore, immediately below the flue inlet in the combustion chamber, a gas containing a reducing gas generated in a region from the combustion start region to the front of the main combustion region and a region from the rear of the main combustion region to the front of the rear combustion region A gas derivative that guides the gas containing the oxidizing gas generated in step 1 to the flue inlet may be provided.
  • the high-temperature gas blowing unit is configured to reduce the amount of waste that is actually supplied to the furnace by combining the high-temperature gas blown by the high-temperature gas blowing unit and the combustion primary gas blown by the primary gas blowing unit.
  • the air ratio obtained by dividing by the theoretical air amount required for combustion the local air ratio in the area from the combustion start area to the front of the main combustion area is set to 0.6 to 0.8.
  • a front-stage high-temperature gas injection control unit that controls at least one of the flow rate and oxygen concentration of the high-temperature gas injected from the high-temperature gas injection port, and a local air ratio in the area from the rear of the main combustion region to the front of the rear combustion region
  • a post-stage hot gas injection control unit that controls at least one of the flow rate and oxygen concentration of the hot gas blown from the post-stage hot gas injection port so that the gas is 1.3 to 1.6. It is preferred.
  • the high-temperature gas blowing unit is configured such that the oxygen concentration in each region obtained by combining the primary gas for combustion blown by the primary gas blowing unit and the high-temperature gas blown by the high-temperature gas blowing unit is from the combustion start region to the main combustion region.
  • a pre-stage high temperature gas injection control unit that controls at least one of the flow rate and the oxygen concentration of the high temperature gas blown from the pre-stage high temperature gas injection port so that the oxygen concentration in the area up to the front is 0 to 2 vol% dry; Control at least one of the flow rate and the oxygen concentration of the hot gas blown from the hot gas inlet at the rear stage so that the oxygen concentration in the area from the rear part of the main combustion area to the front part of the rear combustion area is 5-8 vol% dry. It is preferable to provide a latter stage high temperature gas blowing control unit.
  • the hot gas blowing unit measures the oxygen concentration in the area from the combustion start area to the front of the main combustion area, and the oxygen concentration in the area from the rear of the main combustion area to the front of the rear combustion area.
  • a measurement unit and based on the measured oxygen concentration measurement value, at least one of the flow rate and the oxygen concentration of the high-temperature gas blown from the front-stage high-temperature gas blow-in port and the flow rate of the high-temperature gas blown from the post-stage high-temperature gas blow-in port and At least one of the oxygen concentrations can be controlled.
  • the height of the combustion chamber from the grate to the ceiling can be 3 m or less.
  • An example of a waste incineration method using a grate-type waste incinerator having a combustion chamber according to the third embodiment is: a step of blowing a primary gas for combustion into the combustion chamber from below the grate; Of the hot gas inlets provided in the first and second stages in the furnace length direction, which is the direction of movement of waste on the grate, on the ceiling of the combustion chamber, the main combustion starts from the combustion start area from the upstream hot gas inlet Injecting into the area up to the front of the area and from the hot gas inlet at the rear stage into the area from the rear of the main combustion area to the front of the rear combustion area; Gas containing reducing gas generated in the area from the combustion start area to the front of the main combustion area in the vicinity of the flue inlet located between the high temperature gas inlet and the subsequent high temperature gas inlet, and the main combustion area Area from the rear to the front of the rear combustion zone It is characterized
  • Another example of a waste incineration method using a grate-type waste incinerator having a combustion chamber is a step of blowing a primary gas for combustion into the combustion chamber from below the grate;
  • the high-temperature gas inlets provided in two stages, the front stage and the rear stage, in the furnace length direction, which is the moving direction of the waste on the grate, on the ceiling of the combustion chamber, from the rear part of the dry stage grate to the front of the combustion stage grate Blowing downward from the front stage hot gas inlet arranged on the ceiling to the upper part, from the rear stage hot gas inlet arranged on the ceiling from the rear part of the combustion stage grate to the front part of the rear combustion stage grate A downward blowing process; and a zone from the combustion start area to the front of the main combustion area in the vicinity of the flue inlet located between the front hot gas inlet and the rear hot gas inlet in the ceiling of the combustion chamber.
  • Combustion starts with respect to the air ratio obtained by dividing the amount of air actually supplied into the furnace by combining the primary gas for combustion and the high-temperature gas blown from the high-temperature gas inlet by the theoretical amount of air required for combustion of waste.
  • Control at least one of the flow rate and oxygen concentration of the hot gas blown from the hot gas inlet of the previous stage so that the local air ratio in the region from the region to the front of the main combustion region is 0.6 to 0.8.
  • At least of the flow rate and the oxygen concentration of the hot gas blown from the hot gas inlet at the rear stage so that the local air ratio in the region from the rear portion of the main combustion region to the front portion of the rear combustion region is 1.3 to 1.6 It is preferable to control one.
  • the oxygen concentration in the region from the combustion start region to the front of the main combustion region is set to 0 vol% dry to 2 vol%.
  • At least one of the flow rate and the oxygen concentration of the hot gas blown from the hot gas blowing port in the preceding stage is controlled so as to be dry, and the oxygen concentration in the area from the rear of the main combustion region to the front of the rear combustion region is 5 vol% It is preferable to control at least one of the flow rate and the oxygen concentration of the high-temperature gas blown from the high-temperature gas blow-in port at the subsequent stage so as to set the dry to 8 vol% dry.
  • control at least one of the flow rate and the oxygen concentration of the hot gas blown from the previous hot gas blowing port Controls at least one of the flow rate and oxygen concentration of the hot gas blown from the hot gas inlet at the rear stage based on the oxygen concentration measurement value obtained by measuring the oxygen concentration in the area from the rear of the main combustion region to the front of the rear combustion region. can do.
  • the hot gas is blown from the ceiling of the combustion chamber, and the blowing is blown separately into two stages, the front stage and the rear stage. The effect like this is obtained.
  • the flow of the combustible gas becomes gentle, and the combustible gas is sufficiently mixed with the oxidizing component supplied by the primary gas for combustion and the high temperature gas, so that the combustible gas is stabilized over a wide range in the combustion chamber.
  • Combustion is performed, and a planar combustion region (flame) can be fixed on the waste over a wide range in the combustion chamber.
  • the thermal decomposition of the waste can be further promoted by radiation of a standing flat flame or the like.
  • high-temperature gas blowing stably burns waste and generated combustible gas even when burning waste at a low air ratio of 1.5 or less, regardless of the size of the incinerator. Can be made.
  • the generation amount of harmful substances such as CO and NOx in the exhaust gas discharged from the grate-type waste incinerator can be suppressed.
  • the flue inlet of the flue
  • the flue is provided from the front side.
  • the gas containing the reducing gas obtained under the low oxygen concentration is attracted, and the oxidizing gas obtained under the oxygen-excess atmosphere is attracted from the rear stage side.
  • the said reducing gas and oxygen gas are mixed in a flue, NOx in oxidizing gas reacts with a reducing gas and is decomposed
  • the thermal decomposition and combustion of the waste can be promoted, the internal volume of the combustion chamber can be reduced with respect to the waste incineration processing amount.
  • the height of the grate-type waste incinerator can be lowered, and the grate-type waste incinerator can be made compact, thereby reducing the equipment cost and operating cost of the grate-type waste incinerator.
  • a grate-type waste incinerator according to a third embodiment of the present invention and a waste incineration method using the grate-type waste incinerator will be described with reference to FIGS. 8 and 9.
  • FIG. 8 is a longitudinal sectional view schematically showing a grate-type waste incinerator according to the third embodiment of the present invention.
  • a basic configuration of a grate-type waste incinerator according to the third embodiment and an outline of a waste incineration method using the grate-type waste incinerator will be described, and then details of each configuration will be described.
  • the upstream side of the combustion chamber in the movement direction of the waste in the combustion chamber is referred to as a front portion, and the downstream side is referred to as a rear portion.
  • the grate-type waste incinerator 201 shown in FIG. 8 has a height of 1 to 3 m from the grate 205 to the ceiling in the combustion chamber 202 for burning the waste W, and has a scale of about 100 tons / day of waste incineration.
  • the height of the combustion chamber 202 of the conventional grate-type waste incinerator is about 1 ⁇ 2 or less compared with the height of about 5 to 6 m.
  • the volume of the combustion chamber 202 of an example of the grate-type waste incinerator 201 is 90 m 3 , which is 1/9 compared with the volume of the combustion chamber of the conventional grate-type waste incinerator 201 being 190 m 3. It is about 2 or less.
  • the combustion of the waste W at a low air ratio can be performed stably by blowing the high-temperature gas, which will be described later, downward from the ceiling, with the height of the combustion chamber 2 being 3 m or less.
  • the grate-type waste incinerator 201 can be made compact, and the equipment cost and operation cost of the grate-type waste incinerator 201 can be greatly reduced.
  • the grate-type waste incinerator 201 is disposed above the combustion chamber 202 and the upstream side (left side in FIG. 8) in the movement direction of the waste W in the combustion chamber 202.
  • a boiler 204 is provided continuously above an intermediate portion in the movement direction of the waste W in the combustion chamber 202.
  • a grate (stoker) 205 that burns while moving the waste W introduced from the waste input port 203.
  • the grate 205 is provided in the order of the dry grate 205a, the combustion grate 205b, and the post-combustion grate 205c from the side closer to the waste inlet 203, that is, from the upstream side.
  • the waste W is mainly dried and ignited on the dry grate 205a.
  • thermal decomposition and partial oxidation of the waste W are mainly performed, and combustible gas and solid content generated by the thermal decomposition are combusted.
  • the post-combustion grate 205c the remaining unburned matter in the waste W is completely burned.
  • the combustion ash AS completely burned on the post-combustion grate 205c is discharged from the combustion chamber 202 to the outside through an ash drop port 206 located downstream of the post-combustion grate 205c.
  • a layer of waste W is formed on the dry grate 205a and the combustion grate 205b, and by the combustion, a space in the combustion chamber 202 is formed. The following regions are formed on the waste W layer.
  • a drying region for the waste W that has been input is formed on the upstream side (front) in the movement direction of the waste W corresponding to the lower side of the waste input port 203.
  • a combustion start region is formed above the area from the downstream side (rear part) on the drying grate 205a in the moving direction of the waste W to the upstream side (front part) on the combustion grate 205b. That is, the waste W on the dry grate 205a is dried on the upstream side, ignited on the downstream side, and combustion starts in an area up to the upstream side (front) on the combustion grate 205b.
  • the waste W on the combustion grate 205b is thermally decomposed and partially oxidized here to generate a combustible gas, and the combustible gas and the solid content of the waste W are combusted.
  • the waste W is substantially burned on the combustion grate 205b.
  • a main combustion region is formed on the combustion grate 205b.
  • the combustion start region is a region where combustion of the waste W starts and combustion gas containing combustible gas starts to be generated by thermal decomposition and partial oxidation of the waste W.
  • the main combustion region is that the waste W is thermally decomposed and partially oxidized to generate a combustion gas containing a combustible gas. The combustible gas is burned with a flame and the solid of the waste W is generated.
  • Wind boxes 207a, 207b, 207c, and 207d are provided below the dry grate 205a, the combustion grate 205b, and the post-combustion grate 205c in the combustion chamber 202, respectively.
  • the primary gas A for combustion supplied by a gas delivery mechanism 208 such as a blower is supplied to the wind boxes 207a, 207b, 207c, and 207d through the primary gas supply pipe 209 for combustion, and the grate 205a, 205b. , 205c and supplied into the combustion chamber 202.
  • the combustion primary gas A supplied from below the grate 205 is used for drying and burning the waste W on the grate 205a, 205b, 205c, and cooling and discarding the grate 205a, 205b, 205c. Stir the product W.
  • a flue 212 is connected to the ceiling of the combustion chamber 202 at an intermediate position between two stages of high-temperature gas inlets, which will be described later in the moving direction of the waste W on the grate 205. Exhaust gas in the combustion chamber 202 is attracted into the flue 212 by an attracting fan (not shown) provided on the downstream side. Near the inlet of the flue 212 is a secondary combustion chamber 225 that burns unburned combustible gas in the exhaust gas discharged from the combustion chamber 202.
  • a secondary combustion gas C is blown into the secondary combustion chamber 225 and unburned combustible gas is secondarily burned, and the exhaust gas after the second combustion is waste heat boiler 204 connected to the flue 212.
  • the heat is recovered.
  • the exhaust gas after heat recovery is neutralized with acid lime with slaked lime and the like and adsorbed dioxins with activated carbon in an exhaust gas treatment device (not shown), and further neutralized reaction products, activated carbon and dust with a dust removal device (not shown). Etc. are collected.
  • the exhaust gas G which has been dedusted and detoxified by the dust remover, is attracted by an attracting fan (not shown) and released from the chimney into the atmosphere.
  • the grate-type waste incinerator 201 having such a basic configuration includes a primary gas blowing unit FABU that blows primary combustion gas into the combustion chamber 202 from below the grate 205, and a combustion chamber at the ceiling of the combustion chamber 202.
  • 202 is provided with hot gas inlets 213 and 215 arranged at two parts along the moving direction of the waste W, and hot gas B is supplied to the hot gas inlets 213 and 215 at two parts on the ceiling of the combustion chamber 202.
  • a hot gas blowing unit HGBU for blowing downward.
  • the primary gas blowing unit FABU of the present embodiment passes a primary gas A from a primary gas supply source (not shown) through a main body portion of a combustion primary gas supply pipe 209, a drying grate 205a, a combustion grate 205b, and a rear
  • a gas such as a blower is supplied to the combustion primary gas supply pipe 209, for example.
  • a delivery mechanism 208 and a flow rate adjusting mechanism 210 such as a damper are provided.
  • the high-temperature gas blowing unit HGBU of this embodiment mainly burns the high-temperature gas B from the high-temperature gas blowing port 213 on the upstream side along the moving direction of the waste W in the combustion chamber 202 from the combustion start region on the grate 205. Blowing toward the area up to the front of the region, hot gas B from the hot gas blowing port 215 on the downstream side along the moving direction from the rear of the main combustion region on the grate 205 to the front of the rear combustion region Blow towards the area.
  • the high temperature gas blowing unit HGBU includes a high temperature gas supply source 217 provided outside the combustion chamber 202, an upstream high temperature gas blowing port 213 for blowing the high temperature gas B upstream of the combustion chamber 202, and a downstream high temperature.
  • a gas inlet 215 and pipes for guiding the hot gas B from the hot gas supply source 212 to the hot gas inlets 213 and 215, and flow rate adjusting mechanisms 214 and 216 such as dampers are provided in these pipes. Is provided.
  • the upstream high-temperature gas inlet 213 is located on the ceiling of the combustion chamber 202 from the downstream side (rear part) in the movement direction of the waste W on the dry grate 205a to the upstream side (front side) in the movement direction on the combustion grate 205b. To the upper part of the area.
  • the downstream high-temperature gas inlet 215 is located on the ceiling of the combustion chamber 202 from the downstream side (rear part) in the moving direction of the waste W on the combustion grate 205b to the upstream side in the moving direction on the rear combustion grate 205c ( It is provided above in the area up to the front.
  • the directions of the high temperature gas blowing ports 213 and 215 are determined so that the high temperature gas B is blown downward from the ceiling of the combustion chamber 202 into the combustion chamber 202.
  • the hot gas B is blown from the upstream hot gas blowing port 213 toward the area from the combustion start region on the grate 205 to the front of the main combustion region, and the hot gas B is blown from the hot gas blowing port 215 on the downstream side.
  • B is blown toward the area on the grate 205 from the rear of the main combustion region to the front of the rear combustion region.
  • the hot gas inlets 213 and 215 are also provided at a plurality of locations in the width direction of the combustion chamber 202 (direction perpendicular to the paper surface in FIG. 8). ing. In addition, on the upstream side and the downstream side of the ceiling of the combustion chamber 202, the hot gas inlets 213 and 215 may be arranged at a plurality of positions along the moving directions on the upstream side and the downstream side, respectively. Good.
  • the grate-type waste incinerator 201 of the present embodiment includes a secondary combustion gas blowing unit SABU that blows the secondary combustion gas C into the secondary combustion chamber 225 near the inlet of the flue 212.
  • the secondary combustion gas blowing unit SABU is provided in the secondary combustion chamber 225 via a secondary combustion gas supply pipe 228 with a secondary combustion gas C from a secondary combustion gas supply source (not shown).
  • the secondary combustion gas supply pipe 228 fed to the secondary combustion gas inlet 226 is provided with a gas delivery mechanism 227 such as a blower and a flow rate adjusting mechanism 229 such as a damper.
  • the secondary combustion gas inlet 226 is provided on the peripheral wall in the vicinity of the inlet of the flue 212 so that the secondary combustion gas C is blown into the secondary combustion chamber 225 in the vicinity of the inlet of the flue 212. Most of the combustible gas generated from the waste W in the combustion chamber 202 is burned in the combustion chamber 202, but the unburned combustible gas enters the secondary combustion chamber 225 near the inlet of the flue 212. Then, the secondary combustion is performed by the secondary combustion gas C supplied as described above.
  • the configurations of the primary gas blowing unit FABU, the high temperature gas blowing unit HGBU, and the secondary combustion gas blowing unit SABU are not limited to those shown in the figure, and the grate-type waste incinerator 201
  • the size, shape, type of waste W to be burned, etc. can be selected as appropriate.
  • the waste W is mainly dried and ignited on the dry grate 205a. That is, the waste W on the dry grate 205a is dried on the upstream side, ignited by the heat in the combustion chamber 202 on the downstream side, and then reaches the upstream side (front) of the combustion grate 205b. Combustion starts. On the combustion grate 205b, the thermal decomposition and partial oxidation of the waste W are mainly performed, and the combustible gas generated from the burning waste W and the solid content in the waste W are combusted. Combustion of the waste W is substantially completed on the combustion grate 205b.
  • the drying region R1 the combustion start region R2
  • the main combustion region R3 and a post-combustion region R4 are formed, respectively.
  • the flue 212 is connected to the central portion in the moving direction of the waste W on the grate 205, and the vicinity of the inlet of the flue 212 is the secondary combustion chamber. 225. Accordingly, the unburned portion of the combustible gas generated from the waste W in the combustion chamber 202 is guided to the secondary combustion chamber 225 near the inlet of the flue 212, where it is mixed and stirred with the secondary combustion gas C. After that, secondary combustion is performed. The heat in the exhaust gas after the secondary combustion is recovered by the waste heat boiler 204.
  • the exhaust gas after heat recovery is neutralized with acid gas with slaked lime, etc., and adsorbed dioxins with activated carbon, and neutralization reaction products, activated carbon, dust, etc. are recovered with a dust removal device (not shown). Is done.
  • the exhaust gas after being detoxified and detoxified by the dust removing device is attracted by an attracting fan (not shown) and released from the chimney into the atmosphere.
  • dust removal apparatuses such as a bag filter system and an electrostatic dust collection system, can be used, for example.
  • the combustion primary gas A is provided below each of the dry grate 205a, the combustion grate 205b, and the post-combustion grate 205c from a gas delivery mechanism 208 such as a blower, through the primary gas supply pipe 209 for combustion.
  • a gas delivery mechanism 208 such as a blower
  • the air is supplied into the combustion chamber 202 through the grate 205a, 205b, and 205c.
  • the total flow rate of the combustion primary gas A supplied into the combustion chamber 202 is adjusted by a flow rate adjusting mechanism 210 provided in the combustion primary gas supply pipe 209, and further to each wind box 207 a, 207 b, 207 c, 207 d.
  • the flow rate of the supplied primary gas A for combustion is adjusted by respective flow rate adjusting mechanisms (not shown) provided in the wind boxes 207a, 207b, 207c, and 207d.
  • the configurations of the wind boxes 207a, 207b, 207c, 207d, the combustion primary gas supply pipe 209, etc. are not limited to those shown in the figure, but the scale and shape of the grate-type waste incinerator 201, the waste W to be burned It can be selected appropriately depending on the type of the above.
  • the primary gas A for combustion it is preferable to use a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume.
  • a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume As the combustion primary gas A, any one of air, oxygen-containing gas, and a part of exhaust gas discharged from the secondary combustion chamber 225 (circulated exhaust gas) may be used, or a mixed gas thereof may be used. Good.
  • the high temperature gas B is concentrated and blown into a region from the combustion start region R2 to the main combustion region R3 where there is a flame from the waste W and a large amount of combustible gas generated from the waste W is present. .
  • the hot gas B from the high temperature gas inlet 213 on the upstream side of the ceiling of the combustion chamber 202 and the high temperature gas inlet 215 on the downstream side of the high temperature gas B in the area from the combustion start region R2 to the front of the rear combustion region R4 in the combustion chamber 202 By blowing downward toward the waste W, the hot gas B blown downward faces this upward movement of the combustion gas containing the combustible gas generated by the thermal decomposition and partial oxidation of the waste W.
  • the flow is suppressed, and a slow stagnation or vertical circulation of the planar flow of the hot gas B and the combustion gas occurs on the waste W in the area.
  • the waste W is heated by the thermal radiation and sensible heat of the high-temperature gas B, and in addition to promoting the thermal decomposition and partial oxidation of the waste W, a planar combustion region (planar flame) is formed on the waste W. ) Is present, the waste W is also heated by the thermal radiation and sensible heat from the flat flame, and the thermal decomposition and partial oxidation of the waste W are further promoted.
  • the high temperature gas B is blown into the combustion chamber 202 from the high temperature gas inlets 213 and 215 on the upstream side and the downstream side of the ceiling of the combustion chamber 202, and upstream in the ceiling.
  • a flue 225 is provided at an intermediate position between the hot gas inlets 213 and 215 on the side and the downstream side. Then, by blowing the high temperature gas B from the upstream high temperature gas inlet 213, a low oxygen atmosphere is formed on the upstream side in the combustion chamber 202 so that a reducing gas is generated, and the gas containing the reducing gas is smoked.
  • FIG. 9 is a diagram illustrating the combustion state of waste W in the combustion chamber 202 of the grate-type waste incinerator 201 shown in FIG. It is a schematic longitudinal cross-sectional view of the movement direction of the waste W).
  • hot gas B is blown into the combustion chamber 202 from the upstream hot gas blowing port 213, and combustible gas generated from the waste W on the grate 205 below the hot gas B is discharged.
  • the stagnation or circulation F of the high temperature gas B and the combustion gas is formed by suppressing the upward flow of the combustion gas contained.
  • the hot gas supply amount is adjusted, the oxygen supply amount of the high temperature gas B and the combustion primary gas A is adjusted, and the combustion start region R2 (see FIG. 8) to the main combustion region R3 (FIG. 8).
  • the area up to the front of (see) is a low oxygen atmosphere, preferably a local air ratio of 0.6 to 0.8 (oxygen concentration of 2 Vol% dry or less).
  • a combustion gas containing a combustible gas and a reducing gas RG (CO, HCN, NHn, CmHn) is generated by thermal decomposition and partial oxidation of the waste W in a low oxygen atmosphere (CO and CmHn are combustible).
  • the generated combustible gas is combusted uniformly and stably in the planar combustion region formed on the waste W by the stagnation or circulation as described above.
  • the air ratio is smaller than 0.6, the generation of reducing gas becomes excessive, and NOx is generated from the excess NHn on the downstream side of the zone, or the generation of combustible gas.
  • the local air ratio in the area is preferably 0.6 to 0.8.
  • the hot gas B is blown from the hot gas blowing port 215 on the downstream side, and the rising flow of the combustion gas containing the combustible gas generated from the waste W on the grate 205 below the hot gas B is suppressed, A stagnation or circulation F with the combustion gas is formed.
  • the hot gas supply amount is adjusted, the oxygen supply amount of the high temperature gas B and the combustion primary gas A is adjusted, and the rear combustion region R4 (see FIG. 8) from the rear of the main combustion region R3 (see FIG. 8).
  • the area up to the front of FIG. 8) is an oxygen-excess atmosphere, preferably a local air ratio of 1.3 to 1.6 (oxygen concentration: 5 vol% dry to 8 vol% dry).
  • the waste W burns in an oxygen-excess atmosphere
  • a combustion gas containing the oxidizing gas OG O 2 , NOx, CO 2
  • the oxygen excess atmosphere is formed, if the air ratio is smaller than 1.3, the solid in the waste W is not burned sufficiently and becomes unburned and becomes unsuitable. If the air ratio is larger than 1.6, the amount of NOx generated increases and becomes unsuitable. Accordingly, the local air ratio in the area is preferably 1.3 to 1.6.
  • the adjustment of the supply amount of the high temperature gas B from the high temperature gas supply source 217 to the high temperature gas injection ports 213 and 215 is performed by, for example, a blower interposed in a pipe line from the high temperature gas supply source 217 to the high temperature gas injection ports 213 and 215. This is possible by adjusting the gas delivery amount and the opening degree of the gas delivery mechanism and the flow rate regulation mechanisms 214 and 216 such as dampers.
  • the hot gas blowing unit HGBU uses the hot gas B supplied from the hot gas supply source 217 to the hot gas blowing ports 213 and 215 as the hot gas.
  • the combustion start region R2 is adjusted by adjusting the gas delivery amount and opening degree in the gas delivery mechanism and flow rate regulation mechanisms 214 and 216, which are interposed in the pipelines from the supply source 217 to the hot gas inlets 213 and 215, respectively.
  • To the front part of the main combustion region R3 and the air ratio in the region from the rear part of the main combustion region R3 to the front part of the rear combustion region R4 are controlled within a predetermined range.
  • two high-temperature gas supply sources are provided for the upstream and downstream high-temperature gas injection ports 213 and 215, and the upstream or downstream high-temperature gas corresponding to the oxygen concentration of the high-temperature gas in each high-temperature gas supply source. Adjustment may be made for the air inlets 213 and 215 to control the air ratio in each of the above-described predetermined ranges.
  • An oxygen concentration meter is provided for measuring the oxygen concentration in a region from the combustion start region R2 to the front portion of the main combustion region R3 in the combustion chamber 202 and a region from the rear portion of the main combustion region R3 to the front portion of the rear combustion region R4; Based on the measured oxygen concentration, the supply amount of the high temperature gas B to the upstream or downstream high temperature gas inlets 213 and 215 so that the oxygen concentration (air ratio) of each section is within the predetermined range described above, or The oxygen concentration may be controlled.
  • the gas in the combustion chamber 202 is guided to the flue 212 by the action of an attracting fan provided downstream of the flue 212. Accordingly, the gas including the reducing gas RG (see FIG. 9) generated in the area from the combustion start region R2 to the front of the main combustion region R3 is attracted into the flue 212 from the upstream side, and from the rear of the main combustion region R3.
  • a gas (a gas containing NOx) containing the oxidizing gas OG (see FIG. 9) generated in the area up to the front of the combustion region R4 is attracted into the flue 212 from the downstream side.
  • the second combustion chamber 225 In the secondary combustion chamber 225 corresponding to the vicinity of the inlet of the flue 212, the second combustion chamber 225 is opposed to the gas flow of the gas containing the reducing gas RG (see FIG. 9) and the gas containing the oxidizing gas OG (see FIG. 9).
  • the secondary combustion gas C is blown from the secondary combustion gas inlet 226, and the unburned portion of the combustible gas is secondary-combusted by the secondary combustion gas C in the secondary combustion chamber 225.
  • a gas derivative 230 that guides the gas in the combustion chamber 202 to the inlet of the flue 212 is provided immediately below the inlet of the flue 212.
  • the gas derivative 230 includes a gas including a reducing gas RG (see FIG. 9) generated in a region from the combustion start region R2 to the front portion of the main combustion region R3, and a rear portion of the main combustion region R3 to a front portion of the rear combustion region R4.
  • the gas including the oxidizing gas OG (see FIG. 9) generated in the area up to and including the attracting action of the attracting fan provided downstream of the flue 212 is smoothly guided to the inlet of the flue 212.
  • the gas derivative 230 is made of a refractory material, and a cooling structure may be provided as necessary. An intermediate ceiling may be provided instead of the gas derivative 230 to guide the gas in the combustion chamber 202 to the inlet of the flue 212.
  • the gas containing the reducing gas RG (see FIG. 9) from the combustion chamber 202 is sufficiently mixed with the gas containing the oxidizing gas OG (see FIG. 9), and NOx generated by the reducing gas RG (see FIG. 9) is reduced.
  • the decomposition reaction can be sufficiently performed.
  • the secondary combustion gas C is blown against the gas flow from the combustion chamber 202 in the constricted portion, and the stirring of the gas from the combustion chamber 202 and the mixing of the gas from the combustion chamber 202 and the secondary combustion gas C are promoted.
  • the unburned part of the combustible gas contained in the gas from the combustion chamber 202 is subjected to secondary combustion.
  • the injection of the secondary combustion gas C into the combustion chamber 225 and the ratio distribution of the oxygen amount for implementing good combustion of the waste B at a low air ratio will be described in order.
  • the temperature of the hot gas B blown into the combustion chamber 202 from the hot gas blowing ports 213 and 215 is preferably in the range of 100 ° C. to 400 ° C., more preferably about 200 ° C.
  • a gas having a temperature of less than 100 ° C. is blown into the combustion chamber 202 as the high temperature gas B, the temperature in the combustion chamber 202 decreases, the combustion of the waste W becomes unstable, and the amount of CO generated increases.
  • the high temperature gas B exceeding 400 ° C. is blown into the combustion chamber 202, the flame temperature in the combustion chamber 202 becomes extremely high, which causes problems such as promotion of clinker generation.
  • the oxygen concentration contained in the high temperature gas B is preferably about 5% to 30% by volume, and preferably 5% to 15% by volume. Thereby, the reduction of NOx and CO in the exhaust gas from the combustion chamber 202 is further promoted.
  • Examples of the high-temperature gas B having the preferable gas temperature and oxygen concentration described above include a part of exhaust gas extracted from the secondary combustion chamber 225 on the downstream side (circulation exhaust gas), a mixed gas of the circulation exhaust gas and air, air and oxygen richness. It is preferable to use any one of the chemical air.
  • As the circulating exhaust gas it is preferable to use a part of the exhaust gas discharged from a dust removing device such as a bag filter after neutralizing the exhaust gas discharged from the grate-type waste incinerator 201. Any of circulating exhaust gas, mixed gas of circulating exhaust gas and air, air and oxygen-enriched air is heated by steam generated in the waste heat boiler 204 as necessary, and the temperature and oxygen concentration are the predetermined conditions described above. It can be blown into the combustion chamber 202 as a high-temperature gas B that satisfies the above.
  • the mixing ratio of the circulating exhaust gas and air when preparing the hot gas B, the heating conditions such as the circulating exhaust gas or the mixed gas of the circulating exhaust gas and air, and the like are adjusted, and the hot gas B that is blown into the combustion chamber 202
  • the temperature and oxygen concentration are set to the desired ranges.
  • the upstream high-temperature gas inlet 213 is located on the ceiling of the combustion chamber 202 from the downstream side (rear part) in the movement direction of the waste W on the dry grate 205a to the upstream side (front side) in the movement direction on the combustion grate 205b. Part).
  • the downstream high-temperature gas inlet 215 extends from the downstream side (rear part) in the moving direction of the waste W on the combustion grate 205b to the upstream side in the moving direction of the rear combustion grate 205c ( It is provided corresponding to the area up to the front.
  • a plurality of upstream hot gas inlets 213 and a plurality of downstream hot gas inlets 215 are arranged along the width direction of the combustion chamber 202. Further, the plurality of upstream high temperature gas injection ports 213 and the plurality of downstream high temperature gas injection ports 215 are arranged in the length direction of the combustion chamber 202 (on the grate 205) on the upstream side and the downstream side of the ceiling of the combustion chamber 202.
  • a plurality of the wastes W may be arranged within a predetermined range along the movement direction of the waste W.
  • the hot gas blowing ports 213 and 215 may be nozzle type or slit type.
  • the arrangement position, the number and arrangement interval of the plurality of high temperature gas inlets 213 and 215 on the ceiling of the combustion chamber 202, and the plurality of high temperature gas At least one of the hot gas blowing direction, the shape of the blowing port, the blowing flow rate of the hot gas B, and the blowing flow rate at each of the blowing ports 213 and 215 is set or adjusted.
  • the hot gas B is blown downward from the hot gas blowing ports 213 and 215 toward the waste W on the grate 205.
  • a blowing direction of the high temperature gas B it is desirable to blow in an angle range from a perpendicular to the waste W to 20 °. This is in order to form the planar combustion region by suppressing the upward flow by facing the upward flow of the combustion gas containing the combustible gas generated by the thermal decomposition and partial oxidation of the hot gas B and the waste W injected.
  • the blowing direction of the high temperature gas B is in a range larger than 20 ° from the perpendicular to the waste W, appropriate opposition and suppression for forming the planar combustion region are not formed.
  • the blowing speed of the hot gas B blown into the combustion chamber 202 from the hot gas blowing ports 213 and 215 is preferably about 5 m / s to 20 m / s.
  • the injection speed of 5 m / s to 20 m / s is defined as the superficial velocity in the combustion chamber 202 (the gas flow rate in the combustion chamber 202 is divided by the cross-sectional area of the combustion chamber 202 orthogonal to the gas flow direction).
  • the relative velocity of 5 to 20 times the maximum flow velocity (approx. 1 m / s at the maximum) is appropriately opposed to form a planar combustion region without being affected by the gas flow in the combustion chamber 202. This is because the suppression can be formed stably.
  • the injection speed of the high temperature gas B from each of the high temperature gas injection ports 213 and 215 into the combustion chamber 202 is, for example, a pipeline that sends the high temperature gas B from the high temperature gas supply source 217 to each of the high temperature gas injection ports 213 and 215. It is adjusted by adjusting the gas delivery amount or the opening degree by the above-described gas delivery mechanism and the above-described flow rate regulation mechanism.
  • the hot gas B is always blown from each of the hot gas blowing ports 213 and 215 at an equal flow rate.
  • a high-temperature gas is provided so that the planar combustion region is stably settled on the waste W. It is preferable to adjust the blowing flow rate of B.
  • the state of the planar combustion region changes, the combustion state of the combustible gas changes and the CO concentration, oxygen concentration, etc. in the exhaust gas discharged from the combustion chamber 202 change.
  • the CO concentration, oxygen concentration, etc. of the exhaust gas discharged from the waste heat boiler 204 in the flue 212 are measured, and the high temperature into the combustion chamber 202 is corresponding to the changes. You may make it adjust the blowing flow volume of the high temperature gas B from the gas blowing inlets 213 and 215.
  • the secondary combustion gas C is blown into the secondary combustion chamber 225, and the unburned combustible gas from the combustion chamber 202 is subjected to secondary combustion.
  • the secondary combustion gas C it is preferable to use a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume.
  • air, oxygen-containing gas, the above-described circulating exhaust gas, or a mixed gas thereof may be used.
  • the secondary combustion gas inlets 226 are installed on the peripheral wall of the secondary combustion chamber 225 so that gas can be blown in the direction in which the swirling flow is generated in the secondary combustion chamber 225.
  • the gas temperature and oxygen concentration distribution in the secondary combustion chamber 225 can be made uniform and averaged, and unburned combustibility
  • the secondary combustion of the gas is stably performed in the secondary combustion chamber 225 without generating a local high temperature. As a result, NOx in the exhaust gas from the grate-type waste incinerator 201 can be reduced.
  • the stability of combustion of the unburned combustible gas in the secondary combustion chamber 225 is improved. Since substantially complete combustion of the unburned combustible gas in the secondary combustion chamber 225 can be achieved, CO in the exhaust gas from the grate-type waste incinerator 201 can be reduced.
  • the secondary combustion gas C only the secondary combustion air supplied to the secondary combustion chamber 225 by the gas delivery mechanism 227 via the secondary combustion gas supply pipe 228 is used as the diluent for the secondary combustion air.
  • Nitrogen, carbon dioxide, etc. can be considered as the diluent.
  • the flow rate of the secondary combustion gas C supplied into the secondary combustion chamber 225 is in the range of 800 ° C. to 1050 ° C.
  • the gas temperature in the secondary combustion chamber 225 is less than 800 ° C.
  • combustion of unburned combustible gas becomes insufficient, and CO in the exhaust gas discharged from the secondary combustion chamber 225 increases.
  • the gas temperature in the secondary combustion chamber 225 exceeds 1050 ° C., the generation of clinker in the secondary combustion chamber 225 is promoted, and further NOx in the exhaust gas discharged from the secondary combustion chamber 225 increases.
  • a stable stagnation or circulation between B and the combustion gas containing the combustible gas generated from the waste W can be formed, and the planar combustion region of the high temperature gas B and the combustible gas can be made to stand. Therefore, regardless of the size of the combustion chamber 202 of the grate-type waste incinerator 201, even if the waste W is burned at a low air ratio of 1.5 or less, it is generated from the waste W and the waste W.
  • the burned combustible gas can be burned stably.
  • the grate waste incinerator 201 can burn the waste W at a lower air ratio than the conventional grate waste incinerator, it is discharged from the grate waste incinerator 201.
  • the total amount of exhaust gas to be discharged can be further greatly reduced, and the heat recovery efficiency from the exhaust gas discharged from the waste incinerator 201 can be improved.
  • the thermal decomposition of the waste W on the grate 205 can be promoted by radiation of a flat flame in a planar combustion region standing on the waste W on the grate 205, It is possible to increase the amount of waste W supplied to the gas (grate load) and the amount of heat generated from the waste W in the combustion chamber 202 (furnace load). For this reason, the volume of the combustion chamber 202 can be reduced with respect to the amount of waste W that can be incinerated in the grate-type waste incinerator 201, and the height of the grate-type waste incinerator 201 can be reduced. it can. As a result, the grate-type waste incinerator 201 can be made compact, so that the equipment cost and operating cost of the grate-type waste incinerator 201 can be reduced.
  • the grate-type waste incinerator 201 also measures the temperature of the grate 205 or the temperature in the combustion chamber 202 to determine the state or fire in the combustion chamber 202.
  • the state grasping unit CS for grasping the state of the waste W on the lattice 205, and the upstream and downstream high-temperature gas inlets according to the grasped state in the combustion chamber 202 or the state of the waste W on the fire lattice 205 And an adjustment unit that adjusts the blowing flow rate or flow rate of the hot gas B from 213 and 215.
  • the adjustment unit includes flow rate adjustment mechanisms 214 and 216 that are interposed in the pipeline of the high temperature gas B extending from the high temperature gas supply source 217 to the upstream and downstream high temperature gas injection ports 213 and 215. It is provided by being connected to CS and controlling its operation.
  • the outline of the grate-type waste incinerator according to the fourth embodiment is as follows.
  • An example of a grate-type waste incinerator according to the fourth embodiment is: a combustion chamber provided with a grate and burning waste on the grate; a primary gas for combustion from below the grate into the combustion chamber A primary gas blowing unit for blowing; and a hot gas blowing unit for blowing a hot gas downward from the ceiling of the combustion chamber.
  • the high-temperature gas blowing unit has two stages of high-temperature gas, a front stage and a rear stage, in the furnace length direction, which is the movement direction of the waste on the grate.
  • a front-stage high-temperature gas blow-in port is provided at a position where high-temperature gas is blown in the furnace length direction toward a region from the combustion start region to the front portion of the main combustion region.
  • the mouth is arranged at a position where high temperature gas is blown in the furnace length direction toward the region from the rear portion of the main combustion region to the front portion of the rear combustion region.
  • a grate-type waste incinerator is: a combustion chamber provided with a grate and burning waste on the grate; a primary gas for combustion from below the grate into the combustion chamber A primary gas blowing unit that blows into the chamber; and a hot gas blowing unit that blows hot gas downward from the ceiling of the combustion chamber.
  • the high-temperature gas blowing unit has two stages of high temperatures, a front stage and a rear stage, in the furnace length direction, which is the moving direction of waste on the grate.
  • the front high temperature gas inlet is provided in the ceiling from the rear of the drying stage grate to the front of the combustion stage grate, and the rear high temperature gas inlet is behind the rear of the combustion stage grate It is provided in the said ceiling to the front part of a combustion stage grate.
  • the high-temperature gas blowing unit requires the amount of air actually supplied into the furnace, which combines the high-temperature gas blown by the high-temperature gas blowing unit and the primary gas for combustion blown by the primary gas blowing unit, to burn waste
  • the local air ratio in the area from the combustion start area to the front of the main combustion area is set to 0.6 to 0.8 from the hot gas inlet at the previous stage.
  • the local air ratio of the front hot gas blowing control unit for controlling at least one of the flow rate and oxygen concentration of the hot gas to be blown and the area from the rear of the main combustion region to the front of the rear combustion region is 1.3 to 1. It is preferable to include a rear-stage hot gas blowing control unit that controls at least one of the flow rate and oxygen concentration of the hot gas blown from the latter-stage hot gas blowing port so as to be 6.
  • the hot gas blowing unit mainly starts from the combustion start region with respect to the oxygen concentration of each zone adjusted by combining the hot gas blown by the hot gas blowing unit and the primary gas for combustion blown by the primary gas blowing unit.
  • Pre-stage high-temperature gas injection that controls at least one of the flow rate and oxygen concentration of the high-temperature gas injected from the high-temperature gas injection port of the previous stage so that the oxygen concentration in the area up to the front of the combustion region is 0 vol% dry to 2 vol% dry
  • the control unit and the flow rate and oxygen concentration of the hot gas blown from the hot gas inlet at the rear stage so that the oxygen concentration in the area from the rear part of the main combustion region to the front part of the rear combustion region is 5 vol% dry to 8 vol% dry.
  • the hot gas blowing unit measures the oxygen concentration in the area from the combustion start area to the front of the main combustion area, and the oxygen concentration in the area from the rear of the main combustion area to the front of the rear combustion area.
  • a measurement unit and based on the measured oxygen concentration measurement value, at least one of the flow rate and the oxygen concentration of the high-temperature gas blown from the front-stage high-temperature gas blow-in port, and the flow rate of the high-temperature gas blown from the back-stage high-temperature gas blow-in port And at least one of the oxygen concentrations can be controlled.
  • the combustion chamber can have an indoor height of 3 m or less.
  • the high temperature gas blowing unit passes through the gap between both of the preceding high temperature gas blowing port and the subsequent high temperature gas blowing port during 0.5 second or more and 1.5 seconds or less. It can be made to provide in the position made into a distance.
  • An example of a waste incineration method using a grate-type waste incinerator having a combustion chamber according to the fourth embodiment is a step of blowing a primary gas for combustion into the combustion chamber from below the grate; Of the high-temperature gas inlets provided in the first stage and the second stage in the furnace length direction, which is the direction of movement of waste on the grate, on the ceiling of the gas combustion chamber, from the first stage high-temperature gas inlet, It blows toward the area to the front part of a combustion area, and it blows toward the area from the rear part of a main combustion area
  • Another example of the waste incineration method using a grate-type waste incinerator having a combustion chamber according to the fourth embodiment is as follows: a primary gas for combustion is blown into the combustion chamber from below the grate, Out of the high-temperature gas inlets in the front and rear stages in the furnace length direction, which is the direction of movement of waste on the grate on the ceiling of the combustion chamber, from the rear of the dry stage grate to the front of the combustion stage grate Blow downward from the front stage hot gas inlet located on the ceiling until the rear hot gas inlet located on the ceiling from the rear part of the combustion stage grate to the front part of the rear combustion stage grate. It is characterized by being blown into.
  • Combustion starts with respect to the air ratio obtained by dividing the amount of air actually supplied into the furnace by combining the high temperature gas blown from the high temperature gas inlet and the primary gas for combustion by the theoretical air amount required for combustion of waste.
  • Control at least one of the flow rate and oxygen concentration of the hot gas blown from the hot gas inlet of the previous stage so that the local air ratio in the region from the region to the front of the main combustion region is 0.6 to 0.8.
  • At least of the flow rate and the oxygen concentration of the hot gas blown from the hot gas inlet at the rear stage so that the local air ratio in the region from the rear portion of the main combustion region to the front portion of the rear combustion region is 1.3 to 1.6 It is preferable to control one.
  • the oxygen concentration in the zone from the combustion start zone to the front of the main combustion zone is set to 0 vol% dry to 2 vol%.
  • At least one of the flow rate and the oxygen concentration of the hot gas blown from the hot gas blowing port in the preceding stage is controlled so as to be dry, and the oxygen concentration in the area from the rear of the main combustion region to the front of the rear combustion region is 5 vol% It is preferable to control at least one of the flow rate and the oxygen concentration of the high-temperature gas blown from the high-temperature gas blow-in port at the subsequent stage so as to set the dry to 8 vol% dry.
  • the high temperature gas is blown from the ceiling of the combustion chamber, and the blow is blown into two stages, the front stage and the rear stage. The effect is obtained.
  • Combustion stabilization effect by hot gas injection High-temperature gas is blown downward from the blow-off port provided in the ceiling of the combustion chamber of the grate-type waste incinerator, and the thermal decomposition of the waste can be promoted by sensible heat and radiation of the high-temperature gas.
  • the combustion of the combustible gas generated by the above can be promoted.
  • the downward flow of hot gas and the upward flow of combustion gas containing combustible gas generated from the waste layer collide, and the gas flow stagnates on the waste or burns up and down circulation. It can be formed over a wide range in the width direction and length direction of the room.
  • the flow of the combustible gas becomes gentle, and the combustible gas is sufficiently mixed with the oxidizing component supplied by the primary gas for combustion and the high temperature gas, so that the combustible gas is stabilized over a wide range in the combustion chamber.
  • Combustion is performed, and a planar combustion region (flame) can be fixed on the waste over a wide range in the combustion chamber.
  • the thermal decomposition of the waste can be further promoted by radiation of a standing flat flame or the like.
  • high-temperature gas blowing stably burns waste and generated combustible gas even when burning waste at a low air ratio of 1.5 or less, regardless of the size of the incinerator. Can be made.
  • combustion of a waste becomes stable the generation
  • waste and combustible gas generated from the waste can be stably burned.
  • the amount of CO generated in the exhaust gas discharged from the grid-type waste incinerator can be suppressed.
  • the amount of NOx generated in the exhaust gas discharged from the grate-type waste incinerator can be suppressed by decomposing NOx by the generated reducing gas by the two-stage blowing of the high-temperature gas at the front stage and the rear stage.
  • the thermal decomposition and combustion of the waste can be promoted, the internal volume of the combustion chamber can be reduced with respect to the waste incineration processing amount.
  • the height of the grate-type waste incinerator can be lowered, and the grate-type waste incinerator can be made compact, thereby reducing the equipment cost and operating cost of the grate-type waste incinerator.
  • a grate-type incinerator according to a fourth embodiment of the present invention and a waste incineration method using the grate-type waste incinerator will be described with reference to FIGS. 10 and 11.
  • FIG. 10 is a longitudinal sectional view schematically showing a grate-type waste incinerator according to the fourth embodiment of the present invention.
  • the basic configuration of the grate-type waste incinerator according to the fourth embodiment and the outline of the waste incineration method using the grate-type waste incinerator will be described, and then the details of each configuration will be described.
  • the upstream side of the combustion chamber in the movement direction of the waste in the combustion chamber is referred to as a front portion, and the downstream side is referred to as a rear portion.
  • a grate-type waste incinerator 301 shown in FIG. 10 has a combustion chamber 302 for burning waste W having a height of 1 to 3 m and a conventional grate-type waste with a waste incineration amount of about 100 tons / day. Compared with the combustion chamber height of the incinerator, which is about 5 to 6 m, the height is 1/2 or less.
  • the volume of an example of the grate waste incinerator 301 is 90 m 3, which is about 1 ⁇ 2 or less of 190 m 3 of the conventional grate waste incinerator.
  • the combustion chamber 302 has a height of 3 m or less, and a high-temperature gas B, which will be described later, is blown downward from the ceiling to stably perform combustion at a low air ratio.
  • the incinerator 301 can be made compact, and the equipment cost and operating cost of the grate-type waste incinerator 301 can be greatly reduced.
  • a grate-type waste incinerator 301 according to the present embodiment is disposed above the combustion chamber 302 and the upstream side (left side in FIG. 10) of the movement direction of the waste W in the combustion chamber 302 and burns the waste W.
  • a grate-type waste provided with a waste inlet 303 for charging into the chamber 302 and a boiler 304 provided above the downstream side (right side in FIG. 10) in the moving direction of the waste W in the combustion chamber 302 It is a waste incinerator.
  • a grate (stoker) 305 for burning the waste W while moving it.
  • the grate 305 is provided in order of the dry grate 305a, the combustion grate 305b, and the post-combustion grate 305c from the side closer to the waste input port 303, that is, from the upstream side.
  • the waste W is mainly dried and ignited.
  • the combustion grate 305b thermal decomposition and partial oxidation of the waste W are mainly performed, and combustion of combustible gas and solid content generated by the thermal decomposition is performed.
  • the remaining unburned matter in the waste W is completely burned.
  • the ash AS after complete combustion is discharged from the ash drop port 306.
  • a layer of waste W is formed on the dry grate 305a and the combustion grate 305b, and the combustion causes the waste to be disposed in the combustion chamber 302. The following regions are formed on the layer of the object W.
  • a drying region is formed on the upstream side (front part) of the movement direction of the waste W on the dry grate 305a, which is positioned on the dry grate 305a below the waste input port 303.
  • a combustion start region is formed from the downstream side (rear part) on the dry grate 305a to the upstream side (front part) on the combustion grate 305b. That is, the waste W on the dry grate 305a is dried on the upstream side, ignited on the downstream side, and combustion starts up to the upstream side (front) of the combustion grate 305b.
  • the waste W on the combustion grate 305b is thermally decomposed and partially oxidized here to generate a combustible gas, and the combustible gas and the solid content of the waste W are combusted.
  • the waste W is substantially burned on the combustion grate 305b.
  • a main combustion region is formed on the combustion grate 305b.
  • the combustion start region is a region where combustion of the waste W starts and combustible gas begins to be generated by thermal decomposition and partial oxidation of the waste W.
  • the main combustion region is that the waste W is thermally decomposed and partially oxidized to generate a combustible gas.
  • the combustible gas is burned with a flame and the solid content of the waste W is combusted. It is a combustion region, and is a region up to a point where combustion with a flame is completed (burn-out point). In the region after the burn-out point, a char combustion region (post-combustion region) in which solid unburned matter (char) in the waste W burns is obtained.
  • Wind boxes 307a, 307b, 307c, and 307d are provided below the dry grate 305a, the combustion grate 305b, and the post-combustion grate 305c in the combustion chamber 302, respectively.
  • a primary gas A for combustion supplied by a gas delivery mechanism 308 such as a blower is supplied to each wind box 307a, 307b, 307c, 307d through a primary gas supply pipe 309 for combustion, and each grate 305a, 305b, It is supplied into the combustion chamber 302 through 305c.
  • the primary gas A for combustion supplied from below the grate 305 is used for drying and burning the waste W on the grate 305a, 305b, 305c, and cooling action of the grate 305a, 305b, 305c. It has a stirring action for the waste W.
  • a waste heat boiler 304 is connected to the gas outlet on the downstream side of the combustion chamber 302, and the vicinity of the inlet of the waste heat boiler 304 burns unburned combustible gas in the gas discharged from the combustion chamber 302. Chamber 310 is formed.
  • a secondary combustion gas C is blown into a secondary combustion chamber 310 which is a part of the waste heat boiler 304, and unburned combustible gas is secondarily burned. After this secondary combustion, the exhaust gas G is discharged from the waste heat boiler 304. The heat is recovered.
  • the exhaust gas G discharged from the waste heat boiler 304 is neutralized with acidic gas by slaked lime and the like and adsorbed by dioxins with activated carbon in an exhaust gas treatment device (not shown), and further to a dust removal device (not shown).
  • the neutralized reaction product, activated carbon, dust and the like are collected.
  • the exhaust gas G, which has been dedusted and detoxified by the dust remover, is attracted by an attracting fan (not shown) and released from the chimney into the atmosphere.
  • the grate-type waste incinerator 301 having such a basic configuration includes a primary gas blowing unit FABU for blowing the primary gas A for combustion into the combustion chamber 302 from below the grate 305, and waste on the grate 305.
  • a high-temperature gas injection unit HGBU that includes two stages of high-temperature gas injection ports 313 and 315 in the length direction of the combustion chamber 302 that is the moving direction of W and that injects the high-temperature gas B downward from the ceiling of the combustion chamber 302 is provided. ing.
  • the grate-type waste incinerator 301 includes a primary gas blowing unit FABU for a primary gas for combustion.
  • the primary gas blowing unit FABU passes a combustion primary gas A from a primary gas supply source (not shown) through a main body portion of the primary gas supply line 309, and then a drying grate 305a, a combustion grate 305b, and a post-combustion grate.
  • Each wind box 307a, 307b, 307c, 307d of 305c is fed from a branch portion of the primary gas supply pipe 309.
  • the primary gas supply pipe 309 includes a gas delivery mechanism 308 such as a blower and a damper, for example.
  • a flow rate adjusting mechanism 311 is provided.
  • the grate-type waste incinerator 301 includes a high-temperature gas blowing unit HGBU that blows the high-temperature gas B downward from the ceiling of the combustion chamber 302.
  • the hot gas blowing unit HGBU By the hot gas blowing unit HGBU, the hot gas B is fed from the hot gas blowing port 313 in the upstream (upstream in the moving direction of the waste W on the grate 305) to the area from the combustion start region to the front of the main combustion region.
  • the hot gas B is blown toward the area from the rear of the main combustion region to the front of the rear combustion region from the hot gas blowing port 315 in the rear stage (downstream in the moving direction of the waste W on the grate 305). Infuse.
  • the high-temperature gas blowing unit HGBU includes a high-temperature gas supply source 312 provided outside the combustion chamber 302, a high-temperature gas blow-in port 313 for blowing high-temperature gas B into the combustion chamber 302, for example, a flow rate adjusting mechanism 314 such as a damper, A high-temperature gas blow-in port 315 at a later stage, for example, a flow rate adjusting mechanism 316 such as a damper, and pipes for guiding the high-temperature gas B from the high-temperature gas supply source 312 to the high-temperature gas blow-in ports 313 and 315 are provided.
  • the upstream high-temperature gas inlet 313 is an area from the downstream side (rear part) in the moving direction of the waste W on the dry grate 305a to the upstream side (front part) on the combustion grate 305b in the ceiling of the combustion chamber 302. It is provided above the inside.
  • the rear-stage high-temperature gas inlet 315 extends from the downstream side (rear part) in the moving direction of the waste W on the combustion grate 305b to the upstream side (front part) on the rear combustion grate 305c on the ceiling of the combustion chamber 302. Located above the area.
  • the directions of the hot gas blowing ports 313 and 315 are determined so that the hot gas B is blown downward.
  • the hot gas B is blown from the upstream hot gas blowing port 313 toward the area from the combustion start region to the front of the main combustion region, and the hot gas B is blown from the rear hot gas blowing port 315 from the rear of the main combustion region. It is provided to blow toward the area up to the front of the rear combustion region.
  • the hot gas blowing ports 313 and 315 are also provided at a plurality of locations in the width direction of the combustion chamber 302 (direction perpendicular to the paper surface in FIG. 10). Further, the hot gas inlets 313 and 315 may be arranged at a plurality of positions in the length direction of the combustion chamber 302 in the above-described area.
  • the grate-type waste incinerator 301 of the present embodiment includes a secondary combustion gas supply unit SABU that blows the secondary combustion gas C into the secondary combustion chamber 310 corresponding to the vicinity of the inlet of the waste heat boiler 304.
  • the secondary combustion gas supply unit SABU is provided in the secondary combustion chamber 310 with a secondary combustion gas C from a secondary combustion gas supply source (not shown) via a secondary combustion gas supply pipe 320.
  • the secondary combustion gas supply pipe 320 is provided with a gas delivery mechanism 318 such as a blower and a damper 319 as a flow rate adjusting mechanism such as a damper.
  • the secondary combustion gas blow-in port 317 is provided on the peripheral wall of the waste heat boiler 304 so as to blow the secondary combustion gas C into the secondary combustion chamber 310 in the vicinity of the inlet of the waste heat boiler 304.
  • the unburned combustible gas is waste heat connected to the upper side of the post-combustion grate 305c. It flows into the secondary combustion chamber 310 corresponding to the vicinity of the inlet of the boiler 304, where the secondary combustion gas C is supplied and secondary combustion is performed.
  • the configurations of the primary gas blowing unit FABU, the high temperature gas blowing unit HGBU, the secondary combustion gas blowing unit SABU, and the like are not limited to those illustrated, and the grate-type waste incinerator 301
  • the size, shape, type of waste W, etc. can be selected as appropriate.
  • the waste W is mainly dried and ignited on the dry grate 305a. That is, the waste W on the dry grate 305a is dried in the upstream range, ignited in the downstream range, and combustion starts in the area up to the upstream range (front) on the combustion grate 305b.
  • the thermal decomposition and partial oxidation of the waste W are mainly performed, and the combustible gas generated from the waste W and the solid content in the waste W are combusted. Combustion of the waste W is substantially completed on the combustion grate 305b.
  • unburned components such as fixed carbon in the waste W that remains slightly are completely burned.
  • the waste heat boiler 304 is connected to the gas outlet on the ceiling of the combustion chamber 302, and the vicinity of the inlet of the waste heat boiler 304 is the secondary combustion chamber 310. Therefore, the unburned combustible gas generated from the waste W in the combustion chamber 302 is guided to the secondary combustion chamber 310, where it is mixed and stirred with the secondary combustion gas C, and undergoes secondary combustion.
  • the exhaust gas after the secondary combustion is recovered by the waste heat boiler 304. After heat recovery, the exhaust gas discharged from the waste heat boiler 304 is subjected to neutralization of acid gas by slaked lime and the like, adsorption of dioxins by activated carbon, and further sent to a dust removal device (not shown).
  • the reaction product, activated carbon, dust, etc. are recovered.
  • the exhaust gas that has been dedusted and detoxified by the dust remover is attracted by an attracting fan (not shown) and released from the chimney into the atmosphere.
  • dust removal apparatuses such as a bag filter system and an electrostatic dust collection system, can be used, for example.
  • the primary gas A for combustion passes through the primary gas supply pipe 309 for combustion from a gas delivery mechanism 308 such as a blower, for example, and is provided in the wind below each of the dry grate 305a, the combustion grate 305b, and the post-combustion grate 305c. After being supplied to the boxes 307a, 307b, 307c, and 307d, they are supplied into the combustion chamber 302 through the grate 305a, 305b, and 305c.
  • a gas delivery mechanism 308 such as a blower, for example
  • the total flow rate of the combustion primary gas A supplied into the combustion chamber 302 is adjusted by a flow rate adjusting mechanism 311 provided in the main body portion of the combustion primary gas supply pipe 309, and further, the wind boxes 307a, 307b, 307c. , 307d is supplied with a flow rate adjusting mechanism (not shown) provided at a branch portion branched from the main body portion of the combustion primary gas supply pipe 309 to each wind box 307a, 307b, 307c, 307d. Adjusted by.
  • the configurations of the wind boxes 307a, 307b, 307c, 307d and the combustion primary gas supply pipe 309 for supplying the combustion primary gas A are not limited to those shown in the figure, and the grate type waste incinerator 301 It can be appropriately selected depending on the scale, shape, type of waste W and the like.
  • the primary gas A for combustion it is preferable to use a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume.
  • a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume any of air, oxygen-containing gas and the above-described circulating exhaust gas may be used, or a mixed gas thereof may be used.
  • the hot gas B is blown from the upstream hot gas inlet 313 toward the area from the combustion start region R2 to the front of the main combustion region R3, and the hot gas inlet 315 at the rear stage. From the rear part of the main combustion region R3 to the front part of the rear combustion region R4, and as a whole, the high temperature gas B flows from the combustion start region R2 in the combustion chamber 302 to the front of the rear combustion region R4. In the area up to the part, it is blown downward toward the layer of the waste W.
  • the high temperature gas B In order to stabilize the combustion of the waste W, it is preferable to blow the high temperature gas B into an area where there is a flame and a large amount of combustible gas in the combustion chamber 302, so there is a large amount of combustible gas in the combustion chamber 302.
  • the hot gas B is blown into a region from the combustion start region R2 to the front of the rear combustion region R4.
  • the hot gas B is fed into the area from the combustion start region R2 in the combustion chamber 302 to the front part of the post combustion region R4, and the layer of the waste W
  • the hot gas B blown downwards suppresses the upward flow in opposition to the upward flow of combustion gas containing combustible gas generated by thermal decomposition and partial oxidation of the waste W.
  • a slow stagnation or vertical circulation of a planar flow occurs on the waste W layer. During such stagnation or circulation, the flow rate of the gas is slow, so that a flame in which the combustible gas is burned will be present.
  • planar combustion region planar flame
  • the combustible gas is stably combusted.
  • nitrogen contained in the waste W and nitrogen in the air react at high temperatures to generate NOx.
  • the NOx concentration must be below the regulation value, so NOx is removed by the exhaust gas treatment device. Suppressing the amount of NOx generated in the waste incinerator is a fundamental measure, and this is desired.
  • the high temperature gas B is blown from the two stages of the high temperature gas inlets 313 and 315 of the front stage and the rear stage, and a low oxygen atmosphere is formed when the high temperature gas B is blown from the high temperature gas inlet port 313 of the front stage. Since the reducing gas RG is generated and NOx is decomposed by the reducing gas RG, the amount of NOx generated can be suppressed.
  • FIG. 11 is a longitudinal sectional view of the combustion chamber 302 for explaining the combustion state of the waste W in the grate-type waste incinerator 301.
  • a region from the combustion start region R2 to the front portion of the main combustion region R3 is, for example, a low oxygen atmosphere L having a local air ratio of 0.6 to 0.8 (oxygen concentration of 2 Vol% dry or less).
  • combustible gas and reducing gas RG (CO, HCN, NHn, CmHn) are generated as gas components (CO and CmHn are combustible).
  • the generated combustible gas is uniformly and stably combusted in the planar combustion region formed on the waste W as described above.
  • the reducing gas RG is used so as to be led downstream in the combustion chamber 302 and decompose NOx.
  • the supply amount of the high temperature gas B is adjusted, and the supply amount of oxygen combined with the primary gas A for combustion is adjusted, so that the main combustion region R3 A region from the rear portion to the front portion of the rear combustion region R4 is, for example, an oxygen-excess atmosphere H having a local air ratio of 1.3 to 1.6 (oxygen concentration: 5 vol% dry to 8 vol% dry). If the air ratio in the oxygen-excess atmosphere H is less than 1.3, the solids of the waste W are not sufficiently burned and become unburned and unsuitable, and if it is more than 1.6, the amount of NOx generated increases and unsuitable. Therefore, the air ratio is preferably 1.3 to 1.6.
  • the supply amount of the high temperature gas B is adjusted, for example, by adjusting the gas delivery amount of a gas delivery mechanism such as a blower that sends the high temperature gas B, or by adjusting the opening degree of the flow rate regulation mechanisms 314 and 316 such as dampers.
  • the high temperature gas injection unit HGBU supplies the supply amount of the high temperature gas B supplied from one high temperature gas supply source 317 to the high temperature gas injection ports 313 and 315, respectively.
  • the opening degree of the flow rate adjusting mechanisms 314 and 316 such as dampers, a region from the combustion start region R2 to the front portion of the main combustion region R3 and a rear portion of the main combustion region R3 to the front portion of the rear combustion region R4
  • the air ratio in the above areas is controlled to a predetermined range.
  • Two high-temperature gas supply sources (not shown) that supply the high-temperature gas B to each of the high-temperature gas inlets 313 and 315 are provided, and the oxygen concentration of the high-temperature gas B prepared in each high-temperature gas supply source is adjusted to
  • the air ratio may be controlled within a predetermined range.
  • the oxygen concentration in the combustion chamber 302 is measured by a total of 331 and an oxygen concentration meter 332 that measures the oxygen concentration in the area from the rear portion of the main combustion region R3 to the front portion of the rear combustion region R4. Based on the measured oxygen concentration, The supply amount or the oxygen concentration of the hot gas B is controlled so that the oxygen concentration (air ratio) in each of the areas is within a predetermined range.
  • NOx generated from the combustion start region R2 to the post-combustion region R4 reacts with the reducing gas RG described above under an oxygen-excess atmosphere and is decomposed, and the NOx content in the exhaust gas G is reduced and discharged.
  • the excess of HCN and NHn in the reducing gas RG that contributes to the reaction with NOx is decomposed by reacting with oxygen in an oxygen-excess atmosphere, or N2 is generated and is not discharged as it is. Does not occur.
  • the gas in the combustion chamber 302 is attracted by a fan, and the gas in the combustion chamber 302 is guided toward the exhaust gas outlet.
  • the distance in the length direction of the combustion chamber 302 between the upstream hot gas inlet 313 and the downstream hot gas inlet 315 is 0.5 seconds to 1.5 seconds. It is preferable to set to pass in seconds. It is preferable to react the generated reducing gas RG with NOx within the above-mentioned time because the reaction efficiency is increased. If this time is slower than 1.5 seconds, the amount of radicals deactivated in the reducing gas RG reacting with NOx increases, and the reaction with NOx is greatly reduced. If earlier than 0.5 seconds, the reducing gas RG and Since the reaction with NOx is not sufficiently performed and NOx remains and NOx is generated from the surplus NHn, it is unsuitable. Therefore, the above time is preferably 0.5 to 1.5 seconds.
  • the temperature of the hot gas B blown from the hot gas blowing ports 313 and 315 is preferably in the range of 100 ° C. to 400 ° C., more preferably about 200 ° C.
  • a gas having a temperature lower than 100 ° C. is blown as the high temperature gas B
  • the temperature in the combustion chamber 302 is lowered, the combustion of the waste W becomes unstable, and the amount of CO generated increases.
  • a gas exceeding 400 ° C. is blown as the high-temperature gas B, the flame temperature in the combustion chamber 302 becomes extremely high, which causes problems such as promoting the generation of clinker.
  • the oxygen concentration contained in the high temperature gas B is preferably about 5% to 30% by volume, and preferably 5% to 15% by volume.
  • the exhaust gas G extracted from the secondary combustion chamber 310 on the downstream side, the mixed gas of the circulating exhaust gas and air, the enrichment of air and oxygen It is preferable to use any one of air.
  • the circulating exhaust gas it is preferable to use an exhaust gas obtained by removing and neutralizing the exhaust gas G discharged from the grate-type waste incinerator 301, that is, a part of the exhaust gas discharged from the bag filter. Any one of circulating exhaust gas, mixed gas of circulating exhaust gas and air, air and oxygen-enriched air is heated by steam generated in the waste heat boiler 304 as necessary, and the temperature and oxygen concentration satisfy the above predetermined conditions. It is blown into the combustion chamber 302 as a hot gas B that fills.
  • the heating conditions such as the circulating exhaust gas or the mixed gas of the circulating exhaust gas and air, etc.
  • the temperature and oxygen concentration of the hot gas B are adjusted.
  • the desired range is the temperature and oxygen concentration of the hot gas B.
  • the upstream high-temperature gas inlet 313 is located on the ceiling of the combustion chamber 302 from the downstream side (rear part) of the movement direction of the waste W on the dry grate 305a to the upstream side (front part) of the movement direction on the combustion grate 305b. ) And the corresponding area.
  • the rear-stage hot gas inlet 315 is located on the ceiling of the combustion chamber 302 from the downstream side (rear part) in the moving direction of the waste W on the combustion grate 305b to the upstream side (front part) in the moving direction on the rear combustion grate 305c. ) In the area corresponding to the area up to.
  • a plurality of upstream hot gas inlets 313 and downstream hot gas inlets 315 are arranged in the width direction of the combustion chamber 302. Further, a plurality of them may be arranged in each of the above-described areas in the length direction of the combustion chamber 302.
  • the hot gas blowing ports 313 and 315 may be nozzle type or slit type.
  • the arrangement position, the number of arrangements, the arrangement interval of the hot gas blowing ports 313 and 315 on the ceiling of the combustion chamber 302, the hot gas blowing port 313 , 315, at least one of the blowing direction of the hot gas B, the shape of the hot gas blowing ports 313, 315, the flow velocity and the blowing flow rate of the hot gas B from the hot gas blowing ports 313, 315 are set. Or adjust.
  • the hot gas B is blown downward from the hot gas blowing ports 313 and 315 toward the waste W layer.
  • the blowing direction of the high temperature gas B it is desirable to blow in the angle range from the perpendicular to the waste W layer to 20 °. This is because the hot gas B that has been blown in, and the combustible gas generated by thermal decomposition and partial oxidation of the waste W collide with each other and the upward flow of the combustion gas collide with each other. This is because, when the angle is greater than 20 ° from the perpendicular to the layer of the object W, the appropriate facing described above cannot be formed.
  • the hot gas B blown into the combustion chamber 302 from the hot gas blowing ports 313 and 315 is preferably blown into the combustion chamber 302 at a blowing speed of 5 m / s to 20 m / s.
  • the injection speed of 5 m / s to 20 m / s is determined by the superficial velocity in the combustion chamber 302 (the gas flow rate in the combustion chamber 302 is divided by the cross-sectional area of the combustion chamber 302 orthogonal to the gas flow direction).
  • the relative speed can be stably formed without being influenced by the gas flow in the combustion chamber 302 by setting the relative speed to 5 to 20 times the maximum flow velocity (about 1 m / s at the maximum). It is.
  • the blowing speed of the high temperature gas B is adjusted by adjusting the gas delivery amount of a gas delivery mechanism such as a blower for sending the high temperature gas B or adjusting the flow rate by adjusting the opening of the flow rate regulation mechanisms 314 and 316 such as dampers, for example. Adjusted.
  • a gas delivery mechanism such as a blower for sending the high temperature gas B
  • the opening of the flow rate regulation mechanisms 314 and 316 such as dampers, for example. Adjusted.
  • the hot gas B does not necessarily have to be blown from the hot gas blowing ports 313 and 315 at an equal flow rate.
  • the blowing flow rates from the high temperature gas blowing ports 313 and 315 may be appropriately changed. .
  • the high-temperature gas so that the planar combustion region is allowed to stand on the layer of the waste W without variation. It is preferable to adjust the blowing flow rate of B.
  • the state of the planar combustion region changes, the combustion state of the combustible gas changes and the CO concentration, oxygen concentration, etc. in the exhaust gas from the combustion chamber 302 change, so the combustion state of the waste W in the combustion chamber 302 changes.
  • the CO concentration and oxygen concentration of the exhaust gas G discharged from the waste heat boiler 304 may be measured, and the blowing flow rate of the high temperature gas B may be adjusted in accordance with the changes.
  • the secondary combustion gas C is blown into the secondary combustion chamber 310, and the unburned combustible gas from the combustion chamber 302 is subjected to secondary combustion.
  • the secondary combustion gas C it is preferable to use a gas having a temperature in the range of room temperature to 200 ° C. and an oxygen concentration in the range of 15% by volume to 21% by volume.
  • air, oxygen-containing gas, the above-described circulating exhaust gas, or a mixed gas thereof may be used.
  • One or a plurality of secondary combustion gas inlets 317 may be installed on the peripheral wall of the secondary combustion chamber 310 so that the secondary combustion gas C can be blown in a direction in which a swirling flow is generated in the secondary combustion chamber 310.
  • the gas temperature and oxygen concentration distribution in the secondary combustion chamber 310 can be made uniform and averaged, and unburned combustibility Secondary combustion of gas is stably performed, generation of local high temperature is suppressed, and NOx in exhaust gas from the grate-type waste incinerator 301 can be reduced.
  • the secondary combustion gas C for example, only the secondary air for combustion supplied by a gas delivery mechanism 318 such as a blower, a gas in which a diluent is mixed with the secondary air for combustion and the oxygen concentration is adjusted, the gas passes through a dust removing device. It is possible to use only the circulating exhaust gas from which a part of the exhaust gas has been extracted or a gas in which the secondary air for combustion and the circulating exhaust gas are mixed.
  • Nitrogen, carbon dioxide, etc. can be considered as the diluent.
  • the flow rate of the secondary combustion gas C so that the gas temperature in the secondary combustion chamber 310 is in the range of 800 ° C. to 1050 ° C.
  • the gas temperature in the secondary combustion chamber 310 is less than 800 ° C.
  • combustion of unburned combustible gas becomes insufficient, and CO in the exhaust gas discharged from the secondary combustion chamber 310 increases.
  • the gas temperature in the secondary combustion chamber 310 exceeds 1050 ° C., the generation of clinker in the secondary combustion chamber 310 is promoted, and further NOx increases.
  • the above-described stable stagnation or circulation can be formed on the waste W in the combustion chamber 302 by blowing the hot gas B into the combustion chamber 302.
  • a planar combustion region is fixed on the waste W in the combustion chamber 302, and the waste W has a low air ratio of 1.5 or less regardless of the size of the grate-type waste incinerator 301.
  • Even when combustion is performed the stability of combustion of the waste W is maintained over the entire width direction and length direction of the combustion chamber 302 in the combustion chamber 302, and the ceiling of the combustion chamber 302 is maintained.
  • the generation of NOx in the combustion chamber 302 is suppressed, and the generation amount of harmful gases such as CO and NOx is reduced. Can be reduced. Furthermore, since the waste W can be burned at a lower air ratio than the conventional grate-type waste incinerator, the total amount of exhaust gas G discharged from the grate-type waste incinerator 301 can be further greatly reduced. The recovery efficiency of waste heat from the exhaust gas G can be improved.
  • the thermal decomposition of the waste W can be promoted by the radiation of a planar flame in a planar combustion region standing on the waste W on the grate 205, the waste that can be supplied onto the grate 205
  • the amount of W (grate load) and the amount of heat (furnace load) generated from the waste W in the combustion chamber 302 can be increased.
  • the internal volume of the combustion chamber 302 can be reduced with respect to the incineration amount of the waste W in the grate-type waste incinerator 301, and the height of the grate-type waste incinerator 301 can be reduced.
  • the grate-type waste incinerator 301 also measures the temperature of the grate 305 or the temperature in the combustion chamber 302 to determine the state or fire in the combustion chamber 302.
  • the state grasping unit CS for grasping the state of the waste W on the lattice 305, and the upstream and downstream high-temperature gas inlets according to the grasped state in the combustion chamber 302 or the state of the waste W on the fire lattice 305
  • an adjustment unit that adjusts the blowing flow rate or flow rate of the hot gas B from 313,315.
  • the adjustment unit includes flow rate adjustment mechanisms 314 and 315 interposed in the pipes of the high temperature gas B extending from the high temperature gas supply source 312 to the upstream and downstream high temperature gas inlets 313 and 315. It is provided by being connected to CS and controlling its operation.
  • Flow rate adjusting mechanism (primary gas injection unit), HGBU ... High temperature gas Blow unit, B ... hot gas, 12 ... hot gas supply source (hot gas blow unit), 13, 13a, 13b ... hot gas blow port (hot gas blow unit), 14 ... pipeline (hot gas blow) Unit), 15 ... secondary combustion gas inlet, S BU ... secondary combustion gas injection unit, C ... secondary combustion gas, 16 ... gas delivery mechanism (secondary combustion gas injection unit), 17 ... flow rate adjustment mechanism (secondary combustion gas injection unit) 18 ... Two combustion gas supply pipes, D, E ... Planar combustion zone (planar flame), 20 ... Grate-type waste incinerator, 21 ... Side wall, 22 ... Ceiling, 25 ...
  • Primary gas blowing unit 107a, 107b, 107c, 107d ... Wind box (FABU), 108 ... gas delivery mechanism (FABU), 109 ... primary gas supply pipe for combustion (FABU), 110 ... secondary combustion chamber, 111 ... flow rate adjustment mechanism (FABU), HGBU ... hot gas blowing unit, 112 ... Hot gas supply source (HGBU), 113 ... Hot gas inlet (HGBU), 114 ... Pipe line, 115 ... Flow rate adjusting mechanism (HGBU; adjustment unit), SABU ... Secondary combustion gas Blow unit, 116 ... secondary combustion gas blow-in port (SABU), 117 ... gas delivery mechanism (SABU), 118 ... flow rate control mechanism (SABU), 119 ...
  • SABU secondary combustion gas supply pipe
  • SABU secondary combustion gas supply pipe
  • CS Status monitoring unit
  • 201 Grate-type waste incinerator
  • 202 Combustion chamber
  • 203 Waste inlet
  • 204 Waste heat boiler
  • 205 ... Grate
  • 205a Dry grate
  • 205b Main combustion grate
  • 205c Post-combustion Grate
  • 206 ... ash drop, W ... waste, AS ... ash,
  • FABU ... primary gas injection unit
  • FABU Primary gas injection unit
  • FABU Primary gas injection unit
  • 209 ...
  • FABU Primary gas supply pipe for combustion
  • FABU Primary gas supply pipe for combustion
  • FABU 210 ... Flow rate adjustment mechanism
  • FABU 212 ... Flue, HGBU ... Hot gas Blowing unit, 217 ... hot gas supply source (HGBU), 213, 215 ... hot gas blowing port (HGBU), 214, 216 ... flow rate adjusting mechanism (HGBU; adjusting unit), SABU ... Secondary combustion gas blowing unit, 225 ... secondary combustion chamber, 226 ... secondary combustion gas blowing port (SABU), 227 ... gas delivery mechanism (SABU), 228 ... secondary combustion gas supply pipe (SABU), 229 ... Flow rate adjusting mechanism (SABU), 230 ... Gas derivative, CS ... State grasping unit, G ... Exhaust gas, R1 ...
  • primary gas injection unit 307a, 307b , 307c, 307d ... wind box (FABU), 308 ... gas delivery mechanism (FABU), 309 ... primary gas supply pipe for combustion (FABU), 311 ... flow control mechanism (FABU), HGBU ... hot gas blowing unit, 312 ... Hot gas supply source (HGBU), 313, 315 ... Hot gas inlet (HGBU), 314, 316 ... Flow rate adjustment mechanism (HGBU; adjustment unit), SABU ... Secondary combustion gas 310 ... Secondary combustion chamber, 317 ... Secondary combustion gas inlet (SABU), 318 ... Gas delivery mechanism (SABU), 320 ... Secondary combustion gas supply pipe (SABU), 319 ... Flow rate adjustment mechanism (SABU), CS ...
  • G exhaust gas, R1 ... dry region, R2 ... combustion start region, R3 ... main combustion region, R4 ... post-combustion region, L ... low oxygen atmosphere, H ... oxygen excess atmosphere, RG ... reducing gas, 331, 332 ... oxygen concentration meter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

 有害物質の発生量を抑制でき、低空気比での廃棄物の燃焼を問題なく行うことが可能な火格子式廃棄物焼却炉及び廃棄物焼却方法を提供する。焼却炉(1)は、火格子(5)上で廃棄物(W)が移動する間に廃棄物を燃焼させる燃焼室(2)、燃焼用一次ガス(A)を前記火格子の下から前記燃焼室内に吹込む一次ガス吹込みユニット(FABU)、そして、前記燃焼室内で前記火格子から上方に1~3mの範囲内に離れた位置から前記燃焼室内における廃棄物の燃焼開始領域から主燃焼領域までの間の任意の部位に向かい高温ガス(B)を下向きに吹込む複数の高温ガス吹込口(13)を含む高温ガス吹込みユニット(HGBU)、を具備し、前記吹き込まれた高温ガスが廃棄物から発生した可燃性ガスを含む燃焼ガスの上昇流を抑制し、火格子上の廃棄物の上に高温ガス及び燃焼ガスのよどみ又は循環を形成して廃棄物の為の安定した平面状燃焼領域を定在させる。

Description

火格子式廃棄物焼却炉及び廃棄物焼却方法
 本発明は、例えば都市ごみ等の廃棄物を焼却する為の火格子式の廃棄物焼却炉及び廃棄物焼却方法に関係している。
 例えば都市ごみ等の廃棄物を焼却処理する為の焼却炉として、火格子式廃棄物焼却炉が広く用いられている。このような火格子式廃棄物焼却炉の代表的な構成の概要を以下に説明する。
 このような従来の火格子式廃棄物焼却炉は、廃棄物を燃焼する為の燃焼室中の下部に並んで配置された三段の傾斜した火格子(乾燥火格子、燃焼火格子そして後燃焼火格子)を備えている。火格子は堆積された廃棄物を移送させる機構を備えている。上記燃焼室には、乾燥火格子において燃焼火格子とは反対側の上方に廃棄物投入口が設けられている。そして後燃焼火格子において燃焼火格子とは反対側の下方には灰落下口が設けられている。後燃焼火格子の上方に位置する燃焼室のガス出口に二次燃焼室が連設されている。通常、上記二次燃焼室は廃熱回収用の廃熱ボイラの一部であり、廃熱ボイラの入口部分である。乾燥火格子、燃焼火格子そして後燃焼火格子のそれぞれの下方から上方に向かい燃焼用一次ガス(通常は空気)を吹き込む一次ガス吹込みユニットが設けられている。
 このような従来の火格子式廃棄物焼却炉においては、使用開始時に廃棄物投入口から燃焼室内に投入された廃棄物は乾燥火格子上に堆積されて、乾燥火格子の下からの燃焼用一次ガスにより乾燥された後に図示されていない公知の着火装置により着火される。乾燥して軽くなり着火された廃棄物は、乾燥火格子上から燃焼火格子上に移送される。燃焼火格子上で廃棄物は熱分解されて可燃性ガスを含むガス(燃焼ガス)を発生させ、燃焼火格子の下方から上方に向かい送られる燃焼用一次ガスにより可燃性ガスと廃棄物中の固形分が燃焼する。燃焼火格子上で固形分が燃焼された廃棄物の残りは後燃焼火格子上に移送され、後燃焼火格子上で固定炭素などの未燃分が完全に燃焼し、燃焼火格子上に残った灰は、灰落下口へと落下し灰落下口から焼却炉の外部に排出される。
 使用開始時の上述した廃棄物の燃焼は燃焼室内の温度を上昇させる。これ以降、廃棄物投入口から燃焼室内に投入された廃棄物は、乾燥火格子上から燃焼火格子に向かい移送される間に乾燥火格子の下からの燃焼用一次ガスと燃焼室内の輻射熱により乾燥され、昇温されて可燃性ガスを含むガス(燃焼ガス)を発生させ、そして前述した図示されていない公知の着火装置を使用することなく前記輻射熱により可燃性ガスが着火される。上記乾燥火格子上には、廃棄物の移動方向の上流側に乾燥領域が形成され、下流側に燃焼開始領域が形成される。乾燥火格子上の燃焼開始領域で着火して燃焼を開始した廃棄物は、燃焼火格子上に移送される。燃焼火格子上で廃棄物は熱分解されて可燃性ガスを含む燃焼ガスを発生させ、燃焼火格子の下方から上方に向かい送られる燃焼用一次ガスにより可燃性ガスと廃棄物中の固形分が燃焼し、燃焼火格子の上に主燃焼領域が形成される。燃焼火格子上の主燃焼領域で固形分が燃焼された廃棄物の残りは後燃焼火格子上に滑り落ち、後燃焼火格子上で固定炭素などの未燃分が完全に燃焼し、後燃焼火格子上に後燃焼領域が形成される。燃焼火格子上に残った灰は、灰落下口へと落下し灰落下口から廃棄物焼却炉の外部に排出される。
 前述した如く火格子式廃棄物焼却炉では、廃棄物は燃焼室にて三段の火格子の下方から上方に向かい吹き込まれる燃焼用一次ガスの助けにより燃焼される。さらに、燃焼室において廃棄物から生じた可燃性ガスの未燃分は、後燃焼火格子の上方の燃焼室のガス出口に連接された前述した二次燃焼室において、二次燃焼室に吹き込まれた二次燃焼用ガスとともに燃焼される。
 従来の火格子式廃棄物焼却炉では、実際に燃焼室内に供給する空気量を燃焼室内に投入された廃棄物の燃焼に必要な理論空気量で除した比は(空気比)は、通常、1.6程度である。これは、一般的な液体燃料や気体燃料の燃焼に必要な空気比である1.05~1.2に比べて大きい。その理由は、廃棄物には、一般的な液体燃料や気体燃料に比べて不燃分が多く、かつ不均質なため、空気の利用効率が低く、燃焼を行うには多量の空気が必要となるためである。しかし、単に供給空気量を多くすると、空気比が大きくなるにしたがって廃棄物燃焼炉から外部に排出される排ガスの量も多くなり、これに伴ってより大きな排ガス処理設備が必要となる。
 火格子式廃棄物焼却炉において従来よりも空気比を小さくした状態で、支障なく廃棄物を燃焼させることができれば、排ガスの量は少なくなり、排ガス処理設備をコンパクトにすることが出来る。その結果、廃棄物焼却施設全体を従来に比べ小型化出来るので設備費を低減できる。これに加えて、排ガス処理のための薬剤使用量も低減出来るので、廃棄物焼却施設全体の運転費を低減できる。さらには、排ガス量の減少により廃熱ボイラの熱回収率を向上できる。この結果として、廃熱ボイラで回収した廃棄物の焼却により生じた廃熱エネルギーを発電の為に利用すれば、発電の効率を上げることができる。
 このように、低空気比燃焼を行うことにより得られる利点は大きいが、空気比が1.5以下の低空気比による燃焼では燃焼が不安定になるという問題が残る。すなわち、低空気比で生じる廃棄物の燃焼の不安定は、COの発生を増加させたり、火炎温度の局所的な上昇により燃焼中に発生するNOxの量を急増させたり、煤を大量に発生させるなどの、火格子式廃棄物焼却炉からの排ガス中の有害物の増加という問題を生じさせる。また、火格子式廃棄物焼却炉内における局所的な高温により廃棄物中の固形物や灰の成分が溶融して火格子式廃棄物焼却炉の内壁に付着してクリンカを発生させたり、火格子式廃棄物焼却炉内における局所的な高温が火格子式廃棄物焼却炉の耐火物の寿命を短くさせるという問題を生じさせる。
 このような状況のもとで、空気比が1.5以下の低空気比で安定して燃焼することができる火格子式廃棄物焼却炉が特開2004-84981号公報(特許文献1)に開示されている。この公報に記載されている火格子式廃棄物焼却炉では、火格子式廃棄物焼却炉の二次燃焼領域の出口側から導出した高温の排ガスを除塵した後、除塵した高温の排ガスを空気と混合させて高温ガスとし、この高温ガスを燃焼室内に吹き込む。そして、この結果として、以下の効果が得られると開示している(前記公報の段落0063参照)。
 即ち、上記高温ガスの顕熱と輻射により火格子式廃棄物焼却炉の燃焼室内の廃棄物の熱分解が促進され;前記高温ガスに含まれる酸素により廃棄物の熱分解により発生した可燃性ガスの燃焼が促進され;さらに、前記高温ガスを燃焼室の側壁に設けたノズルから燃焼室内に吹き込むことにより(前記公報の段落0040参照)、廃棄物から発生した可燃性ガスを含む燃焼ガスの上昇流を抑制させて、燃焼室内の廃棄物の上に可燃性ガスを含む燃焼ガスのよどみ領域が形成されて、可燃性ガスの安定した燃焼が行われる。この結果として、低空気比での廃棄物の燃焼を安定して行わせることができる。
特開2004-84981号公報
 火格子式廃棄物焼却炉により廃棄物を燃焼させる間には、廃棄物が熱分解されて発生される可燃性ガスの燃焼が安定して行なわれることが、この燃焼によって発生するCO、NOxなどの有害物質の発生量を抑制することに大きく寄与する。特開2004-84981号公報に記載の火格子式廃棄物焼却炉では、燃焼室の側壁に設けられたノズルから高温ガスが燃焼室内に吹き込まれる。従って、火格子式廃棄物焼却炉に供給された廃棄物の状態によっては、前記側壁から吹き込まれた高温ガスが前記側壁の近傍から中央部までの燃焼室の全般に亘り前記燃焼促進効果や前記燃焼安定効果を偏りなく生じさせて低空気比での燃焼により廃棄物から発生する可燃性ガスの燃焼を安定させることが、必ずしもできないことがある。
 燃焼室の幅が広く廃棄物の焼却処理量が多い火格子式廃棄物焼却炉の場合には、火格子式焼却炉の側壁から燃焼室内に吹き込まれた高温ガスが燃焼室中央付近まで到達せず、前記側壁の近傍から中央部までの燃焼室の全般に亘り前記燃焼促進効果や前記燃焼安定効果を偏りなく発揮することができない。そのため、低空気比での廃棄物の燃焼を十分に行えない。
 本発明は、かかる事情の下でなされ、本発明の目的は、火格子式廃棄物焼却炉の燃焼室の大きさにかかわらず、空気比が1.5以下の低空気比で廃棄物の燃焼を行った場合においても、燃焼室の側壁の近傍から中央部までの燃焼室の全般に亘り廃棄物の燃焼を安定して行うことができ、CO、NOx等の有害物質の発生量を抑制でき、低空気比での廃棄物の十分な燃焼を問題なく行うことが可能な火格子式廃棄物焼却炉及び廃棄物焼却方法を提供することである。
 前述したこの発明の目的を達成するため、本発明1つの概念に従った火格子式廃棄物焼却炉は、
 その上に廃棄物が供給され供給された廃棄物が移動される間に燃焼される火格子が設けられている燃焼室を含んでおり、火格子上には、廃棄物の移動の方向に沿い、供給された廃棄物が燃焼を開始される燃焼開始領域,燃焼が開始された廃棄物の本格的な燃焼が行われる主燃焼領域,そして主燃焼領域における廃棄物の未燃焼部分のさらなる燃焼が行われる後燃焼領域が設けられている、火格子式廃棄物焼却炉であって:
 燃焼用一次ガスを前記火格子の下から前記燃焼室内に吹き込む一次ガス吹込みユニットと;そして、
 複数の高温ガス吹込口を備えており、前記燃焼室内の火格子から上方に1m~3mの範囲内に離れた位置から、複数の高温ガス吹込口からの高温ガスを前記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹込む高温ガス吹き込みユニットと、を備えている。
 そして、この火格子式廃棄物焼却炉は、
 前記高温ガス吹込みユニットの複数の高温ガス吹込口から下向きに吹き込まれた高温ガスが、前記火格子上の廃棄物から発生された可燃性ガスを含む燃焼ガスの上昇流を抑制し、前記火格子上の廃棄物の上に高温ガス及び燃焼ガスのよどみ又は循環を形成して平面状燃焼領域を形成させる、ことを特徴とする。
 前述した如き火格子式廃棄物焼却炉においては、燃焼室が火格子からの高さが3m以下の天井を含んでいて、前記高温ガス吹込みユニットの複数の高温ガス吹込口は前記天井に設けられている、ことが出来る。
 前述した如き火格子式廃棄物焼却炉においては、前記高温ガス吹込みユニットの前記複数の高温ガス吹き込み口が、前記火格子上の廃棄物の移動の方向と交差する前記燃焼室の幅方向に配置されていて、前記高温ガス吹込みユニットは、火格子上の廃棄物の状態に応じて、それぞれの高温ガス吹込口における高温ガスの吹込み流速又は吹込み流量を調整する、ことが好ましい。
 また、前述した如き火格子式廃棄物焼却炉においては、火格子温度又は燃焼室内ガス温度を計測して燃焼室内の状態又は火格子上の廃棄物の状態を把握する状態把握ユニットと、把握した燃焼室内の状態又は火格子上の廃棄物の状態に応じて高温ガス吹込口からの高温ガスの吹込み流速又は吹込み流量を調整する調整ユニットとを備える、ことが好ましい。
 また、前述した如き火格子式廃棄物焼却炉においては、前記高温ガス吹込みユニットが吹き込む高温ガスが、温度が100℃~400℃の範囲であり、酸素濃度が5体積%~30体積%の範囲である、ことが好ましい。
 更に、前述した如き火格子式廃棄物焼却炉においては、前記高温ガス吹込みユニットが、高温ガスを燃焼室内に、燃焼室内のガス流量をガスが流れる方向に対して直交する燃焼室の断面積で除した空塔速度の5倍~20倍の流速で吹込む、ことが好ましい。
 更にまた、前述した如き火格子式廃棄物焼却炉においては、前記高温ガス吹込みユニットが、焼却炉から排出された排ガスの一部(循環排ガス)、前記循環排ガスと空気との混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つを高温ガスとして供給する高温ガス供給源を備える、ことが好ましい。
 また、前述した如き火格子式廃棄物焼却炉は、前記燃焼室において前記火格子の上方に配置され前記燃焼室と連通した二次燃焼室、二次燃焼室に二次燃焼用ガスを吹込む二次燃焼用ガス吹込みユニット、そして二次燃焼室に連接されたボイラをさらに備えており、二次燃焼室では前記燃焼室の前記火格子上の廃棄物から発生した可燃性ガスの未燃焼分が二次燃焼用ガスとともに燃焼されてボイラを加熱する、ことができる。
 前述したこの発明の目的を達成するため、本発明の1つの概念に従った廃棄物焼却方法は、
 その上に廃棄物が供給され供給された廃棄物が移動される間に燃焼される火格子が設けられている燃焼室を含んでおり、火格子上には、廃棄物の移動の方向に沿い、供給された廃棄物が燃焼を開始される燃焼開始領域,燃焼が開始された廃棄物の本格的な燃焼が行われる主燃焼領域,そして主燃焼領域における廃棄物の未燃焼部分のさらなる燃焼が行われる後燃焼領域が設けられている、火格子式廃棄物焼却炉を用いた廃棄物焼却方法であって:
 燃焼用一次ガスを火格子の下から前記燃焼室内に吹込む工程;そして、
 前記燃焼室内の火格子から上方に1m~3mの範囲内に離れた複数の位置から、高温ガスを前記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹込む工程、
 を備えている。
 そして、この廃棄物焼却方法は、
 前記下向きに吹き込まれた高温ガスは、廃棄物から発生された可燃性ガスを含む燃焼ガスの上昇流を抑制し、前記火格子上の廃棄物の上に高温ガス及び燃焼ガスのよどみ又は循環を形成して平面状燃焼領域を形成させる、ことを特徴とする。
 前述した如き廃棄物焼却方法においては、前記燃焼室は火格子からの高さが3m以下の天井を含んでいて、前記高温ガスは前記天井の複数の位置から前記燃焼室内に下向きに吹き込まれる、ことができる。
 前述した如き廃棄物焼却方法においては、前記燃焼室内に高温ガスが吹き込まれる前記複数の位置は、前記火格子上の廃棄物の移動方向と交差する前記燃焼室の幅方向に配置されていて、前記高温ガス吹き込み工程では、火格子上の廃棄物の状態に応じて、それぞれの位置における高温ガスの吹込み流速又は吹込み流量を調整して吹込む、ことが好ましい。
 また、前述した如き廃棄物焼却方法においては、前記高温ガス吹き込み工程では、火格子温度又は燃焼室内ガス温度を計測して燃焼室内の状態又は火格子上の廃棄物の状態を把握し、把握した燃焼室内の状態又は火格子上の廃棄物の状態に応じて高温ガスの吹込み流速又は吹込み流量を調整して吹込む、ことが好ましい。
 また、前述した如き廃棄物焼却方法においては、前記高温ガス吹き込み工程で吹き込まれる高温ガスが、温度が100℃~400℃の範囲であり、酸素濃度が5体積%~30体積%の範囲である、ことが好ましい。
 また、前述した如き廃棄物焼却方法においては、前記高温ガス吹き込み工程では高温ガスを、燃焼室内のガス流量をガスが流れる方向に対して直交する燃焼室の断面積で除した空塔速度の5倍~20倍の流速で吹込む、ことが好ましい。
 更に、前述した如き廃棄物焼却方法においては、前記高温ガス吹き込み工程で吹き込まれる高温ガスが、焼却炉から排出された排ガスの一部(循環排ガス)、前記循環排ガスと空気との混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つである、ことが好ましい。
 更に、前述した如き廃棄物焼却方法は、
 二次燃焼用ガスを二次燃焼領域に吹き込む工程をさらに備えており、
 廃棄物の燃焼に必要な単位時間当りの理論酸素量に対する、
 燃焼用一次ガスにより供給される単位時間当りの酸素量の比Q1と、
 高温ガスにより供給される単位時間当りの酸素量の比Q2と、
 二次燃焼用ガスにより供給される単位時間当りの酸素量の比Q3とが、
 式(1)
 Q1:Q2:Q3=0.75~1.10:0.05~0.40:0.10~0.40
 及び、式(2)
 1.0≦Q1+Q2+Q3≦1.5
 を満足する、ことが好ましい。
 また、前述した如き廃棄物焼却方法は、
 二次燃焼用ガスを二次燃焼領域に吹き込む工程をさらに備えており、
 廃棄物の燃焼に必要な単位時間当りの理論酸素量に対する、
 燃焼用一次ガスにより供給される単位時間当りの酸素量の比Q1と、
 高温ガスにより供給される単位時間当りの酸素量の比Q2と、
 二次燃焼用ガスにより供給される単位時間当りの酸素量の比Q3とが、
 式(3)
 Q1:Q2:Q3=0.80~1.00:0.10~0.30:0.10~0.30
 及び、式(4)
 1.1≦Q1+Q2+Q3≦1.3
 を満足する、ことが好ましい。
 前述したこの発明の目的を達成するため、本発明のもう1つの概念に従った火格子式廃棄物焼却炉は、その上に廃棄物が供給され供給された廃棄物が移動される間に燃焼される火格子が設けられているとともに天井を有している燃焼室を含んでおり、火格子上には、廃棄物の移動の方向に沿い、供給された廃棄物が燃焼を開始される燃焼開始領域,燃焼が開始された廃棄物の本格的な燃焼が行われる主燃焼領域,そして主燃焼領域における廃棄物の未燃焼部分のさらなる燃焼が行われる後燃焼領域が設けられている、火格子式廃棄物焼却炉であって:
 燃焼用一次ガスを上記火格子の下から上記燃焼室内に吹き込む一次ガス吹込みユニットと;そして、
 高温ガスを上記燃焼室の天井から、火格子上の廃棄物の移動方向に沿い、前記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹き込む高温ガス吹込みユニットと、を具備している。
 そして、この火格子式廃棄物焼却炉は、
 前記高温ガス吹込みユニットは、燃焼室に吹き込まれる高温ガスの吹込み流速を、燃焼室の高さとの関係において次の(5)式
  -0.107X+4.70X+3.96 ≦ Y ≦ -0.199X+8.73X+7.36…(5)
  ここにおいては、Y:高温ガスの吹込み流速(m/sec)
  X:燃焼室高さ(m)
 で表される範囲とするように制御する高温ガス吹込み流速制御ユニットを備える、ことを特徴とする。
 このもう1つの概念に従った火格子式廃棄物焼却炉においては、
 前記高温ガス吹込みユニットが吹き込む高温ガスが、温度が100℃~400℃の範囲であり、酸素濃度が5体積%~30体積%の範囲である、ことが好ましい。
 また、このもう1つの概念に従った火格子式廃棄物焼却炉においては、前記高温ガス吹込みユニットが、焼却炉から排出された排ガスの一部(循環排ガス)、前記循環排ガスと空気との混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つを高温ガスとして供給する高温ガス供給源を備える、ことが好ましい。
 前述したこの発明の目的を達成するため、本発明のもう1つの概念に従った廃棄物焼却方法は、
 その上に廃棄物が供給され供給された廃棄物が移動される間に燃焼される火格子が設けられている燃焼室を含んでおり、火格子上には、廃棄物の移動の方向に沿い、供給された廃棄物が燃焼を開始される燃焼開始領域,燃焼が開始された廃棄物の本格的な燃焼が行われる主燃焼領域,そして主燃焼領域における廃棄物の未燃焼部分のさらなる燃焼が行われる後燃焼領域が設けられている、火格子式廃棄物焼却炉を用いた廃棄物焼却方法であって:
 燃焼用一次ガスを火格子下から上記燃焼室内に吹き込む工程;そして、
 高温ガスを上記燃焼室の天井から、火格子上の廃棄物の移動方向に沿い上記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹き込む工程、を備えている。
 そして、この廃棄物焼却方法は、
 高温ガス吹き込み工程において、高温ガスを燃焼室内に吹込む流速を、燃焼室における火格子から天井までの高さとの関係において次の(5)式
  -0.107X+4.70X+3.96 ≦ Y ≦ -0.199X+8.73X+7.36…(5)
  ここにおいて、Y:高温ガスの吹込み流速(m/sec)
  X:燃焼室高さ(m)
 で表される範囲とすることを特徴とする。
 このもう1つの概念に従った廃棄物焼却方法においては、
 前記高温ガス吹き込み工程で燃焼室内に吹き込まれる高温ガスは、温度が100℃~400℃の範囲であり、酸素濃度が5体積%~30体積%の範囲である、ことが好ましい。
 このもう1つの概念に従った廃棄物焼却方法においては、
 前記高温ガス吹き込み工程で燃焼室内に吹き込まれる高温ガスを、燃焼室内のガス流量をガスが流れる方向に対して直交する燃焼室の断面積で除した空塔速度の5倍~20倍の流速で吹き込む、ことが好ましい。
 また、このもう1つの概念に従った廃棄物焼却方法においては、前記高温ガスが、焼却炉から排出された排ガスの一部(循環排ガス)、前記循環排ガスと空気との混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つであることが好ましい。
 前述した如き本発明の1つの概念に従った火格子式廃棄物焼却炉及び廃棄物焼却方法によれば、火格子式廃棄物焼却炉の燃焼室内の火格子から上方に1m~3mの範囲内に離れた位置から、複数の高温ガス吹込み口からの高温ガスを燃焼室内の火格子上の廃棄物の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹き込み、火格子上の廃棄物から発生された可燃性ガスを含む燃焼ガスの上向きの流れを抑制させ、火格子上の廃棄物の上に高温ガス及び燃焼ガスの流れが緩やかなよどみ又は循環を形成し、平面状燃焼領域を形成させることができる。この結果として、火格子式廃棄物焼却炉の燃焼室の大きさに関わらず、空気比が1.5以下の低空気比での廃棄物の燃焼においても、廃棄物と廃棄物から発生する燃焼ガスに含まれている可燃性ガスを安定して燃焼させることができる。そして、廃棄物の燃焼が安定するため、火格子式廃棄物焼却炉から排出される煤や排ガス中のCO、NOxなど有害物の発生量を抑制することができる。
 さらに、平面状燃焼領域が安定し、平面状燃焼領域における平面状火炎の輻射により廃棄物の熱分解を促進することができるため、火格子に供給する廃棄物の量(火格子負荷)および燃焼する廃棄物から燃焼室内に供給される熱量(火炉負荷)を大きくすることができる。このため廃棄物の焼却処理量に対して燃焼室の容積を小さくすることができ、火格子式廃棄物焼却炉の高さを低くすることができ、火格子式廃棄物焼却炉をコンパクトにすることが出来る。このことは火格子式廃棄物焼却炉の為の設備費用と運転費用を低減することができることを意味する。
 前述した如き本発明のもう1つの概念に従った火格子式廃棄物焼却炉及び廃棄物焼却方法によれば、燃焼室の火格子から天井までの高さに対する火格子式廃棄物焼却炉の燃焼室の天井から燃焼室内の火格子上の廃棄物の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹き込む高温ガスの流速の適切な範囲を定めたので、燃焼室の火格子から天井までの高さに応じた高温ガスの下向きの流れの適切な量により、火格子上の廃棄物から発生する可燃性ガスを含む燃焼ガスの上向きの流れを十分確実に抑制でき、廃棄物の上に高温ガス及び燃焼ガスの流れが緩やかなよどみ又は循環を十分確実に形成し、平面状燃焼領域を十分確実に形成させることができる。この結果として、燃焼室に吹き込む高温ガスの量を必要最小限に抑制しながら、火格子式廃棄物焼却炉の燃焼室の大きさに関わらず、空気比が1.5以下の低空気比での廃棄物の燃焼においても、廃棄物と廃棄物から発生する燃焼ガスに含まれている可燃性ガスを十分確実に安定して燃焼させることができる。そして、廃棄物の燃焼が安定するため、火格子式廃棄物焼却炉から排出される煤や排ガス中のCO,NOxなど有害物の発生量を抑制することができる。
 さらに、平面状燃焼領域が安定し、平面状燃焼領域における平面状火炎の輻射により廃棄物の熱分解を促進することができるため、火格子に供給する廃棄物の量(火格子負荷)および燃焼する廃棄物から燃焼室内に供給される熱量(火炉負荷)を大きくすることができる。このため廃棄物の焼却処理量に対して燃焼室の内容積を小さくすることができる。このため廃棄物焼却処理量に対して燃焼室の容積を小さくすることができ、火格子式廃棄物焼却炉の高さを低くすることができ、火格子式廃棄物焼却炉をコンパクトにすることが出来る。このことは火格子式廃棄物焼却炉の為の設備費用と運転費用を低減することができることを意味する。
図1は、本発明の第1実施形態に係る火格子式廃棄物焼却炉の構成を概略的に示す縦断面図である。 図2は、図1に示すされている火格子式廃棄物焼却炉における高温ガス吹込み口及び二次燃焼用ガス吹込み口の配置とは別のこれ等の配置を概略的に示す斜視図である。 図3は、従来の火格子式廃棄物焼却炉の燃焼室内の幅方向における廃棄物の燃焼状態を説明する為の概略的な縦断面図である。 図4は、図1に示されている火格子式廃棄物焼却炉の燃焼室内の幅方向における廃棄物の燃焼状態を説明する為の概略的な縦断面図である。 図5は、図1に示されている火格子式廃棄物焼却炉の変形例の燃焼室内の幅方向における廃棄物の燃焼状態を説明するの概略的な縦断面図である。 図6は、本発明の第2実施形態に係る火格子式廃棄物焼却炉の構成を概略的に示す縦断面図である。 図7は、火格子式廃棄物焼却炉の燃焼室中に吹き込む高温ガスの吹込み流速の、燃焼室高さに対する適切な範囲を示す図である。 図8は、本発明の第3実施形態に係る火格子式廃棄物焼却炉の構成を概略的に示す縦断面図である。 図9は、図8に示されている火格子式廃棄物焼却炉の燃焼室内における長手方向における廃棄物の燃焼状態を説明する為の概略的な縦断面図である。 図10は、本発明の第4実施形態に係る火格子式廃棄物焼却炉の構成を概略的に示す縦断面図である。 図11は、図9に示されている火格子式廃棄物焼却炉の燃焼室内における長手方向における廃棄物の燃焼状態を説明する為の概略的な縦断面図ある。
 以下、本発明の種々の実施形態により本発明を詳細に説明する。なお、本発明の技術的範囲は、これらの実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶ。
[第1実施形態]
 以下、本発明の第1実施形態に係る火格子式廃棄物焼却炉及びこの火格子式廃棄物焼却炉を使用した廃棄物焼却方法について図1乃至図4を参照しながら説明する。
<火格子式廃棄物焼却炉1の基本構成>
 図1に示す火格子式廃棄物焼却炉1は、その上に廃棄物Wが供給され供給された廃棄物Wが移動される間に燃焼される火格子5が設けられている燃焼室2を含んでいる。燃焼室2における火格子5から天井までの高さは1~3mの範囲内であり、廃棄物焼却量100ton/日程度の規模の従来の火格子式廃棄物焼却炉の燃焼室高さが5m~6m程度であることに比べて、1/2以下である。また、この実施形態の火格子式廃棄物焼却炉1の燃焼室2の容積は90mであり、前述した如き従来の火格子式廃棄物焼却炉の燃焼室の容積が190m程度であることに比べて、1/2程度以下となる。
 燃焼室2の前記高さが3m以下であることと、後述する高温ガスを燃焼室2における火格子5から上方に1m~3mの範囲内に離れた位置から燃焼室2内に下向きに吹き込むことにより低空気比での廃棄物Wの燃焼を安定して行うことが出来るようになる。この結果として、火格子式廃棄物焼却炉1に係る全体の設備をコンパクトにすることができ、火格子式廃棄物焼却炉1に係る設備費用及び運転費用を大幅に低減できる。
 本実施形態に係る火格子式廃棄物焼却炉1では、燃焼室2において火格子5上の廃棄物Wの移動方向の上流側(図1の左側)の上方に廃棄物投入口3が配置され、燃焼室2において火格子5上の廃棄物Wの移動方向の下流側(図1の右側)の上方に燃焼室2のガス出口が配置されている。ガス出口には二次燃焼室10が連設されていて、二次燃焼室10にはボイラ4が連設されている。
 燃焼室2の底部には、廃棄物投入口3から供給された廃棄物Wをガス出口の下方に向かい移動させながら燃焼させる火格子(ストーカ)5が設けられている。この火格子5は、廃棄物投入口3に近い方から、乾燥火格子5a、燃焼火格子5b、後燃焼火格子5cの順に配置されている。
 燃焼室2の底部において、廃棄物Wの移動方向における後燃焼火格子5cの下流端の下方には、灰落下口6が設けられている。
 乾燥火格子5a、燃焼火格子5b及び後燃焼火格子5cの下方には、それぞれ風箱7a,7b,7c,7dが設けられている。例えばブロワの如きガス送出機構8から燃焼用一次ガス(通常は空気)Aが、流量調節機構11を伴った燃焼用一次ガス供給管9を通って前記各風箱7a,7b,7c,7dに供給され、各風箱7a,7b,7c,7dから乾燥火格子5a,燃焼火格子5b,後燃焼火格子5cを通って燃焼室2内の上方に向かい吹き込まれる。なお、火格子5の下方から上方に向かい吹き込まれる燃焼用一次ガスAは、乾燥火格子5a,燃焼火格子5b,後燃焼火格子5c上の廃棄物Wの乾燥及び燃焼に使われるほか、乾燥火格子5a,燃焼火格子5b,後燃焼火格子5cの冷却及びこれらの火格子5a,5b,5c上で廃棄物Wを攪拌させる。
 風箱7a,7b,7c,7d、ガス送出機構8、そして燃焼用一次ガス供給管9は、燃焼用一次ガスAを火格子5の下から燃焼室2中に吹き込む一次ガス吹込みユニットFABUを提供している。
 廃棄物投入口3から供給された廃棄物Wが最初に載置される乾燥火格子5aでは主として燃焼室2中の輻射熱と燃焼用一次ガスAによる廃棄物Wの乾燥と廃棄物Wから生じた燃焼ガスに含まれる可燃性ガスの着火が行われる。即ち、乾燥火格子5a上では廃棄物Wの移動方向に沿った上流側で廃棄物Wの乾燥が行われ(乾燥領域)、下流側で廃棄物Wの燃焼が開始される(燃焼開始領域)。燃焼火格子5bでは燃焼室2中の輻射熱と燃焼用一次ガスAにより主として、乾燥火格子5aで着火された後に移動されてきた廃棄物Wの熱分解と部分酸化が行われ、熱分解により廃棄物Wから発生した燃焼ガスに含まれている可燃性ガスと固形分の燃焼が行われる。即ち、燃焼火格子5b上の全体では廃棄物Wの本格的な燃焼が行われ廃棄物Wの実質的に全部が燃焼される(主燃焼領域)。後燃焼火格子5c上では、燃焼火格子5bでの燃焼後に燃焼火格子5bから移動されてきた僅かに残った廃棄物中の固定炭素などの未燃分が完全に燃焼される。即ち、後燃焼火格子5c上では燃焼火格子5bでの廃棄物Wの未燃焼部分のさらなる燃焼が行われる(後燃焼領域)。後燃焼火格子5c上で完全に燃焼した後の燃焼灰は、後燃焼火格子5c上から灰落下口6へと落下され、灰落下口6から燃焼室2の外へと排出される。
 燃焼室2の出口に連接された二次燃焼室10の側壁には、例えばブロワの如きガス送出機構16からの二次燃焼用ガスCが流量調節機構17を伴った二次燃焼用ガス供給管18を通って送り込まれる二次燃焼用ガス吹込口15が配置されている。二次燃焼用ガス吹込口15から二次燃焼室10中に吹き込まれた二次燃焼用ガスCは、二次燃焼室10内で燃焼室2から上昇してきた未燃の可燃性ガスを二次燃焼させ、この二次燃焼により発生された熱は二次燃焼室10に連設されているボイラ4を加熱しボイラ4で回収される。
 ここで、ガス送出機構16,二次燃焼用ガス供給管18,そして二次燃焼用ガス吹込口15は、二次燃焼室10に二次燃焼用ガスCを吹き込む二次燃焼用ガス吹込みユニットSABUを提供している。
 このようにボイラ4により熱が回収された後に、ボイラ4から外部に排出された排ガスは、例えば消石灰による酸性ガスの中和と活性炭によるダイオキシン類の吸着が行われた後に、さらに図示しない公知の除塵装置に送られ、前記除塵装置で中和反応生成物、活性炭、ダストなどが回収される。前記除塵装置で除塵され、無害化された後の排ガスは、図示しない誘引ファンにより図示しない煙突に誘引され、前記煙突から大気中に放出される。なお、上記除塵装置としては、例えば、バグフィルタ方式、電気集塵方式等の除塵装置を用いることができる。
 高温ガスを燃焼室2における火格子5から上方に1m~3mの範囲内に離れた位置から下向きに燃焼室2内に吹き込む為の高温ガス吹込みユニットHGBUは、燃焼室2の外に設けられた高温ガス供給源12と、燃焼室2へ高温ガスBを吹込む複数の高温ガス吹込口13と、高温ガスBを高温ガス供給源12から複数の高温ガス吹込口13へ導く管路14と、管路14に介在された流量調整機構25を有している。
 複数の高温ガス吹込口13は、燃焼室2の天井において、乾燥火格子5a上における廃棄物Wの移動方向の下流側から燃焼火格子5b上における廃棄物Wの移動方向の下流側までの範囲内での上方の任意の位置に設けられている。図1の実施形態では、廃棄物Wの移動方向、すなわち燃焼室2の長さ方向、における、乾燥火格子5a上の下流側の上方と燃焼火格子5b上の上流側及び下流側の上方の3個所で廃棄物Wの移動方向と交差する方向、すなわち燃焼室2の幅方向、に並んで設けられている。
 図2は、図1に示す火格子式廃棄物焼却炉1における複数の高温ガス吹込口13と二次燃焼用ガス吹込口15の配置とは別の配置を示す。図2においては、複数の高温ガス吹込口13は、燃焼室2の天井において、火格子5上での廃棄物Wの移動方向における乾燥火格子5a上の下流側(燃焼開始領域)の上方から燃焼火格子5b上の下流側までの(主燃焼領域)上方にわたって3個以上の位置で、燃焼室2の幅方向全域にわたって設けられている。
 複数の高温ガス吹込口13は下向きにされている。かくして、複数の高温ガス吹込口13からの高温ガスBは、乾燥火格子5a上の前述した下流側の燃焼開始領域から燃焼火格子5b上の全体の主燃焼領域までの任意の部位に向かって吹き込まれる。
 図2においては、二次燃焼室10の前壁及び後壁の両方に複数の二次燃焼用ガス吹込口15が設けられている。
 二次燃焼室10とボイラ4は、図2に示すように燃焼室2の上方にかぶさるように屈曲して連接される配置としてもよい。二次燃焼室10とボイラ4をこのような形状と配置とすることにより、二次燃焼室10とボイラ4とを伴った火格子式廃棄物焼却炉1の高さを、従来の火格子式廃棄物焼却炉に比べて低くすることができ、設備費を低減することができる。
 なお、一次ガス吹込みユニットFABU及び二次燃焼用ガス吹込みユニットSABUの構成は図示したものに限定されず、火格子式廃棄物焼却炉1の規模及び形状、廃棄物の種類等により適宜選択され得る。
 次に、燃焼用一次ガスA、高温ガスB、二次燃焼用ガスCの吹き込みについて詳細に説明する。
<燃焼用一次ガスAの吹き込み>
 燃焼用一次ガスAは、ガス送出機構8から燃焼用一次ガス供給管9を通って乾燥火格子5a、燃焼火格子5b及び後燃焼火格子5cのそれぞれの下に設けられた風箱7a,7b,7c,7dに供給された後、各火格子5a,5b,5cを通って燃焼室2内に供給される。
 燃焼室2内に供給される燃焼用一次ガスAの全流量は、燃焼用一次ガス供給管9の本体部分に設けられた流量調節機構11により調整され、さらに、各風箱7a,7b,7c,7dに供給される燃焼用一次ガスAの部分流量は、前記本体部分から各風箱7a,7b,7c,7dに分岐された燃焼用一次ガス供給管9の分岐部分に備えられている流量調節機構(図示省略)により調節される。
 風箱7a,7b,7c,7d及び燃焼用一次ガス供給管9等の構成は図示したものに限定されず、火格子式廃棄物焼却炉1の規模及び形状、廃棄物の種類等により適宜選択され得る。
 燃焼用一次ガスAとしては、温度が常温~200℃の範囲であり、酸素濃度が15体積%~21体積%の範囲のガスを用いることが好ましい。燃焼用一次ガスAとして、空気、酸素を含有するガス、及び焼却炉から排出された排ガスの一部(循環排ガス)のいずれかを用いてもよいし、これらの混合ガスを用いてもよい。
<高温ガスBの吹き込み及びその作用効果>
 高温ガスBは、燃焼室2における火格子5から上方に1m~3mの範囲内に離れた位置にある高温ガス吹込みユニットHGBUの複数の高温ガス吹込口13から、燃焼室2内の火格子5上の燃焼開始領域から主燃焼領域までの範囲の間の任意の部位の廃棄物Wに向かって下向きに吹き込まれる。これは,火炎が存在し可燃性ガスが多く存在するこれ等の領域に,高温ガスBを吹き込むことがこれらの領域における廃棄物Wの燃焼を安定させるので好ましいためである。なお、火格子式廃棄物焼却炉1において、可燃性ガスが多く存在する領域は、燃焼開始領域から主燃焼領域までである。
 廃棄物Wが焼却される場合、まず水分の蒸発が起こり、次いで熱分解と部分酸化反応が起こり、可燃性ガスが生成し始める。ここで燃焼開始領域とは、廃棄物の燃焼が始まり、廃棄物の熱分解、部分酸化により可燃性ガスが生成し始める領域である。また、主燃焼領域とは、廃棄物の熱分解、部分酸化と燃焼が行われ、可燃性ガスが発生し、火炎を伴って燃焼している領域であり、火炎を伴う燃焼が完了する点(燃え切り点)までの領域である。燃え切り点より後の領域では、廃棄物中の固形未燃分(チャー)が燃焼するチャー燃焼領域(後燃焼領域)となる。火格子式廃棄物焼却炉1では燃焼開始領域は、火格子5上での廃棄物Wの移動方向における乾燥火格子5a上の下流側の上方空間であり、主燃焼領域は燃焼火格子5b上の全域の上方空間に相当する。
 図1において、複数の高温ガス吹込口13は、燃焼室2内の燃焼開始領域から主燃焼領域に相当する乾燥火格子5a上の前記下流側の上方及び燃焼火格子5b上の全域の上方において、燃焼室2の火格子5からの高さが3m以下の天井に設置されている。ここで、例えば都市ごみの如き廃棄物Wの熱分解反応は200℃程度で起こり、400℃程度でほぼ完了する。
 図1に示す例では、乾燥火格子5aの下流部及び燃焼火格子5bの上方は燃焼開始領域から主燃焼領域に相当するので、これらの位置の上方に高温ガス吹込口13を設けて高温ガスBを吹き込んでいる。廃棄物Wの組成、状態によっては、もっと高い温度で熱分解反応が完了することがあり、この場合は、火格子5上の廃棄物Wの移動方向において図1に示す位置よりさらに下流側にも、高温ガス吹込口13を設けることが好ましい。
 高温ガスBを燃焼室2内の燃焼開始領域から主燃焼領域までの間の任意の部位の廃棄物Wに向かって下向きに吹き込むことにより、高温ガスBは、廃棄物Wの熱分解及び部分酸化により生じた可燃性ガスを含む燃焼ガスの上昇流を抑制し、高温ガスB及び燃焼ガスの双方の流れが衝突し、高温ガスB及び燃焼ガスは燃焼開始領域から主燃焼領域までの間の火格子5上の廃棄物Wの上方に平面状の流れの遅いよどみまたは上下方向の循環を生じさせる。
 このよどみ又は循環中ではこれらのガスの流れの速度が遅いため、燃焼ガスに含まれている可燃性ガスが燃焼する火炎が定在することになる。すなわち燃焼開始領域から主燃焼領域までの間の火格子5上の廃棄物Wの上に可燃性ガスが安定して燃焼される平面状燃焼領域(平面火炎)が定在する。その結果、低空気比での廃棄物Wの燃焼においても廃棄物Wの安定した燃焼が行われ、廃棄物Wの燃焼に伴うCO、NOx、ダイオキシン類等の有害物質の発生を抑制出来ると共に煤の生成を抑制することができる。このため、低空気比での廃棄物Wの十分な燃焼を支障なく行うことができる。
 また、廃棄物Wの上に平面状燃焼領域が定在するので,この燃焼領域からの熱輻射と顕熱によって廃棄物Wの熱分解・部分酸化が促進される。
<高温ガス吹込口13>
 複数の高温ガス吹込口13は、乾燥火格子5aの火格子5上の廃棄物Wの移動方向に沿った乾燥火格子5a上の下流側から燃焼火格子5b上の全域の範囲内で火格子5から上方に1m~3mの範囲内に離れた任意の位置に設けられていることが出来る。図1の実施形態では、燃焼室2の高さ3m以内の天井の前記範囲内に対応した範囲内において燃焼室2の幅方向と長さ方向との夫々の複数の列にそって配置されている。高温ガス吹込口13は、ノズル型でもスリット型でもよい。
 複数の高温ガス吹込口13の配置位置、配置数、配置間隔、吹込み方向、高温ガス吹込口13の形状(吹込まれた高温ガスBの広がり形状に関係する)、高温ガスBの吹込み流速、吹込み流量などの少なくとも1つが、火格子式廃棄物焼却炉1の廃棄物処理量、容積、形状、焼却しようとする廃棄物Wの状態などに合わせ、火格子5上の燃焼開始領域及び主燃焼領域上で所望の平面状燃焼領域が燃焼室2の幅方向及び長さ方向に偏りなく均一で安定的に形成されるように設定又は調整される。
 燃焼室2内で高温ガス吹込口13を火格子5から上方に1~3m離れた範囲に設けるには、燃焼室2内の上記範囲内に複数の高温ガス吹込口13と複数の高温ガス吹込口13に高温ガス供給源12からの高温ガスBを供給する高温ガス供給管を配置するようにする。この場合、当然のことながら、複数の高温ガス吹込口13と高温ガス供給管とは燃焼室2内の高温に耐えることが出来る耐熱材料で形成されるか又は耐熱被覆された材料で形成されていなければならない。
 高温ガス吹込口13からの高温ガスBの吹込み方向は,高温ガス吹込口13からの垂線を中心にした20°までの展開角度の円錐形状の範囲が望ましい。前記吹き込み方向がこの範囲よりも大きくなると、高温ガス吹込口13から燃焼室2内に吹き込んだ高温ガスBとが、燃焼室2内の火格子5上の燃焼開始領域及び主燃焼領域において廃棄物Wの熱分解及び部分酸化により生じる可燃性ガスを含む燃焼ガスの上昇流を安定して抑制できず、安定した前記平面状燃焼領域が形成されなくなる可能性がある。
 従来の火格子式廃棄物燃焼炉の燃焼室内の廃棄物の燃焼状態と本願の発明の第1実施形態の火格子式廃棄物燃焼炉の燃焼室内の廃棄物の燃焼状態との差異について、図3及び図4を参照しながら、より詳細に説明する。
 図3は、従来の火格子式廃棄物焼却炉(特許文献1:特開2004―84981号公報に記載の火格子式廃棄物焼却炉)20の燃焼室2´内の幅方向における廃棄物Wの燃焼状態を説明する為の概略的な縦断面図であり;そして、図4は、本発明の第1実施形態に係る火格子式廃棄物焼却炉1の燃焼室2内の幅方向における廃棄物Wの燃焼状態を説明する為の概略的な縦断面図である。
 図3中に示されているように、従来の火格子式廃棄物燃焼炉20は、燃焼室2´の側壁21に高温ガス吹込口23が設けられていて、火格子5上の廃棄物Wは火格子5の下方からの燃焼用一次ガス(通常は空気)Aの手助けにより燃焼される。廃棄物Wが燃焼されている間に、燃焼室2´の側壁21に設けられている高温ガス吹込口23から高温ガスBが斜め下方に向かい吹込まれている。燃焼室2´中に斜め下方に向かい吹きこまれた高温ガスBは、火格子5上で燃焼し熱分解している廃棄物Wから生じている可燃性ガスを含む燃焼ガスの上昇流に衝突し、燃焼している廃棄物Wの上に高温ガスBと可燃性ガスを含む燃焼ガスとの2点鎖線で示されている如き流れの遅いよどみが形成される。よどみの中で可燃性ガスが燃焼され、平面状燃焼領域(平面火炎)Dを形成している。このような従来の火格子式廃棄物焼却炉20でも、火格子5上で燃焼している廃棄物Wの上に前述した如く平面状燃焼領域(平面火炎)Dが形成され、平面状燃焼領域(平面火炎)Dでは廃棄物Wを安定して燃焼させることが出来る。しかしながら、図3中に示されているように、燃焼室2´の幅が広い場合には、燃焼室2´の側壁21の高温ガス吹込口23から吹き込まれた高温ガスBが燃焼室2´の幅方向における中央部分まで十分到達しない。この結果、燃焼室2´の幅方向における中央部分では、高温ガスBが火格子5上で燃焼し熱分解している廃棄物Wから生じている可燃性ガスを含む燃焼ガスの上昇流に十分衝突せず、前記中央部分では廃棄物Wの上に高温ガスBと可燃性ガスを含む燃焼ガスとの流れの遅いよどみが形成されない。そして、前記中央部分では、平面状燃焼領域Dが形成されず、廃棄物Wから生じた可燃性ガスが十分に燃焼されず、廃棄物Wが十分に燃焼できない。
 このような従来の火格子式廃棄物焼却炉20に対し、図4中に示されている如く、本発明の第1実施形態に係る火格子式廃棄物焼却炉1では、燃焼室2の天井22に複数の高温ガス吹込口13が燃焼室2の幅方向に相互に離間して設けられている。第1実施形態に係る火格子式廃棄物焼却炉1では、火格子5上の廃棄物Wが下方からの燃焼用一次ガスAの手助けにより燃焼している間に、天井22に設けられている複数の高温ガス吹込口13から高温ガスBを燃焼室2内に下向きに吹込まれる。下向きに吹き込まれた高温ガスBは、燃焼している廃棄物Wから上昇してくる可燃性ガスを含む燃焼ガスと衝突し、燃焼している廃棄物Wの上に高温ガスBと可燃性ガスを含む燃焼ガスとの流れの遅いよどみ又は上下方向の循環を形成する。よどみ又は循環の中で可燃性ガスが燃焼され、図4中に2点鎖線で示されている如き平面状燃焼領域(平面火炎)Eが、燃焼室2の幅方向の全体及び燃焼室2の長さ方向の一部に均一に安定して形成される。これにより、前述した従来の火格子式廃棄物焼却炉20のように側壁21の温ガス吹込口23から燃焼室2´中に高温ガスBを斜め下方に向かい吹き込む場合の燃焼室2´の幅に比べ、燃焼室2の幅が大きくても燃焼室2の幅全体に渡り燃焼室2中で廃棄物Wを十分確実に安定して燃焼させることが出来る。
<高温ガスBを燃焼室2において火格子5から上方に離れた位置から下向きに吹き込むことの効果>
 高温ガスBを燃焼室2において火格子5から上方に1m乃至3m離れた位置、例えば燃焼室2の天井22、の複数の高温ガス吹き込み口13から下向きに吹き込むことの効果は以下のようである。
 (1).燃焼室2中に吹き込まれた高温ガスBの顕熱と輻射により火格子5上の廃棄物Wの熱分解が促進される。
 (2).燃焼室2中への酸素を含んだ高温ガスBの吹き込みにより火格子5上の廃棄物Wの熱分解により発生した可燃性ガスの燃焼が促進される。
 (3).高温ガスBを燃焼室2において火格子5から上方に1m乃至3m離れた位置、例えば燃焼室2の天井22、に設けた高温ガス吹込口13から燃焼室2内に下向きに吹き込み、火格子5上の廃棄物Wから発生する可燃性ガスを含む燃焼ガスの上昇流を抑制させ、廃棄物Wの上に可燃性ガスを含む燃焼ガス及び高温ガスの流れの遅いよどみ又は流れの上下方向の循環を形成することにより、可燃性ガスの流れが緩やかになり、可燃性ガスが火格子5の下方から燃焼室2中に吹き込まれる燃焼用一次ガスAと十分に混合されて安定した燃焼が行われる。
 また、廃棄物Wの上の前記よどみ中又は前記循環中で可燃性ガスが安定して燃焼することにより、廃棄物Wの上に平面状燃焼領域(平面火炎)Eが形成され定在する。
 (4).定在する平面状燃焼領域(平面火炎)Eの輻射により、その下の廃棄物Wの熱分解が促進される。
 これらの効果のお蔭により、第1実施形態の火格子式廃棄物燃焼炉1は、低空気比で廃棄物Wを燃焼させても廃棄物Wを安定して燃焼させることができる。廃棄物Wが安定して燃焼されるため廃棄物Wから生じる可燃性ガスが十分に燃焼され、火格子式廃棄物焼却炉1から排出される煤や排ガス中のCO、NOxなどの有害物の発生量を抑制することができる。
 さらに、定在する平面状燃焼領域(平面火炎)Eの輻射などにより廃棄物Wの熱分解を促進することができるため、火格子5上に供給する廃棄物Wの量(火格子負荷)を大きくすることが出来、燃焼室2内に生じる廃棄物Wの熱量(火炉負荷)を大きくすることができる。このため火格子式廃棄物焼却炉1で焼却可能な廃棄物Wの量に対して燃焼室2の容積を小さくすることができ、燃焼室2の高さを低くすることができ、火格子式廃棄物焼却炉1をコンパクトに出来ることにより火格子式廃棄物焼却炉1の設備費用及び運転費用を低減することができる。
<高温ガスBの調製>
 高温ガス吹込口13から燃焼室2中に吹き込まれる高温ガスBの温度は、100℃~400℃の範囲とすることが好ましく、200℃程度とすることがより好ましい。100℃未満の温度のガスを高温ガス吹込口13から燃焼室2中に吹き込むと燃焼室2内の温度が低下し、燃焼室2内における廃棄物Wの燃焼が不安定となり、この不安定な燃焼により発生するCOが増加する。400℃を超えるガスを高温ガス吹込口13から燃焼室2中に吹き込むと燃焼室2内における火炎温度が著しく高温になり,廃棄物Wからのクリンカの生成が助長される。
 また,高温ガスBが含有する酸素濃度は5体積%~30体積%程度,望ましくは5体積%~15体積%とすることが好ましい。これにより、前述の効果がより効果的に発揮促進され、火格子式廃棄物焼却炉1から排出される排ガスに含まれるNOx及びCOの量の減少がより促進される。
 高温ガスBとしては、二次燃焼室10の下流側の排ガスの一部(循環排ガス)、この循環排ガスと空気との混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つを用いることが好適である。前記循環排ガスは、火格子式廃棄物焼却炉1から排出された排ガスを中和処理し、例えばバグフィルタにより除塵した後の排ガスの一部である。このような循環排ガス、このような循環排ガスと空気との混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つを高温ガスBとして使用する時には、高温ガス供給源12において、二次燃焼室10に連接されてるボイラ4で発生させた蒸気により高温ガスBとして使用する前記一つのガスを高温ガスBとして好ましい前記温度まで加熱する。また、高温ガス供給源12において、高温ガスBとして使用する前述した種々のガスの混合割合を調整することにより、高温ガスBの酸素濃度を前述した好ましい値に調整することが出来る。
<燃焼室2中への高温ガスBの吹込み流速及び吹込み流量>
 高温ガス吹込口13から燃焼室2中に吹き込まれる高温ガスBは、5m/s~20m/s程度の吹き込み速度で燃焼室2内の火格子5上の燃焼開始領域から主燃焼領域までの間の任意の部位に吹き込むことが好ましい。高温ガスBの吹き込み速度を5m/s~20m/s程度とするのは、高温ガスBの吹き込み速度を燃焼室2内における空塔速度(燃焼室2内のガス流量をガスが流れる方向に対して直交する燃焼室の断面積で除した流速、最大1m/s程度)の5倍~20倍の相対速度とする為である。高温ガスBのこのような吹き込みにより、燃焼室2内のガスの流れによる影響を受けることなく、前述したよどみ又は循環を火格子5上の燃焼開始領域及び主燃焼領域の廃棄物Wの上に安定して形成することができる。
 燃焼室2中への高温ガスBの吹込み流速は、高温ガス供給源12から管路14を介し複数の高温ガス吹込口13へと送る高温ガスBの流量を調整することにより、例えば、高温ガス供給源12に設けられている図示しないガス送出機構による高温ガスBの送出量や管路14に介在されている流量調整機構25の開度を調整することにより、調整される。
<燃焼室2中への高温ガスBの吹込み流速、吹込み流量の調整-高温ガス吹込口13毎の調整>
 高温ガス吹込口13が複数ある場合,高温ガスBは各高温ガス吹込口13から必ずしも等流速で吹き込まれる必要はなく,火格子式廃棄物焼却炉1の燃焼室2の規模、形状、或いは廃棄物Wの性状、量、火格子5上に堆積される廃棄物Wの層の厚さ等により、複数の高温ガス吹込口13からの高温ガスBの吹き込み流速が相互に異なるように適宜変更され得る。
<図1に示されている火格子式廃棄物焼却炉1の変形例>
 図5は、図1に示されている火格子式廃棄物焼却炉1の変形例の燃焼室2内の幅方向における廃棄物Wの燃焼状態を説明する為の断面図である。
 廃棄物Wが火格子5上に幅方向に均等に堆積していない場合(例えば、図5に示すように火格子5上の左側の廃棄物Wの層の厚さが火格子5上の右側の廃棄物Wの層の厚さよりも厚い場合)、あるいは、火格子5上に堆積している廃棄物Wの種類や水分率が燃焼室2の幅方向において異なり廃棄物Wの発熱量が燃焼室2の幅方向で均一でなく偏っている場合には、廃棄物Wの熱分解によって発生する可燃性ガスの発生量や組成が燃焼室2内の幅方向の場所によって不均一になる。燃焼室2内に高温ガスBを、燃焼室2の天井に等間隔に配置されている複数の高温ガス吹込口13から等流速又は等流量で吹き込むと、高温ガスBと廃棄物Wから生じた可燃性ガスを含む燃焼ガス等の上昇流との対向が燃焼室2の幅方向で均一に形成されない。従って、火格子5上の廃棄物Wの上に高温ガスBと燃焼ガスとのよどみ又は循環が安定して形成されないため、廃棄物Wの安定した燃焼が行われない可能性がある。
 そこで、図5に示されている変形例では、燃焼室2の幅方向に沿った複数の位置、図5中では2つの位置、の高温ガス吹込口13a、13bにそれぞれ連結された個別の高温ガス供給用の管路14にそれぞれ個別に高温ガスBの流量の調整が可能な例えばダンパの如き高温ガス流量調整機構26a、26bが設けられている。さらに、燃焼室2の幅方向に沿った複数の位置で火格子5の温度又は燃焼室2内のガスの温度を計測して、燃焼室2内の状態又は火格子5上の廃棄物Wの状態を把握し、把握した燃焼室2内の状態又は火格子5上の廃棄物Wの状態に応じて、複数の位置の高温ガス吹込口13a、13bに連結される高温ガス流量調整機構26a、26bの開度を調整し、高温ガス吹込口13a、13bからの高温ガス吹込流速又は吹込流量をそれぞれ個別に調整する。これにより、燃焼室2の幅方向に沿った火格子5上の廃棄物Wが不均一な状態であっても、廃棄物Wを安定して燃焼させることができる。
 例えば、火格子5上に堆積している廃棄物Wの量が多い場合や廃棄物Wの発熱量が高い場合には、廃棄物Wから発生する可燃性ガスの量が多くなり、可燃性ガスの燃焼によって生じる燃焼カロリーが高くなり、火格子5の温度や燃焼室2内のガスの温度が上昇する。図5に示すように、火格子5上の左側の廃棄物Wの層の厚さが右側の廃棄物Wの層の厚さよりも厚く、左側の廃棄物Wの層からの可燃性ガスの発生量が右側の廃棄物Wの層からの可燃性ガスの発生量よりも多く、燃焼室2内の左側のガスの温度が800~900℃と燃焼室2内の右側のガスの温度の700~800℃に比べて高くなる場合には、ガスの温度が高い燃焼室2内の左側の高温ガス吹込口13aからの高温ガスBの吹込流量をガスの温度が相対的に低い燃焼室2内の右側の高温ガス吹込口13bからの高温ガスBの吹込流量の1.2~1.5倍に増加するように左側の高温ガス流量調整機構26aの開度を調整して、左側の相対的に大きな可燃性ガス等の上昇流に対して、十分にバランスのとれる流量の高温ガスを吹き込む。これにより、吹き込まれた高温ガスBと廃棄物Wの層からの可燃性ガスを含む燃焼ガスとのよどみ又は循環を燃焼室2内の幅方向の全域で均一に安定して形成でき、燃焼室2内の幅方向の全域で廃棄物Wの層の上に平面状燃焼領域(平面火炎)Eを定在させることが出来、燃焼室2内の幅方向の全域で廃棄物Wの層の安定した燃焼を行うことが出来る。
 このようにすることにより、廃棄物Wの状態が変動しても燃焼室2内で廃棄物Wの安定した燃焼を維持することができる。
<燃焼室2内の状態に応じた高温ガスBの吹込流速及び吹込み流量の調整>
 燃焼室2内の状態の変動に応じて高温ガスBの吹込み流速又は吹込み流量を調整することが好ましい。燃焼室2に供給する廃棄物Wの量や種類が変動することにより、廃棄物Wから発生する可燃性ガスを含む燃焼ガスの発生量や組成が変動するが、この変動に対応して、廃棄物Wの上に高温ガスBと燃焼ガスとがよどんでいる又は循環した平面状燃焼領域を変動なく定在させるように、高温ガスBの吹込み流速又は吹込み流量を調整することが好ましい。
 図1には、火格子5の温度又は燃焼室2内の温度を計測して燃焼室2内の状態又は火格子5上の廃棄物Wの状態を把握する状態把握ユニットCSと、把握した燃焼室2内の状態又は火格子5上の廃棄物Wの状態に応じて高温ガス吹込口13からの高温ガスBの吹込み流速又は吹込み流量を調整する調整ユニットと、が示されている。ここで調整ユニットは、高温ガスBの管路14に介在されている流量調整機構25が状態把握ユニットCSに接続されて動作を制御されることにより提供されている。
 燃焼室2内の状態を把握するには、火格子5の温度、燃焼室2内のガスの温度を計測してこれらの温度の変動を検知する。例えば、燃焼室2内での可燃性ガスの燃焼状態が変化すると、燃焼室2からの排ガス中のCO濃度、酸素濃度などが変動するため、ボイラ4から排出される排ガスのCO濃度、酸素濃度を計測し、その変化を検知することにより燃焼室2内の状態を把握し、その状態に対応して、高温ガスBの吹込み流速又は吹込み流量を調整するようにしてもよい。
 上記のように調節された高温ガスBの吹き込みにより、燃焼室2内の廃棄物Wの上に高温ガスBと燃焼ガスとの安定したよどみ又は循環を形成させることができ、そこに平面状燃焼領域を定在させることができ、低空気比での廃棄物Wの燃焼でも廃棄物Wの安定した燃焼が行われ、CO、NOx、ダイオキシン類等の有害物質の発生を抑制すると共に煤の生成を抑制することができる。このため、一次ガス吹込みユニットFABUにより火格子式廃棄物焼却炉1の全体に吹き込む燃焼用一次ガスAの量を減少させ、低空気比での廃棄物Wの十分な燃焼を問題なく行うことができる。
<二次燃焼用ガスCの吹き込み>
 二次燃焼用ガスCが二次燃焼室10に吹き込まれ、燃焼室2からの未燃の可燃性ガスが二次燃焼室10で二次燃焼される。二次燃焼用ガスCとして、温度は常温~200℃の範囲であり、酸素濃度は15体積%~21体積%の範囲のガスを用いることが好ましい。
 二次燃焼用ガスCとしては、例えばブロワの如きガス送出機構16により供給される燃焼用二次空気のみ、燃焼用二次空気に希釈剤を混合し酸素濃度を調整したガス、二次燃焼室10の下流の除塵装置を通過した後の排ガスの一部(循環排ガス)のみ、又は前記燃焼用二次空気と循環排ガスを混合したガス等を用いることができる。前記希釈剤としては、窒素、二酸化炭素などが考えられる。
 二次燃焼室10中での二次燃焼用ガス吹込口15は、二次燃焼室10内に旋回流が生じる方向に二次燃焼用ガスCを吹き込めるように1つ又は複数設置することが好ましい。二次燃焼用ガスCを二次燃焼室10内に旋回流が生じる方向に吹込むことにより、二次燃焼室10内のガスの温度分布及び酸素濃度分布を均一化でき、二次燃焼室10中での未燃の可燃性ガスの二次燃焼が安定して行われる。この結果として、二次燃焼室10中での局所的な高温領域の発生が抑制され、二次燃焼室10から排出される排ガス中のNOxの低減が可能となる。さらに、二次燃焼室10中での未燃の可燃性ガスと二次燃焼用ガスC中の酸素との混合が促進されるため二次燃焼室10中での可燃性ガスの燃焼安定性が向上し、二次燃焼室10中での可燃性ガスの完全燃焼が達成できるため、二次燃焼室10から排出される排ガス中のCOの低減も可能となる。
 二次燃焼室10内のガス温度が、800℃~1050℃の範囲となるように、二次燃焼用ガスCの流量を調整することが好ましい。二次燃焼室10内のガスの温度が800℃未満となると可燃性ガスの燃焼が不十分となり、二次燃焼室10から排出される排ガス中のCOが増加する。また、二次燃焼室10内のガス温度が1050℃を超えると二次燃焼室10内におけるクリンカの生成が助長され、さらに、二次燃焼室10から排出される排ガス中のNOxが増加する。
<低空気比での廃棄物Wの十分な燃焼を実現するための酸素量比配分>
 本実施形態の火格子式廃棄物焼却炉1において、低空気比での廃棄物Wの十分な燃焼を実現するために吹き込む種々のガスの酸素量の比配分について説明する。
 廃棄物Wの十分な燃焼に必要な単位時間当たりの理論酸素量に対する、火格子5の下から燃焼室2内に吹込まれる燃焼用一次ガスAにより供給される単位時間当りの酸素量の比Q1と、燃焼室2内の燃焼開始領域から主燃焼領域までの間の任意の部位に吹込まれる高温ガスBにより供給される単位時間当りの酸素量の比Q2と、二次燃焼室10に吹込まれる二次燃焼用ガスCにより供給される単位時間当りの酸素量の比Q3とが、下記式(1)及び(2)、より好ましくは下記式(3)及び(4)を満足するように、それぞれのガスが吹込まれることが好ましい。下記式(3)及び(4)を満足するように、それぞれのガスを火格子式廃棄物焼却炉1中に吹き込む比率を制御することにより、火格子式廃棄物焼却炉1の全体へ供給する空気量が空気比1.3以下となるより低い低空気比での廃棄物Wの十分な燃焼を実現できる。
 式(1)
 Q1:Q2:Q3=0.75~1.10:0.05~0.40:0.10~0.40
 式(2)
 1.0≦Q1+Q2+Q3≦1.5
 式(3)
 Q1:Q2:Q3=0.80~1.00:0.10~0.30:0.10~0.30
 式(4)
 1.1≦Q1+Q2+Q3≦1.3 
 ここで、火格子式廃棄物焼却炉1における廃棄物Wの十分な燃焼に必要な単位時間当りの理論酸素量は、燃焼室2内に投入される廃棄物Wの性状及び成分等から決定される廃棄物Wの単位質量当りの十分な燃焼に必要な酸素量(Nm3/kg)と、火格子式廃棄物焼却炉1における廃棄物Wの焼却処理速度(kg/hr)との積(Nm3/hr)により決定される。
 また、前記Q1は、火格子5の下から燃焼室2内に供給される燃焼用一次ガスAにより供給される単位時間当りの酸素量の比であり、燃焼室2内に供給される燃焼用一次ガスAの流量を増減させることにより調整する。また、Q2は、燃焼室2内の燃焼開始領域から主燃焼領域までの間の任意の部位に吹込まれる高温ガスBの流量を増減させることにより調整される。また、Q3は、二次燃焼室10に吹込まれる二次燃焼用ガスCの流量を増減させることにより調整される。
 なお、以下において、Q1+Q2+Q3をλと記載する。
 Q1,Q2,Q3を前記した式の範囲とすることにより、火格子式廃棄物焼却炉1において低酸素比で燃焼(1.0≦λ≦1.5)(すなわち、低空気比での燃焼に相当する)を行った場合においても、火格子式廃棄物焼却炉1から排出される排ガス中のCOやNOx等の有害ガスの発生量が低減でき、火格子式廃棄物焼却炉1から排出される排ガスの総量を従来の火格子式廃棄物焼却炉に比べ大幅に低減できる。
<より低い低空気比(空気比1.3以下)の燃焼を実現するための酸素量比配分>
 廃棄物Wの燃え残りや有害物質の発生を抑制して、廃棄物Wの安定した、より低い低空気比での十分な燃焼を達成させることができるより好ましいQ1、Q2、Q3の配分比としては、Q1:Q2:Q3=0.90:0.15:015、λ=1.20を基準とし、火格子式廃棄物焼却炉1内に投入される廃棄物Wの組成や性状等に基づきλが1.1~1.3の範囲でとなるようQ1、Q2、Q3を前記の範囲内で調整する。
 Q1、Q2、Q3、λの具体例を以下に記載する。
 Q1:Q2:Q3=0.90:0.05:0.25、λ=1.20 
Q1:Q2:Q3=0.90:0.10:0.20、λ=1.20 
Q1:Q2:Q3=0.90:0.20:0.10、λ=1.20 
Q1:Q2:Q3=0.90:0.25:0.05、λ=1.20 
Q1:Q2:Q3=1.00:0.05:0.15、λ=1.20 
Q1:Q2:Q3=1.00:0.10:0.10、λ=1.20 
Q1:Q2:Q3=1.00:0.15:0.05、λ=1.20 
Q1:Q2:Q3=0.85:0.10:0.25、λ=1.20 
Q1:Q2:Q3=0.85:0.20:0.15、λ=1.20 
Q1:Q2:Q3=0.80:0.15:0.25、λ=1.20 
Q1:Q2:Q3=0.80:0.20:0.20、λ=1.20 
Q1:Q2:Q3=0.75:0.20:0.20、λ=1.15 
Q1:Q2:Q3=0.80:0.15:0.20、λ=1.15 
Q1:Q2:Q3=0.80:0.10:0.20、λ=1.10 
Q1:Q2:Q3=0.80:0.15:0.15、λ=1.10 
Q1:Q2:Q3=0.85:0.20:0.25、λ=1.30 
Q1:Q2:Q3=0.90:0.15:0.25、λ=1.30 
Q1:Q2:Q3=1.00:0.10:0.20、λ=1.30 
 以下、Q1、Q2、Q3の調整基準について説明する。
[燃焼用一次ガスAの比率Q1の調整基準]
 通常の都市ごみ等の廃棄物Wを乾燥させ、十分に燃焼させるには、Q1は0.90を基準とし、灰分の少ない廃棄物Wや水分の少ない廃棄物W、例えばプラスチック等、を燃焼する際には、Q1を0.75~0.85程度に減らし、その代わりに高温ガスBの比率Q2を増加させる。
[高温ガスBの比率Q2の調整基準]
 通常の都市ごみ等の廃棄物Wを十分に燃焼させるには、Q2は0.15を基準とし、灰分や水分が少なく可燃分が大部分である廃棄物W、例えばプラスチック等、或いは、揮発分の多い廃棄物Wを燃焼させる場合には、Q2を0.20~0.25程度に増加させる。Q2が少ないと、前述の高温ガスBの吹込みの効果が十分に得られないため、火格子式廃棄物焼却炉1から排出される排ガス中のCOが増加する。なお、上記範囲を超えてQ2を増加させると、低空気比での廃棄物Wの十分な燃焼が達成できず、高温ガスBを調製するための燃料代などが嵩むと共に、燃焼室2内の温度が過大となり、燃焼室2の内壁にクリンカが生成したり、火格子式廃棄物焼却炉1から排出される排ガス中のNOxが増加するなどの問題が生じるので好ましくない。
[二次燃焼用ガスCの比率Q3の調整基準]
 まず、火格子式廃棄物焼却炉1での廃棄物Wの標準燃焼基準として、廃棄物Wの組成や性状等を考慮してQ1及びQ2を決定し、次いでQ3の標準値を設定する。Q3は、0.15を基準とし、0.10~0.40の範囲で調整する。
 Q3の値を調整することで二次燃焼室2内での未燃の可燃性ガスの燃焼状態を調整する。
 火格子式廃棄物焼却炉1での実際の廃棄物Wの燃焼では標準燃焼基準で廃棄物Wを燃焼していても、火格子式廃棄物焼却炉1内での廃棄物Wの燃焼状況が変化し、火格子式廃棄物焼却炉1から排出される排ガス中の有害物質の量が変動することがある。そこで、前述した如く決定したQ1及びQ2の値は維持したまま、火格子式廃棄物焼却炉1内の状況を監視する因子に基づいてQ3を増減するように調節する。このような燃焼制御方法をとることにより、火格子式廃棄物焼却炉1内での廃棄物Wの燃焼状況が変化しても、廃棄物Wの燃焼が安定して行われるように調整でき、最終的に火格子式廃棄物焼却炉1から排出される排ガス中の有害物質の量を制御しやすくなり、さらに、火格子式廃棄物焼却炉1における廃棄物Wの燃焼制御を簡単にすることができる。
 ここで、火格子式廃棄物焼却炉1内の状況を監視する因子としては、例えば、燃焼室2から排出される未燃の可燃性ガスの二次燃焼を行う二次燃焼室10の出口の近傍又は二次燃焼室10に連接されているボイラ4の出口における、二次燃焼室10から排出された排ガスの温度、この排ガス中の酸素濃度、CO濃度、NOx濃度のいずれか一つ又はそれ以上を選択することが好ましい。
 これらの因子を計測する為の計測ユニットの例は、下記の通りである。
 前記排ガスの温度:温度センサ(熱電対、放射温度計)
 前記排ガス中O2濃度:酸素濃度計
 前記排ガス中CO濃度:CO濃度計
 前記排ガス中NOx濃度:NOx濃度計
 以上説明したように、第1実施形態に従った火格子式廃棄物焼却炉1及びこの火格子式廃棄物焼却炉1を使用した廃棄物焼却方法によれば、火格子式廃棄物焼却炉1において従来よりも低空気比での廃棄物Wの燃焼を行った場合においても、廃棄物Wの燃焼の安定性が維持され、且つ、局所的な高温の発生が抑制され、火格子式廃棄物焼却炉1において発生されるCOやNOx等の有害ガスの量を低減出来る。さらに、第1実施形態に従った火格子式廃棄物焼却炉1及びこの火格子式廃棄物焼却炉1を使用した廃棄物焼却方法によれば、従来よりさらに低空気比で廃棄物Wの燃焼を行えるので、火格子式廃棄物焼却炉1から排出される排ガスの総量をさらに大幅に低減でき、また、排ガスからの廃熱の回収効率を向上することが可能である。
 特開2004-84981号公報(特許文献1)に開示されている従来の火格子式廃棄物焼却炉(比較例)と、本実施形態の火格子式廃棄物焼却炉(実施例)を用いて、焼却量120t/日規模で廃棄物を焼却する実験を行い、比較例と実施例の夫々から排出された排ガス中NOx濃度とCO濃度を比較した。
 その結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からは、実施例では比較例に対して、炉容積(燃焼室2の容積)を1/2程度にでき、空気比をより低くしても廃棄物の十分な燃焼をすることができ、更にはCOやNOx等の有害ガスの発生量を低減できることが分かる。
[第2実施形態]
 次に、この発明の第2実施形態に係る火格子式廃棄物焼却炉について説明する。
 第2実施形態に係る火格子式廃棄物焼却炉の概要は以下の通りである。
 第2実施形態に係る火格子式廃棄物焼却炉では、燃焼室における火格子から天井までの高さに対応した、燃焼室の天井から下向きに吹き込む高温ガスの吹込み流速の適切な範囲の上限と下限を明らかにし、好ましい範囲を定めた。
 廃棄物から発生する可燃ガスを含む燃焼ガスの上昇流に対向して、燃焼室の天井から下向きに高温ガスを吹き込むことにより、火格子上の廃棄物の上に可燃ガスを含む燃焼ガスと高温ガスとの適切なよどみ又は循環を形成して平面状燃焼領域を定在させるためには、吹込む高温ガスを廃棄物からの上昇流に適切に衝突させる必要がある。燃焼室の高さが高くなれば燃焼室内に下向きに吹き込まれる高温ガスの流速を速くする必要がある。ただし、流速を速くし過ぎてしまうと廃棄物に直接高温ガスが衝突してしまい、廃棄物を冷却しり、廃棄物を飛び散らかせてしまう。この結果、廃棄物の燃焼の不安定化、飛灰の増加等がおこり好ましくない。そこで、廃棄物に悪影響を与えない高温ガスの流速を求め高温ガスの流速の上限を定めるた。また、前述したよどみ又は循環を形成することができる限界の高温ガスの流速から高温ガスの流速の下限を定めた。このようにして燃焼室の高さに合わせて高温ガスの吹き込み流速の適切な範囲を定めた。
 廃棄物の燃焼の安定性への影響を示す指標として、火格子式廃棄物焼却炉から発生する有害物の量を調べることにより、燃焼室の高さに合わせた高温ガスの吹き込み流速の適切な範囲を定めた。詳しくは、ある高さを有する燃焼室を含む火格子式廃棄物焼却炉において高温ガスの吹き込み流速を様々に変えた場合に、この火格子式廃棄物焼却炉から排出される排ガス中のCO,NOxなど有害物の濃度を調べ、有害物の発生量を抑制することができる、つまり安定した燃焼が行える高温ガスの吹き込み流速の範囲を求めた。さらに、異なる高さを有した燃焼室の場合についても同様に検討し、燃焼室の高さに対する高温ガスの吹き込み流速の好ましい範囲を明らかにした。このような範囲は、燃焼室の高さに対する高温ガスの吹込み流速の関係を示す図7に示される上限と下限をもつ範囲である。
 高温ガスの吹込み流速の適切な範囲の上限と下限を示す線は、高温ガスの吹込み流速(Y)と燃焼室高さ(X)との下記の関係式で表わされる。
  上限 Y=-0.199X+8.73X+7.36
  下限 Y=-0.107X+4.70X+3.96
  Y:高温ガスの吹込み流速(m/sec)
  X:燃焼室高さ(m)
 高温ガスの吹込み流速を燃焼室の高さに対して、このような上限と下限を示す関係式により定められるような適切な範囲にすることにより、第2実施形態に係る火格子式廃棄物焼却炉そしてこのような火格子式廃棄物焼却炉を使用した廃棄物焼却方法では、燃焼室の高さに対して、燃焼室の天井の高温ガス吹込口から下向きに吹き込まれる高温ガスの適切な吹き込み条件が明確になり、広い範囲の高さを有する複数の燃焼室を含む複数の火格子式廃棄物焼却炉でも、高温ガスの吹き込み作用により、低空気比での燃焼下でも廃棄物の燃焼が安定する。
 以下、本発明の第2実施形態に係る火格子式廃棄物焼却炉及びこの火格子式廃棄物焼却炉を使用した廃棄物焼却方法について図6及び図7を参照しながら詳細に説明する。
 図6は、本発明の第2実施形態に係る火格子式廃棄物焼却炉の構成を概略的に示す縦断面図である。まず、本発明の第2実施形態に係る火格子式廃棄物焼却炉の基本構成とこの焼却炉における焼却方法の概要を説明し、次いでこの焼却炉における複数の構成の詳細を説明する。この実施形態において、燃焼室内での廃棄物の移動方向における燃焼室の上流側を前部、下流側を後部という。
 <第2実施形態に係る火格子式廃棄物焼却炉の基本構成>
 図6に示す火格子式廃棄物焼却炉100は、高温ガスBを燃焼室102の天井から下向きに吹き込むことにより低空気比での廃棄物Wの燃焼を安定して行うことが出来る。これによって、火格子式廃棄物焼却炉100の全体の設備をコンパクトにすることができ、設備費用、運転費用を大幅に低減できる。
 本実施形態に係る廃棄物焼却炉100は、燃焼室102と、この燃焼室102における廃棄物Wの流れ方向の上流側(図6の左側)の上方に配置され、廃棄物Wを燃焼室102内に投入するための廃棄物投入口103と、燃焼室102における廃棄物Wの流れ方向の下流側(図6の右側)の上方に連設されたボイラ104とを備える。
 燃焼室102の底部には、廃棄物Wを移動させながら燃焼させる為の火格子(ストーカ)105が設けられている。この火格子105は、廃棄物投入口103に近い方から、すなわち上流側から、乾燥火格子105a、乾燥火格子105a、主燃焼火格子105b、後燃焼火格子105cの順に設けられている。
 乾燥火格子105aでは主として廃棄物Wの乾燥と着火が行われる。燃焼火格子105bでは主として廃棄物Wの熱分解及び部分酸化が行われ、熱分解により発生した燃焼ガスに含まれる可燃性ガスと固形分の燃焼が行われる。後燃焼火格子105c上では、僅かに残った廃棄物W中の未燃分を完全に燃焼させる。完全に燃焼した後の燃焼灰は、灰落下口106より排出される。 
 燃焼室102内の乾燥火格子105a、燃焼火格子105b及び後燃焼火格子105cの下部には、それぞれ風箱107a,107b,燃焼火格子105b及び後燃焼火格子105cの下部には、それぞれ風箱107a,107c,107dが設けられている。ブロワ108により供給される燃焼用一次ガス(通常は空気)Aは、燃焼用一次ガス供給管109を通って上記各風箱107a,107b,107c,107dに供給され、各火格子105a,105b,105cを通って燃焼室102内に供給される。なお、火格子105の下から供給される燃焼用一次ガスAは、火格子105a,105b,105c上の廃棄物Wの乾燥及び燃焼に使われるほか、火格子105a,105b,105cを冷却し、廃棄物Wを攪拌する。
 燃焼室102の天井の下流側におけるガス出口にはボイラ104が連設され、ボイラ104の入口近傍が燃焼室102のガス出口から排出されるガス中の未燃の可燃性ガスを燃焼する二次燃焼室110となっている。二次燃焼室110内に二次燃焼用ガスCを吹き込み二次燃焼室110内で前記可燃性ガスを二次燃焼用ガスCとともに二次燃焼し、この二次燃焼の後の排ガスはボイラ104で熱を回収される。熱回収された後、ボイラ104から排出された排ガスは、図示しない排ガス処理装置で消石灰等による酸性ガスの中和と、活性炭によるダイオキシン類の吸着が行われ、さらに図示しない除塵装置に送られ、中和反応生成物、活性炭、ダストなどが回収される。上記除塵装置で除塵され、無害化された後の排ガスは、上記除塵装置から図示しない誘引ファンにより誘引され、煙突から大気中に放出される。
 このような基本構成である火格子式廃棄物焼却炉100においては、燃焼用一次ガスAを火格子105の下から燃焼室102内に吹き込む一次ガス吹込みユニットFABUと、高温ガスBを燃焼室102の天井から、燃焼室102の長さ方向(廃棄物移動方向)に沿った燃焼室102内の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹き込む高温ガス吹込みユニットHGBUと、二次燃焼用ガスCを二次燃焼室110に吹き込む二次燃焼用ガス吹込みユニットSABUとを具備している。高温ガス吹込みユニットHGBUは、複数の高温ガス吹込口113を燃焼室102の天井に備え、高温ガスBを廃棄物Wから発生する可燃性ガスを含む燃焼ガスの上昇流に対向して吹き込むことにより、廃棄物Wの上に高温ガスBと可燃性ガスを含む燃焼ガスとのよどみ又は循環を形成して平面状燃焼領域を定在させる。
 <一次ガス吹込みユニットFABU>
 一次ガス吹込みユニットFABUは、図示されていない燃焼用一次ガス供給源からの燃焼用一次ガス(通常は空気)Aを燃焼用一次ガス供給管109の本体部分を経て、乾燥火格子105a、燃焼火格子105b及び後燃焼火格子105cのそれぞれの風箱107a,107b,107c,107dに燃焼用一次ガス供給管109の分岐部分から送り込むようになっており、燃焼用一次ガス供給管109の本体部分には、例えばブロワの如きガス送出機構108そして流量調節機構111が設けられている。
 <高温ガス吹込みユニットHGBU>
 高温ガス吹込みユニットHGBUは、燃焼室102の外に設けられた高温ガス供給源112と、燃焼室102へ高温ガスBを吹き込む複数の高温ガス吹込口113と、高温ガスBを高温ガス供給源112から複数の高温ガス吹込口113へ導く管路114と、流量調整機構115とを有している。
 複数の高温ガス吹込口113は、燃焼室102の天井において、乾燥火格子105a上の廃棄物Wの移動方向における下流側(後部)から燃焼火格子105b上の全域までの範囲内の上方の任意の位置に設けられている。図6では、火格子105上の廃棄物Wの移動方向、すなわち燃焼室102の長さ方向で、乾燥火格子105a上の下流側の上方と燃焼火格子105b上の上流側と下流側の上方の3つの位置に設けられている。
 複数の高温ガス吹込口113は、前記3つの位置の夫々において燃焼室102の幅方向(図6にて紙面に対して直角な方向)にも相互に離間した複数の位置に設けられている。したがって、複数の高温ガス吹込口113は、燃焼室102の長さ方向と幅方向の複数位置に配置されている。また、燃焼室102の天井から高温ガスBが下方に吹き込まれるように、複数の高温ガス吹込口113の向きが定められている。かくして、高温ガスBは、乾燥火格子105a上の下流側と燃焼火格子105b上の全域に形成される燃焼開始領域及び主燃焼領域に向かって吹き込まれる。
 <二次燃焼用ガス吹込みユニットSABU>
 本実施形態の火格子式廃棄物焼却炉101は、二次燃焼用ガスCをボイラ104の入口近傍に相当する二次燃焼室110に吹き込む二次燃焼用ガス吹込みユニットSABUを備えている。二次燃焼用ガス吹込みユニットSABUは、図示されいない二次燃焼用ガス供給源からの二次燃焼用ガスCを二次燃焼用ガス供給管119を経て、二次燃焼室110に設けられた二次燃焼用ガス吹込口116に送り込むようになっており、管路19には、例えばブロワの如きガス送出機構117そして流量調整機構118が設けられている。二次燃焼用ガス吹込口116は、ボイラ4の入口近傍にある二次燃焼室110に二次燃焼用ガスCを吹き込むように、二次燃焼室110の周壁に設けられている。
 なお、一次ガス吹込みユニットFABU、高温ガス吹き込みユニットHGBUそして二次燃焼用ガス吹込みユニットSABUの構成は図示したものに限定されず、火格子式廃棄物焼却炉100の規模、形状、そこで燃焼される廃棄物Wの種類等により適宜選択され得る。
 <燃焼室102中の諸領域>
 このような本実施形態の火格子式廃棄物焼却炉100では、乾燥火格子105a上で廃棄物投入口103の下方に対応した上流側には乾燥領域が形成され、乾燥火格子105a上の上流側には燃焼開始領域が形成される。すなわち、乾燥火格子105a上の廃棄物Wは、上流側の乾燥領域で乾燥され、下流側の燃焼開始領域で着火して燃焼が開始される。
 乾燥火格子105a上から燃焼火格子105b上の全域に移動された廃棄物Wはここで熱分解そして部分酸化が行われ、廃棄物Wから発生した燃焼ガスに含まれている可燃性ガスと廃棄物W中の固形分が燃焼される。廃棄物Wはこの燃焼火格子105b上の全域で実質的に殆んど燃焼される。こうして、燃焼火格子105b上の全域に主燃焼領域が形成される。燃焼火格子105b上に僅かに残った廃棄物W中の固定炭素など未燃分は後燃焼火格子105c上に移動され、ここで完全に燃焼される。この後燃焼火格子105c上は後燃焼領域となる。
 燃焼室102内で廃棄物Wから発生した燃焼ガスに含まれる可燃性ガスはそのほとんどが燃焼室102内で燃焼され、残存する未燃ガスは、後燃焼火格子105cの上方に連接されている二次燃焼室110に流入して、ここに前述した如く供給されている二次燃焼用ガスCとともに二次燃焼される。
 燃焼室102中の火格子105上で廃棄物Wが焼却される場合、まず廃棄物Wからの水分の蒸発が起こり、次いで廃棄物Wの熱分解と部分酸化反応が起こり、廃棄物Wから可燃性ガスを含む燃焼ガスが生成し始める。ここで燃焼開始領域とは、廃棄物Wの燃焼が始まり、廃棄物Wの熱分解、部分酸化により廃棄物Wから可燃性ガスを含む燃焼ガスが生成し始める領域である。また、主燃焼領域とは、廃棄物Wの熱分解、部分酸化と燃焼が行われ、廃棄物Wから可燃性ガスを含む燃焼ガスが発生し、廃棄物W及び可燃性ガスが火炎を伴って燃焼している領域であり、火炎を伴う廃棄物Wの燃焼が完了する点(燃え切り点)までの領域である。燃え切り点より後の領域は、廃棄物W中の固形未燃分(チャー)が燃焼するチャー燃焼領域(後燃焼領域)である。この火格子式廃棄物焼却炉100では燃焼開始領域は乾燥火格子105a上の前述した下流側の上方であり、主燃焼領域は燃焼火格子105b上の全域の上方に位置する。
 次に、このように構成される本実施形態の火格子式廃棄物焼却炉100の作用について順次説明する。
 <燃焼室102中における廃棄物Wの焼却状況の概要>
 廃棄物投入口103へ廃棄物Wを投入すると、廃棄物Wは乾燥火格子105a上に堆積され、次に図示しない廃棄物移動機構により、乾燥火格子105a上から燃焼火格子105b上そして後燃焼火格子105c上へと順次移動される。各火格子105a、105b、105cは、風箱107a,107b,107c,107dを経て下方から燃焼用一次ガスAを受けており、これにより各火格子105a、105b、105c上の廃棄物Wは乾燥そして燃焼される。
 乾燥火格子105a上では主として廃棄物Wの乾燥と着火が行われる。すなわち、乾燥火格子105a上の上流側で廃棄物Wの乾燥がそして下流側で着火(燃焼開始)が行われる。燃焼火格子105b上では主として廃棄物Wの熱分解及び部分酸化が行われ、廃棄物Wから生じた燃焼ガスに含まれている可燃性ガスと廃棄物W中の固形分の燃焼が行われる。燃焼火格子105b上において廃棄物Wの燃焼は実質的に完了する。後燃焼火格子105c上では、僅かに残った廃棄物W中の固定炭素など未燃分が完全燃焼される。完全燃焼した後の燃焼灰は、灰落下口106より燃焼室102の外部に排出される。このように廃棄物Wが燃焼している状態で、各火格子105a,105b,105cの上には、乾燥領域及び燃焼開始領域、主燃焼領域そして後燃焼領域がそれぞれ形成される。
 既述のごとく、燃焼室102の天井のガス出口に、ボイラ104が連設されていて、ボイラ104の入口近傍が二次燃焼室110となっている。燃焼室102内で廃棄物Wから発生した未燃の可燃性ガスは、二次燃焼室110に導かれ、そこで二次燃焼用ガスCと混合及び攪拌された後に二次燃焼される。二次燃焼により発生された排ガス中の熱はボイラ104で回収される。ボイラ104から排出された排ガスは、消石灰等による酸性ガスの中和と、活性炭によるダイオキシン類の吸着が行われ、さらに除塵装置(図示せず)により中和反応生成物、活性炭、ダストなどが回収される。前記除塵装置で除塵され、無害化された後の排ガスは、前記除塵装置から誘引ファン(図示せず)により誘引され、煙突から大気中に放出される。なお、前記除塵装置としては、例えば、バグフィルタ方式、電気集塵方式等の公知の除塵装置を用いることができる。
 次に、燃焼室102中への燃焼用一次ガスA、高温ガスB、二次燃焼用ガスCの吹込みについて詳細に説明する。
 <燃焼室102中への燃焼用一次ガスAの吹込み>
 燃焼用一次ガスAは、例えばブロワの如きガス送出機構108から燃焼用一次ガス供給管109を通って乾燥火格子105a、燃焼火格子105b及び後燃焼火格子105cのそれぞれの下方に設けられた風箱107a,107b,107c,107dに供給された後、各火格子105a,105b,105cを通って燃焼室102内に供給される。燃焼室102内に供給される燃焼用一次ガスAの全流量は、燃焼用一次ガス供給管109の本体部分に設けられたている流量調節機構111により調整され、さらに、各風箱107a,107b,107c,107dに供給される燃焼用一次ガスAの流量は、燃焼用一次ガス供給管109の本体部分から各風箱107a,107b,107c,107dに分岐した分岐部分が備える流量調節機構(図示省略)により調節される。なお一次ガス吹込ユニットFABUの構成は図6中に示したものに限定されず、火格子式廃棄物焼却炉100の規模、形状、火格子式廃棄物焼却炉100で焼却される廃棄物Wの種類等により適宜選択され得る。
 燃焼用一次ガスAとしては、温度が常温~200℃の範囲であり、酸素濃度が15体積%~21体積%の範囲のガスを用いることが好ましい。燃焼用一次ガスAとして、空気、酸素を含有するガス及び二次燃焼室110から導き出された排ガスの一部(循環排ガス)のいずれかを用いてもよいし、これらの混合ガスを用いてもよい。
 <燃焼室102中への高温ガスBの吹込みによる廃棄物Wの燃焼の安定化>
 図6に見られるように、高温ガスBは、燃焼室102の天井から、燃焼室102内の火格子105上の燃焼開始領域から主燃焼領域までの間の任意の部位の廃棄物Wに向かって下向きに吹き込まれる。これは、火炎が存在し廃棄物Wから生じる可燃性ガスが多く存在するこれ等の領域に、高温ガスBを吹き込むことが廃棄物Wの燃焼を安定させる上で好ましいためである。
 高温ガスBを、燃焼室102の天井から燃焼室102内の火格子105上の燃焼開始領域から主燃焼領域までの任意の部位の廃棄物Wの上に向かって下向きに吹き込むことにより、高温ガスBは廃棄物Wの熱分解及び部分酸化により生じた可燃性ガスを含む燃焼ガスとの上昇流と対向し、上昇流を抑制し、これらの領域中の廃棄物Wの上に高温ガスBと燃焼ガスとの平面状の流れの遅いよどみまたは上下方向の循環生じさせる。これらの領域では高温ガスBと燃焼ガスの流れの速度が遅いため、燃焼ガスに含まれる可燃性ガスが燃焼する火炎が定在することになる。すなわちこれらの領域内の廃棄物Wの上に平面状燃焼領域(平面火炎)が定在し、可燃性ガスが安定して燃焼される。その結果、低空気比での廃棄物Wの燃焼においてもCO,NOx、ダイオキシン類等の有害物質の発生を抑制できると共に煤の生成も抑制することができる。このため、低空気比での廃棄物Wの燃焼を問題なく行うことができる。
 また、高温ガスBの熱輻射と顕熱によって前述した領域内の廃棄物Wが加熱され、廃棄物Wの熱分解及び部分酸化が促進されることに加えて、廃棄物Wの上に平面状燃焼領域(平面火炎)が定在するので、この平面状燃焼領域からの熱輻射と顕熱によっても廃棄物Wが加熱され、廃棄物Wの熱分解及び部分酸化がさらに促進される。
 <燃焼室102中への高温ガスBの吹込み流速>
 高温ガス吹込口113から燃焼室102中へ吹き込まれる高温ガスBは、燃焼室102における火格子105から天井までの高さに合わせた適切な範囲の吹込み流速で、燃焼室102内の燃焼開始領域から主燃焼領域までの間の任意の部位に吹き込まれることが好ましい。燃焼室102の高さに合わせた高温ガスBの吹込み流速の適切な範囲は、次の関係式で示すことが出来る。 
  -0.107X+4.70X+3.96 ≦ Y ≦ -0.199X+8.73X+7.36…(1)
  Y:高温ガスBの吹込み流速(m/sec)
  X:燃焼室102の高さ(m)
 燃焼室102の天井の高温ガス吹込口113から下向きに吹き込む高温ガスBの流速を、上記式(1)を使用して燃焼室102の高さに合わせて設定することにより、吹き込んだ高温ガスBを、廃棄物Wの熱分解及び部分酸化によって生じる可燃性ガスを含む燃焼ガスの上昇流に適切に衝突させ、前記領域中の廃棄物Wの上に高温ガスBと燃焼ガスとの平面状の流れの遅いよどみまたは上下方向の循環を形成し、廃棄物W上に平面状燃焼領域を定在させることができる。平面状燃焼領域では可燃性ガスを安定して燃焼させることが出来、燃焼室102の高さにかかわらず低空気比での廃棄物Wの燃焼促進効果や燃焼安定化効果が確実に得られる。
 さらに、高温ガスBの吹込み流速を、空塔速度(燃焼室102内のガスの流量をガスが流れる方向に対して直交する燃焼室102の断面積で除した流速)の5倍~20倍として燃焼室102中に吹き込むことが好ましい。この場合には、燃焼室102内のガスの流れによる影響を受けずに、前記よどみまたは前記循環(即ち平面状燃焼領域)を燃焼開始領域及び主燃焼領域中の廃棄物Wの上に安定して形成することができる。
 高温ガスBの吹込み速度は、例えば、高温ガス供給源112から高温ガスBを送り出す例えばブロワの如き高温ガス送出機構の調整や管路114に設けた流量調整機構115の開度を調整し高温ガスBの吹込み流量を調整することなどにより調整出来る。
 高温ガス吹込口113が複数ある場合,高温ガスBはそれぞれの高温ガス吹込口113から必ずしも等流速で吹き込まれる必要はない。焼却室102の規模、形状、或いは廃棄物Wの種類、量、火格子105上に堆積される廃棄物Wの層の厚さ等により、複数の高温ガス吹込口113からの高温ガスBの吹込み流速は相互に異なるように適宜変更され得る。
 燃焼室102で廃棄物Wから発生する可燃性ガスを含む燃焼ガスの発生量の変動に対応して、廃棄物Wの上に平面状燃焼領域を変動なく定在させることが出来るように、高温ガスBの吹込み流量を調整することが好ましい。平面状燃焼領域の燃焼状態が変動すると、可燃性ガスの燃焼状態が変化し火格子式廃棄物焼却炉100から排出される排ガス中のCO濃度、NOx濃度、酸素濃度などが変動するため、ボイラ104から排出される排ガスのCO濃度、NOx濃度、酸素濃度を計測し、これ等の変化に対応して、高温ガスBの吹込み流量を調整するようにしてもよい。
 <高温ガスBの調製>
 高温ガス吹込口113から燃焼室102中に吹き込まれる高温ガスBの温度は、100℃~400℃の範囲とすることが好ましく、200℃程度とすることがより好ましい。100℃未満のガスを高温ガスBとして燃焼室102中に吹き込むと燃焼室102中の温度が低下し、廃棄物Wの燃焼が不安定となりCO発生量が増加する。400℃を超えるガスを高温ガスBとして燃焼室102中に吹き込むと燃焼室102内における火炎温度が著しく高温になり、クリンカの生成が助長されるなど問題が生じる。
 また、高温ガスBの含有する酸素濃度は5体積%~30体積%程度、望ましくは5体積%~15体積%とすることが好ましい。これにより、燃焼室102のガス出口から排出されるガスのNOx及びCOの量の減少がより促進される。
 前述したようなガス温度及び酸素濃度となるような高温ガスBとしては、二次燃焼室110から下流側で抜き出した排ガスの一部(循環排ガス)、この排ガスの一部(循環排ガス)と空気との混合ガス、酸素を含有するガス、空気及び酸素富化空気のうちいずれかを用いることが好適である。排ガスの一部(循環排ガス)としては、二次燃焼室110から排出された排ガスを除塵、中和処理した後の排ガスの一部を用いることが好ましい。前述した排ガスの一部(循環排ガス)、この排ガスの一部(循環排ガス)と空気との混合ガス、酸素を含有するガス、空気及び酸素富化空気のうちいずれかを必要に応じて、ボイラ104で発生させた蒸気により加熱して、温度と酸素濃度が前述した所定の条件を満たすような高温ガスBとして燃焼室102内に吹き込むことが出来る。
 高温ガスBを調製する際の前述した排ガスの一部(循環排ガス)と空気との混合割合や、前述した排ガスの一部(循環排ガス)又は前述した排ガスの一部(循環排ガス)と空気との混合ガス等の加熱条件などを調整して、高温ガスBの温度と酸素濃度を所望の範囲とすることが出来る。
 <燃焼室102中への高温ガスBの吹込み領域>
 図6において、複数の高温ガス吹込口113は、燃焼室102内において、火格子105上の燃焼開始領域から主燃焼領域の上方でこれらの領域に対向するよう、燃焼室102の天井に設置されている。これらの領域において、廃棄物Wの熱分解反応は200℃程度で起こり、400℃程度となった段階でほぼ完了する。高温ガスBを、廃棄物Wが可燃性ガスを含む燃焼ガスを生成しているこれ等の領域の上に、燃焼室102の天井から下向きに吹き込むことにより、燃焼室102内のこれ等の領域内の廃棄物Wの上付近に高温ガスBと燃焼ガスとのよどみ又は循環を形成させ、平面状燃焼領域を定在させることにより、これらの領域内の廃棄物Wは安定した燃焼を行うことが出来る。
 図6に示す火格子式廃棄物燃焼炉100では、乾燥火格子105a上の下流側及び燃焼火格子105b上の全域の上方が燃焼開始領域から主燃焼領域に相当するので、燃焼室102の天井においてこれらの領域の上方に複数の高温ガス吹込口13を設けてこれらの領域に向かい下向きに高温ガスBを吹き込んでいる。廃棄物Wの組成、状態によっては、もっと高い温度で熱分解反応が完了する廃棄物Wがあり、この場合は、燃焼室102の天井において、図6に示す位置より下流側(図の右側)にも高温ガス吹込口113を設けることが好ましい。
 <高温ガス吹込口113>
 複数の高温ガス吹込口113は、燃焼室102の天井において、乾燥火格子105a上の廃棄物Wの移動方向の下流側(後部)から燃焼火格子105b上の全域までの範囲内での上方の任意の位置に設けられている。燃焼室102の天井における前記範囲内に対応する領域において、複数の高温ガス吹込口113は、燃焼室102の幅方向に夫々が延出している複数の列と長さ方向に夫々が延出している複数の列にそって配置されている。高温ガス吹込口113は、ノズル型でもスリット型でもよい。
 燃焼室102の天井における複数の高温ガス吹込口113の配置位置、配置数、配置間隔、複数の高温ガス吹込口113の夫々の吹込み方向、吹込口の形状(燃焼室102中に吹き込まれた高温ガスBの広がり形状に関係する)、高温ガスBの吹込み流速、吹込み流量などは、火格子式廃棄物焼却炉100の燃焼室102における廃棄物Wの処理量、燃焼室102の容積及び形状、廃棄物Wの性状などに合わせ、平面状燃焼領域を安定させるように設定又は調整される。
 燃焼室102内の廃棄物Wの上で燃焼室102の幅方向と長さ方向の広い範囲に亘って平面状燃焼領域が形成されるように、廃棄物Wからの可燃性ガスを含む燃焼ガスの上昇流と対向させる高温ガスBの流れを制御するように、燃焼室102の天井における複数の高温ガス吹込口113の配置位置、配置数、配置間隔、複数の高温ガス吹込口113の夫々における吹込み方向、吹込口の形状、高温ガスBの吹込み流速及び吹込み流量のうち少なくとも一つを、設定又は調整する。
 図6においては、燃焼室102の天井に複数の高温ガス吹込口113が設けられていて、ここから火格子105上の廃棄物Wに向かって下向きに高温ガスBが吹き込んでまれている。夫々の高温ガス吹込口113からの高温ガスBの吹込み方向は、廃棄物Wに対する垂線から20°までの角度範囲で吹き込まれることが望ましい。これは、吹き込んだ高温ガスBと、廃棄物Wの熱分解及び部分酸化によって生じる可燃性ガスを含む燃焼ガスの上昇流とを衝突させて対向を生じさせ前記上昇流を抑制するためであり、高温ガスBの吹込み方向が廃棄物Wに対する垂線から20°より大きい角度範囲になると、吹き込まれた高温ガスBによる前記上昇流に対する適切な対向が形成されず前記抑制が行われなくなるためである。 
 <二次燃焼室110への二次燃焼用ガスCの吹込み>
 二次燃焼用ガスCが二次燃焼室110に吹き込まれ、燃焼室102からの未燃の可燃性ガスとともに二次燃焼される。二次燃焼用ガスCとして、温度は常温~200℃の範囲であり酸素濃度は15体積%~21体積%の範囲のガスを用いることが好ましい。二次燃焼用ガスCとして、空気、酸素を含有するガス、二次燃焼室110から排出された排ガスの一部(循環排ガス)を用いてよいし、これらの混合ガスを用いてもよい。
 二次燃焼室110における二次燃焼用ガスCの二次燃焼用ガス吹込口116は、二次燃焼室110内に二次燃焼用ガスCの旋回流が生じる方向に二次燃焼用ガスCを吹き込めるように1つ又は複数設置されることが好ましい。二次燃焼用ガスCを二次燃焼室110内に二次燃焼用ガスCの旋回流が生じる方向に吹き込むことにより、二次燃焼室110内のガス温度の分布及び酸素濃度の分布を均一化、平均化でき、未燃の可燃性ガスの二次燃焼が安定して行われ、局所的な高温の発生を抑制し、二次燃焼室110からの排ガス中のNOxの低減が可能となる。さらに、未燃の可燃性ガスと二次燃焼用ガスC含まれている酸素との混合が促進されるため未燃の可燃性ガスの燃焼の安定性が向上し、未燃の可燃性ガスの実質的な完全燃焼が達成できるため、二次燃焼室110からの排ガス中のCOの低減も可能となる。
 二次燃焼用ガスCとしては、例えばブロワの如きガス送出機構117により二次燃焼用ガス供給管119を介して二次燃焼室110へと供給される二次燃焼用空気のみ、二次燃焼用空気に希釈剤を混合し酸素濃度を調整したガス、二次燃焼室110から排出され除塵装置を通過した後の排ガスから一部を抜き出した排ガスの一部(循環排ガス)のみ、又は上記二次燃焼用空気と前記排ガスの一部(循環排ガス)を混合した混合ガス等を用いることができる。
 前記希釈剤としては、窒素、二酸化炭素などが考えられる。
 二次燃焼室110内のガスの温度が、800℃~1050℃の範囲となるように、二次燃焼用ガスCの流量を調整することが好ましい。二次燃焼室110内のガスの温度が800℃未満となると未燃の可燃性ガスの燃焼が不十分となり、二次燃焼室110から排出される排ガス中のCOが増加する。また、二次燃焼室110内のガスの温度が1050℃を超えると二次燃焼室110内におけるクリンカの生成が助長されるとともに前記排ガス中のNOxが増加する。
 以上説明したように、本発明に係る第2実施形態に係る火格子式廃棄物焼却炉100及びこの火格子式廃棄物燃焼炉100を使用した廃棄物焼却方法によれば、高温ガスBの吹き込みにより、燃焼室102内の火格子廃棄物Wの105上の廃棄物Wの上付近に廃棄物Wから発生した可燃性ガスを含む燃焼ガスと高温ガスBとの安定なよどみ又は循環を形成させることができ、火格子105上の廃棄物Wの上方に平面状燃焼領域を定在させることが出来る。従って、火格子式廃棄物焼却炉100の大きさにかかわらず、空気比が1.5以下の低空気比での廃棄物Wの燃焼を行った場合においても、燃焼室102内の幅方向と長さ方向の全域に亘って廃棄物Wの燃焼の安定性が維持され、この燃焼によるCOやNOx等の有害ガスの発生量が低減できる。さらに、第2実施形態に係る火格子式廃棄物焼却炉100及びこの火格子式廃棄物燃焼炉100を使用した廃棄物焼却方法によれば、従来の火格子式廃棄物燃焼炉よりさらに低空気比で廃棄物Wの燃焼を行えるのでこの火格子式廃棄物焼却炉100から排出される排ガスの総量を従来の火格子式廃棄物燃焼炉よりも大幅に低減でき、また、廃熱の回収効率を向上できる。
 また、第2実施形態に係る火格子式廃棄物焼却炉100及びこの火格子式廃棄物燃焼炉100を使用した廃棄物焼却方法によれば、燃焼室102中の火格子105上の廃棄物Wの上に定在する平面状燃焼領域の平面火炎からの輻射などにより廃棄物Wの熱分解を促進させることができるため、火格子105に供給する廃棄物Wの量(火格子負荷)および燃焼室102内の廃棄物Wから生じさせることが出来る熱量(火炉負荷)を大きくすることができる。このため廃棄物焼却量に対して燃焼室102の容積を小さくすることができ、火格子式廃棄物焼却炉100の高を低くすることができ、火格子式廃棄物焼却炉100をコンパクトにすることにより火格子式廃棄物焼却炉100の設備費用及び運転費用を低減することができる。
 第2実施形態に係る火格子式廃棄物焼却炉100も、図6中に示されている如く、火格子105の温度又は燃焼室102内の温度を計測して燃焼室102内の状態又は火格子105上の廃棄物Wの状態を把握する状態把握ユニットCSと、把握した燃焼室102内の状態又は火格子105上の廃棄物Wの状態に応じて高温ガス吹き込み口113からの高温ガスBの吹き込み流速又は吹き込み流量を調整する調整ユニットと、を備えている。ここで調整ユニットは、高温ガスBの管路114に介在されている流量調整機構115が状態把握ユニットCSに接続されて動作を制御されることにより提供されている。
[第3実施形態]
 次に、この発明の第3実施形態に係る火格子式廃棄物焼却炉及びこの火格子式廃棄物焼却炉を使用した廃棄物焼却方法について説明する。
 第3実施形態に係る火格子式廃棄物焼却炉及びこの火格子式廃棄物焼却炉を使用した廃棄物焼却方法の概要は以下の通りである。
 第3実施形態に係る火格子式廃棄物焼却炉の一例は:火格子を備え該火格子上の廃棄物を燃焼する燃焼室と;燃焼用一次ガスを前記火格子の下から前記燃焼室内に吹き込む一次ガス吹込みユニットと;そして、高温ガスを前記燃焼室の天井から下向きに吹き込む高温ガス吹込みユニットと、を具備している。そして、第3実施形態に係る火格子式廃棄物焼却炉の一例では、前記高温ガス吹込みユニットが、火格子上の廃棄物の移動方向である炉長方向に前段と後段の二段の高温ガス吹込口を備え、前段の高温ガス吹込口が、高温ガスを前記炉長方向にて燃焼開始領域から主燃焼領域の前部までの領域に向かって吹き込む位置に配設され、後段の高温ガス吹込口が、高温ガスを前記炉長方向にて主燃焼領域の後部から後燃焼領域の前部までの領域に向かって吹き込む位置に配設されており、燃焼室内のガスを排出する煙道を、燃焼室の天井の前段の高温ガス吹込口と後段の高温ガス吹込口との中間に備えていることを特徴としている。
 第3実施形態に係る火格子式廃棄物焼却炉のもう一例は:火格子を備え該火格子上の廃棄物を燃焼する燃焼室と;燃焼用一次ガスを前記火格子の下から前記燃焼室内に吹き込む一次ガス吹込みユニットと;そして、高温ガスを前記燃焼室の天井から下向きに吹き込む高温ガス吹込みユニットと、を具備している。そして、第3実施形態に係る火格子式廃棄物焼却炉のもう一例では、前記高温ガス吹込みユニットが、火格子上の廃棄物の移動方向である炉長方向に前段と後段の二段の高温ガス吹込口を備え、前段の高温ガス吹込口が乾燥段火格子の後部から燃焼段火格子の前部までの前記天井に設けられ、後段の高温ガス吹込口が燃焼段火格子の後部から後燃焼段火格子の前部までの前記天井に設けられており、燃焼室内のガスを排出する煙道を、燃焼室の天井の前段の高温ガス吹込口と後段の高温ガス吹込口との中間に備えていることを特徴としている。
 煙道は、該煙道の入口近傍で、燃焼開始領域から主燃焼領域の前部までの領域で発生した還元ガスを含むガスと主燃焼領域の後部から後燃焼領域の前部までの領域で発生した酸化ガスを含むガスとを混合し燃焼させる位置に設けられていることができる。
 また、煙道は、二次燃焼用ガス吹込口を備えてもよい。さらには、燃焼室内の煙道入口の直下に、燃焼開始領域から主燃焼領域の前部までの区域で発生した還元ガスを含むガスと主燃焼領域の後部から後燃焼領域の前部までの区域で発生した酸化ガスを含むガスとを、煙道入口に誘導するガス誘導体を備えてもよい。
 高温ガス吹込みユニットは、前記高温ガス吹込みユニットにより吹き込まれる高温ガスと一次ガス吹込みユニットにより吹き込まれる燃焼用一次ガスとを合わせた実際に炉内に供給する空気の量を、廃棄物の燃焼に必要な理論空気量で除して得られる空気比に関して、燃焼開始領域から主燃焼領域の前部までの区域の局所的な空気比を0.6~0.8とするように前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御する前段高温ガス吹込制御ユニットと、主燃焼領域の後部から後燃焼領域の前部までの区域の局所的な空気比を1.3~1.6とするように後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御する後段高温ガス吹込制御ユニットとを備えることが好ましい。
 高温ガス吹込みユニットは、一次ガス吹込みユニットにより吹き込まれる燃焼用一次ガスと高温ガス吹込みユニットにより吹き込まれる高温ガスとを合わせて得られる各領域の酸素濃度に関して、燃焼開始領域から主燃焼領域の前部までの区域の酸素濃度を0~2vol%dryとするように前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御する前段高温ガス吹込制御ユニットと、主燃焼領域の後部から後燃焼領域の前部までの区域の酸素濃度を5~8vol%dryとするように後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御する後段高温ガス吹込制御ユニットとを備えることが好ましい。
 高温ガス吹込みユニットは、燃焼開始領域から主燃焼領域の前部までの区域での酸素濃度を計測するユニットと、主燃焼領域の後部から後燃焼領域の前部までの区域での酸素濃度を計測するユニットとを具備し、計測した酸素濃度計測値に基づき、前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つと後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つとを制御することができる。
 燃焼室は、火格子から天井までの高さが3m以下であることができる。
 <第3実施形態に係る火格子式廃棄物焼却炉を使用した廃棄物焼却方法>
 第3実施形態に係る、燃焼室を備える火格子式廃棄物焼却炉を使用した廃棄物焼却方法の一例は:燃焼用一次ガスを火格子下から前記燃焼室内に吹き込む工程;高温ガスを、前記燃焼室の天井に火格子上の廃棄物の移動方向である炉長方向で前段と後段の二段に設けた高温ガス吹込口のうち、前段の高温ガス吹込口から、燃焼開始領域から主燃焼領域の前部までの区域に向かって吹き込み、後段の高温ガス吹込口から、主燃焼領域の後部から後燃焼領域の前部までの区域に向かって吹き込む工程;そして、燃焼室の天井の前段の高温ガス吹込口と後段の高温ガス吹込口との中間に位置する煙道の入口近傍で、燃焼開始領域から主燃焼領域の前部までの区域で発生した還元ガスを含むガスと、主燃焼領域の後部から後燃焼領域の前部までの区域で発生した酸化ガスを含むガスとを混合し燃焼させる工程、を具備することを特徴としている。
 第3実施形態に係る、燃焼室を備える火格子式廃棄物焼却炉を使用した廃棄物焼却方法のもう一例は:燃焼用一次ガスを火格子下から前記燃焼室内に吹き込む工程;高温ガスを、前記燃焼室の天井に火格子上の廃棄物の移動方向である炉長方向で前段と後段の二段に設けた高温ガス吹込口のうち、乾燥段火格子の後部から燃焼段火格子の前部までの前記天井に配設した前段の高温ガス吹込口から下向きに吹き込み、燃焼段火格子の後部から後燃焼段火格子の前部までの前記天井に配設した後段の高温ガス吹込口から下向きに吹き込む工程;そして、燃焼室天井の前段の高温ガス吹込口と後段の高温ガス吹込口との中間に位置する煙道の入口近傍で、燃焼開始領域から主燃焼領域の前部までの区域で発生した還元ガスを含むガスと、主燃焼領域の後部から後燃焼領域の前部までの区域で発生した酸化ガスを含むガスとを混合し燃焼させる工程、を具備することを特徴としている。
 燃焼用一次ガスと高温ガス吹込口から吹き込まれる高温ガスとを合わせた実際に炉内に供給する空気量を廃棄物の燃焼に必要な理論空気量で除して得られる空気比に関して、燃焼開始領域から主燃焼領域の前部までの区域の局所空気比を0.6~0.8とするように前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御し、主燃焼領域の後部から後燃焼領域の前部までの領域の局所空気比を1.3~1.6とするように後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御することが好ましい。
 燃焼用一次ガスと高温ガス吹込み口から吹き込む高温ガスとを合わせて得られる各領域の酸素濃度に関して、燃焼開始領域から主燃焼領域の前部までの区域の酸素濃度を0vol%dry~2vol%dryとするように前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御し、主燃焼領域の後部から後燃焼領域の前部までの区域の酸素濃度を5vol%dry~8vol%dryとするように後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御することが好ましい。
 燃焼開始領域から主燃焼領域の前部までの区域の酸素濃度を計測した酸素濃度計測値に基づき、前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御し、主燃焼領域の後部から後燃焼領域の前部までの区域の酸素濃度を計測した酸素濃度計測値に基づき、後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御することができる。
 本発明のこの実施形態の例では、以上のように、燃焼室の天井から高温ガスを吹き込むこととし、その吹込みを前段と後段の二段に別けて吹き込むこととしたので、それぞれにより、次のような効果を得る。
 (1).高温ガス吹込みによる燃焼安定化効果:
 火格子式廃棄物焼却炉の燃焼室の天井に設けた吹込口から高温ガスを下向きに吹き込み、高温ガスの顕熱と輻射により廃棄物の熱分解を促進することができ、廃棄物の熱分解により発生した可燃性ガスの燃焼を促進することができる。さらに、高温ガスの下向きの流れと、廃棄物から発生する可燃性ガスを含む燃焼ガスの上向きの流れとを衝突させ、廃棄物の上でガス流れが緩やかなよどみ又は上下方向の循環を燃焼室内の幅方向と長さ方向の広い範囲に亘って形成することができる。この結果、可燃性ガスの流れが緩やかになり、可燃性ガスが燃焼用一次ガスや高温ガスによって供給される酸化成分と十分に混合されるため燃焼室内の広い範囲に亘って可燃性ガスの安定した燃焼が行われ、燃焼室内の広い範囲に亘って廃棄物の上に平面状燃焼領域(火炎)を定在させることができる。また、定在する平面状火炎の輻射などにより廃棄物の熱分解をさらに促進することができる。このように高温ガス吹き込みにより、焼却炉の大きさに関わらず、空気比が1.5以下の低空気比での廃棄物の燃焼においても廃棄物と、発生する可燃性ガスを安定して燃焼させることができる。そして、廃棄物の燃焼が安定するため、火格子式廃棄物焼却炉から排出される排ガス中のCO,NOxなど有害物の発生量を抑制できる。
 (2).高温ガスの二段吹込みによるNOx発生量抑制効果:
 燃焼室の天井から燃焼室内に吹き込まれる高温ガスが、前段と後段の二つの高温ガス吹込口に別け個々に制御されて吹き込まれるので、燃焼空間を燃焼用一次ガスと相俟って、燃焼室内の前段の区域で低酸素雰囲気そして後段の区域で酸素過剰雰囲気とすることができる。その結果、低酸素雰囲気の前段の区域で廃棄物を熱分解及び部分酸化させて、ガス分として可燃性ガスと還元ガスとを得、そして酸素過剰雰囲気の後段の区域で廃棄物が燃焼することで酸化ガスが得られる。さらに、本発明のこの実施形態の例では、前段そして後段の両高温ガス吹込口の間に位置するように煙道(煙道の入口)を設けたので、この煙道には、前段側から、低酸素濃度のもとで得られた、還元ガスを含むガスが誘引され、後段側からは、酸素過剰雰囲気のもとで得られた酸化ガスが誘引されることになる。そして、煙道内で前記還元ガスと酸素ガスが混合されるので、酸化ガス中のNOxが還元ガスと反応して分解され、かくして、NOxの量を抑制することができる。
 以上、上記(1).及び(2).で述べたように、高温ガス吹込みにより、例えば、空気比が1.5以下の低空気比でも、廃棄物と、廃棄物から発生する可燃性ガスを安定して燃焼させることができ、火格子式廃棄物焼却炉から排出される排ガス中のCOの発生量を抑制できる。さらに、高温ガスの前段そして後段での二段吹込みにより、燃焼室内のガスを煙道に誘引し、燃焼室内で発生させた還元ガスによりNOxを分解して、火格子式廃棄物焼却炉から排出される排ガス中のNOxの発生量を抑制できる。また、廃棄物の熱分解及び燃焼を促進できるため、廃棄物焼却処理量に対して燃焼室の内容積を小さくできる。その結果、火格子式廃棄物焼却炉の高さを低くでき、火格子式廃棄物焼却炉をコンパクトに出来ることにより火格子式廃棄物焼却炉の設備費用と運転費用を低減できる。 
 以下、本発明の第3実施形態に係る火格子式廃棄物焼却炉及びこの火格子式廃棄物焼却炉を使用した廃棄物焼却方法について図8及び図9を参照しながら説明する。
 図8は本発明の第3実施形態に係る火格子式廃棄物焼却炉を概略的に示す縦断面図である。まず、第3実施形態に係る火格子式廃棄物焼却炉の基本構成とこの火格子式廃棄物焼却炉を使用した廃棄物焼却方法の概要を説明し、次いで各構成の詳細を説明する。この実施形態において、燃焼室内での廃棄物の移動方向における燃焼室の上流側を前部、下流側を後部という。
 <火格子式廃棄物焼却炉の基本構成>
 図8に示す火格子式廃棄物焼却炉201は、廃棄物Wを燃焼する燃焼室202における火格子205から天井までの高さが1~3mであり、廃棄物焼却量100ton/日程度の規模の従来の火格子式廃棄物焼却炉の燃焼室の高さが5~6m程度であることに比べて、燃焼室202の高さが1/2以下である。また、この火格子式廃棄物焼却炉201の一例の燃焼室202の容積は90mであり、従来の火格子式廃棄物焼却炉の燃焼室の容積が190mであるのに比べて1/2程度以下である。このように、燃焼室2の高さが3m以下であることと、後述する高温ガスを天井から下向きに吹き込むことにより低空気比での廃棄物Wの燃焼を安定して行うことことが出来るので、火格子式廃棄物焼却炉201をコンパクトにすることができ、火格子式廃棄物焼却炉201の設備費用及び運転費用を大幅に低減できる。
 本実施形態に係る火格子式廃棄物焼却炉201は、燃焼室202と、この燃焼室202中の廃棄物Wの移動方向の上流側(図8の左側)の上方に配置され、廃棄物Wを燃焼室202内に投入するための廃棄物投入口203と、燃焼室202中の廃棄物Wの移動方向の中間部の上方に連設されるボイラ204と、を備える。
 燃焼室202の底部には、廃棄物投入口203から投入された廃棄物Wを移動させながら燃焼させる火格子(ストーカ)205が設けられている。この火格子205は、廃棄物投入口203に近い方から、すなわち、上流側から乾燥火格子205a、燃焼火格子205b、後燃焼火格子205cの順に設けられている。
 乾燥火格子205a上では主として廃棄物Wの乾燥と着火が行われる。燃焼火格子205b上では主として廃棄物Wの熱分解及び部分酸化が行われ、熱分解により発生した可燃性ガスと固形分の燃焼が行われる。後燃焼火格子205c上では、僅かに残った廃棄物W中の未燃分が完全に燃焼される。後燃焼火格子205c上で完全に燃焼した後の燃焼灰ASは、後燃焼火格子205cの下流の下方に位置する灰落下口206より燃焼室202中から外部に排出される。 
 このような本実施形態の火格子式廃棄物焼却炉201では、乾燥火格子205aと燃焼火格子205bの上に廃棄物Wの層が形成され、その燃焼により、燃焼室202内の空間には、廃棄物Wの層の上に、下記のような諸領域が形成される。
 乾燥火格子205a上で廃棄物投入口203の下方に対応した廃棄物Wの移動方向における上流側(前部)には投入された廃棄物Wの為の乾燥領域が形成される。
 廃棄物Wの移動方向における乾燥火格子205a上の下流側(後部)から燃焼火格子205b上の上流側(前部)までの区域の上方には燃焼開始領域が形成される。すなわち、乾燥火格子205a上の廃棄物Wは、前記上流側で乾燥され、前記下流側で着火されて、燃焼火格子205b上の上流側(前部)までの区域で燃焼が開始される。
 燃焼火格子205b上の廃棄物Wはここで熱分解そして部分酸化され、可燃性ガスを発生させ、その可燃性ガスと廃棄物Wの固形分が燃焼する。廃棄物Wはこの燃焼火格子205b上で実質的に殆んど燃焼される。こうして、燃焼火格子205b上に主燃焼領域が形成される。
 しかる後、後燃焼火格子205c上に僅かに残った廃棄物W中の固定炭素など未燃分が後燃焼火格子205c上で完全に燃焼される。この後燃焼火格子205c上に後燃焼領域が形成される。
 廃棄物Wが焼却される場合、まず水分の蒸発が起こり、次いで熱分解と部分酸化反応が起こり、可燃性ガスを含む燃焼ガスが生成し始める。ここで燃焼開始領域とは、廃棄物Wの燃焼が始まり、廃棄物Wの熱分解及び部分酸化により可燃性ガスを含む燃焼ガスが生成し始める領域である。また、主燃焼領域とは、廃棄物Wの熱分解及び部分酸化が行われ可燃性ガスを含む燃焼ガスが発生し、その可燃性ガスが火炎を伴って燃焼しているとともに廃棄物Wの固形分が燃焼する燃焼領域であり、火炎を伴う廃棄物Wの固形分及び可燃性ガスの燃焼が完了する(燃え切り点)までの領域である。燃え切り点より後では、廃棄物W中の固形未燃分(チャー)が燃焼するチャー燃焼領域(後燃焼領域)となる。
 燃焼室202内の乾燥火格子205a、燃焼火格子205b及び後燃焼火格子205cの下方には、それぞれ風箱207a,207b,207c,207dが設けられている。例えばブロワの如きガス送出機構208により供給される燃焼用一次ガスAは、燃焼用一次ガス供給管209を通って前記各風箱207a,207b,207c,207dに供給され、各火格子205a,205b,205cを通って燃焼室202内に供給される。なお、火格子205の下方から供給される燃焼用一次ガスAは、火格子205a,205b,205c上の廃棄物Wの乾燥及び燃焼に使われるほか、火格子205a,205b,205cの冷却及び廃棄物Wの攪拌を行う。
 <煙道212>
 燃焼室202の天井には、火格子205上の廃棄物Wの移動方向における前段と後段の二段の後述する高温ガス吹込口の中間位置に煙道212が接続されていて、煙道212の下流側に設けられた誘引ファン(図示せず)により燃焼室202内の排ガスが煙道212内に誘引される。煙道212の入口近傍が燃焼室202から排出される排ガス中の未燃の可燃性ガスを燃焼する二次燃焼室225となっている。二次燃焼室225内には二次燃焼用ガスCが吹き込まれ未燃の可燃性ガスが二次燃焼され、この二次燃焼の後の排ガスは煙道212に連接されている廃熱ボイラ204で熱回収される。熱回収された後の排ガスは、図示しない排ガス処理装置で消石灰等による酸性ガスの中和と、活性炭によるダイオキシン類の吸着が行われ、さらに図示しない除塵装置で中和反応生成物、活性炭、ダストなどが回収される。前記除塵装置で除塵され、無害化された後の排ガスGは、図示しない誘引ファンにより誘引され、煙突から大気中に放出される。
 このような基本構成である火格子式廃棄物焼却炉201は、燃焼用一次ガスを火格子205の下から燃焼室202内に吹き込む一次ガス吹込みユニットFABUと、燃焼室202の天井において燃焼室202内における廃棄物Wの移動方向に沿った2つの部位に配置された高温ガス吹込口213,215を備え、高温ガスBを燃焼室202の天井の2つの部位の高温ガス吹込口213,215から下向きに吹き込む高温ガス吹込みユニットHGBUとを具備している。
 <一次ガス吹込みユニットFABU>
 本実施形態の一次ガス吹込みユニットFABUは、図示されていない一次ガス供給源からの一次ガスAを燃焼用一次ガス供給管209の本体部分を経て、乾燥火格子205a、燃焼火格子205b及び後燃焼火格子205cのそれぞれの風箱207a,207b,207c,207dに燃焼用一次ガス供給管209の分岐部分から送り込むようになっており、燃焼用一次ガス供給管209には、例えばブロワの如きガス送出機構208そして例えばダンパの如き流量調整機構210が設けられている。
 <高温ガス吹込みユニットHGBU>
 本実施形態の高温ガス吹込みユニットHGBUは、燃焼室202内における廃棄物Wの移動方向に沿った上流側の高温ガス吹込口213から高温ガスBを火格子205上の燃焼開始領域から主燃焼領域の前部までの区域に向かって吹き込み、前記移動方向に沿った下流側の高温ガス吹込口215から高温ガスBを火格子205上の主燃焼領域の後部から後燃焼領域の前部までの区域に向かって吹き込む。
 高温ガス吹込みユニットHGBUは、燃焼室202の外に設けられている高温ガス供給源217と、燃焼室202の上流側へ高温ガスBを吹き込む上流側の高温ガス吹込口213、下流側の高温ガス吹込口215、高温ガスBを高温ガス供給源212から高温ガス吹込口213,215へ導く管路と、を有していて、これらの管路に例えばダンパの如き流量調整機構214及び216が設けられている。
 上流側の高温ガス吹込口213は、燃焼室202の天井において、乾燥火格子205a上の廃棄物Wの移動方向における下流側(後部)から燃焼火格子205b上の前記移動方向における上流側(前部)までの区域内の上方に設けられている。
 下流側の高温ガス吹込口215は、燃焼室202の天井において、燃焼火格子205b上の廃棄物Wの移動方向における下流側(後部)から後燃焼火格子205c上の前記移動方向における上流側(前部)までの区域内の上方に設けられている。
 高温ガス吹込みユニットHGBUは、高温ガスBが燃焼室202の天井から燃焼室202内の下方に向かい吹き込まれるように、高温ガス吹込口213,215の向きが定められている。かくして、上流側の高温ガス吹込口213から高温ガスBが火格子205上の燃焼開始領域から主燃焼領域の前部までの区域に向かって吹き込まれ、下流側の高温ガス吹込口215から高温ガスBが火格子205上の主燃焼領域の後部から後燃焼領域の前部までの区域に向かって吹き込まれる。
 燃焼室202の天井の上流側及び下流側の夫々において、高温ガス吹込口213,215は、燃焼室202の幅方向(図8にて紙面に対して直角な方向)の複数箇所にも設けられている。また、燃焼室202の天井の上流側及び下流側の夫々において、高温ガス吹込口213,215は、前記上流側及び前記下流側のそれぞれの前記移動方向に沿った複数の位置に配置されてもよい。
  <二次燃焼用ガス供給吹込みユニットSABU>
 本実施形態の火格子式廃棄物焼却炉201は、二次燃焼用ガスCを煙道212の入口近傍の二次燃焼室225に吹き込む二次燃焼用ガス吹込みユニットSABUを備えている。二次燃焼用ガス吹込みユニットSABUは、図示されていない二次燃焼用ガス供給源からの二次燃焼用ガスCを二次燃焼用ガス供給管228を経て、二次燃焼室225に設けられている二次燃焼用ガス吹込口226に送り込む二次燃焼用ガス供給管228には、例えばブロワの如きガス送出機構227そして例えばダンパの如き流量調整機構229が設けられている。二次燃焼用ガス吹込口226は、煙道212の入口近傍にある二次燃焼室225に二次燃焼用ガスCを吹き込むように、煙道212の入口近傍の周壁に設けられている。燃焼室202内の廃棄物Wから発生した可燃性ガスはそのほとんどが燃焼室202内で燃焼されるが、未燃の可燃性ガスは、煙道212の入口近傍にある二次燃焼室225に流入して、ここに前述した如く供給された二次燃焼用ガスCにより二次燃焼される。
 なお、本実施形態において、一次ガス吹込みユニットFABU、高温ガス吹込みユニットHGBU、そして二次燃焼用ガス吹込みユニットSABUの構成は図示したものに限定されず、火格子式廃棄物焼却炉201の規模、形状、燃焼させる廃棄物Wの種類等により適宜選択され得る。
 次に、このように構成される本実施形態の火格子式廃棄物焼却炉201での廃棄物Wの焼却状況の概要、そして燃焼室202中への燃焼用一次ガスA、高温ガスB、二次燃焼用ガスCの吹込みによる作用について順次説明する。
 <廃棄物Wの焼却状況の概要>
 廃棄物投入口203へ廃棄物Wを投入すると、落下した廃棄物Wは乾燥火格子205a上に堆積され、堆積された廃棄物Wは次に図示されていない廃棄物移動機構の動作により、乾燥火格子205a上から燃焼火格子205bへ、そして燃焼火格子205b上から後燃焼火格子205c上へと移動される。各火格子205a、205b、205cは、風箱207a,207b,207c,207dから燃焼用一次ガスAが吹き付けられており、これにより各火格子205a、205b、205c上の廃棄物Wは乾燥そして燃焼される。
 乾燥火格子205a上では主として廃棄物Wの乾燥と着火が行われる。すなわち、乾燥火格子205a上の廃棄物Wは、その上流側で乾燥され、その下流側で燃焼室202内の熱で着火され、その後に燃焼火格子205bの上流側(前部)に到達するまでの間に燃焼が開始される。燃焼火格子205b上では主として廃棄物Wの熱分解及び部分酸化が行われ、燃焼している廃棄物Wから生じた可燃性ガスと廃棄物W中の固形分の燃焼が行われる。燃焼火格子205b上において廃棄物Wの燃焼は実質的に完了する。後燃焼火格子205c上では、僅かに残った廃棄物W中の固定炭素など未燃分が完全燃焼される。廃棄物Wが完全燃焼した後に残った灰は、灰落下口206より火格子式廃棄物焼却炉201の外部へ排出される。このように廃棄物Wが乾燥から燃焼を完了するまでの間に、図8に見られるように、各火格子205a,205b,205c上には、乾燥領域R1及び燃焼開始領域R2、主燃焼領域R3、そして後燃焼領域R4がそれぞれ形成される。
 既述のごとく、燃焼室202の天井において、火格子205上の廃棄物Wの移動方向における中央部には、煙道212が連設されていて、煙道212の入口近傍が二次燃焼室225となっている。したがって、燃焼室202内で廃棄物Wから発生した可燃性ガスの未燃分は、煙道212の入口近傍の二次燃焼室225に導かれ、そこで二次燃焼用ガスCと混合及び攪拌された後に二次燃焼される。二次燃焼の後の排ガス中の熱は廃熱ボイラ204で回収される。熱回収された後の排ガスは、消石灰等による酸性ガスの中和と、活性炭によるダイオキシン類の吸着が行われ、さらに除塵装置(図示せず)で中和反応生成物、活性炭、ダストなどが回収される。前記除塵装置で除塵され無害化された後の排ガスは、誘引ファン(図示せず)により誘引され、煙突から大気中に放出される。なお、前記除塵装置として、例えば、バグフィルタ方式、電気集塵方式等の除塵装置を用いることができる。
 <燃焼室202中への燃焼用一次ガスAの吹込み>
 燃焼用一次ガスAは、例えばブロワの如きガス送出機構208から燃焼用一次ガス供給管209を通って乾燥火格子205a、燃焼火格子205b及び後燃焼火格子205cのそれぞれの下方に設けられている風箱207a,207b,207c,207dに供給された後、各火格子205a,205b,205cを通って燃焼室202内に供給される。燃焼室202内に供給される燃焼用一次ガスAの全流量は、燃焼用一次ガス供給管209に設けられた流量調節機構210により調整され、さらに、各風箱207a,207b,207c,207dに供給される燃焼用一次ガスAの流量は、各風箱207a,207b,207c,207dに設けられているそれぞれの流量調節機構(図示省略)により調節される。また、風箱207a,207b,207c,207d及び燃焼用一次ガス供給管209等の構成は図示したものに限定されず、火格子式廃棄物焼却炉201の規模、形状、燃焼される廃棄物Wの種類等により適宜選択され得る。
 燃焼用一次ガスAとしては、温度が常温~200℃の範囲であり、酸素濃度が15体積%~21体積%の範囲のガスを用いることが好ましい。燃焼用一次ガスAとして、空気、酸素を含有するガス及び二次燃焼室225から排出された排ガスの一部(循環排ガス)のいずれかを用いてもよいし、これらの混合ガスを用いてもよい。
 <燃焼室202中への高温ガスBの吹込みによる廃棄物Wの燃焼の安定化>
 図8中に見られるように、燃焼室202の天井の上流側の高温ガス吹込口213から、高温ガスBが、燃焼室202中で火格子205上の燃焼開始領域R2から主燃焼領域R3の前部までの区域に向かって下向きに吹き込まれ、下流側の高温ガス吹込口215からは、燃焼室202中で火格子205上の主燃焼領域R3の後部から後燃焼領域R4の前部までの区域に向かって下向きに吹き込まれる。この間に高温ガスBは、廃棄物Wからの火炎が存在し廃棄物Wから発生する可燃性ガスが多く存在する燃焼開始領域R2から主燃焼領域R3までの区域に集中して吹き込まれることが好ましい。
 燃焼室202の天井の上流側の高温ガス吹込口213そして下流側の高温ガス吹込口215から高温ガスBを、燃焼室202内の燃焼開始領域R2から後燃焼領域R4の前部までの区域の廃棄物Wに向かって下向きに吹き込むことにより、下向きに吹き込まれた高温ガスBは、廃棄物Wの熱分解及び部分酸化により生じた可燃性ガスを含む燃焼ガスの上昇流と対向してこの上昇流を抑制し、前記区域の廃棄物W上に高温ガスBと燃焼ガスとの平面状の流れの遅いよどみまたは上下方向の循環が生じる。これらのよどみ又は循環中ではガスの流れの速度が遅いため、可燃性ガスが燃焼する火炎が定在する。すなわち、前記区域の廃棄物Wの上に可燃性ガスが安定して燃焼される平面状燃焼領域(平面火炎)が定在する。その結果、低空気比での廃棄物Wの燃焼においてもCO,NOx、ダイオキシン類等の有害物質の発生を抑制出来ると共に煤の生成を抑制できる。このため、低空気比での廃棄物Wの燃焼を問題なく行うことができる。
 また、高温ガスBの熱輻射と顕熱によって廃棄物Wが加熱され、廃棄物Wの熱分解及び部分酸化が促進されることに加えて、廃棄物Wの上に平面状燃焼領域(平面火炎)が定在するので、この平面火炎からの熱輻射と顕熱によっても廃棄物Wが加熱され、廃棄物Wの熱分解及び部分酸化がさらに促進される。
 <燃焼室202中の上流側と下流側への高温ガスBの吹込みによるNOx発生量抑制>
 従来の火格子式廃棄物焼却炉では、廃棄物に含まれる窒素分や空気中の窒素が高温下で反応してNOxが発生する。火格子式廃棄物焼却炉から排出される排ガスを煙突から大気中に排出する際には、NOx濃度を法律で規制されている値以下にしなければならないため、火格子式廃棄物焼却炉の排ガス出口に連設された排ガス処理装置でNOxを除去している。しかしながら火格子式廃棄物焼却炉内で発生するNOx量を抑制することが前記法律の規制に対する根本的な対策であり、これが要望されている。
 本実施形態の火格子式廃棄物焼却炉201では、高温ガスBを燃焼室202の天井の上流側と下流側の高温ガス吹込口213,215から燃焼室202中に吹き込むとともに、前記天井において上流側と下流側の高温ガス吹込口213,215の中間位置に煙道225を設けた。そして、上流側の高温ガス吹込口213から高温ガスBを吹き込むことにより燃焼室202中の上流側に低酸素雰囲気を形成して還元ガスが生成されるようにし、この還元ガスを含むガスを煙道225に導き、煙道225の入口近傍で還元ガスによりNOxを分解するようにしたので、本実施形態の火格子式廃棄物焼却炉201では、NOx発生量を抑制することができる。
 以下に、本実施形態の火格子式廃棄物焼却炉201におけるNOx発生量の抑制についてより詳細に説明する。
 図9は、図8に示されている火格子式廃棄物焼却炉201の燃焼室202内の廃棄物Wの燃焼状態を説明するための、燃焼室202の長さ方向(火格子205上における廃棄物Wの移動方向)の概略的な縦断面図である。
 図9に示されているように、先ず、上流側の高温ガス吹込口213から燃焼室202内に高温ガスBを吹き込み、その下方の火格子205上の廃棄物Wから生じた可燃性ガスを含む燃焼ガスの上昇流れを抑制して高温ガスBと燃焼ガスとのよどみ又は循環Fを形成する。この間に、高温ガス供給量を調整し、高温ガスBと燃焼用一次ガスAとを合わせた酸素の供給量を調整して、燃焼開始領域R2(図8参照)から主燃焼領域R3(図8参照)の前部までの区域を、低酸素雰囲気、好ましくは局所的な空気比が0.6~0.8(酸素濃度2Vol%dry以下)、とする。
 低酸素雰囲気での廃棄物Wの熱分解及び部分酸化により、可燃性ガスと還元ガスRG(CO,HCN,NHn,CmHn)を含む燃焼ガスが生ずる(CO,CmHnは可燃性である)。発生した可燃性ガスは前述したように前記よどみ又は循環により廃棄物W上に形成された平面状燃焼領域で、均一にかつ安定して燃焼される。低酸素雰囲気を形成するとき、空気比が0.6より小さいと、還元ガスの発生が過剰になり、余剰のNHnから前記区域の後流側でNOxが生成されたり、可燃性ガスの発生が過剰になり未燃の可燃性ガスの発生が過剰となるので不適である。空気比が0.8よりも大きいと低酸素雰囲気とならず、還元ガスの発生量が少なく不適である。したがって前記区域における局所的な空気比は0.6~0.8が好ましい。
 次に、下流側の高温ガス吹込口215から高温ガスBを吹き込み、その下方の火格子205上の廃棄物Wから生じた可燃性ガスを含む燃焼ガスの上昇流れを抑制して高温ガスBと燃焼ガスとのよどみ又は循環Fを形成する。この間に、高温ガス供給量を調整し、高温ガスBと燃焼用一次ガスAとを合わせた酸素の供給量を調整して、主燃焼領域R3(図8参照)の後部から後燃焼領域R4(図8参照)の前部までの区域を、酸素過剰雰囲気、好ましくは局所的な空気比が1.3~1.6(酸素濃度:5vol%dry~8vol%dry)、とする。
 酸素過剰雰囲気で廃棄物Wが燃焼すると酸化ガスOG(O,NOx,CO)を含む燃焼ガスが発生する。酸素過剰雰囲気を形成するとき、空気比が、1.3よりも小さいと廃棄物W中の固体の燃焼が十分に行われずに未燃となり不適となる。空気比が1.6よりも大きいとNOx発生量が多くなり不適となる。したがって前記区域における局所的な空気比は1.3~1.6が好ましい。
 高温ガス供給源217から高温ガス吹込口213、215への高温ガスBの供給量の調整は、高温ガス供給源217から高温ガス吹込口213、215までの管路に介在された例えばブロワの如きガス送出機構及び例えばダンパの如き流量調節機構214,216におけるガス送出量及び開度の調整などにより可能である。
 図8の実施形態の火格子式廃棄物焼却炉201では、高温ガス吹込みユニットHGBUは、高温ガス供給源217から高温ガス吹込口213,215へ供給する高温ガスBの供給量を、高温ガス供給源217から高温ガス吹込口213、215までの管路に介在された前述したガス送出機構及び流量調節機構214,216におけるガス送出量及び開度の調整などにより調整して、燃焼開始領域R2から主燃焼領域R3の前部までの区域及び主燃焼領域R3の後部から後燃焼領域R4の前部までの区域における空気比を所定の範囲に制御している。しかしながら、上流側と下流側の高温ガス吹込口213,215の為に二つの高温ガス供給源を設け、それぞれの高温ガス供給源において高温ガスの酸素濃度を対応する上流側又は下流側の高温ガス吹込口213,215に為に調整して、前記各区域における空気比を前述した所定の範囲に制御するようにしてもよい。
 燃焼室202内の燃焼開始領域R2から主燃焼領域R3の前部までの区域及び主燃焼領域R3の後部から後燃焼領域R4の前部までの区域の酸素濃度を計測する酸素濃度計を設け、計測した酸素濃度に基づき、前記各区域の酸素濃度(空気比)を前述した所定の範囲内にするように上流側又は下流側の高温ガス吹込口213,215への高温ガスBの供給量又は酸素濃度を制御するようにしてもよい。
 煙道212の下流に設けられた誘引ファンの作用により、燃焼室202内のガスは煙道212へ導かれている。したがって、燃焼開始領域R2から主燃焼領域R3の前部の区域で発生した還元ガスRG(図9参照)を含むガスが上流側から煙道212内に誘引され、主燃焼領域R3の後部から後燃焼領域R4の前部までの区域で発生した酸化ガスOG(図9参照)を含むガス(NOxを含むガス)が下流側から煙道212内に誘引される。上記前記還元ガスRG(図9参照)を含むガスと前記酸化ガスOG(図9参照)を含むガスが煙道212内に誘引されると、これ等のガスは煙道212の入口近傍で衝突し混合される。そして、酸化ガスOG(図9参照)中のNOxが還元ガスRG(図9参照)と反応してNOxが分解され、NOx量が低減される。また、NOxとの反応に寄与する還元ガスRG(図9参照)のうちHCN,NHnの余剰分は、酸化ガスOG(図9参照)の酸素と反応して分解されたりNが生成されたりして、そのままでは煙道212から排出されないので問題が生じない。
 煙道212の入口近傍に相当する二次燃焼室225には、還元ガスRG(図9参照)を含むガスと酸化ガスOG(図9参照)を含むガスとのガス流れに対向するように二次燃焼用ガスCが二次燃焼用ガス吹込口226から吹き込まれ、二次燃焼室225で可燃性ガスの未燃分が二次燃焼用ガスCにより二次燃焼される。
 燃焼室202内において煙道212の入口の直下に、燃焼室202内のガスを煙道212の入口に誘導するガス誘導体230が設けられている。ガス誘導体230は、燃焼開始領域R2から主燃焼領域R3の前部までの区域で発生した還元ガスRG(図9参照)を含むガスと、主燃焼領域R3の後部から後燃焼領域R4の前部までの区域で発生した酸化ガスOG(図9参照)を含むガスとを、煙道212の下流に設けられた誘引ファンの誘引作用と相俟って、煙道212の入口に円滑に誘導することができる。ガス誘導体230は耐火材料で構成されていて、必要に応じて冷却構造が設けられてもよい。ガス誘導体230の代わりに中間天井を設け燃焼室202内のガスを煙道212の入口へと誘導するようにしてもよい。
 また、煙道212に煙道212の流路断面積を狭くする絞り部を設けることが好ましい。絞り部では、燃焼室202からの還元ガスRG(図9参照)を含むガスと酸化ガスOG(図9参照)を含むガスとが十分に混合され、還元ガスRG(図9参照)によるNOxの分解反応を十分行うことができる。絞り部において燃焼室202からのガスの流れに対向して二次燃焼ガスCを吹き込み、燃焼室202からのガスの攪拌及び燃焼室202からのガスと二次燃焼ガスCとの混合を促進し、燃焼室202からのガスに含まれている可燃性ガスの未燃分を二次燃焼させる。
 次に、高温ガスBの調製、高温ガス吹込口213,215、燃焼室202中への高温ガス吹込口213,215の夫々からの高温ガスBの吹込み流速及び吹込量、さらには、二次燃焼室225中への二次燃焼用ガスCの吹込み、そして低空気比での廃棄物Bの良好な燃焼を実施するための酸素量の比配分について、順次説明する。
 <高温ガスBの調製>
 高温ガス吹込口213,215から燃焼室202中に吹き込まれる高温ガスBの温度は、100℃~400℃の範囲とすることが好ましく、200℃程度とすることがより好ましい。高温ガスBとして100℃未満の温度のガスを燃焼室202中に吹き込むと燃焼室202中の温度が低下し、廃棄物Wの燃焼が不安定となりCO発生量が増加する。400℃を超える高温ガスBを燃焼室202中に吹き込むと燃焼室202内における火炎温度が著しく高温になり、クリンカの生成が助長されるなど問題が生じる。
 また、高温ガスBの含有する酸素濃度は5体積%~30体積%程度、望ましくは5体積%~15体積%とすることが好ましい。これにより、燃焼室202からの排ガス中のNOxとCOの低減がより促進される。
 前述した好ましいガス温度及び酸素濃度となるような高温ガスBとしては、二次燃焼室225から下流側で抜き出した排ガスの一部(循環排ガス)、循環排ガスと空気の混合ガス、空気及び酸素富化空気のうちいずれかを用いることが好適である。循環排ガスとしては、火格子式廃棄物焼却炉201から排出された排ガスを中和処理した後に、例えばバグフィルタなどの除塵装置から排出された排ガスの一部を用いることが好ましい。循環排ガス、循環排ガスと空気の混合ガス、空気及び酸素富化空気のうちいずれかを必要に応じて廃熱ボイラ204で発生させた蒸気により加熱して、温度と酸素濃度が前述した所定の条件を満たすような高温ガスBとして燃焼室202内に吹き込むことが出来る。
 このように、高温ガスBを調製する際の循環排ガスと空気の混合割合や、循環排ガス又は循環排ガスと空気の混合ガス等の加熱条件などを調整して、燃焼室202中に吹き込む高温ガスBの温度及び酸素濃度を前記所望の範囲とする。
 <高温ガス吹込口213,215>
 上流側の高温ガス吹込口213は、燃焼室202の天井において、乾燥火格子205a上の廃棄物Wの移動方向における下流側(後部)から燃焼火格子205b上の前記移動方向における上流側(前部)までの区域に対応して設けられている。
 下流側の高温ガス吹込口215は、燃焼室202の天井において、燃焼火格子205b上の廃棄物Wの前記移動方向における下流側(後部)から後燃焼火格子205cの前記移動方向における上流側(前部)までの区域に対応して設けられている。
 燃焼室202の天井には、複数の上流側の高温ガス吹込口213と複数の下流側の高温ガス吹込口215が、それぞれ燃焼室202の幅方向に沿い配置される。さらに、複数の上流側の高温ガス吹込口213と複数の下流側の高温ガス吹込口215は、燃焼室202の天井の上流側と下流側とにおいて燃焼室202の長さ方向(火格子205上の廃棄物Wの移動方向)に沿った、それぞれの所定の範囲内で複数配置されてもよい。高温ガス吹込口213,215は、ノズル型でもスリット型でもよい。
 燃焼室202内において廃棄物Wの上で燃焼室202の幅方向と長さ方向の広い範囲に亘って平面状燃焼領域が形成されるように、廃棄物Wからの可燃性ガスを含む燃焼ガスの上昇流と対向させ抑制させるよう高温ガスBの流れを制御するように、燃焼室202の天井における複数の高温ガス吹込口213,215の配置位置、配置数、及び配置間隔、複数の高温ガス吹込口213,215の夫々における高温ガス吹込み方向、吹込口の形状、高温ガスBの吹込み流速及び吹込み流量のうち少なくとも一つを、設定又は調整する。
 図8においては、高温ガス吹込口213,215から火格子205上の廃棄物Wに向かって下向きに高温ガスBが吹き込まれている。ここで、高温ガスBの吹込み方向としては、廃棄物Wに対する垂線から20°までの角度範囲で吹き込まれることが望ましい。これは、吹き込んだ高温ガスBと、廃棄物Wの熱分解及び部分酸化によって生じる可燃性ガスを含む燃焼ガスの上昇流と対向させて前記上昇流を抑制し平面状燃焼領域を形成させるためであり、高温ガスBの吹込み方向が廃棄物Wに対する垂線から20°より大きい範囲になると、平面状燃焼領域を形成させるための適切な対向と抑制が形成されなくなるためである。 
 <燃焼室202中への高温ガスBの吹込み流速及び吹込み流量>
 高温ガス吹込口213,215から燃焼室202中へ吹き込まれる高温ガスBの吹込み速度は、5m/s~20m/s程度が好ましい。5m/s~20m/sの吹込み速度とするのは、燃焼室202内における空塔速度(燃焼室202内におけるガス流量をガスが流れる方向に対して直交する燃焼室202の断面積で除した流速、最大1m/s程度)の5倍~20倍の相対速度とすることにより、燃焼室202内のガスの流れによる影響を受けずに、平面状燃焼領域を形成させるための適切な対向と抑制を安定して形成することができるためである。
 高温ガス吹込口213,215の夫々から燃焼室202内への高温ガスBの吹込み速度は、例えば、高温ガス供給源217から高温ガス吹込口213,215の夫々まで高温ガスBを送る管路に設けられている前述したガス送出機構及び前述した流量調節機構によるガス送出量又は開度の調整などにより調整される。 
 高温ガス吹込口213,215が燃焼室202の天井において燃焼室202の幅方向及び/又は長さ方向に複数ある場合、高温ガスBはそれぞれの高温ガス吹込口213,215から必ずしも等流速で吹き込まれる必要はない。火格子式廃棄物焼却炉201の燃焼室202の規模、形状、或いは廃棄物Wの性状及び量、火格子205上に形成される廃棄物Wの層の厚さ等により、燃焼室202中への各高温ガス吹込口213,215からの高温ガスBの吹込み流速が異なるように適宜変更され得る。
 燃焼室202内で廃棄物Wから発生する可燃性ガスを含む燃焼ガスの発生量の変動に対応して、廃棄物Wの上に平面状燃焼領域を安定して定在させるように、高温ガスBの吹込み流量を調整することが好ましい。平面状燃焼領域の状態が変動すると、可燃性ガスの燃焼状態が変化して燃焼室202から排出される排ガス中のCO濃度、酸素濃度などが変動する。平面状燃焼領域の状態を監視する為に、煙道212中の廃熱ボイラ204から排出される排ガスのCO濃度、酸素濃度などを計測しその変化に対応して、燃焼室202中への高温ガス吹込口213,215からの高温ガスBの吹込み流量を調整するようにしてもよい。
 <二次燃焼室225中への二次燃焼用ガスCの吹込み>
 二次燃焼用ガスCが二次燃焼室225中に吹き込まれ、燃焼室202からの未燃の可燃性ガスが二次燃焼される。二次燃焼用ガスCとして、温度は常温~200℃の範囲であり、酸素濃度は15体積%~21体積%の範囲のガスを用いることが好ましい。二次燃焼用ガスCとして、空気、酸素を含有するガス、前述した循環排ガスを用いてよいし、これらの混合ガスを用いてもよい。
 二次燃焼用ガス吹込口226は、二次燃焼室225内に旋回流が生じる方向にガスを吹き込めるように1つ又は複数を二次燃焼室225の周壁に設置することが好ましい。二次燃焼用ガスCを二次燃焼室225内に旋回流が生じる方向に吹き込むことにより、二次燃焼室225内のガス温度及び酸素濃度分布を均一化、平均化でき、未燃の可燃性ガスの二次燃焼が二次燃焼室225中で局所的な高温を発生させることなく安定して行われる。この結果、火格子式廃棄物焼却炉201からの排ガス中のNOxの低減が可能となる。さらに、未燃の可燃性ガスと二次燃焼用ガスCに含まれる酸素との混合が促進されるため、二次燃焼室225中での未燃の可燃性ガスの燃焼の安定性が向上し、二次燃焼室225中での未燃の可燃性ガスの実質的な完全燃焼が達成できるため、火格子式廃棄物焼却炉201からの排ガス中のCOの低減も可能となる。
 二次燃焼用ガスCとしては、二次燃焼用ガス供給管228を介してガス送出機構227により二次燃焼室225へと供給される二次燃焼用空気のみ、二次燃焼用空気に希釈剤を混合し酸素濃度を調整したガス、煙道212の下流の前述した図示されていない除塵装置を通過した後の排ガスから一部を抜き出した循環排ガスのみ、又は前記二次燃焼用空気と循環排ガスを混合したガス等を用いることができる。
 希釈剤としては、窒素、二酸化炭素などが考えられる。
 二次燃焼室225内のガス温度が、800℃~1050℃の範囲となるように、二次燃焼室225中に供給される二次燃焼用ガスCの流量を調整することが好ましい。二次燃焼室225内のガス温度が800℃未満となると未燃の可燃性ガスの燃焼が不十分となり、二次燃焼室225から排出される排ガス中のCOが増加する。また、二次燃焼室225内のガス温度が1050℃を超えると二次燃焼室225内におけるクリンカの生成が助長され、さらに、二次燃焼室225から排出される排ガス中のNOxが増加する。
 以上説明したように、この実施形態によれば、燃焼室202中への高温ガスBの吹き込みにより、燃焼室202内の火格子205上の廃棄物Wの上に前述した如く吹き込まれた高温ガスBと廃棄物Wから生じた可燃性ガスを含む燃焼ガスとの安定したよどみ又は循環を形成させることができ、高温ガスBと可燃性ガスとの平面状燃焼領域を定在させることが出来る。従って、火格子式廃棄物焼却炉201の燃焼室202の大きさに関わらず、空気比が1.5以下の低空気比で廃棄物Wを燃焼させても廃棄物Wと廃棄物Wから発生した可燃性ガスを安定して燃焼させることができる。すなわち、火格子式廃棄物焼却炉201において低空気比で廃棄物Wを燃焼をさせた場合においても廃棄物Wと廃棄物Wから発生した可燃性ガスとの燃焼の安定性が維持され、且つ、燃焼室202の天井の上流側と下流側の高温ガス吹込口213,215から高温ガスBを燃焼室202中に吹込むことにより、燃焼室202中でのNOxの発生が抑制され、火格子式廃棄物焼却炉201中での有害ガスの発生量の低減が可能である。さらに、火格子式廃棄物焼却炉201は、従来の火格子式廃棄物焼却炉に比べ、よりさらに低空気比で廃棄物Wの燃焼を行えるので、火格子式廃棄物焼却炉201から排出される排ガスの総量をさらに大幅に低減でき、また、廃棄物焼却炉201から排出される排ガスからの熱の回収効率を向上できる。
 また、火格子205上の廃棄物Wの上に定在する平面状燃焼領域の平面火炎の輻射などにより火格子205上の廃棄物Wの熱分解を促進することができるため、火格子205上に供給する廃棄物Wの量(火格子負荷)および燃焼室202内の廃棄物Wから生じる熱量(火炉負荷)を大きくすることができる。このため火格子式廃棄物焼却炉201において焼却可能な廃棄物Wの量に対して燃焼室202の容積を小さくすることができ、火格子式廃棄物焼却炉201の高さを低くすることができる。その結果、火格子式廃棄物焼却炉201をコンパクトに出来るので、火格子式廃棄物焼却炉201の設備費用及び運転費用を低減することができる。
 第3実施形態に係る火格子式廃棄物焼却炉201も、図8中に示されている如く、火格子205の温度又は燃焼室202内の温度を計測して燃焼室202内の状態又は火格子205上の廃棄物Wの状態を把握する状態把握ユニットCSと、把握した燃焼室202内の状態又は火格子205上の廃棄物Wの状態に応じて上流側と下流側の高温ガス吹き込み口213,215からの高温ガスBの吹き込み流速又は吹き込み流量を調整する調整ユニットと、を備えている。ここで調整ユニットは、高温ガス供給源217から上流側と下流側の高温ガス吹き込み口213,215まで伸びている高温ガスBの管路に介在されている流量調整機構214及び216が状態把握ユニットCSに接続されて動作を制御されることにより提供されている。
[第4の実施形態]
 次に、この発明の第4実施形態に係る火格子式廃棄物焼却炉について説明する。
 第4実施形態に係る火格子式廃棄物焼却炉の概要は以下の通りである。
 第4実施形態に係る火格子式廃棄物焼却炉の一例は:火格子を備え該火格子上の廃棄物を燃焼する燃焼室と;燃焼用一次ガスを前記火格子の下から前記燃焼室内に吹き込む一次ガス吹込みユニットと;高温ガスを前記燃焼室の天井から下向きに吹き込む高温ガス吹込みユニットと、を具備している。そして第4実施形態に係る火格子式廃棄物焼却炉の一例では、前記高温ガス吹込みユニットが、火格子上の廃棄物の移動方向である炉長方向に前段と後段の二段の高温ガス吹込口を備え、前段の高温ガス吹込口が、高温ガスを前記炉長方向にて燃焼開始領域から主燃焼領域の前部までの領域に向かって吹き込む位置に配設され、後段の高温ガス吹込口が、高温ガスを前記炉長方向にて主燃焼領域の後部から後燃焼領域の前部までの領域に向かって吹き込む位置に配設されていることを特徴としている。
 第4実施形態に係る火格子式廃棄物焼却炉のもう一例は:火格子を備え該火格子上の廃棄物を燃焼する燃焼室と;燃焼用一次ガスを前記火格子の下から前記燃焼室内に吹き込む一次ガス吹込みユニットと;高温ガスを前記燃焼室の天井から下向きに吹き込む高温ガス吹込みユニットと、を具備している。そして第4実施形態に係る火格子式廃棄物焼却炉のもう一例では、前記高温ガス吹込みユニットが、火格子上の廃棄物の移動方向である炉長方向に前段と後段の二段の高温ガス吹込口を備え、前段の高温ガス吹込口が乾燥段火格子の後部から燃焼段火格子の前部までの前記天井に設けられ、後段の高温ガス吹込口が燃焼段火格子の後部から後燃焼段火格子の前部までの前記天井に設けられていることを特徴としている。
 高温ガス吹込みユニットは、高温ガス吹込みユニットにより吹き込まれる高温ガスと一次ガス吹込みユニットにより吹き込まれる燃焼用一次ガスとを合わせた実際に炉内に供給する空気量を廃棄物の燃焼に必要な理論空気量で除して得られる空気比に関して、燃焼開始領域から主燃焼領域の前部までの区域の局所空気比を0.6~0.8とするように前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御する前段高温ガス吹込制御ユニットと、主燃焼領域の後部から後燃焼領域の前部までの区域の局所空気比を1.3~1.6とするように後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御する後段高温ガス吹込制御ユニットとを備えることが好ましい。
 高温ガス吹込みユニットは、前記高温ガス吹込みユニットにより吹き込まれる高温ガスと一次ガス吹込みユニットにより吹き込まれる燃焼用一次ガスとを合わせて調整される各区域の酸素濃度に関して、燃焼開始領域から主燃焼領域の前部までの区域の酸素濃度を0vol%dry~2vol%dryとするように前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御する前段高温ガス吹込制御ユニットと、主燃焼領域の後部から後燃焼領域の前部までの区域の酸素濃度を5vol%dry~8vol%dryとするように後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御する後段高温ガス吹込制御ユニットとを備えることが好ましい。
 高温ガス吹込みユニットは、燃焼開始領域から主燃焼領域の前部までの区域での酸素濃度を計測するユニットと、主燃焼領域の後部から後燃焼領域の前部までの区域での酸素濃度を計測するユニットとを具備し、計測した酸素濃度計測値に基づき、前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つと、後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つとを制御することができる。
 さらに、燃焼室は、室内高さが3m以下であるようにすることができる。
 さらに、高温ガス吹込みユニットは、前段の高温ガス吹込口と後段の高温ガス吹込口との両者を、両者の間隔を炉内ガスが0.5秒以上1.5秒以下の間に通過する距離とする位置に設けているようにすることができる。
 <第4実施形態に係る火格子式廃棄物焼却炉を使用した廃棄物焼却方法>
 第4実施形態に係る、燃焼室を備える火格子式廃棄物焼却炉を使用した廃棄物焼却方法の一例は:燃焼用一次ガスを火格子下から前記燃焼室内に吹き込みむ工程;高温ガスを、ガス燃焼室の天井に火格子上の廃棄物の移動方向である炉長方向で前段と後段の二段に設けた高温ガス吹込口のうち、前段の高温ガス吹込口から、燃焼開始領域から主燃焼領域の前部までの区域に向かって吹き込み、後段の高温ガス吹込口から、主燃焼領域の後部から後燃焼領域の前部までの区域に向かって吹き込むことを特徴としている。
 第4実施形態に係る、燃焼室を備える火格子式廃棄物焼却炉を使用した廃棄物焼却方法のもう一例は:燃焼用一次ガスを火格子下から前記燃焼室内に吹き込み、高温ガスを、前記燃焼室の天井に火格子上の廃棄物の移動方向である炉長方向で前段と後段の二段に設けた高温ガス吹込口のうち、乾燥段火格子の後部から燃焼段火格子の前部までの前記天井に配設した前段の高温ガス吹込口から下向きに吹き込み、燃焼段火格子の後部から後燃焼段火格子の前部までの前記天井に配設した後段の高温ガス吹込口から下向きに吹き込むことを特徴としている。
 高温ガス吹込口から吹き込まれる高温ガスと燃焼用一次ガスとを合わせた実際に炉内に供給する空気量を廃棄物の燃焼に必要な理論空気量で除して得られる空気比に関して、燃焼開始領域から主燃焼領域の前部までの区域の局所空気比を0.6~0.8とするように前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御し、主燃焼領域の後部から後燃焼領域の前部までの区域の局所空気比を1.3~1.6とするように後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御することが好ましい。
 燃焼用一次ガスと高温ガス吹込み口から吹き込む高温ガスとを合わせて得られる各区域の酸素濃度に関して、燃焼開始領域から主燃焼領域の前部までの区域の酸素濃度を0vol%dry~2vol%dryとするように前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御し、主燃焼領域の後部から後燃焼領域の前部までの区域の酸素濃度を5vol%dry~8vol%dryとするように後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御することが好ましい。
 また、燃焼開始領域から主燃焼領域の前部までの区域の酸素濃度を計測した酸素濃度計測値に基づき、前段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御し、主燃焼領域の後部から後燃焼領域の前部までの区域の酸素濃度を計測した酸素濃度計測値に基づき、後段の高温ガス吹込口から吹き込む高温ガスの流量及び酸素濃度のうち少なくとも一つを制御することができる。
 本発明の実施形態の例では、以上のように、燃焼室の天井から高温ガスを吹き込むこととし、その吹込みを前段と後段の二段に別けて吹き込むこととしたので、それぞれにより、次のような効果を得る。
 (1).高温ガス吹込みによる燃焼安定化効果:
 火格子式廃棄物焼却炉の燃焼室の天井に設けた吹込口から高温ガスを下向きに吹き込み、高温ガスの顕熱と輻射により廃棄物の熱分解を促進することができ、廃棄物の熱分解により発生した可燃性ガスの燃焼を促進することができる。さらに、高温ガスの下向きの流れと、廃棄物層から発生する可燃性ガスを含む燃焼ガスの上向きの流れとを衝突させ、廃棄物の上でガス流れが緩やかなよどみ又は上下方向の循環を燃焼室内の幅方向と長さ方向の広い範囲に亘って形成することができる。この結果、可燃性ガスの流れが緩やかになり、可燃性ガスが燃焼用一次ガスや高温ガスによって供給される酸化成分と十分に混合されるため燃焼室内の広い範囲に亘って可燃性ガスの安定した燃焼が行われ、燃焼室内の広い範囲に亘って廃棄物の上に平面状燃焼領域(火炎)を定在させることができる。また、定在する平面状火炎の輻射などにより廃棄物の熱分解をさらに促進することができる。このように高温ガス吹き込みにより、焼却炉の大きさに関わらず、空気比が1.5以下の低空気比での廃棄物の燃焼においても廃棄物と、発生する可燃性ガスを安定して燃焼させることができる。そして、廃棄物の燃焼が安定するため、火格子式廃棄物焼却炉から排出される排ガス中のCO、NOxなど有害物の発生量を抑制できる。
 (2).高温ガスの二段吹込みによるNOx発生量抑制効果:
 燃焼室の天井から燃焼室内に吹き込まれる高温ガスが、前段と後段の二つに別け個々にて制御されて吹き込まれるので、燃焼空間を燃焼用一次ガスと相俟って、燃焼室内の前段の区域で低酸素雰囲気そして後段の区域で酸素過剰雰囲気とすることができる。その結果、低酸素雰囲気の前段の区域で廃棄物を熱分解及び部分酸化させて、ガス分として可燃性ガスと還元ガスとを得、酸素過剰雰囲気の後段の区域で、発生したNOxを前段の区域で得られた還元ガスにより分解することで、NOxの量を抑制することができる。
 以上、上記(1)及び(2).で述べたように、高温ガス吹込みにより、例えば、空気比が1.5以下の低空気比でも、廃棄物と、廃棄物から発生する可燃性ガスを安定して燃焼させることができ、火格子式廃棄物焼却炉から排出される排ガス中のCOの発生量を抑制できる。さらに、高温ガスの前段そして後段での二段吹込みにより、発生させた還元ガスによりNOxを分解して、火格子式廃棄物焼却炉から排出される排ガス中のNOxの発生量を抑制できる。また、廃棄物の熱分解及び燃焼を促進できるため、廃棄物焼却処理量に対して燃焼室の内容積を小さくできる。その結果、火格子式廃棄物焼却炉の高さを低くでき、火格子式廃棄物焼却炉をコンパクトに出来ることにより火格子式廃棄物焼却炉の設備費用と運転費用を低減できる。 
 以下、本発明の第4実施形態に係る火格子式焼却炉及びこの火格子式廃棄物焼却炉を使用した廃棄物焼却方法について図10及び図11を参照しながら説明する。
 図10は本発明の第4実施形態に係る火格子式廃棄物焼却炉を概略的に示す縦断面図である。まず、第4実施形態に係る火格子式廃棄物焼却炉の基本構成とこの火格子式廃棄物焼却炉を使用した廃棄物焼却方法の概要を説明し、次いで各構成の詳細を説明する。この実施形態において、燃焼室内での廃棄物の移動方向における燃焼室の上流側を前部、下流側を後部という。
 <火格子式廃棄物焼却炉の基本構成>
 図10に示す火格子式廃棄物焼却炉301は、廃棄物Wを燃焼する燃焼室302の高さが1~3mであり、廃棄物焼却量100ton/日程度の規模の従来型火格子式廃棄物焼却炉の燃焼室高さが5~6m程度であることに比べて、1/2以下の高さである。また、この火格子式廃棄物焼却炉301の一例の容積は、90mであり、従来型火格子式廃棄物焼却炉の190mの1/2程度以下となる。このように、燃焼室302の高さが3m以下であることと、後述する高温ガスBを天井から下向きに吹き込むことにより低空気比での燃焼を安定して行うことによって、火格子式廃棄物焼却炉301をコンパクトにすることができ、火格子式廃棄物焼却炉301の設備費用、運転費用を大幅に低減できる。 
 本実施形態に係る火格子式廃棄物焼却炉301は、燃焼室302と、この燃焼室302の廃棄物Wの移動方向の上流側(図10の左側)上方に配置され、廃棄物Wを燃焼室302内に投入するための廃棄物投入口303と、燃焼室302の廃棄物Wの移動方向の下流側(図10の右側)の上方に連設されるボイラ304とを備える火格子式廃棄物焼却炉である。
 燃焼室302の底部には、廃棄物Wを移動させながら燃焼させる火格子(ストーカ)305が設けられている。この火格子305は、廃棄物投入口303に近い方から、すなわち、上流側から乾燥火格子305a、燃焼火格子305b、後燃焼火格子305cの順に設けられている。
 乾燥火格子305aでは主として廃棄物Wの乾燥と着火が行われる。燃焼火格子305bでは主として廃棄物Wの熱分解及び部分酸化が行われ、熱分解により発生した可燃性ガスと固形分の燃焼が行われる。後燃焼火格子305c上では、僅かに残った廃棄物W中の未燃分を完全に燃焼させる。完全に燃焼した後の灰ASは、灰落下口306より排出される。 
 このような本実施形態の火格子式廃棄物焼却炉301では、乾燥火格子305aと燃焼火格子305bの上に廃棄物Wの層が形成され、その燃焼により、燃焼室302内には、廃棄物Wの層の上に、下記のような諸領域が形成される。
 乾燥火格子305aの上で廃棄物投入口303の下方に対応して位置する、該乾燥火格子305a上の廃棄物Wの移動方向の上流側(前部)には乾燥領域が形成される。
 乾燥火格子305a上の下流側(後部)から燃焼火格子305b上の上流側(前部)には燃焼開始領域が形成される。すなわち、乾燥火格子305a上の廃棄物Wは、上流側で乾燥され、下流側で着火して、燃焼火格子305bの上流側(前部)までで燃焼が開始する。
 燃焼火格子305b上の廃棄物Wはここで熱分解そして部分酸化が行われ、可燃性ガスを発生させ、その可燃性ガスと廃棄物Wの固形分が燃焼する。廃棄物Wはこの燃焼火格子305b上で実質的に殆んど燃焼される。こうして、燃焼火格子305bの上に主燃焼領域が形成される。
 しかる後、僅かに残った廃棄物W中の固定炭素など未燃分が後燃焼火格子305c上で完全に燃焼される。この後燃焼火格子305cの上に後燃焼領域が形成される。
 廃棄物Wが焼却される場合、まず水分の蒸発が起こり、次いで熱分解と部分酸化反応が起こり、可燃性ガスが生成し始める。ここで燃焼開始領域とは、廃棄物Wの燃焼が始まり、廃棄物Wの熱分解及び部分酸化により可燃性ガスが生成し始める領域である。また、主燃焼領域とは、廃棄物Wの熱分解及び部分酸化が行われ可燃性ガスが発生し、その可燃性ガスが火炎を伴って燃焼しているとともに廃棄物Wの固形分が燃焼する燃焼領域であり、火炎を伴う燃焼が完了する点(燃え切り点)までの領域である。燃え切り点より後の領域では、廃棄物W中の固形未燃分(チャー)が燃焼するチャー燃焼領域(後燃焼領域)となる。
 燃焼室302内の乾燥火格子305a、燃焼火格子305b及び後燃焼火格子305cの下方には、それぞれ風箱307a,307b,307c,307dが設けられている。例えばブロワの如きガス送出機構308により供給される燃焼用一次ガスAは、燃焼用一次ガス供給管309を通って各風箱307a,307b,307c,307dに供給され、各火格子305a,305b,305cを通って燃焼室302内に供給される。なお、火格子305の下から供給される燃焼用一次ガスAは、火格子305a,305b,305c上の廃棄物Wの乾燥及び燃焼に使われるほか、火格子305a,305b,305cの冷却作用及び廃棄物Wの攪拌作用を有する。
 燃焼室302の下流側におけるガス出口には廃熱ボイラ304が連設され、廃熱ボイラ304の入口近傍が燃焼室302から排出されるガス中の未燃の可燃性ガスを燃焼する二次燃焼室310となっている。廃熱ボイラ304の一部である二次燃焼室310内で二次燃焼用ガスCを吹き込み、未燃の可燃性ガスを二次燃焼し、この二次燃焼の後に排ガスGは廃熱ボイラ304で熱回収される。熱回収された後、廃熱ボイラ304から排出された排ガスGは、図示しない排ガス処理装置で消石灰等による酸性ガスの中和と、活性炭によるダイオキシン類の吸着が行われ、さらに図示しない除塵装置に送られ、中和反応生成物、活性炭、ダストなどが回収される。前記除塵装置で除塵され、無害化された後の排ガスGは、図示しない誘引ファンにより誘引され、煙突から大気中に放出される。
 このような基本構成である火格子式廃棄物焼却炉301は、燃焼用一次ガスAを火格子305の下から燃焼室302内に吹き込む一次ガス吹込みユニットFABUと、火格子305上の廃棄物Wの移動方向である燃焼室302の長さ方向に二段の高温ガス吹込口313,315を備え、高温ガスBを燃焼室302の天井から下向きに吹き込む高温ガス吹込みユニットHGBUとを具備している。
 <一次ガス吹込みユニットFABU>
 本実施形態では、火格子式廃棄物焼却炉301は、燃焼用一次ガスの為の一次ガス吹込みユニットFABUを備えている。一次ガス吹込みユニットFABUは、図示されていない一次ガス供給源からの燃焼用一次ガスAを一次ガス供給管路309の本体部分を経て、乾燥火格子305a、燃焼火格子305b及び後燃焼火格子305cのそれぞれの風箱307a,307b,307c,307dに一次ガス供給管路309の分岐部分から送り込むようになっており、一次ガス供給管309には、例えばブロワの如きガス送出機構308そして例えばダンパの如き流量調整機構311が設けられている。
 <高温ガス吹込みユニットHGBU>
 本実施形態では、火格子式廃棄物焼却炉301は、高温ガスBを燃焼室302の天井から下向きに吹き込む高温ガス吹込みユニットHGBUを備えている。高温ガス吹込みユニットHGBUにより、前段(火格子305上の廃棄物Wの移動方向の上流側)の高温ガス吹込口313から高温ガスBを燃焼開始領域から主燃焼領域の前部までの区域に向かって吹き込み、後段(火格子305上の廃棄物Wの移動方向の下流側)の高温ガス吹込口315から高温ガスBを主燃焼領域の後部から後燃焼領域の前部までの区域に向かって吹き込む。
 高温ガス吹込みユニットHGBUは、燃焼室302の外に設けられた高温ガス供給源312と、燃焼室302へ高温ガスBを吹き込む前段の高温ガス吹込口313、例えばダンパの如き流量調整機構314、後段の高温ガス吹込口315、例えばダンパの如き流量調整機構316と、高温ガスBを高温ガス供給源312から高温ガス吹込口313,315へ導く管路とを有している。
 前段の高温ガス吹込口313は、燃焼室302の天井において、乾燥火格子305a上の廃棄物Wの移動方向の下流側(後部)から燃焼火格子305b上の上流側(前部)までの区域内の上方に設けられている。
 後段の高温ガス吹込口315は、燃焼室302の天井において、燃焼火格子305b上の廃棄物Wの移動方向の下流側(後部)から後燃焼火格子305c上の上流側(前部)までの区域内の上方に設けられている。
 高温ガス吹込みユニットHGBUは、高温ガスBが下方に吹き込まれるように、高温ガス吹込口313,315の向きが定められている。かくして、前段の高温ガス吹込口313から高温ガスBを燃焼開始領域から主燃焼領域の前部までの区域に向かって吹き込み、後段の高温ガス吹込口315から高温ガスBを主燃焼領域の後部から後燃焼領域の前部までの区域に向かって吹き込むように設けられている。
 高温ガス吹込口313,315は、燃焼室302の幅方向(図10にて紙面に対して直角な方向)にも複数箇所に設けられている。また、高温ガス吹込口313,315は、前記の区域内でそれぞれ燃焼室302の長さ方向の複数位置に配置されてもよい。
  <二次燃焼用ガス供給ユニットSABU>
 また、本実施形態の火格子式廃棄物焼却炉301は、二次燃焼用ガスCを廃熱ボイラ304の入口近傍に相当する二次燃焼室310に吹き込む二次燃焼用ガス供給ユニットSABUを備えている。二次燃焼用ガス供給ユニットSABUは、図示されていない二次燃焼用ガス供給源からの二次燃焼用ガスCを二次燃焼用ガス供給管320を経て、二次燃焼室310に設けられた二次燃焼用ガス吹込口317に送り込むようになっており、二次燃焼用ガス供給管320には、例えばブロワの如きガス送出機構318そして例えばダンパの如き流量調整機構としてのダンパ319が設けられている。二次燃焼用ガス吹込口317は、廃熱ボイラ304の入口近傍にある二次燃焼室310に二次燃焼用ガスCを吹き込むように、廃熱ボイラ304の周壁に設けられている。
 燃焼室302内で廃棄物Wから発生した可燃性ガスはそのほとんどが燃焼室302内で燃焼されるが、未燃の可燃性ガスは、後燃焼火格子305cの上方に連接されている廃熱ボイラ304の入口近傍に相当する二次燃焼室310に流入して、ここで二次燃焼用ガスCが供給され、二次燃焼される。
 なお、本実施形態において、一次ガス吹込みユニットFABU、高温ガス吹込みユニットHGBUそして二次燃焼用ガス吹込みユニットSABU等の構成は図示したものに限定されず、火格子式廃棄物焼却炉301の規模、形状、廃棄物Wの種類等により適宜選択され得る。
 次に、このように構成されている本実施形態の火格子式廃棄物焼却炉301での廃棄物Wの焼却状況の概要、燃焼用一次ガスA、高温ガスB、燃焼用二次ガスCの吹込みによる作用について順次説明する。
 <廃棄物Wの焼却状況の概要>
 廃棄物投入口303へ廃棄物Wを投入すると、投入された廃棄物Wは乾燥火格子305a上に堆積され、図示されていない廃棄物移動機構の動作により、燃焼火格子305b上そして後燃焼火格子305c上へと移動し、各火格子上に廃棄物Wの層を形成する。各火格子は、風箱307a,307b,307c,307dを経て、燃焼用一次ガスAを受けており、これにより各火格子上の廃棄物Wは乾燥そして燃焼される。
 乾燥火格子305a上では主として廃棄物Wの乾燥と着火が行われる。すなわち、乾燥火格子305a上の廃棄物Wは、上流側範囲で乾燥され、下流側範囲で着火して、燃焼火格子305b上の上流側範囲(前部)までの区域で燃焼が開始する。燃焼火格子305b上では主として廃棄物Wの熱分解及び部分酸化が行われ、廃棄物Wから発生した可燃性ガスと廃棄物W中の固形分の燃焼が行われる。燃焼火格子305b上において廃棄物Wの燃焼は実質的に完了する。後燃焼火格子305c上では、僅かに残った廃棄物W中の固定炭素など未燃分を完全燃焼させる。完全燃焼した後の燃焼灰ASは、灰落下口306より燃焼室302の外部へ排出される。このように廃棄物Wが燃焼している状態で、図910に見られるように、各火格子305a,305b,305cの上には、乾燥領域R1、燃焼開始領域R2、主燃焼領域R3そして後燃焼領域R4がそれぞれ形成される。
 既述のごとく、燃焼室302の天井のガス出口に、廃熱ボイラ304が連設されていて、廃熱ボイラ304の入口近傍が二次燃焼室310となっている。したがって、燃焼室302内で廃棄物Wから発生した未燃の可燃性ガスは、二次燃焼室310に導かれ、そこで二次燃焼用ガスCと混合及び攪拌され、二次燃焼する。二次燃焼の後の排ガスは廃熱ボイラ304で熱回収される。熱回収された後、廃熱ボイラ304から排出された排ガスは、消石灰等による酸性ガスの中和と、活性炭によるダイオキシン類の吸着が行われ、さらに除塵装置(図示せず)に送られ、中和反応生成物、活性炭、ダストなどが回収される。上記除塵装置で除塵され、無害化された後の排ガスは、誘引ファン(図示せず)により誘引され、煙突から大気中に放出される。なお、前記除塵装置としては、例えば、バグフィルタ方式、電気集塵方式等の除塵装置を用いることができる。
 <燃焼用一次空気Aの吹込み>
 燃焼用一次ガスAは、例えばブロワの如きガス送出機構308から燃焼用一次ガス供給管309を通って乾燥火格子305a、燃焼火格子305b及び後燃焼火格子305cのそれぞれの下方に設けられた風箱307a,307b,307c,307dに供給された後、各火格子305a,305b,305cを通って燃焼室302内に供給される。燃焼室302内に供給される燃焼用一次ガスAの全流量は、燃焼用一次ガス供給管309の本体部分に設けられた流量調節機構311により調整され、さらに、各風箱307a,307b,307c,307dに供給される燃焼用一次ガスAの流量は、燃焼用一次ガス供給管309の本体部分から各風箱307a,307b,307c,307dに分岐した分岐部分に備える流量調節機構(図示省略)により調節される。また、風箱307a,307b,307c,307d及び燃焼用一次ガスAを供給するための燃焼用一次ガス供給管309等の構成は図示したものに限定されず、火格子式廃棄物焼却炉301の規模、形状、廃棄物Wの種類等により適宜選択され得る。
 燃焼用一次ガスAとしては、温度が常温~200℃の範囲であり、酸素濃度が15体積%~21体積%の範囲のガスを用いることが好ましい。燃焼用一次ガスAとして、空気、酸素を含有するガス及び前述した循環排ガスのいずれかを用いてもよいし、これらの混合ガスを用いてもよい。
 <燃焼室302中への高温ガスBの吹込みによる廃棄物Wの燃焼の安定化>
 図10に見られるように、高温ガスBが、前段の高温ガス吹込口313から、燃焼開始領域R2から主燃焼領域R3の前部までの区域に向かって吹き込まれ、後段の高温ガス吹込口315からは、主燃焼領域R3の後部から後燃焼領域R4の前部までの区域に向かって吹き込まれ、全体で、高温ガスBが、燃焼室302内の燃焼開始領域R2から後燃焼領域R4の前部までの区域において、廃棄物Wの層に向かって下向きに吹き込まれる。燃焼室302内で火炎が存在し可燃性ガスが多く存在する区域に、高温ガスBを吹き込むことが廃棄物Wの燃焼を安定させる上で好ましいため、燃焼室302内で可燃性ガスが多く存在する区域である燃焼開始領域R2から後燃焼領域R4の前部までの区域に高温ガスBを吹き込む。
 前段の高温ガス吹込口313そして後段の高温ガス吹込口315から、高温ガスBを燃焼室302内の燃焼開始領域R2から後燃焼領域R4の前部までの区域に、かつ廃棄物Wの層の上に向かって下向きに吹き込むことにより、下向きに吹き込まれる高温ガスBは、廃棄物Wの熱分解及び部分酸化により生じた可燃性ガスを含む燃焼ガスの上昇流と対向して前記上昇流を抑制し、廃棄物Wの層の上に平面状の流れの遅いよどみまたは上下方向の循環が生じる。これらのよどみ又は循環中ではガスの流れの速度が遅いため、可燃性ガスが燃焼する火炎が定在することになる。すなわち廃棄物Wの層の上に平面状燃焼領域(平面火炎)が定在し、可燃性ガスが安定して燃焼される。その結果、低空気比での廃棄物Wの燃焼においてもCO,NOx、ダイオキシン類等の有害物質の発生を抑制すると共に煤の生成を抑制することができる。このため、低空気比での廃棄物Wの燃焼を問題なく行うことができる。
 また、高温ガスBの熱輻射と顕熱によって廃棄物Wが加熱され、熱分解及び部分酸化が促進されることに加えて、廃棄物Wの層の上に平面状燃焼領域(平面火炎)が定在するので、この平面火炎からの熱輻射と顕熱によって廃棄物Wが加熱され、熱分解・及び部分酸化がさらに促進される。
 <燃焼室302中への高温ガスBの二段吹込みによるNOx発生量抑制>
 火格子式廃棄物焼却炉では、廃棄物Wに含まれる窒素分や空気中の窒素が高温下で反応してNOxが発生する。火格子式廃棄物焼却炉から排出される排ガスを煙突から大気中に排出する際に、NOx濃度を規制値以下にしなければならないため、排ガス処理装置でNOxを除去しているが、火格子式廃棄物焼却炉内で発生するNOx量を抑制することが根本的な対策であり、これが要望されている。本実施形態では、高温ガスBを前段と後段の二段の高温ガス吹込口313,315から吹き込むこととし、前段の高温ガス吹込口313から高温ガスBを吹き込む際に低酸素雰囲気を形成して還元ガスRGを生成するようにし、この還元ガスRGによりNOxを分解するようにしたので、NOx発生量を抑制することができる。
 図11は、火格子式廃棄物焼却炉301内の廃棄物Wの燃焼状態を説明するための、燃焼室302の長さ方向の断面図である。図11に示すように、先ず、前段の高温ガス吹入口313から高温ガスBを吹き込む際に、高温ガスBの供給量を調整し、燃焼用一次ガスAと合わせた酸素の供給量を調整して、燃焼開始領域R2から主燃焼領域R3の前部までの区域を、例えば、局所空気比が0.6~0.8(酸素濃度2Vol%dry以下)の低酸素雰囲気Lとする。低酸素雰囲気Lでの廃棄物Wの熱分解及び部分酸化により、ガス分として可燃性ガスと還元ガスRG(CO,HCN,NHn,CmHn)が生ずる(CO,CmHnは可燃性である)。発生した可燃性ガスは前述したように廃棄物Wの上に形成された平面状燃焼領域で、均一で安定して燃焼される。還元ガスRGは燃焼室302内を下流側に導かれNOxを分解するように用いられる。低酸素雰囲気を形成するとき、空気比が0.6より小さいと、還元ガスRGの発生が過剰になり、余剰のNHnから後流側でNOxが生成されたり、可燃性ガスの発生が過剰になり未燃の可燃性ガスの発生が過剰となるので不適であり、空気比が0.8よりも大きいと低酸素雰囲気とならず、還元ガスRGの発生量が少なく不適であり、したがって空気比は0.6~0.8が好ましい。
 次に、後段の高温ガス吹込口315から高温ガスBを吹き込む際に、高温ガスBの供給量を調整し、燃焼用一次ガスAと合わせた酸素の供給量を調整して、主燃焼領域R3の後部から後燃焼領域R4の前部までの区域を、例えば、局所空気比が1.3~1.6(酸素濃度:5vol%dry~8vol%dry)の酸素過剰雰囲気Hとする。酸素過剰雰囲気Hにおける空気比は、1.3よりも小さいと廃棄物Wの固体の燃焼が十分に行われずに未燃となり不適となり、1.6よりも大きいとNOx発生量が多くなり不適となるため、空気比は1.3~1.6が好ましい。
 高温ガスBの供給量は、例えば、高温ガスBを送る例えばブロワの如きガス送出機構のガス送出量の調整や例えばダンパの如き流量調節機構314,316の開度調整などにより調整される。
 図10の実施形態の火格子式廃棄物焼却炉301では、高温ガス吹込みユニットHGBUは、一つの高温ガス供給源317から高温ガス吹込口313,315へ供給する高温ガスBの供給量をそれぞれ例えばダンパの如き流量調節機構314,316の開度調整などにより調整して、燃焼開始領域R2から主燃焼領域R3の前部までの区域及び主燃焼領域R3の後部から後燃焼領域R4の前部までの区域における空気比を所定の範囲に制御することとしている。高温ガス吹込口313,315のそれぞれに高温ガスBを供給する図示しない二つの高温ガス供給源を設け、それぞれの高温ガス供給源において調製する高温ガスBの酸素濃度を調整して、前記各区域における空気比を所定の範囲に制御するようにしてもよい。
 本実施形態では、図10に示すように、燃焼室302の炉壁に設けられ、燃焼室302内の燃焼開始領域R2から主燃焼領域R3の前部までの区域の酸素濃度を計測する酸素濃度計331と、主燃焼領域R3の後部から後燃焼領域R4の前部までの区域の酸素濃度を計測する酸素濃度計332により燃焼室302内の酸素濃度を計測し、計測した酸素濃度に基づき、前記各区域の酸素濃度(空気比)を所定の範囲内にするように高温ガスBの供給量又は酸素濃度を制御する。
 燃焼開始領域R2から後燃焼領域R4で発生したNOxが、前述の還元ガスRGと、酸素過剰雰囲気のもとで反応して分解され、排ガスG中のNOx含有量が低減され排出される。また、NOxとの反応に寄与する還元ガスRGのうちHCN,NHnの余剰分は、酸素過剰雰囲気中で酸素と反応して分解されたりN2が生成されたりして、そのままでは排出されないので支障が生じない。
 火格子式廃棄物焼却炉301から排ガスGを抜き出し煙突から排出するためファンにより燃焼室302内のガスを誘引しており、燃焼室302内のガスは排ガス排出口に向かって導かれている。本実施形態において、前段の高温ガス吹込口313と後段の高温ガス吹込口315との間の燃焼室302の長さ方向の距離を、燃焼室302内のガスが0.5秒~1.5秒の時間で通過するように設定することが好ましい。発生した還元ガスRGを上記時間内にNOxと反応させると、反応効率が高くなり好ましい。この時間が1.5秒より遅いと、NOxと反応する還元ガスRG中のラジカルの失活する量が増え、NOxとの反応が大幅に低下し、0.5秒より早いと還元ガスRGとNOxとの反応が十分に行われずに、NOxが残存しさらに余剰のNHnからNOxが生成されるので不適であり、したがって上記時間は0.5秒~1.5秒が好ましい。
 次に、高温ガスGについてその調製、高温ガス吹込口、高温ガス吹込み流速及び吹込量、さらには、二次燃焼室310中への二次燃焼用ガスCの吹込み、そして低空気比での廃棄物Wの燃焼を実施するための酸素量比配分について、順次説明する。
 <高温ガスGの調製>
 高温ガス吹込口313,315から吹き込まれる高温ガスBの温度は、100℃~400℃の範囲とすることが好ましく、200℃程度とすることがより好ましい。100℃未満の温度のガスを高温ガスBとして吹き込むと燃焼室302内の温度が低下し、廃棄物Wの燃焼が不安定となりCO発生量が増加する。400℃を超えるガスを高温ガスBとして吹き込むと燃焼室302内における火炎温度が著しく高温になり、クリンカの生成が助長されるなど問題が生じる。
 また、高温ガスBの含有する酸素濃度は5体積%程度~30体積%程度、望ましくは5体積%~15体積%とすることが好ましい。これにより、上述の効果がより効果的に発揮され、排ガスG中のNOxとCOの低減がより促進される。
 上記のガス温度及び酸素濃度となるような高温ガスBとしては、二次燃焼室310から下流側で排ガスGの一部を抜き出した循環排ガス、循環排ガスと空気の混合ガス、空気及び酸素富化空気のうちいずれかを用いることが好適である。循環排ガスとしては、火格子式廃棄物焼却炉301から排出された排ガスGを除塵、中和処理した排ガス、すなわち、バグフィルタから排出される排ガスの一部を用いることが好ましい。循環排ガス、循環排ガスと空気の混合ガス、空気及び酸素富化空気のうちいずれかを必要に応じて廃熱ボイラ304で発生させた蒸気により加熱して、温度と酸素濃度が上記所定の条件を満たすような高温ガスBとして燃焼室302内に吹き込む。
 このように、高温ガスBを調製する際の循環排ガスと空気の混合割合や、循環排ガス又は循環排ガスと空気の混合ガス等の加熱条件などを調整して、高温ガスBの温度及び酸素濃度を所望の範囲とする。
 <高温ガス吹込口313,315>
 前段の高温ガス吹込口313は、燃焼室302の天井の、乾燥火格子305a上の廃棄物Wの移動方向の下流側(後部)から燃焼火格子305b上の前記移動方向の上流側(前部)までの区域内と対応する区域内に設けられている。
 後段の高温ガス吹込口315は、燃焼室302の天井の、燃焼火格子305b上の廃棄物Wの移動方向の下流側(後部)から後燃焼火格子305c上の移動方向の上流側(前部)までの区域と対応する区域内に設けられている。
 前段の高温ガス吹込口313と後段の高温ガス吹込口315は、それぞれ燃焼室302の幅方向に複数配置される。さらに、燃焼室302の長さ方向に、それぞれの前述した区域内で複数配置されてもよい。高温ガス吹込口313,315は、ノズル型でもスリット型でもよい。
 燃焼室302内の廃棄物Wの上で燃焼室302の幅方向と長さ方向の広い区域に亘って平面状燃焼領域が形成されるように、廃棄物Wからの可燃性ガスを含む燃焼ガスの上昇流と対向させる高温ガスBの流れの状況を好ましい状態に制御するように、燃焼室302の天井における高温ガス吹込口313,315の配置位置、配置数、配置間隔、高温ガス吹込口313,315からの高温ガスBの吹込み方向、高温ガス吹込口313,315の形状、高温ガス吹込口313,315からの高温ガスBの吹込み流速及び吹込み流量のうち少なくとも一つを、設定又は調整する。
 図10においては、高温ガス吹込口313,315から廃棄物Wの層に向かって下向きに高温ガスBを吹き込んでいる。ここで、高温ガスBの吹込み方向としては、廃棄物Wの層に対する垂線から20°までの角度範囲で吹き込まれることが望ましい。これは、吹き込んだ高温ガスBと、廃棄物Wの熱分解及び部分酸化によって生じる可燃性ガスと燃焼ガスの上昇流とが衝突させて対向させるためであり、高温ガスBの吹込み方向が廃棄物Wの層に対する垂線から20°より大きい範囲となると、適切な前述した対向が形成されなくなるためである。 
 <燃焼室302中への高温ガスBの吹込み流速及び吹込み流量>
 高温ガス吹込口313,315から燃焼室302中へ吹き込まれる高温ガスBは、5m/s~20m/sの吹込み速度で燃焼室302内に吹き込むことが好ましい。5m/s~20m/sの吹込み速度とするのは、燃焼室302内における空塔速度(燃焼室302内のガス流量をガスが流れる方向に対して直交する燃焼室302の断面積で除した流速、最大1m/s程度)の5倍~20倍の相対速度とすることにより、燃焼室302内のガスの流れによる影響を受けずに、前記対向を安定して形成することができるためである。
 高温ガスBの吹込み速度は、例えば、高温ガスBを送る例えばブロワの如きガス送出機構のガス送出量の調整や例えばダンパの如き流量調節機構314,316の開度の調整による流量調整などにより調整される。 
 高温ガス吹込口313,315が燃焼室302の幅方向又は長さ方向に複数ある場合、高温ガスBはそれぞれの高温ガス吹込口313,315から必ずしも等流速で吹き込まれる必要はなく、火格子式廃棄物焼却炉301の規模、形状、或いは廃棄物Wの性状、量、廃棄物Wの層厚さ等により、各高温ガス吹込口313,315からの吹込み流速が異なるように適宜変更され得る。
 燃焼室302で廃棄物Wから発生する可燃性ガスを含む燃焼ガスの発生量の変動に対応して、廃棄物Wの層の上に平面状燃焼領域を変動なく定在させるように、高温ガスBの吹込み流量を調整することが好ましい。平面状燃焼領域の状態が変動すると、可燃性ガスの燃焼状態が変化し燃焼室302からの排ガス中のCO濃度、酸素濃度などが変動するため、燃焼室302内の廃棄物Wの燃焼状態を監視する為の因子として廃熱ボイラ304から排出される排ガスGのCO濃度、酸素濃度を計測しその変化に対応して、高温ガスBの吹込み流量を調整するようにしてもよい。
 <二次燃焼室310中への二次燃焼用ガスCの吹込み>
 二次燃焼用ガスCが二次燃焼室310に吹き込まれ、燃焼室302からの未燃の可燃性ガスが二次燃焼される。二次燃焼用ガスCとして、温度は常温~200℃の範囲であり、酸素濃度は15体積%~21体積%の範囲のガスを用いることが好ましい。二次燃焼用ガスCとして、空気、酸素を含有するガス、前述した循環排ガスを用いてよいし、これらの混合ガスを用いてもよい。
 二次燃焼用ガス吹込口317は、二次燃焼室310内に旋回流が生じる方向に二次燃焼用ガスCを吹き込めるように二次燃焼室310の周壁に1つ又は複数設置することが好ましい。二次燃焼用ガスCを二次燃焼室310内に旋回流が生じる方向に吹き込むことにより、二次燃焼室310内のガス温度及び酸素濃度分布を均一化、平均化でき、未燃の可燃性ガスの二次燃焼が安定して行われ、局所的な高温の発生を抑制し、火格子式廃棄物焼却炉301からの排ガス中のNOxの低減が可能となる。さらに、未燃の可燃性ガスと酸素との混合が促進されるため二次燃焼室310内での未燃の可燃性ガスの燃焼の安定性が向上し、未燃の可燃性ガスの完全燃焼が達成できるため、二次燃焼室310から排出される排ガス中のCOの低減も可能となる。
 二次燃焼用ガスCとしては、例えばブロワの如きガス送出機構318により供給される燃焼用二次空気のみ、燃焼用二次空気に希釈剤を混合し酸素濃度を調整したガス、除塵装置を通過した後の排ガスの一部を抜き出した循環排ガスのみ、又は前記燃焼用二次空気と循環排ガスを混合したガス等を用いることができる。
 希釈剤としては、窒素、二酸化炭素などが考えられる。
 前記二次燃焼室310内のガス温度が、800℃~1050℃の範囲となるように、前記二次燃焼用ガスCの流量を調整することが好ましい。二次燃焼室310内のガス温度が800℃未満となると未燃の可燃性ガスの燃焼が不十分となり、二次燃焼室310から排出される排ガス中のCOが増加する。また、二次燃焼室310内のガス温度が1050℃を超えると二次燃焼室310内におけるクリンカの生成が助長され、さらに、NOxが増加する。
 以上説明したように本実施形態によれば、燃焼室302中への高温ガスBの吹き込みにより、燃焼室302内の廃棄物Wの上に前述した安定なよどみ又は循環を形成させることができ、燃焼室302内の廃棄物Wの上に平面状燃焼領域を定在させ、火格子式廃棄物焼却炉301の大きさにかかわらず、空気比が1.5以下の低空気比で廃棄物Wの燃焼を行った場合においても、燃焼室302内の燃焼室302の幅方向と長さ方向の全域に亘って廃棄物Wの燃焼の安定性が維持され、かつ、且つ、燃焼室302の天井の二段の高温ガス吹込口313,315から高温ガスBを燃焼室302内に吹込むことにより、燃焼室302内でのNOxの発生が抑制され、COやNOx等の有害ガスの発生量が低減できる。さらに、従来の火格子式廃棄物焼却炉よりさらに低空気比で廃棄物Wの燃焼を行えるので火格子式廃棄物焼却炉301から排出される排ガスGの総量をさらに大幅に低減でき、また、排ガスGからの廃熱の回収効率を向上できる。
 また、火格子205上の廃棄物Wの上に定在する平面状燃焼領域の平面火炎の輻射などにより廃棄物Wの熱分解を促進することができるため、火格子205上に供給出来る廃棄物Wの量(火格子負荷)および燃焼室302内に廃棄物のWから発生させる熱量(火炉負荷)を大きくすることができる。このため火格子式廃棄物焼却炉301における廃棄物Wの焼却量に対して燃焼室302の内容積を小さくすることができ、火格子式廃棄物焼却炉301の高さを低くすることができ、火格子式廃棄物焼却炉301をコンパクトに出来ることにより火格子式廃棄物焼却炉301の設備費用及び運転費用を低減できる。
 第4実施形態に係る火格子式廃棄物焼却炉301も、図10中に示されている如く、火格子305の温度又は燃焼室302内の温度を計測して燃焼室302内の状態又は火格子305上の廃棄物Wの状態を把握する状態把握ユニットCSと、把握した燃焼室302内の状態又は火格子305上の廃棄物Wの状態に応じて上流側と下流側の高温ガス吹き込み口313,315からの高温ガスBの吹き込み流速又は吹き込み流量を調整する調整ユニットと、を備えている。ここで調整ユニットは、高温ガス供給源312から上流側と下流側の高温ガス吹き込み口313,315まで伸びている高温ガスBの管路に介在されている流量調整機構314及び315が状態把握ユニットCSに接続されて動作を制御されることにより提供されている。
 1…火格子式廃棄物焼却炉、W…廃棄物、2,2´…燃焼室、3…廃棄物投入口、4…ボイラ、5…火格子、5a…乾燥火格子、5b…燃焼火格子、5c…後燃焼火格子、6…灰落下口、FABU…一次ガス吹込みユニット、7a,7b,7c,7d…風箱(一次ガス吹込みユニット)、8…ガス送出機構(一次ガス吹込みユニット)、9…燃焼用一次ガス供給管(一次ガス吹込みユニット)、A…燃焼用一次ガス、10…二次燃焼室、11…流量調節機構(一次ガス吹込みユニット)、HGBU…高温ガス吹込みユニット、B…高温ガス、12…高温ガス供給源(高温ガス吹込みユニット)、13,13a,13b…高温ガス吹込口(高温ガス吹込みユニット)、14…管路(高温ガス吹込みユニット)、15…二次燃焼用ガス吹込口、SABU…二次燃焼用ガス吹込みユニット、C…二次燃焼用ガス、16…ガス送出機構(二次燃焼用ガス吹込みユニット)、17…流量調節機構(二次燃焼用ガス吹込みユニット)、18…二燃焼用ガス供給管、D,E…平面状燃焼領域(平面火炎)、20…火格子式廃棄物焼却炉、21…側壁、22…天井、25…流量調節機構(高温ガス吹き込みユニット;調整ユニット)、CS…状態把握ユニット、26a,26b…高温ガス流量調整機構;
 100…火格子式廃棄物焼却炉、102…燃焼室、103…廃棄物投入口、104…ボイラ、105…火格子、105a…乾燥火格子、105b…主燃焼火格子、105c…後燃焼火格子、106…灰落下口、W…廃棄物、A…燃焼用一次ガス、B…高温ガス、C…二次燃焼用ガス、FABU…一次ガス吹込みユニット、107a,107b,107c,107d…風箱(FABU)、108…ガス送出機構(FABU)、109…燃焼用一次ガス供給管(FABU)、110…二次燃焼室、111…流量調節機構(FABU)、HGBU…高温ガス吹込みユニット、112…高温ガス供給源(HGBU)、113…高温ガス吹込口(HGBU)、114…管路、115…流量調整機構(HGBU;調整ユニット)、SABU…二次燃焼用ガス吹込みユニット、116…二次燃焼用ガス吹込口(SABU)、117…ガス送出機構(SABU)、118…流量調節機構(SABU)、119…二次燃焼用ガス供給管(SABU)、CS…状態把握ユニット;
 201…火格子式廃棄物焼却炉、202…燃焼室、203…廃棄物投入口、204…廃熱ボイラ、205…火格子、205a…乾燥火格子、205b…主燃焼火格子、205c…後燃焼火格子、206…灰落下口、W…廃棄物、AS…灰、A…燃焼用一次ガス、B…高温ガス、C…二次燃焼用ガス、、FABU…一次ガス吹込みユニット、207a,207b,207c,207d…風箱(FABU)、208…ガス送出機構(FABU)、209…燃焼用一次ガス供給管(FABU)、210…流量調節機構(FABU)、212…煙道、HGBU…高温ガス吹込みユニット、217…高温ガス供給源(HGBU)、213,215…高温ガス吹込口(HGBU)、214,216…流量調整機構(HGBU;調整ユニット)、SABU…二次燃焼用ガス吹込みユニット、225…二次燃焼室、226…二次燃焼用ガス吹込口(SABU)、227…ガス送出機構(SABU)、228…二次燃焼用ガス供給管(SABU)、229…流量調節機構(SABU)、230…ガス誘導体、CS…状態把握ユニット、G…排ガス、R1…乾燥領域、R2…燃焼開始領域、R3…主燃焼領域、R4…後燃焼領域、F…よどみ又は循環、RG…還元ガス、OG…酸化ガス;
 301…火格子式廃棄物焼却炉、302…燃焼室、303…廃棄物投入口、304…廃熱ボイラ、305…火格子、305a…乾燥火格子、305b…主燃焼火格子、305c…後燃焼火格子、306…灰落下口、W…廃棄物、AS…灰、A…燃焼用一次ガス、B…高温ガス、C…二次燃焼用ガス、、FABU…一次ガス吹込みユニット、307a,307b,307c,307d…風箱(FABU)、308…ガス送出機構(FABU)、309…燃焼用一次ガス供給管(FABU)、311…流量調節機構(FABU)、HGBU…高温ガス吹込みユニット、312…高温ガス供給源(HGBU)、313,315…高温ガス吹込口(HGBU)、314,316…流量調整機構(HGBU;調整ユニット)、SABU…二次燃焼用ガス吹込みユニット、310…二次燃焼室、317…二次燃焼用ガス吹込口(SABU)、318…ガス送出機構(SABU)、320…二次燃焼用ガス供給管(SABU)、319…流量調節機構(SABU)、CS…状態把握ユニット、G…排ガス、R1…乾燥領域、R2…燃焼開始領域、R3…主燃焼領域、R4…後燃焼領域、L…低酸素雰囲気、H…酸素過剰雰囲気、RG…還元ガス、331,332…酸素濃度計。

Claims (22)

  1.  その上に廃棄物が供給され供給された廃棄物が移動される間に燃焼される火格子が設けられている燃焼室を含んでおり、火格子上には、廃棄物の移動の方向に沿い、供給された廃棄物が燃焼を開始される燃焼開始領域,燃焼が開始された廃棄物の本格的な燃焼が行われる主燃焼領域,そして主燃焼領域における廃棄物の未燃焼部分のさらなる燃焼が行われる後燃焼領域が設けられている、火格子式廃棄物焼却炉は:
     燃焼用一次ガスを前記火格子の下から前記燃焼室内に吹き込む一次ガス吹込みユニットと;そして、
     複数の高温ガス吹込口を備えており、前記燃焼室内の火格子から上方に1m~3mの範囲内に離れた位置から、複数の高温ガス吹込口からの高温ガスを前記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹込む高温ガス吹き込みユニットと、を備えており、
     前記高温ガス吹込みユニットの複数の高温ガス吹込口から下向きに吹き込まれた高温ガスは、前記火格子上の廃棄物から発生された可燃性ガスを含む燃焼ガスの上昇流を抑制し、前記火格子上の廃棄物の上に高温ガス及び燃焼ガスのよどみ又は循環を形成して平面状燃焼領域を形成させる、ことを特徴とする。
  2.  燃焼室は火格子からの高さが3m以下の天井を含んでいて、前記高温ガス吹込みユニットの複数の高温ガス吹込口は前記天井に設けられている、ことを特徴とする請求項1に従っている火格子式廃棄物焼却炉。
  3.  前記高温ガス吹込みユニットの前記複数の高温ガス吹き込み口は、前記火格子上の廃棄物の移動の方向と交差する前記燃焼室の炉幅方向に配置されていて、前記高温ガス吹込みユニットは、火格子上の廃棄物の状態に応じて、それぞれの高温ガス吹込口における高温ガスの吹込み流速又は吹込み流量を調整する、ことを特徴とする請求項1又は2に従っている火格子式廃棄物焼却炉。
  4.  火格子温度又は燃焼室内ガス温度を計測して燃焼室内の状態又は火格子上の廃棄物の状態を把握する状態把握ユニットと、把握した燃焼室内の状態又は火格子上の廃棄物の状態に応じて高温ガス吹込口からの高温ガスの吹込み流速又は吹込み流量を調整する調整ユニットとを備える、ことを特徴とする請求項1又は2に従っている火格子式廃棄物焼却炉。
  5.  前記高温ガス吹込みユニットが吹き込む高温ガスは、温度が100℃~400℃の範囲であり、酸素濃度が5体積%~30体積%の範囲である、ことを特徴とする請求項1又は2に従っている火格子式廃棄物焼却炉。
  6.  前記高温ガス吹込みユニットは、高温ガスを燃焼室内に、燃焼室内のガス流量をガスが流れる方向に対して直交する燃焼室の断面積で除した空塔速度の5倍~20倍の流速で吹込む、ことを特徴とする請求項1又は2に従っている火格子式廃棄物焼却炉。
  7.  前記高温ガス吹込みユニットは、焼却炉から排出された排ガスの一部、前記排ガスの一部と空気との混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つを高温ガスとして供給する高温ガス供給源を備える、ことを特徴とする請求項1又は2に従っている火格子式廃棄物焼却炉。
  8.  前記燃焼室において前記火格子の上方に配置され前記燃焼室と連通した二次燃焼室、二次燃焼室に二次燃焼用ガスを吹込む二次燃焼用ガス吹込みユニット、そして二次燃焼室に連接されたボイラをさらに備えており、二次燃焼室では前記燃焼室の前記火格子上の廃棄物から発生した可燃性ガスの未燃焼分が二次燃焼用ガスとともに燃焼されてボイラを加熱する、ことを特徴とする請求項1又は2に従っている火格子式廃棄物焼却炉。
  9.  その上に廃棄物が供給され供給された廃棄物が移動される間に燃焼される火格子が設けられている燃焼室を含んでおり、火格子上には、廃棄物の移動の方向に沿い、供給された廃棄物が燃焼を開始される燃焼開始領域,燃焼が開始された廃棄物の本格的な燃焼が行われる主燃焼領域,そして主燃焼領域における廃棄物の未燃焼部分のさらなる燃焼が行われる後燃焼領域が設けられている、火格子式廃棄物焼却炉を用いた廃棄物焼却方法は:
     燃焼用一次ガスを火格子の下から前記燃焼室内に吹込む工程;そして、
     前記燃焼室内の火格子から上方に1m~3mの範囲内に離れた複数の位置から、高温ガスを前記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹込む工程、を備えており、
     前記下向きに吹き込まれた高温ガスは、廃棄物から発生された可燃性ガスを含む燃焼ガスの上昇流を抑制し、前記火格子上の廃棄物の上に高温ガス及び燃焼ガスのよどみ又は循環を形成して平面状燃焼領域を形成させる、ことを特徴とする。
  10.  前記燃焼室は火格子からの高さが3m以下の天井を含んでいて、前記高温ガスは前記天井の複数の位置から前記燃焼室内に下向きに吹き込まれる、ことを特徴とする請求項9に従っている廃棄物焼却方法。
  11.  前記燃焼室内に高温ガスが吹き込まれる前記複数の位置は、前記火格子上の廃棄物の移動方向と交差する前記燃焼室の幅方向に配置されていて、前記高温ガス吹き込み工程では、火格子上の廃棄物の状態に応じて、それぞれの位置における高温ガスの吹込み流速又は吹込み流量を調整して吹込む、ことを特徴とする請求項9又は10に従っている廃棄物焼却方法。
  12.  前記高温ガス吹き込み工程では、火格子温度又は燃焼室内ガス温度を計測して燃焼室内の状態又は火格子上の廃棄物の状態を把握し、把握した燃焼室内の状態又は火格子上の廃棄物の状態に応じて高温ガスの吹込み流速又は吹込み流量を調整して吹込む、ことを特徴とする請求項9又は10に従っている記載の廃棄物焼却方法。
  13.  前記高温ガス吹き込み工程で吹き込まれる高温ガスは、温度が100℃~400℃の範囲であり、酸素濃度が5体積%~30体積%の範囲である、ことを特徴とする請求項9又は10に従っている廃棄物焼却方法。
  14.  前記高温ガス吹き込み工程では高温ガスを、燃焼室内のガス流量をガスが流れる方向に対して直交する燃焼室の断面積で除した空塔速度の5倍~20倍の流速で吹込む、ことを特徴とする請求項9又は10に従っている廃棄物焼却方法。
  15.  前記高温ガス吹き込み工程で吹き込まれる高温ガスは、焼却炉から排出された排ガスの一部、前記排ガスの一部と空気との混合ガス、空気、酸素を含有するガス及び酸素富化空気のうち少なくとも一つである、ことを特徴とする請求項9又は10に従っている廃棄物焼却方法。
  16.  二次燃焼用ガスを二次燃焼領域に吹き込む工程をさらに備えており、
     廃棄物の燃焼に必要な単位時間当りの理論酸素量に対する、
     燃焼用一次ガスにより供給される単位時間当りの酸素量の比Q1と、
     高温ガスにより供給される単位時間当りの酸素量の比Q2と、
     二次燃焼用ガスにより供給される単位時間当りの酸素量の比Q3とが、
     式(1)
     Q1:Q2:Q3=0.75~1.10:0.05~0.40:0.10~0.40
     及び、式(2)
     1.0≦Q1+Q2+Q3≦1.5
     を満足する、ことを特徴とする請求項9又は10に従っている廃棄物焼却方法。
  17.  二次燃焼用ガスを二次燃焼領域に吹き込む工程をさらに備えており、
     廃棄物の燃焼に必要な単位時間当りの理論酸素量に対する、
     燃焼用一次ガスにより供給される単位時間当りの酸素量の比Q1と、
     高温ガスにより供給される単位時間当りの酸素量の比Q2と、
     二次燃焼用ガスにより供給される単位時間当りの酸素量の比Q3とが、
     式(3)
     Q1:Q2:Q3=0.80~1.00:0.10~0.30:0.10~0.30
     及び、式(4)
     1.1≦Q1+Q2+Q3≦1.3
     を満足する、ことを特徴とする請求項9又は10に従っている廃棄物焼却方法。
  18.  その上に廃棄物が供給され供給された廃棄物が移動される間に燃焼される火格子が設けられているとともに天井を有している燃焼室を含んでおり、火格子上には、廃棄物の移動の方向に沿い、供給された廃棄物が燃焼を開始される燃焼開始領域,燃焼が開始された廃棄物の本格的な燃焼が行われる主燃焼領域,そして主燃焼領域における廃棄物の未燃焼部分のさらなる燃焼が行われる後燃焼領域が設けられている、火格子式廃棄物焼却炉は:
     燃焼用一次ガスを上記火格子の下から上記燃焼室内に吹き込む一次ガス吹込みユニットと;そして、
     高温ガスを上記燃焼室の天井から、火格子上の廃棄物の移動方向に沿い、前記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹き込む高温ガス吹込みユニットと、を具備しており、
     前記高温ガス吹込みユニットは、燃焼室に吹き込まれる高温ガスの吹込み流速を、燃焼室の高さとの関係において次の(5)式
      -0.107X+4.70X+3.96 ≦ Y ≦ -0.199X+8.73X+7.36…(5)
      ここにおいては、Y:高温ガスの吹込み流速(m/sec)
      X:燃焼室高さ(m)
     で表される範囲とするように制御する高温ガス吹込み流速制御ユニットを備える、ことを特徴とする。
  19.  前記高温ガス吹込みユニットが吹き込む高温ガスは、温度が100℃~400℃の範囲であり、酸素濃度が5体積%~30体積%の範囲である、ことを特徴とする請求項18に従っている火格子式廃棄物焼却炉。
  20.  その上に廃棄物が供給され供給された廃棄物が移動される間に燃焼される火格子が設けられている燃焼室を含んでおり、火格子上には、廃棄物の移動の方向に沿い、供給された廃棄物が燃焼を開始される燃焼開始領域,燃焼が開始された廃棄物の本格的な燃焼が行われる主燃焼領域,そして主燃焼領域における廃棄物の未燃焼部分のさらなる燃焼が行われる後燃焼領域が設けられている、火格子式廃棄物焼却炉を用いた廃棄物焼却方法は:
     燃焼用一次ガスを火格子下から上記燃焼室内に吹き込む工程;そして、
     高温ガスを上記燃焼室の天井から、火格子上の廃棄物の移動方向に沿い上記燃焼室内の燃焼開始領域から主燃焼領域までの間の任意の部位に向かって下向きに吹き込む工程、を備えており、
     高温ガス吹き込み工程において、高温ガスを燃焼室内に吹込む流速を、燃焼室における火格子から天井までの高さとの関係において次の(5)式
      -0.107X+4.70X+3.96 ≦ Y ≦ -0.199X+8.73X+7.36…(5)
      ここにおいて、Y:高温ガスの吹込み流速(m/sec)
      X:燃焼室高さ(m)
     で表される範囲とすることを特徴とする。
  21.  前記高温ガス吹き込み工程で燃焼室内に吹き込まれる高温ガスは、温度が100℃~400℃の範囲であり、酸素濃度が5体積%~30体積%の範囲である、ことを特徴とする請求項20に従っている廃棄物焼却方法。
  22.  前記高温ガス吹き込み工程で燃焼室内に吹き込まれる高温ガスを、燃焼室内のガス流量をガスが流れる方向に対して直交する燃焼室の断面積で除した空塔速度の5倍~20倍の流速で吹き込む、ことを特徴とする請求項20又は請求項21に従っている廃棄物焼却方法。
PCT/JP2013/056039 2012-03-05 2013-03-05 火格子式廃棄物焼却炉及び廃棄物焼却方法 WO2013133290A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MYPI2014702412A MY192647A (en) 2012-03-05 2013-03-05 Grate-type waste incinerator and waste incineration method
CN201380012937.4A CN104160214B (zh) 2012-03-05 2013-03-05 炉排式废弃物焚烧炉以及废弃物焚烧方法

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2012-048346 2012-03-05
JP2012048346 2012-03-05
JP2012268062A JP6008187B2 (ja) 2012-12-07 2012-12-07 廃棄物焼却炉及び廃棄物焼却方法
JP2012268065A JP5892339B2 (ja) 2012-12-07 2012-12-07 廃棄物焼却炉及び廃棄物焼却方法
JP2012268604A JP6011295B2 (ja) 2012-03-05 2012-12-07 廃棄物焼却炉及び廃棄物焼却方法
JP2012268066A JP6103471B2 (ja) 2012-12-07 2012-12-07 廃棄物焼却炉及び廃棄物焼却方法
JP2012-268066 2012-12-07
JP2012-268065 2012-12-07
JP2012-268604 2012-12-07
JP2012-268062 2012-12-07

Publications (1)

Publication Number Publication Date
WO2013133290A1 true WO2013133290A1 (ja) 2013-09-12

Family

ID=49116765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056039 WO2013133290A1 (ja) 2012-03-05 2013-03-05 火格子式廃棄物焼却炉及び廃棄物焼却方法

Country Status (1)

Country Link
WO (1) WO2013133290A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161444A (ja) * 2014-02-27 2015-09-07 Jfeエンジニアリング株式会社 廃棄物焼却炉
JP2015187515A (ja) * 2014-03-26 2015-10-29 Jfeエンジニアリング株式会社 廃棄物焼却炉及び廃棄物焼却方法
JP2015187514A (ja) * 2014-03-26 2015-10-29 Jfeエンジニアリング株式会社 廃棄物焼却炉及び廃棄物焼却方法
JP2015187516A (ja) * 2014-03-26 2015-10-29 Jfeエンジニアリング株式会社 廃棄物焼却炉及び廃棄物焼却方法
CN104748129B (zh) * 2013-12-30 2017-10-24 川崎重工业株式会社 炉排式焚烧炉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257616A (ja) * 1998-03-10 1999-09-21 Ishikawajima Harima Heavy Ind Co Ltd 回転ストーカ炉
JP2001276770A (ja) * 2000-03-29 2001-10-09 Sumitomo Heavy Ind Ltd ロータリーキルンを用いた廃棄物燃焼・溶融方法及びロータリーキルン
JP2004084981A (ja) * 2002-08-23 2004-03-18 Jfe Engineering Kk 廃棄物焼却炉
JP2006281150A (ja) * 2005-04-04 2006-10-19 Takuma Co Ltd 焼却灰改質装置を備えたごみ焼却炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257616A (ja) * 1998-03-10 1999-09-21 Ishikawajima Harima Heavy Ind Co Ltd 回転ストーカ炉
JP2001276770A (ja) * 2000-03-29 2001-10-09 Sumitomo Heavy Ind Ltd ロータリーキルンを用いた廃棄物燃焼・溶融方法及びロータリーキルン
JP2004084981A (ja) * 2002-08-23 2004-03-18 Jfe Engineering Kk 廃棄物焼却炉
JP2006281150A (ja) * 2005-04-04 2006-10-19 Takuma Co Ltd 焼却灰改質装置を備えたごみ焼却炉

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748129B (zh) * 2013-12-30 2017-10-24 川崎重工业株式会社 炉排式焚烧炉
JP2015161444A (ja) * 2014-02-27 2015-09-07 Jfeエンジニアリング株式会社 廃棄物焼却炉
JP2015187515A (ja) * 2014-03-26 2015-10-29 Jfeエンジニアリング株式会社 廃棄物焼却炉及び廃棄物焼却方法
JP2015187514A (ja) * 2014-03-26 2015-10-29 Jfeエンジニアリング株式会社 廃棄物焼却炉及び廃棄物焼却方法
JP2015187516A (ja) * 2014-03-26 2015-10-29 Jfeエンジニアリング株式会社 廃棄物焼却炉及び廃棄物焼却方法

Similar Documents

Publication Publication Date Title
JP4479655B2 (ja) 火格子式廃棄物焼却炉及びその燃焼制御方法
JP6011295B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6824642B2 (ja) 廃棄物焼却装置及び廃棄物焼却方法
WO2013133290A1 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP6146673B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP5861880B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP5818093B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP3956862B2 (ja) 廃棄物焼却炉の燃焼制御方法及び廃棄物焼却炉
JP6256859B2 (ja) 廃棄物焼却方法
JP6218117B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP7035356B2 (ja) 廃棄物焼却装置及び廃棄物焼却方法
JP2013257065A (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6090578B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP5871207B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6455717B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP6146671B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6443758B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP2015209992A (ja) 廃棄物焼却処理装置及び廃棄物焼却処理方法
JP6008187B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6183787B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP5892339B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6103471B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
CN104160214A (zh) 炉排式废弃物焚烧炉以及废弃物焚烧方法
JP2004077013A (ja) 廃棄物焼却炉の操業方法及び廃棄物焼却炉
EP1500875A1 (en) Method of operating waste incinerator and waste incinerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758600

Country of ref document: EP

Kind code of ref document: A1