JP6008022B2 - 半導体片の製造方法 - Google Patents

半導体片の製造方法 Download PDF

Info

Publication number
JP6008022B2
JP6008022B2 JP2015127757A JP2015127757A JP6008022B2 JP 6008022 B2 JP6008022 B2 JP 6008022B2 JP 2015127757 A JP2015127757 A JP 2015127757A JP 2015127757 A JP2015127757 A JP 2015127757A JP 6008022 B2 JP6008022 B2 JP 6008022B2
Authority
JP
Japan
Prior art keywords
groove
adhesive layer
substrate
width
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015127757A
Other languages
English (en)
Other versions
JP2016096325A (ja
Inventor
高橋 睦也
睦也 高橋
山田 秀一
秀一 山田
道昭 村田
道昭 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to US14/884,168 priority Critical patent/US9589812B2/en
Publication of JP2016096325A publication Critical patent/JP2016096325A/ja
Application granted granted Critical
Publication of JP6008022B2 publication Critical patent/JP6008022B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02016Backside treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dicing (AREA)
  • Inorganic Chemistry (AREA)

Description

本発明は、半導体片の製造方法に関する。
サファイア基板の表面側から第1の溝を第1のブレードで形成し、その後、裏面側から第1の溝よりも広く深い第2の溝を第2のブレードで形成することで、一枚の基板から取得できるチップ数を減らすことなく歩留まりを向上させることが可能なダイシング方法が提案されている(特許文献1)。また、ウエハ表面からウエハの途中までレーザーで溝を形成し、その後、ウエハ裏面からレーザーによる溝に達する位置までブレードで切削加工することで、ウエハに形成可能な半導体素子の数量を増加させる方法が提案されている(特許文献2)。
特開2003−124151号公報 特開2009−88252号公報
本発明は、半導体基板の表面への粘着層の残存抑制と半導体片の強度確保とを両立しやすい半導体片の製造方法を提供することを目的とする。
請求項1は、基板の表面から裏面に向けて表面側の溝をドライエッチングで形成する工程と、前記表面側の溝が形成された前記表面に粘着層を有する保持部材を貼り付ける工程と、前記基板の裏面側から前記基板を薄化する工程と、前記薄化後に前記表面と前記保持部材とを剥離する工程と、を備え、前記表面側の溝の幅が深さ方向に向けて徐々に狭くなる前記ドライエッチングで前記表面側の溝の形成を開始し、前記表面側の溝の形成途中で、前記ドライエッチングに使用するエッチングガスに含まれる保護膜形成用のガスの流量を、第1の流量から、当該保護膜形成用のガスの流量を停止しない範囲で当該第1の流量よりも少ない第2の流量に切り替えて、前記基板表面から裏面に向けて幅が徐々に狭くなる第1の溝部分と、当該第1の溝部分の下方に連通して形成される溝部分であって、当該第1の溝部分の角度よりも急な角度で下方に延びる第2の溝部分とを有する前記表面側の溝を形成する半導体片の製造方法。
請求項2は、基板の表面から裏面に向けて表面側の溝をドライエッチングで形成する工程と、前記表面側の溝が形成された前記表面に粘着層を有する保持部材を貼り付ける工程と、前記基板の裏面側から前記基板を薄化する工程と、前記薄化後に前記表面と前記保持部材とを剥離する工程と、を備え、前記表面側の溝の幅が深さ方向に向けて徐々に狭くなる前記ドライエッチングで前記表面側の溝の形成を開始し、前記表面側の溝の形成途中で、前記ドライエッチングに使用するエッチングガスに含まれるエッチング用のガスの流量を、第1の流量から、当該第1の流量よりも多い第2の流量に切り替えて、前記基板表面から裏面に向けて幅が徐々に狭くなる第1の溝部分と、当該第1の溝部分の下方に連通して形成される溝部分であって、当該第1の溝部分の角度よりも急な角度で下方に延びる第2の溝部分とを有する前記表面側の溝を形成する半導体片の製造方法。
請求項3は、前記第2の溝部分は、前記第1の溝部分の最下部の幅よりも幅が広がることなく下方に延びる溝部分である請求項1または2に記載の半導体片の製造方法。
請求項4は、前記表面側の溝の側面は、前記第1の溝部分と前記第2の溝部分との間に角部を有さない請求項1または2に記載の半導体片の製造方法。
請求項1及び2によれば、単一のエッチング条件で表面側の溝を形成する場合と比較し、半導体基板の表面への粘着層の残存抑制と半導体片の強度確保を両立しやすい。
請求項3によれば、第2の溝部分に粘着層が侵入した場合に、第1の溝部分の最下部の幅よりも広い幅の第2の溝部分を有する構成と比較し、半導体基板の表面への粘着層の残存を抑制できる。
請求項4によれば、第2の溝部分に粘着層が侵入した場合に、第1の溝部分と第2の溝部分との間に角部を有する構成と比較し、半導体基板の表面への粘着層の残存を抑制できる。
本発明の実施例に係る半導体片の製造工程の一例を示すフローである。 本発明の実施例に係る半導体片の製造工程における半導体基板の模式的な断面図である。 本発明の実施例に係る半導体片の製造工程における半導体基板の模式的な断面図である。 回路形成完了時の半導体基板(ウエハ)の概略的な平面図である。 ダイシングブレードによるハーフダイシングの詳細を説明する断面図である。 ダイシング用テープを基板表面から剥離するときの粘着層の残存を説明する断面図である。 本発明の実施例による微細溝であり、図7(A)、(B)は、第1の微細溝の形状を示す断面図、図7(C)、(D)は、第2の微細溝の形状を示す断面図である。 比較例の微細溝であり、図8(A)、(B)は、逆テーパ形状の微細溝を示す断面図、図8(C)、(D)は、垂直形状の微細溝を示す断面図である。 他の比較例の微細溝であり、図9(A)は、順テーパ形状のみの微細溝を示す断面図、図9(B)、(C)は、順テーパ形状と垂直形状とで構成された微細溝を示す断面図である。 本発明の実施例による微細溝の製造方法を説明する概略工程断面図である。 図11(A)は、半導体チップに形成される段差部を示す断面図、図11(B)は、ダイシングブレードによる切断時に段差部に印加される荷重を説明する図、図11(C)は、段差部の破損を説明する図である。
本発明の半導体片の製造方法は、例えば、複数の半導体素子が形成された半導体ウエハなどの基板状の部材を分割(個片化)して、個々の半導体片(半導体チップ)を製造する方法に適用される。基板上に形成される半導体素子は、特に制限されるものではなく、発光素子、能動素子、受動素子等を含むことができる。好ましい態様では、本発明の製造方法は、発光素子を含む半導体片を基板から取り出す方法に適用され、発光素子は、例えば、面発光型半導体レーザー、発光ダイオード、発光サイリスタであることができる。1つの半導体片は、単一の発光素子を含むものであってもよいし、複数の発光素子をアレイ状に配置されたものであってもよく、さらに1つの半導体片は、そのような1つまたは複数の発光素子を駆動する駆動回路を包含することもできる。また、基板は、例えば、シリコン、SiC、化合物半導体、サファイア等で構成される基板であることができるが、これらに限定されず、少なくとも半導体を含む基板(以下、総称して半導体基板という)であれば他の材料の基板であってもよい。なお、好ましい態様では、面発光型半導体レーザーや発光ダイオード等の発光素子が形成される、GaAs等のIII−V族化合物半導体基板である。
以下の説明では、複数の発光素子が半導体基板上に形成され、当該半導体基板から個々の半導体片(半導体チップ)を取り出す方法について図面を参照して説明する。なお、図面のスケールや形状は、発明の特徴を分かり易くするために強調しており、必ずしも実際のデバイスのスケールや形状と同一ではないことに留意すべきである。
図1は、本発明の実施例に係る半導体片の製造工程の一例を示すフローである。同図に示すように、本実施例の半導体片の製造方法は、発光素子を形成する工程(S100)、レジストパターンを形成する工程(S102)、半導体基板の表面に微細溝を形成する工程(S104)、レジストパターンを剥離する工程(S106)、半導体基板の表面にダイシング用テープを貼付ける工程(S108)、半導体基板の裏面からハーフダイシングをする工程(S110)、ダイシング用テープに紫外線(UV)を照射し、半導体基板の裏面にエキスパンド用テープを貼付ける工程(S112)、ダイシング用テープを剥離し、エキスパンド用テープに紫外線を照射する工程(S114)、半導体片(半導体チップ)をピッキングし、回路基板等にダイマウントする工程(S116)を含む。図2(A)ないし(D)、および図3(E)ないし(I)に示す半導体基板の断面図は、それぞれステップS100ないしS116の各工程に対応している。
発光素子を形成する工程(S100)では、図2(A)に示すように、GaAs等の半導体基板Wの表面に、複数の発光素子100が形成される。発光素子100は、例えば、面発光型半導体レーザー、発光ダイオード、発光サイリスタ、等である。なお、図面には、発光素子100として1つの領域を示しているが、1つの発光素子100は、個片化された1つの半導体片に含まれる素子を例示しており、1つの発光素子100の領域には、1つの発光素子のみならず、複数の発光素子やその他の回路素子が含まれ得ることに留意すべきである。
図4は、発光素子の形成工程が完了したときの半導体基板Wの一例を示す平面図である。図面には、便宜上、中央部分の発光素子100のみが例示されている。半導体基板Wの表面には、複数の発光素子100が行列方向にアレイ状に形成されている。1つの発光素子100の平面的な領域は、概ね矩形状であり、各発光素子100は、一定間隔Sを有するスクライブライン等で規定される切断領域120によって格子状に離間されている。
発光素子の形成が完了すると、次に、半導体基板Wの表面にレジストパターンが形成される(S102)。図2(B)に示すように、レジストパターン130は、半導体基板Wの表面のスクライブライン等で規定される切断領域120が露出されるように加工される。レジストパターン130の加工は、フォトリソ工程によって行われる。
次に、半導体基板Wの表面に微細な溝が形成される(S104)。図2(C)に示すように、レジストパターン130をマスクに用い、半導体基板Wの表面に一定の深さの微細な溝(以下、便宜上、微細溝または表面側の溝という)140が形成される。このような溝は、例えば、ドライエッチングにより形成でき、好ましくは、異方性ドライエッチングである異方性プラズマエッチング(リアクティブイオンエッチング)により形成される。微細溝140の幅Saは、レジストパターン130に形成された開口の幅とほぼ等しく、微細溝140の幅Saは、例えば、数μmから十数μmである。また、その深さは、例えば、約10μmから100μm程度であり、少なくとも発光素子等の機能素子が形成される深さよりも深く形成される。微細溝140を一般的なダイシングブレードによって形成した場合には、切断領域120の間隔Sが、ダイシングブレード自体の溝幅及びチッピング量を考慮したマージン幅の合計として40ないし60μm程度と大きくなる。一方、微細溝140を半導体プロセスで形成した場合には、溝幅自体が狭いだけでなく切断のためのマージン幅もダイシングブレードを使用した場合のマージン幅より狭くすることが可能となり、言い換えれば、切断領域120の間隔Sを小さくすることができ、このため、発光素子をウエハ上に高密度に配置して半導体片の取得数を増加させることができる。なお、本実施例における「表面側」とは発光素子等の機能素子が形成される面側をいい、「裏面側」とは「表面側」とは反対の面側をいう。
次に、レジストパターンを剥離する(S106)。図2(D)に示すように、レジストパターン130を半導体基板の表面から剥離すると、表面には切断領域120に沿って形成された微細溝140が露出される。なお、微細溝140の形状の詳細については後述する。
次に、紫外線硬化型のダイシング用テープを貼り付ける(S108)。図3(E)に示すように、発光素子側に粘着層を有するダイシング用テープ160が貼り付けられる。次に、基板裏面側からダイシングブレードにより微細溝140に沿ってハーフダイシングが行われる(S110)。ダイシングブレードの位置決めは、基板裏面側に赤外線カメラを配置し、基板を透過して間接的に微細溝140を検知する方法や、基板表面側にカメラを配置し、直接、微細溝140の位置を検知する方法や、その他の公知の方法が利用できる。このような位置決めによって、図3(F)に示すように、ダイシングブレードによりハーフダイシングが行われ、半導体基板の裏面側に溝170が形成される。溝170は、半導体基板の表面に形成された微細溝140に到達する深さを有する。ここで、微細溝140はダイシングブレードによる裏面側に溝170よりも狭い幅で形成されているが、これは、微細溝140を裏面側の溝170よりも狭い幅で形成すれば、ダイシングブレードのみで半導体基板を切断する場合と比較し、一枚のウエハから取得できる半導体片の数が増やせるためである。なお、図2(C)に示す数μmから十数μm程度の微細溝を半導体基板の表面から裏面に至るまで形成できれば、そもそもダイシングブレードを用いて裏面側の溝を形成する必要なないが、そのような深さの微細溝を形成することは容易でない。よって、図3(F)に示すように、ダイシングブレードによる裏面からのハーフダイシングを組み合わせている。
次に、ダイシング用テープへ紫外線(UV)を照射し、またエキスパンド用テープを貼り付ける(S112)。図3(G)に示すようにダイシング用テープ160に紫外線180が照射され、その粘着層が硬化される。その後、半導体基板の裏面にエキスパンド用テープ190が貼り付けられる。
次に、ダイシング用テープを剥離し、エキスパンド用テープに紫外線を照射する(S114)。図3(H)に示すように、ダイシング用テープ160が半導体基板の表面から剥離される。また、基板裏面のエキスパンド用テープ190に紫外線200が照射され、その粘着層が硬化される。エキスパンド用テープ190は、基材に伸縮性を有し、ダイシング後に個片化した半導体片のピックアップが容易になるようにテープを伸ばし、発光素子の間隔を拡張する。
次に、個片化された半導体片のピッキングおよびダイマウントを行う(S116)。図3(I)に示すように、エキスパンド用テープ190からピッキングされた半導体片210が、接着剤やはんだ等の導電性ペーストなどの固定部材220を介して回路基板230上に実装される。
次に、ダイシングブレードによるハーフダイシングの詳細について説明する。図5は、図3(F)に示すダイシングブレードによるハーフダイシングをしたときの拡大された断面図を上下反転した状態を示している。なお、図3は、基板表面に形成された発光素子100を強調して表示したが、図5は、基板表面に発光素子を明示していないが、発光素子は図3のときと同様に基板表面に形成されているものとする。
図5に示すように、ダイシングブレード300は、微細溝140に沿って、回転しながら半導体基板Wを裏面から切削して、半導体基板W内に溝170を形成する。ダイシングブレード300は、例えば、円盤状の切削部材であり、ここには、先端部が一定の厚みをもつ例が示されているが、先端部が先細りするようなダイシングブレードであってもよい。ダイシングブレード300により形成された溝170(カーフ幅)は、ダイシングブレード300の厚みとほぼ等しい幅を有し、当該溝170は、微細溝140に通じる深さに加工される。なお、ダイシングブレード300は、半導体基板Wの外側で、半導体基板Wの裏面と平行な方向の位置合わせがされる。更に、半導体基板Wの裏面と垂直な方向Yに所定量だけ移動されることで、溝170と微細溝140との接続部に形成される段差により形成される段差部800が、Y方向に所望の厚みTを有するように半導体基板Wの厚み方向の位置合わせがなされる。そして、半導体基板Wの外側で位置合わせがなされた後、ダイシングブレード300を回転させた状態で、ダイシングブレード300または半導体基板Wの少なくとも一方を、半導体基板Wの裏面と平行な方向に移動させることで、半導体基板Wに溝170を形成する。なお、段差部800は、溝170と微細溝140との接続部に形成される段差と半導体基板Wの表面との間の部分であるが、言い換えると、溝170の幅と微細溝140の幅との差により形成される段差形状の部分である。
ダイシングブレード300によるハーフダイシングが行われるとき、基板表面には、ダイシング用テープ160が貼り付けられる。ダイシング用テープ160は、テープ基材162と、その上に積層された粘着層164とを含む。粘着層164は、紫外線硬化型樹脂から構成され、紫外線が照射される前までは、一定の粘度または粘性を有し、紫外線が照射されると硬化してその粘着性が失われる性質を有する。このため、ダイシング用テープ160が貼り付けられたとき、粘着層164は、微細溝140を含む基板表面に接着し、ダイシング後に半導体片が離脱しないようにこれらを保持する。
図5の切断ラインA2において、半導体基板Wの切削中、ダイシングブレード300の回転やダイシングブレード300と半導体基板Wの相対的な移動などにより、溝170の内壁を介して半導体基板Wに振動Bおよび切削圧力Pが印加される。切削圧力Pにより半導体基板WがY方向に押圧されると、粘性のある粘着層164が流動して微細溝140内に入り込む。また、振動Bが微細溝140の近傍に伝達されることで、粘着層164の流動を助長する。さらに、ダイシングブレード300による切削では、切粉混じりの切削水流(ジェット水流)が溝170に供給され、この切削水流により微細溝140が拡張する方向に圧力P1を受けるため、粘着層164の進入がさらに助長され得る。その結果、後述する本実施例の順テーパ形状を有さない微細溝の場合、例えば、約5μmの幅の微細溝140内に、約10μm程度の進入深さで粘着層164が入り込む場合がある。そこで、本実施例では、半導体片の取得数を向上させる等の理由で表面側の溝幅を裏面側の溝幅よりも狭して半導体片を製造する方法であっても、裏面側の溝が回転する切削部材で形成される場合には、半導体片の取得数が若干犠牲になるものの、後述する順テーパ形状の微細溝を形成するようにしている。
なお、ダイシングが終了した切断ラインA1では、隣の切断ラインA2の切削中に、微細溝140が幅方向に狭まるような圧力を受けるため、微細溝140に入り込んだ粘着層164がさらに内部に入り込みやすくなると考えられる。切断前の反対側の切断ラインA3では、粘着層164が貼付されただけであるため、微細溝140内に粘着層164が入り込む量は相対的に少ないと考えられる。
ダイシングブレード300によるハーフダイシングが終了すると、基板裏面にエキスパンド用テープ190が貼り付けられ、次に、ダイシング用テープ160へ紫外線180が照射される。紫外線が照射された粘着層164は硬化し、その粘着力が失われる(図3(G))。次に、ダイシング用テープが基板表面から剥離される。図6は、ダイシング用テープを剥離するときの粘着層の残存を説明する断面図である。基板裏面に貼付されたエキスパンド用テープ190、テープ基材192と、その上に積層された粘着層194とを含み、切断された半導体片は粘着層194によって保持されている。
ダイシング用テープ160と基板表面とが剥離されるとき、微細溝140内に入り込んだ粘着層164aは、深い位置まで進入しているため、その一部が十分に紫外線によって照射されず、未硬化になってしまう場合がある。未硬化の粘着層164は、粘着性を有しているため、粘着層164が基板表面から剥離されるとき、未硬化の粘着層164aが切れ、粘着層164aが微細溝140内に残存したり、あるいは基板表面に再付着して残存し得る。また、仮に硬化した状態であっても、粘着層164aは狭い微細溝に深く侵入しているため、剥離する際の応力によりちぎれて残存し得る。もし、残存した粘着層164bが発光素子の表面に再付着されてしまうと、発光素子の光量に低下をきたし、発光素子が不良品とされ、歩留まりが低下することになる。また、発光素子以外の半導体チップであっても、粘着層164bが残存することでチップの外観検査等で不良と判定されるなど、その他の悪影響が想定される。このため、ダイシング用テープの剥離時に、粘着層164a、164bが基板表面に残存することは好ましいものではない。本実施例では、基板表面に形成される微細溝の形状を後述するように順テーパ形状に変更することで、ダイシング用テープの剥離時に粘着層が微細溝内や基板表面などに残存するのを抑制するようにする。
なお、複数の発光素子100がメサ形状で形成されている場合、発光素子100が凸部を形成し、発光素子100と他の発光素子100との間が凹部となり、この凹部に微細溝140が形成されることが多い。このような構成では、凸部だけでなく、凹部に形成された微細溝140の入り口部分にも粘着層164を追従させるように貼りつけることで、切粉混じりの切削水流が基板表面側に侵入しないようにする構成が考えられる。ただし、微細溝140の入り口部分に粘着層164を追従させるようにするためには、十分な厚みの粘着層164を有するダイシング用テープが必要となるため、これにより粘着層164がより微細溝140の深くに入り込みやすくなる。よって、このような粘着層164が微細溝140の深くに入り込みやすい条件において、後述する本実施例の順テーパ形状の微細溝を適用することにより、粘着層164の残存に対してより高い効果が得られる。
また、半導体基板の表面から垂直な微細溝を形成した場合において、粘着層164が微細溝の溝幅の距離よりも深く侵入する場合、つまり、粘着層164のうち微細溝内の粘着層164aの形状が縦長になる場合は、縦長にならない場合と比較し、粘着層164を剥離する際に、微細溝内の粘着層164aの根元部分にかかる応力によりちぎれやすく、残存しやすくなると考えられる。よって、本実施例の順テーパ形状を適用しない場合において微細溝内の粘着層164aの形状が縦長になるような微細溝の幅や粘着層164の厚み等の製造条件において、後述する本実施例の順テーパ形状の微細溝を適用することにより、粘着層164の残存に対してより高い効果が得られる。
次に、本発明の実施例による微細溝の形状について説明する。図7(A)は、本実施例の第1の微細溝の形状を示す断面図、図7(B)は、図7(A)の微細溝内に進入した粘着層への紫外線照射を説明する図である。
図7(A)に示すように、本実施例の微細溝400は、基板表面の開口幅Sa1から深さDの底部の幅Sa2(Sa1>Sa2)まで、開口幅Sa1が狭くなるように傾斜した対向する側面402、404を含む(このような傾斜を順テーパ形状という)。言い換えると、微細溝400は、半導体基板Wの表面の開口幅Sa1から深さDに至るまで幅が徐々に狭くなる形状を有している。また、側面402、404は直線ではなく、溝の上部側よりも下部側の方が急な角度で下方に延びる形状を有する。このような溝形状は、溝の形成途中でエッチング条件を切り替えることで形成される(詳細は後述)。開口幅Sa1は、例えば、おおよそ数μm〜十数μm程度である。深さDは、発光素子などの回路が形成される深さよりも深く、裏面側から溝170を形成した場合に、溝170と微細溝400との幅の差により形成される段差部800が破損しない深さとする。微細溝400が浅すぎる場合は、裏面側から溝170を形成したときに、ダイシングブレード300による応力によって段差部800が破損する場合があるため、破損しない深さとする必要がある。一方、微細溝400が深すぎる場合は、深い溝によって半導体基板の強度が弱くなるため
、微細溝140を形成した後の工程での半導体基板Wの取り扱いが浅い場合と比べて難しくなる。よって、必要以上に深く形成しないことが好ましい。また、微細溝400は、好ましくは、異方性ドライエッチングにより形成され、側面402、404の傾斜角は、フォトレジストの形状やエッチング条件等を変更することで適宜選択可能である。なお、図7(A)の形状は、第1の溝部分と第2の溝部分との境界部分で溝の側面の角度が不連続に変化する部分(角部)が存在しない形状であるため、上部側の第1の溝部分と下部側の第2の溝部分との境界が明確な形状ではない。但し、微細溝400の上部側と下部側とでは側面の角度が異なっているため、基板表面から裏面に向けて幅が徐々に狭くなる第1の溝部分と、第1の溝部分の下方に連通して形成される溝部分であって、第1の溝部分の最下部の幅よりも幅が広がることなく、第1の溝部分の角度よりも急な角度で下方に延びる第2の溝部分とを含む表面側の溝(微細溝)の一例である。
図7(B)に示すように、ダイシングブレード300の切削によりカーフ幅Sbの溝170が形成され、溝170が微細溝400に繋がる。溝170の幅(カーフ幅Sb)は、例えば20〜60μm程度である。ダイシングブレード300からの圧力や振動等の応力によって、粘着層164の一部が順テーパ形状の微細溝400内に進入し、エキスパンド用テープの貼り付け後に、基板表面側からの紫外線180によってダイシング用テープ160が照射される。このとき、微細溝400が順テーパ形状に加工されているため、紫外線180は、半導体基板Wによって遮蔽されることなく、微細溝400内の粘着層164aを十分に照射し、微細溝400内の粘着層164aが硬化され易くなる。その結果、ダイシング用テープ160と基板表面とを剥離するとき、微細溝400内の粘着層164aは、微細溝400の開口幅が同じであっても、垂直形状の場合と比較して粘着性を失っており、基板表面および微細溝400から離脱され易く、粘着層が基板表面に再付着することが抑制される。さらに微細溝400の順テーパ形状は、溝形状が傾斜しているため、微細溝400内に押し込まれた粘着層164aが硬化されていない場合であっても垂直な微細溝と比較して抜け易くなり、粘着層164aの離脱を助長する。
図7(C)は、本実施例の第2の微細溝の形状を示す断面図である。第2の微細溝410は、基板表面の開口幅Sa1から深さDの途中の幅Sa2まで順方向に傾斜した対向する側面412、414の溝部分と、幅Sa2から底部までのほぼ垂直な対向する側面412a、414aの溝部分とを含む。すなわち、基板表面から裏面に向けて幅が徐々に狭くなる第1の溝部分と、第1の溝部分の下方に連通して形成される溝部分であって、第1の溝部分の最下部の幅よりも幅が広がることなく、第1の溝部分の角度よりも急な角度で下方に延びる第2の溝部分とを含んでいる。そして、このような形状は、例えば、溝の形成途中でエッチン条件を切り替えることで形成される。なお、図7(C)の形状は、図7(A)の形状と同様に、第1の溝部分と第2の溝部分との境界部分で溝の側面の角度が不連続に変化する部分(角部)が存在しない形状である。側面412、414による傾斜した溝部分の深さDは、ダイシング用テープ160が貼りつけられた時点で、粘着層164が進入する深さよりも深いことが好ましい。深さDよりも深い溝部分の幅は順テーパ形状の溝幅よりも狭いため、ダイシングブレードの振動や応力による溝幅の変動の比率が順テーパ形状の溝部分よりも大きくなる。よって、ダイシング用テープ160が貼りつけられた時点で既に深さDよりも深い溝部分に粘着層164が侵入している場合、ダイシングブレードの振動や応力により溝のより深くまで粘着層164が侵入し得る。よって、深さDは、ダイシング用テープ160が貼りつけられた状態において、粘着層164が進入する深さよりも深いことが好ましい。
また、深さDは、ダイシングブレードで裏面側の溝が形成された後において、粘着層164が深さDよりも深い溝部分に侵入していない状態を保てる深さであることが好ましい。これは、深さDよりも深い溝部分に粘着層164が侵入している場合、剥離の際に、より残存しやすくなるためである。なお、微細溝全体の深さなど、その他の条件は図7(A)と同じである。
ここで、図7(A)のように順テーパ形状のみにより、微細溝を深く形成しようとすると、開口部Sa1を広くする必要がある。また、開口部Sa1を狭いまま順テーパ形状のみで微細溝400を深く形成しようとするとテーパ角が急角度になるため、微細溝400内に粘着層164が残留し易くなる。一方、図7(C)の形状では、開口部Sa1の幅は微細溝内に粘着層が残留しがたい幅に保ちつつ、所望の深さの微細溝を形成しやすくなる。所望の深さの微細溝を形成できれば、裏面側から微細溝410の幅よりも広い幅の溝170を形成した場合に、微細溝の深さが浅い場合と比べて段差部の破損が抑制される。
また、半導体基板の表面から垂直な微細溝を形成した場合において、粘着層164が微細溝の溝幅の距離よりも深く侵入する場合、つまり、粘着層164のうち微細溝内の粘着層164aの形状が縦長になる場合は、縦長にならない場合と比較し、粘着層164を剥離する際に、微細溝内の粘着層164aの根元部分にかかる応力によって、残存しやすくなる。よって、垂直な微細溝形を形成したと仮定した場合に微細溝内に侵入する粘着層164aの形状が縦長になるような、微細溝の幅や粘着層164の厚み等の製造条件において、図7(C)のように微細溝の入り口部分を順テーパ形状とするのが好ましい。すなわち、順テーパ形状の溝部分よりも下方に位置する溝部分の溝幅が、微細溝410全体がこの溝幅で形成されていると仮定した場合において粘着層が入り込む深さよりも狭い幅である場合に、その溝の入り口部分を順テーパ形状とすれば、粘着層164の残存に対してより高い効果が得られる。
図7(C)の微細溝に対して、ダイシングブレード300の切削によりカーフ幅Sbの溝170を形成すると、図7(D)に示すように、溝170が微細溝410に繋がる形状となる。図7(B)のときと同様に、粘着層164の一部164aが微細溝410内に進入するが、微細溝410の順テーパ形状の溝部分(側面412、414)の深さDを、粘着層164aが入り込む深さよりも深く形成すれば、微細溝410内の粘着層164aは紫外線によって十分に照射され、硬化され易い。このため、ダイシング用テープの剥離時に、微細溝410や基板表面に粘着層が残存することが抑制される。また、微細溝410の側面が傾斜を有するため、微細溝410内に押し込まれた粘着層164aが硬化されていない場合であっても抜け易くなり、粘着層164aの離脱を助長する。
このように本実施例によれば、微細溝400、410は、少なくとも基板表面の開口幅が底部に向けて狭くなるような順テーパ形状の溝部分を含んで構成されるため、ダイシング用テープの粘着層が微細溝内に入り込んだとしても、順テーパ形状でない場合と比較して、微細溝内の粘着層の全体を紫外線で照射し、硬化させその粘着性を失わせ易くなる。更に、順テーパ形状であるため、ダイシング用テープの剥離時に、順テーパ形状でない場合と比較して、粘着層が途切れることが抑制され、一体となって微細溝や基板表面から剥離され易くなる。また、後述する図9(A)の形状のように微細溝の側面が直線のみの形状ではなく、下部側の側面が上部側の側面よりも急な角度を有しているので、微細溝の入口部分の幅が同じ条件であっても、図9(A)の形状よりも深い溝が形成できる。深い溝が形成できれば、裏面側から溝170を形成したときに、ダイシングブレードによる応力によって段差部800が破損しにくくなる。よって、図9(A)の形状と図7(A)や(C)との形状とを比較した場合、図7(A)や(C)の形状の方が、粘着層の残存抑制と段差部の破損抑制とを両立しやすい。
また、図7(A)ないし(D)は、いずれの図も、基板表面の開口幅Sa1が溝170の幅よりも狭い形態を開示しているが、これは、基板表面の開口幅Sa1が溝170の幅よりも狭い構成であれば、溝170の幅のままフルダイシングする方法と比較し半導体片の取得数を増やすことができるためである。ここで、一般的には、半導体片の取得数を増やすためには、表面側の溝は等方性エッチングやダイシングブレードで表面側の溝を形成するよりも、より幅が狭く垂直な形状の溝が形成しやすい異方性ドライエッチングで形成するのがよいが、異方性ドライエッチングを採用することで、単に、幅が狭く垂直な溝形状を形成してしまうと、粘着層の残存の観点からは好ましくない。一方、粘着層の残存に着目すると、幅が狭く垂直な形状の溝となる異方性ドライエッチングで表面側の溝を形成するよりも、微細溝の開口が垂直な形状にならない等方性エッチングなどで形成するのがよいが、等方性エッチングでは、幅が狭く深い溝は形成しにくい。そこで、本実施例では、異方性ドライエッチングであっても、図7(A)ないし(D)に示す形状の微細溝を形成することで、半導体片の取得数向上と粘着層の残存抑制の両立が図れる。
図8(A)、(B)は、微細溝が逆テーパ形状に加工されたときの比較例である。図8(A)に示すように、微細溝500は、開口幅Sa1よりも底部の幅Sa2が大きくなるように対向する傾斜した側面502、504を有する、いわゆる逆テーパ形状の溝に加工されている。このように底部側の幅が広がる形状は、等方性エッチングを使用した場合や、異方性ドライエッチングであっても、エッチングガスに含まれるエッチング用のガス(Cl2等)の流量と側壁保護するための保護膜形成用のガス(C4F8等)の流量とのバランスを、逆テーパ形状に加工されるように設定することで形成される。図8(B)に示すように、逆テーパ形状の微細溝500内に粘着層164の一部164aが進入したとき、開口幅Sa1の間口が狭くなるため、紫外線180の一部が半導体基板Wによって遮蔽され易く、粘着層164aの周縁部165(図中、塗潰し部分)に紫外線が十分に照射されず、ある未硬化の粘着層165が多く残り易くなる。このため、ダイシング用テープの剥離のときに、順テーパ形状である場合と比較して、粘着性のある粘着層165が途切れ易く、微細溝内に残存したり、あるいは基板表面等に再付着してしまう。さらに、逆テーパ形状であるため、微細溝500内に押し込まれた硬化した粘着層164がスムースに抜け難くなる。
図8(C)、(D)は、微細溝が垂直形状に加工されたときの比較例である。図8(C)に示すように、微細溝510は、基板表面の開口幅Sa1の垂直な対向する側面512、514を含む、いわゆる垂直形状の溝に加工されている。このような形状は、一般的な異方性ドライエッチングを採用した場合に形成される。図8(D)に示すように、垂直形状の微細溝510内に進入された粘着層164aは、微細溝の幅Sa1に対して深く内部に入り込んでいるため、順テーパ形状である場合と比較して、粘着層164aの全体が十分に紫外線180によって照射されず、その周縁部の一部の粘着層166が未硬化になり易い。未硬化の粘着層166は、図8(A)の逆テーパ形状のときの粘着層165より少ないが、このような粘着層166は、ダイシング用テープの剥離時に、微細溝510や基板表面に残存、あるいは再付着し得る。
図9(A)は、微細溝520が直線状の側面522、524のみを有する順テーパ形状に加工されたときの比較例である。このような形状は、例えば、異方性ドライエッチングにおいて、エッチングガスに含まれるエッチング用のガス(Cl2等)の流量と側壁保護するための保護膜形成用のガス(C4F8等)の流量とのバランスを、順テーパ形状に加工されるように設定することで形成される。図9(A)に示すように、順テーパ形状の微細溝520内に進入された粘着層164aは、図8(A)や(C)の形状と比較し、粘着層164aの全体に紫外線180が照射されやすい状態となっている。よって、紫外線180を照射後に未硬化の粘着層が発生しにくく、ダイシング用テープの剥離時に、粘着層が微細溝520や基板表面に残存、あるいは再付着しがたくなる。しかしながら、図9(A)の形状は、図7(A)や(C)の形状とは異なり、微細溝520の側面522、524は、角度が一定である直線状の側面で構成されているため、微細溝の入口部分の幅Sa1が同じ条件で比較すると、図7(A)や(C)よりも深い溝が形成できない。深い溝が形成できずに浅い溝となってしまう場合、先に説明した通り、裏面側から溝170を形成したときに、ダイシングブレードによる応力によって段差部800が破損しやすくなる。よって、図9(A)の形状と図7(A)や(C)との形状とを比較した場合、図7(A)や(C)の形状の方が、粘着層の残存抑制と段差部の破損抑制とを両立しやすい。
図9(B)は、微細溝530が、基板表面から裏面に向けて幅が徐々に狭くなる第1の溝部分(532、534)と、第1の溝部分の下方に連通して形成される溝部分であって、第1の溝部分の最下部の幅よりも幅が広がることなく、第1の溝部分の角度よりも急な角度で下方に延びる第2の溝部分(532a、534a)とを含んでいる。このような形状は、例えば、第1の溝部分に相当する上部側の溝部分を等方性エッチングで形成し、第2の溝部分に相当する下部側の溝部分を異方性ドライエッチングで形成することで実現できる。図9(B)は、図9(A)と同様に、微細溝530の入り口部分が順テーパ形状となっているので、図8(A)や(C)の形状と比較し、粘着層が微細溝530や基板表面に残存しにくくなる。また、図9(A)の形状と比較し、微細溝530の入り口部分の幅Sa1が同じであっても、より深い溝を形成できるため、段差部800の破損が抑制される。しかしながら、図9(B)の形状は、図7(A)や(C)の形状と比較すると、第1の溝部分と第2の溝部分との間に、溝の側面532、532aおよび534、534aの角度が不連続に変化する部分(角部)が存在していることにより、第2の溝部分に粘着層が侵入した場合に、粘着層の全体に紫外線180が照射されにくく、未硬化の粘着層が発生しやすい。また、溝の側面532、532aおよび534、534aの角度が不連続に変化する部分(角部)が存在していることにより、ダイシング用テープ160と基板表面とを剥離するとき、第2の溝部分にまで侵入した粘着層164Aが角部にひっかかり、ちぎれやすくなり、粘着層164Aの残存が助長される。よって、図9(B)の形状と、図7(A)や(C)の形状とを比較した場合、図7(A)や(C)の形状の方が、粘着層の残存抑制と段差部の破損抑制とを両立しやすい。
図9(C)は、微細溝540が、基板表面から裏面に向けて幅が徐々に狭くなる直線上の側面542、544で構成される第1の溝部分と、第1の溝部分の下方に連通して形成される溝部分であって、略垂直に下方に延びる側面542a、544aで構成される第2の溝部分とを含んでいる。このような形状は、例えば、第1の溝部分に相当する部分を、先端部が鋭角形状のダイシングブレードの先端部のみを利用して形成し、第2の溝部分に相当する部分を薄い厚みのダイシングブレードで形成することで実現できる。図9(C)の形状の場合も、先に説明した図9(B)の形状と場合と同様、微細溝の側面542、542aと544、544aの角度が不連続に変化する部分(角部)が存在しており、図7(A)や(C)の形状とを比較した場合、図7(A)や(C)の形状の方が、粘着層の残存抑制と段差部の破損抑制とを両立しやすい。
次に、本実施例の微細溝の製造方法について説明する。図10は、図7(A)及び(C)に示す微細溝の製造方法の工程を示す断面図である。図10(A)に示すように、複数の発光素子が形成された半導体基板W(GaAs基板)の表面に、フォトレジスト600が塗布される。フォトレジスト600は、例えば、粘性100cpiのi線レジストであり、数μm程度の厚さに形成される。公知のフォトリソ工程、例えばi線ステッパー、TMAH2.38%の現像液を用いて、フォトレジスト600に開口610が形成される。開口610は、図2(A)において説明したように切断領域120を露出させるために形成される。
次に、図10(B)に示すように、開口610が形成されたレジストパターン600をエッチング用のマスクに用い、半導体基板Wを異方性ドライエッチングする。一例として、リアクティブイオンエッチング(RIE)装置として誘導結合プラズマ(ICP)が用いられる。エッチングガスとして、CF系のガスを添加することで、エッチングと同時に溝620の側壁に保護膜630が形成される。反応ガスのプラズマによりラジカル、イオンが生成されるが、溝620の側壁はラジカルのみでアタックされ、底部はラジカルおよびイオンの両方でアタックされるためエッチングされ易くなり、異方性エッチングが達成される。ここで、エッチング装置の出力、ガスの流量、時間などのエッチング条件を調整し、順テーパ形状の溝が形成される条件でエッチングを行う。例えば、エッチングガスに含まれるエッチング用のガス(Cl等)の流量を増やしたり、側壁保護膜を形成するためのガスであるCF系ガス(C等)の流量を減らすことで、溝の側壁に形成される保護膜630が薄くなるため、溝の側壁の角度が深さ方向に対して急な角度になる(つまり、垂直に近い角度になる)。逆に、エッチングガスに含まれるエッチング用のガス(Cl等)の流量を減らしたり、側壁保護膜を形成するためのガスであるCF系ガス(C等)の流量を増やすことで、溝の側壁に形成される保護膜630が厚くなるため、溝の側壁の角度が深さ方向に対して緩い角度になる。一例として、エッチング条件は、誘導結合プラズマ(ICP)のパワー500W、バイアスパワー50W、圧力3Pa、エッチングガスとして、Cl=150sccm、BCl=50sccm、C=50sccm、基板温度20℃、エッチング時間20分である。
次に、図10(C)に示すように、図10(B)で形成した順テーパの角度よりも急な角度となるようにエッチング条件を切り替える。例えば、エッチングガスに含まれるエッチング用のガス(Cl等)の流量を増やしたり、側壁保護膜を形成するためのガスであるCF系ガス(C等)の流量を減らすことで、図10(B)で形成した溝620の側壁の角度よりも急な角度の溝部分640が形成されるようにする。一例として、エッチング条件は、誘導結合プラズマ(ICP)のパワー500W、バイアスパワー50W、圧力3Pa、エッチングガスとして、Cl=200sccm、BCl=50sccm、C=35sccm、基板温度20℃、エッチング時間20分である。微細溝を形成する場合、溝の底部側は上部側よりも側壁保護膜630の厚みが薄くなる傾向があるため、エッチング強度を途中で強めることで、既に形成されている溝の底部側に付着した側壁保護膜630が削られ側壁が露出しやすくなる。これにより、既に形成されている溝の底部側の溝幅は若干緩やかに広がるとともに溝が下方に延びていく。一方、既に形成されている溝の上部側には厚めの側壁保護膜630が付着しているため、エッチング条件を極端に強めなければ側壁が露出するまで側壁保護膜630が削られることがないため、溝の上部側(入口部分)の形状は変わらずに保たれる。
なお、側壁保護膜を形成するためのガスであるCF系ガス(C等)の流量を減らす場合は、完全に停止しない範囲で減らすことが好ましい。これは、側壁保護膜を形成するためのガスを停止してしまうと、側壁方向へのエッチング強度が過大となり、微細溝の下方に向けて幅が広がる溝部分が形成されてしまうためである。このように、微細溝の下方に向けて幅が広がる溝部分が形成される場合、この溝部分に粘着層164aが侵入すると、粘着層164aの全体に紫外線180が照射されにくくなり、図8(A)の場合と同様に、粘着層164aが残存し易くなるためである。図5において先に説明した通り、微細溝に対して、基板の裏面からダイシングブレード等の回転する切削部材で溝を形成する場合、例えば、約5μmの幅の微細溝内に、約10μm程度の進入深さで粘着層が入り込むなど、想定以上の深さまで粘着層が入り込む場合がある。よって、微細溝の下方に向けて幅が広がる溝部分を形成する特段の理由がない場合は、粘着層の残存抑制の観点から、そのような溝部分が形成されないようにする。また、側壁保護膜を形成するためのガスを停止するなどして側壁方向へのエッチング強度が過大となると、溝の上部側(入口部分)の側壁が露出するまで側壁保護膜630が削られる場合がある。これは、微細溝の入口部分の方が底部側よりも新鮮なエッチングガスの濃度が高いために発生すると考えられる。このようになると、溝の上部側が幅方向に広がるようにエッチングされてしまい、場合によっては素子の形成領域に影響を与える場合がある。よって、溝の上部側の側壁が露出しない範囲のエッチング強度に切り替えることが好ましい。
図10(C)において微細溝の形成が完了した後は、図10(D)に示すように酸素アッシングにより、レジスト600が除去される。こうして、図7(A)、(C)に示す微細溝400、410が得られる。
以上のように、本実施例の微細溝の製造方法では、微細溝の幅が深さ方向に向けて徐々に狭くなる第1のエッチング強度で微細溝の形成を開始し、微細溝の形成途中で、第1のエッチング強度よりも強いエッチング強度であって表面側の溝の入口部分の幅が広がらずに下方に延びる第2のエッチング強度にドライエッチングの条件を切り替えて、基板の表面から裏面に向けて溝の幅が広がる部分を有さない微細溝を形成するようにしている。微細溝の幅が深さ方向に向けて徐々に狭くなる第1のエッチング強度でエッチングを行うため、図8(A)、(C)の形状と比較し粘着層164aの残存が抑制される形状の微細溝が形成される。また、微細溝の形成途中で、微細溝の入口部分の幅が広がらずに下方に延びる第2のエッチング強度にドライエッチングの強度を強めて、溝の下方に向けて幅が広がる部分を有さない微細溝を形成するようにしているため、図9(C)で形成されるような角部がない微細溝が形成される。更には、図9(A)で形成されるような直線状の側面のみを有する順テーパ形状と比較し、微細溝の入り口部分の幅が同じであったとしても、より深い微細溝が形成される。
なお、上記の本実施例における製造方法はあくまで一例を示すものであり、必ずしも図10に示す製造工程に限定されるものではない。例えば、図10(A)において形成するフォトレジスト600の開口610は、基板表面に対して垂直な開口側面を有するが、図7(A)や(C)に開示した形状を形成しやすくするために、基板表面から上方に向けて開口の幅が徐々に広がる形状としてもよい。このような形状のフォトレジストを使用すれば、フォトレジストの薄い部分から厚い部分に徐々にエッチング範囲が広がるようになるので、順テーパ形状が形成しやすくなる。また、エッチング条件の切り替えは1回だけである必要はなく、徐々にエッチングの強度を強めるなど、必要に応じて複数回実施してもよい。
次に、微細溝と裏面側の溝の幅の差により形成される段差部の破損について説明する。図11(A)は、図3(F)に示すダイシングブレードによるハーフダイシングをしたときの断面図、図11(B)は、図11(A)に示される段差部の拡大図、図11(C)は、段差部の破損を示している。
半導体基板Wの表面には、上記したように、複数の発光素子100が形成され、各発光素子100は、間隔Sのスクライブライン等で規定される切断領域120によって離間されている。切断領域120には、異方性ドライエッチングにより幅Saの微細溝140(図8(C)に示す垂直形状の溝)が形成されているとする。カーフ幅Sbのダイシングブレード300を回転させながら、半導体基板Wの裏面から切削することで、半導体基板Wには、カーフ幅Sbとほぼ等しい幅の溝170が形成される。カーフ幅Sbは、微細溝140の幅Saよりも大きいため、溝170が形成されたとき、切断領域120には、幅Sbと幅Saの差、言い換えると微細溝140と溝170の側面の位置の差によって、厚さTの片持ち梁状の段差部800が形成される。もし、ダイシングブレード300の中心と微細溝140の中心が完全に一致しているならば、段差部800の横方向に延在する長さは、(Sb−Sa)/2である。
ダイシングブレード300による切断が行われるとき、ダイシングブレード300の先端部の平坦な面が半導体基板WをY方向に押圧することで、段差部800には力Fが印加され、これにより段差部800のコーナー部Cに応力が集中する。コーナー部Cへの応力がウエハの破壊応力を超えたとき、図11(C)に示すように段差部800の破損(欠け、亀裂あるいはピッキング等)が生じる。特に、GaAs等の化合物半導体基板は、シリコン基板よりも強度が弱いため、段差部800に破損が生じ易い。もし、段差部800に破損が生じるならば、段差部800の切断のためのマージンMを確保しなければならず、これは、切断領域120の間隔SをマージンMと等しいかそれよりも大きくしなければならないことを意味し、半導体片の取得数が低下する。従って、段差部800の破損を抑制することが好ましい。
段差部800の破損を生じさせる応力に影響が高い因子には、主に次の3つが考えられる。第1に、ダイシングブレードの先端部の形状、第2に、段差部800の厚さT、第3に、段差部における段差の大きさ、すなわち、ある所定の厚みのダイシングブレード300を使用する場合は、微細溝140と溝170との位置ずれ量である。本実施例のように、微細溝の幅が深さ方向に向けて徐々に狭くなる第1のエッチング強度で微細溝の形成を開始し、微細溝の形成途中で、第1のエッチング強度よりも強いエッチング強度であって表面側の溝の入口部分の幅が広がらずに下方に延びる第2のエッチング強度にドライエッチングの条件を切り替えることで、第1のエッチング強度のみで微細溝を形成する場合と比較し、より深い微細溝が形成されるため、段差部800の厚さTが厚くなる。よって、ダイシングブレードの先端部の形状や位置ずれ量が同じであっても、段差部の破損が抑制される。
次に、本発明の実施例の応用例について説明する。本応用例においては、先の実施例における裏面側の溝170を形成せずに、半導体基板の裏面から半導体基板の表面側の微細溝に至るまで研削(バックグラインド)することで半導体基板を分割する。具体的には、図1のステップS108のダイシング用テープの貼付けに代えて、バックグラインド用のテープを基板の表面に貼付ける。ダイシング用テープをそのままバックグラインド用のテープとして使用してもよい。そして、図1のステップS110のハーフダイシングに代えて、表面側の微細溝に至るまでバックグラインドを行う。バックグラインドは、ハーフダイシングと同様に基板の裏面が見えるように配置し、例えば、回転する砥石を水平ないし垂直方向に移動することで表面側の微細溝が露出するまで基板の厚みを全体的に薄くする。その後の工程は、図1と同様でよい。なお、バックグラインド後の基板の強度が問題となる場合は、基板の周囲の部分のみグラインドしないことで、所謂、リブ構造になるようにしてもよい。
ここで、バックグラインドの工程中、砥石の回転や、砥石と半導体基板の相対的な移動などにより、微細溝の内壁を介して振動や切削圧力がバックグラインド用のテープの粘着層に印加される。切削圧力により半導体基板が押圧されると、粘性のある粘着層が流動して微細溝内に入り込む。また、振動が微細溝の近傍に伝達されることで、粘着層の流動を助長する。特に、数μm〜十数μm程度の幅の微細な溝である場合は粘着層がより深く侵入しやすくなり、10μm以下の場合は、それがより顕著となる。
砥石による研削が終了すると、基板裏面にエキスパンド用テープが貼り付けられ、バックグラインド用テープには紫外線が照射される。紫外線が照射された粘着層は硬化し、その粘着力が失われ、バックグラインド用テープが基板表面から剥離される。ここで、表面側の微細溝内に入り込んだ粘着層は、図6で説明した通り、バックグラインド用テープの剥離時に、溝内や基板表面に残存する場合がある。よって、このようなバックグラインド用テープの剥離の際に粘着層が残存することを抑制するには、図7及び図10で説明した実施例の微細溝を適用すればよい。図7及び図10の微細溝を適用すれば、粘着層の残存が抑制されるだけでなく、より深い溝が形成されることにより、研削の量を低減でき、また、研削後の半導体基板(半導体片)の強度を確保しやすくなる。
なお、本応用例において、半導体基板の裏面から半導体基板の表面側の微細溝に至る途中まで研削し、その後に半導体基板に引っ張り応力や曲げ応力などの応力を加えて、残った部分を割ることで半導体基板を分割してもよい。また、粘着層が侵入する深さを予め把握している場合などにおいては、粘着層が侵入する深さよりも深い部分の微細溝の形状は、深さ方向に広がる形状など任意の形状でよい。これは、粘着層が侵入しないのであれば、深さ方向に広がる形状であったとしても紫外線が照射がされにくいなどの不具合が助長されないためである。
上記説明した応用例を整理すると以下のように説明できる。すなわち、基板の表面から裏面に向けて表面側の溝をドライエッチングで形成する工程と、前記表面側の溝が形成された前記表面に粘着層を有する保持部材を貼り付ける工程と、前記基板の裏面側から前記表面側の溝に向けて前記基板を研削する工程と、前記研削後に前記表面と前記保持部材とを剥離する工程と、を備え、前記表面側の溝の幅が深さ方向に向けて徐々に狭くなる第1のエッチング強度で前記表面側の溝の形成を開始し、前記表面側の溝の形成途中で、前記第1のエッチング強度よりも強いエッチング強度に前記ドライエッチングを切り替えて前記表面側の溝を形成する半導体片の製造方法である。この応用例による製造方法によれば、粘着層の残存が抑制されるだけでなく、研削後の半導体基板の強度を確保しやすくなる。
また、上記の応用例による製造方法においては、前記表面側の溝の形成途中で、前記第1のエッチング強度よりも強いエッチング強度であって前記表面側の溝の入口部分の幅が広がらずに下方に延びる第2のエッチング強度に前記ドライエッチングを切り替えて、溝の下方に向けて幅が広がる部分を有さない前記表面側の溝を形成してもよい。このような構成では、粘着層が残存しやすい逆テーパ形状等が形成されないため、テープの粘着層が入り込む深さが深くなった場合であっても、粘着層の残存を抑制できる。
以上、本発明の好ましい実施の形態について詳述したが、本発明は、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
例えば、裏面側の溝170を、表面側の微細溝の近傍までは達するが、表面側の微細溝に連通しない深さで形成してもよい。すなわち、図3(F)の裏面側の溝170を形成する工程で、半導体基板の厚みの一部分を残して裏面側の溝170を形成してもよい。この場合、その後の工程で、半導体基板に引っ張り応力や曲げ応力などの応力を加えて、残った一部分を割ることで半導体基板を分割するようにすればよい。
また、本発明の製造方法は、ガラスやポリマー等の半導体を含まない基板から個々の素子を個片化する場合に適用してもよい。
なお、本明細書における破損の抑制とは、欠け、亀裂等を目視で確認できる程度に抑制するものに限らず、破損の程度を多少でも抑制するものや、破損の発生の可能性を多少でも低減できるものを含み、その抑制の程度は問わない。また、粘着層の残存の抑制についても、完全に残存を抑制することを意味するものではなく、残存の程度を多少でも抑制するものや、残存の発生の可能性を多少でも低減できるものを含み、その抑制の程度は問わない。また、図7及び図10における本実施例の微細溝の形状はあくまで一例であり、エッチングの強度を切り替えて形成する方法であれば、その傾斜の形や角度は問わない。
100:発光素子
120:切断領域(スクライブライン)
130:レジストパターン
140:表面側の微細溝
160:ダイシング用テープ
162:テープ基材
164:粘着層
165、166:未硬化の粘着層
170:裏面側の溝
190:エキスパンド用テープ
210:半導体チップ
300:ダイシングブレード
400、410:微細溝
402、404、412、414、412a、414a:側面
500、510、520、530、540:微細溝
502、504、512、514、522、524、532、534:側面
600:フォトレジスト
610:開口
620:溝
630:保護膜
800:段差部

Claims (4)

  1. 基板の表面から裏面に向けて表面側の溝をドライエッチングで形成する工程と、
    前記表面側の溝が形成された前記表面に粘着層を有する保持部材を貼り付ける工程と、
    前記基板の裏面側から前記基板を薄化する工程と、
    前記薄化後に前記表面と前記保持部材とを剥離する工程と、を備え、
    前記表面側の溝の幅が深さ方向に向けて徐々に狭くなる前記ドライエッチングで前記表面側の溝の形成を開始し、前記表面側の溝の形成途中で、前記ドライエッチングに使用するエッチングガスに含まれる保護膜形成用のガスの流量を、第1の流量から、当該保護膜形成用のガスの流量を停止しない範囲で当該第1の流量よりも少ない第2の流量に切り替えて、前記基板表面から裏面に向けて幅が徐々に狭くなる第1の溝部分と、当該第1の溝部分の下方に連通して形成される溝部分であって、当該第1の溝部分の角度よりも急な角度で下方に延びる第2の溝部分とを有する前記表面側の溝を形成する半導体片の製造方法。
  2. 基板の表面から裏面に向けて表面側の溝をドライエッチングで形成する工程と、
    前記表面側の溝が形成された前記表面に粘着層を有する保持部材を貼り付ける工程と、
    前記基板の裏面側から前記基板を薄化する工程と、
    前記薄化後に前記表面と前記保持部材とを剥離する工程と、を備え、
    前記表面側の溝の幅が深さ方向に向けて徐々に狭くなる前記ドライエッチングで前記表面側の溝の形成を開始し、前記表面側の溝の形成途中で、前記ドライエッチングに使用するエッチングガスに含まれるエッチング用のガスの流量を、第1の流量から、当該第1の流量よりも多い第2の流量に切り替えて、前記基板表面から裏面に向けて幅が徐々に狭くなる第1の溝部分と、当該第1の溝部分の下方に連通して形成される溝部分であって、当該第1の溝部分の角度よりも急な角度で下方に延びる第2の溝部分とを有する前記表面側の溝を形成する半導体片の製造方法。
  3. 前記第2の溝部分は、前記第1の溝部分の最下部の幅よりも幅が広がることなく下方に延びる溝部分である請求項1または2に記載の半導体片の製造方法。
  4. 前記表面側の溝の側面は、前記第1の溝部分と前記第2の溝部分との間に角部を有さない請求項1または2に記載の半導体片の製造方法。
JP2015127757A 2014-11-06 2015-06-25 半導体片の製造方法 Active JP6008022B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/884,168 US9589812B2 (en) 2014-11-06 2015-10-15 Fabrication method of semiconductor piece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014225712 2014-11-06
JP2014225712 2014-11-06

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014237288A Division JP5780351B1 (ja) 2014-11-06 2014-11-25 半導体片の製造方法

Publications (2)

Publication Number Publication Date
JP2016096325A JP2016096325A (ja) 2016-05-26
JP6008022B2 true JP6008022B2 (ja) 2016-10-19

Family

ID=54192798

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014237288A Active JP5780351B1 (ja) 2014-11-06 2014-11-25 半導体片の製造方法
JP2015127757A Active JP6008022B2 (ja) 2014-11-06 2015-06-25 半導体片の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014237288A Active JP5780351B1 (ja) 2014-11-06 2014-11-25 半導体片の製造方法

Country Status (4)

Country Link
JP (2) JP5780351B1 (ja)
KR (1) KR102024697B1 (ja)
CN (1) CN105590835B (ja)
TW (2) TWI574319B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887125B2 (ja) * 2017-04-11 2021-06-16 パナソニックIpマネジメント株式会社 素子チップの製造方法
US11244862B2 (en) * 2017-04-24 2022-02-08 Mitsubishi Electric Corporation Method for manufacturing semiconductor devices
CN108878286B (zh) * 2017-05-10 2021-06-08 北京北方华创微电子装备有限公司 一种刻蚀工艺
CN108447785B (zh) * 2018-02-26 2019-04-30 清华大学 基于sog圆片的深硅刻蚀方法
DE102018214337A1 (de) 2018-08-24 2020-02-27 Disco Corporation Verfahren zum Bearbeiten eines Substrats
CN109585369A (zh) * 2018-12-27 2019-04-05 苏州苏纳光电有限公司 半导体芯片的分片方法
CN111470471A (zh) * 2019-01-23 2020-07-31 上海新微技术研发中心有限公司 一种基板切割方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644069B2 (ja) * 1990-07-09 1997-08-25 九州日本電気株式会社 半導体装置の製造方法
JP2000195827A (ja) * 1998-12-25 2000-07-14 Oki Electric Ind Co Ltd Ledアレイチップおよびその製造方法ならびにダイシング装置
JP2001284497A (ja) * 2000-04-03 2001-10-12 Fujitsu Ltd 半導体装置及びその製造方法及び半導体チップ及びその製造方法
JP2003007649A (ja) * 2001-06-18 2003-01-10 Disco Abrasive Syst Ltd 半導体ウェーハの分割方法
JP2003124151A (ja) * 2001-10-17 2003-04-25 Disco Abrasive Syst Ltd サファイア基板のダイシング方法
JP4579489B2 (ja) * 2002-09-02 2010-11-10 新光電気工業株式会社 半導体チップ製造方法及び半導体チップ
JP2004333887A (ja) * 2003-05-08 2004-11-25 Nippon Telegr & Teleph Corp <Ntt> 光スイッチ装置の製造方法
TWI262553B (en) * 2003-09-26 2006-09-21 Advanced Semiconductor Eng Wafer dicing method
JP2006344816A (ja) * 2005-06-09 2006-12-21 Matsushita Electric Ind Co Ltd 半導体チップの製造方法
JP2007194469A (ja) * 2006-01-20 2007-08-02 Renesas Technology Corp 半導体装置の製造方法
JP2007294612A (ja) * 2006-04-24 2007-11-08 Oki Data Corp 半導体装置、半導体装置の製造方法、半導体製造装置、ledヘッド、および画像形成装置
JP2009088252A (ja) 2007-09-28 2009-04-23 Sharp Corp ウエハのダイシング方法および半導体チップ
JP2009088109A (ja) * 2007-09-28 2009-04-23 Casio Comput Co Ltd 半導体装置およびその製造方法
JP5471256B2 (ja) * 2009-09-30 2014-04-16 日本電気株式会社 半導体素子、半導体ウェハ、半導体ウェハの製造方法、半導体素子の製造方法
TWI392641B (zh) * 2010-01-21 2013-04-11 Richwave Technology Corp 微機電裝置及其製造方法
US8659152B2 (en) * 2010-09-15 2014-02-25 Osamu Fujita Semiconductor device
US8288230B2 (en) * 2010-09-30 2012-10-16 Infineon Technologies Austria Ag Method for producing a gate electrode structure
US9029242B2 (en) * 2011-06-15 2015-05-12 Applied Materials, Inc. Damage isolation by shaped beam delivery in laser scribing process
FR2979478A1 (fr) * 2011-08-31 2013-03-01 St Microelectronics Crolles 2 Procede de realisation d'une tranchee profonde dans un substrat de composant microelectronique
CN203242627U (zh) * 2013-03-15 2013-10-16 英飞凌科技奥地利有限公司 半导体部件、垂直mosfet、igbt结构和集成半导体器件

Also Published As

Publication number Publication date
KR102024697B1 (ko) 2019-09-24
TWI622096B (zh) 2018-04-21
KR20160054415A (ko) 2016-05-16
TWI574319B (zh) 2017-03-11
TW201724260A (zh) 2017-07-01
CN105590835A (zh) 2016-05-18
JP2016096325A (ja) 2016-05-26
JP2016096320A (ja) 2016-05-26
TW201630065A (zh) 2016-08-16
CN105590835B (zh) 2019-03-01
JP5780351B1 (ja) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5637331B1 (ja) 半導体片の製造方法、半導体片を含む回路基板および画像形成装置
JP6008022B2 (ja) 半導体片の製造方法
JP6281699B2 (ja) 半導体片の製造方法、半導体片を含む回路基板および電子装置、ならびに基板のダイシング方法
US9589812B2 (en) Fabrication method of semiconductor piece
JP5862819B1 (ja) 半導体片の製造方法およびエッチング条件の設計方法
JP5817905B1 (ja) 半導体片の製造方法
US9633902B2 (en) Method for manufacturing semiconductor device that includes dividing semiconductor substrate by dry etching
JP2006313831A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R150 Certificate of patent or registration of utility model

Ref document number: 6008022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350