JP5993298B2 - フルオレン骨格を有する着色樹脂粒子及びその製造方法 - Google Patents

フルオレン骨格を有する着色樹脂粒子及びその製造方法 Download PDF

Info

Publication number
JP5993298B2
JP5993298B2 JP2012276639A JP2012276639A JP5993298B2 JP 5993298 B2 JP5993298 B2 JP 5993298B2 JP 2012276639 A JP2012276639 A JP 2012276639A JP 2012276639 A JP2012276639 A JP 2012276639A JP 5993298 B2 JP5993298 B2 JP 5993298B2
Authority
JP
Japan
Prior art keywords
resin
solvent
weight
resin particles
fluorene skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012276639A
Other languages
English (en)
Other versions
JP2014118528A (ja
Inventor
加藤 真理子
真理子 加藤
圭一 荒木
圭一 荒木
樋口 章二
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2012276639A priority Critical patent/JP5993298B2/ja
Publication of JP2014118528A publication Critical patent/JP2014118528A/ja
Application granted granted Critical
Publication of JP5993298B2 publication Critical patent/JP5993298B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、フルオレン骨格(例えば、9,9−ビスアリールフルオレン骨格)を有する樹脂で構成された着色樹脂粒子及びその製造方法に関する。
フルオレン骨格(例えば、9,9−ビスフェニルフルオレン骨格)を有する化合物は、光学的特性、耐熱性などにおいて優れた機能を有することが知られている。例えば、フルオレン骨格を含む樹脂材料は、屈折率が高く、複屈折率が低いなどの優れた特性を有しているため、高屈折率レンズ用途などの光学用樹脂材料として用いられている。このようなフルオレン骨格の優れた機能を樹脂に発現し、成形可能とする方法としては、反応性基(ヒドロキシル基、アミノ基など)を有するフルオレン化合物、例えば、ビスフェノールフルオレン(BPF)、ビスクレゾールフルオレン(BCF)、ビスアミノフェニルフルオレン(BAFL)、ビスフェノキシエタノールフルオレン(BPEF)などを、樹脂の構成成分として利用し、樹脂の骨格構造の一部にフルオレン骨格を導入する方法が一般的である。
そして、このようなフルオレン骨格を有する化合物を重合成分として、樹脂粒子を得る試みがなされつつある。特開2009−256669号公報(特許文献1)には、9,9−ビスアリールフルオレン骨格を含有するフルオレン含有ポリエステル系樹脂(A)、及び前記フルオレン含有ポリエステル系樹脂(A)を溶解可能な溶媒(B)を含む樹脂溶液と、前記フルオレン含有ポリエステル系樹脂(A)の貧溶媒であり、かつ前記溶媒(B)と混和する溶媒(C)とを接触させて、前記樹脂溶液を微細化することにより、9,9−ビスアリールフルオレン骨格を含有するフルオレン含有ポリエステル系樹脂で構成され、数平均粒子径がナノメータサイズの樹脂粒子を得る方法が開示されている。
また、特開2009−167231号公報(特許文献2)には、フルオレン系ポリエステル樹脂と、このフルオレン系ポリエステル樹脂に対して非相溶である水溶性高分子とを溶融混練し、水溶性高分子で構成された連続相中に、フルオレン系ポリエステル樹脂で構成された分散相を分散させた後、水溶性高分子を溶出し、フルオレン系ポリエステル樹脂微粒子を製造する方法が開示されている。
さらに、特開平10−110091号公報(特許文献3)には、共重合ポリエステルの微粒子を水媒体に均一に分散させたポリエステル水分散体であって、該共重合ポリエステルが40〜99モル%の2,6−ナフタレンジカルボン酸、0.1〜5モル%のスルホン酸塩の基を有する芳香族ジカルボン酸および0〜60モル%の他の芳香族ジカルボン酸からなるジカルボン酸成分と、30〜80モル%のエチレングルコール、20〜60モル%のビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンおよび0〜50モル%の他のグリコールからなるグリコール成分とから構成される共重合ポリエステルであることを特徴とするポリエステル水分散体が開示されている。
そして、この文献の実施例では、2,6−ナフタレンジカルボン酸ジメチル、イソフタル酸ジメチル、5−ナトリウムスルホイソフタル酸ジメチル、エチレングリコールおよびビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンを用いて重縮合反応により得た共重合ポリエステル20部をテトラヒドロフランに溶解し、得られた溶液に高速攪拌下で水を滴下して青みがかった乳白色の分散体を得、次いでこの分散体を減圧蒸留することで、ポリエステル水分散体(ポリエステル微粒子の平均粒径は0.12μm)を得たことが記載されている。
一方、樹脂材料には、フィラー、帯電防止剤、着色剤などの種々の添加剤が配合される場合がある。フルオレン骨格を有する樹脂においても、種々の添加剤を含有させる試みがなされている。例えば、特開2004−339499号公報(特許文献4)には、フルオレン骨格を有する樹脂と、着色剤などの添加剤とを有する組成物が開示されている。なお、この文献には、組成物の態様として、粉粒状、ペレット状、コーティング液などを想定しているが、粉粒状の形態の具体例はなく、ましてや、ナノ粒子の形状とすることやその具体的方法については何ら開示も示唆もされていない。
また、特許文献1〜3においても、各種添加剤を含んでいてもよいことの記載があるものの、粒子の形態を維持しながら、各種添加剤を粒子に含有させる具体的な手法については、全く開示されていない。
特開2009−256669号公報(特許請求の範囲、実施例) 特開2009−167231号公報(特許請求の範囲、実施例) 特開平10−110091号公報(特許請求の範囲、実施例) 特開2004−339499号公報(特許請求の範囲、段落[0155])
従って、本発明の目的は、ナノサイズを有する新規なフルオレン骨格を有する着色樹脂粒子を提供することにある。
本発明の他の目的は、着色剤を含有させても、粒子径のバラツキを小さくできるフルオレン骨格含有樹脂粒子を提供することにある。
本発明のさらに他の目的は、ナノサイズでかつ着色剤を含んでいても、水性媒体に対する分散性に優れるフルオレン骨格を有する樹脂粒子を提供することにある。
本発明者らは、フルオレン骨格を有する樹脂粒子に添加剤を含有させる方法について種々の方法を試みたが、単純な方法では樹脂粒子に含有させることができなかったり、また、含有させることができても、粒径が大きくなったり、粒径のバラツキが大きくなったり、非球状粒子となることがあった。また、添加剤の種類によっても、樹脂粒子に効率よく含有させることができない場合もあった。
そこで、本発明者らは、このような課題を達成するため鋭意検討した結果、フルオレン骨格を有する樹脂(特に熱可塑性樹脂)と、特定の添加剤である着色剤の中でも特に染料とを組み合わせ、特定の方法により粒子化させることで、フルオレン骨格を有する樹脂をナノ粒子化しつつ、樹脂中に添加剤を含有させることができること、また、このような粒子は、ナノサイズであるにもかかわらず、比較的均一な粒径(さらには球状の形態)を有していること、さらには、得られる粒子は、通常、高い疎水性を有するにもかかわらず、水に対して容易に分散できることを見出し、本発明を完成した。
すなわち、本発明の樹脂粒子は、フルオレン骨格(例えば、9,9−ビスアリールフルオレン骨格)を有する樹脂で構成された樹脂粒子であって、染料(例えば、有機系染料)を含み、変動係数が50%以下(例えば、40%以下)のナノ粒子である。
本発明の樹脂粒子において、個数平均粒子径は3〜500nm程度であってもよく、最大粒子径は800nm以下であってもよい。また、樹脂粒子の形状は、通常、球状(又はほぼ球状)であってもよい。
本発明の樹脂粒子において、染料は、特に、有機系染料(中でも芳香族骨格を有する染料)を含んでいてもよい。また、本発明の樹脂粒子において、染料の割合は、フルオレン骨格を有する樹脂100重量部に対して0.05〜50重量部程度であってもよい。
本発明の樹脂粒子は、代表的には、フルオレン骨格を有する樹脂が9,9−ビスアリールフルオレン骨格を有するポリエステル樹脂で構成され、染料が有機系染料を含み、染料の割合がフルオレン骨格を有する樹脂100重量部に対して0.1〜20重量部であり、個数平均粒子径が30〜300nmであり、最大粒子径が500nm以下であり、変動係数が35%以下の球状粒子であってもよい。
本発明の樹脂粒子は、その表面が溶媒成分(例えば、非水性溶媒又は非水性溶媒を含む溶媒成分)で被覆されていてもよい。なお、このような樹脂粒子において、溶媒成分の割合は、フルオレン骨格を有する樹脂100重量部に対して0.01〜5重量部程度であってもよい。
本発明の樹脂粒子は、ナノ粒子であるにもかかわらず水性媒体に対する分散性に優れており、通常、分散剤を用いることなく、水に分散可能であってもよい。
本発明の樹脂粒子は、特に限定されないが、例えば、フルオレン骨格を有する樹脂および染料が、フルオレン骨格を有する樹脂に対する良溶媒に溶解した溶液に、フルオレン骨格を有する樹脂に対する貧溶媒を添加し、良溶媒および貧溶媒で構成された溶媒中に樹脂粒子を生成させて分散液を得る粒子生成工程と、
前記溶媒と水性媒体とを置換し、水性媒体中に樹脂粒子が分散したラテックスを得る溶媒置換工程とを経て得ることができる。
溶媒置換工程では、例えば、分散液から溶媒を除去しつつ水性媒体を添加してもよい。代表的には、良溶媒および貧溶媒として、水性媒体の沸点以下の溶媒を用い、溶媒置換工程において、蒸発又は揮発により溶媒を除去してもよい。また、溶媒置換工程では、フルオレン骨格を有する樹脂や良溶媒の割合を調整しながら溶媒置換してもよく、例えば、溶媒置換工程において、分散液中のフルオレン骨格を有する樹脂の割合を0.1〜30重量%程度に保持するとともに、分散液中のフルオレン骨格を有する樹脂の割合を良溶媒100重量部に対して20重量部以下に保持してもよい。
前記方法は、さらに、溶媒置換工程で得たラテックスから水性媒体を分離する粒子分離工程を含んでいてもよい。
本発明では、添加剤の中でも特に染料とフルオレン骨格を有する樹脂とを組み合わせることにより、ナノサイズを有する新規なフルオレン骨格を有する着色樹脂粒子を提供できる。このようなフルオレン骨格を有する樹脂粒子は、粒子径のバラツキが小さく、比較的均一な粒径を有している。さらに、通常、粒子の形状は、球状(又はほぼ球状)である。しかも、着色剤としての染料は、フルオレン骨格を有する樹脂中において、凝集することなく、比較的均一に含有(又は分散)されている。そのため、本発明では、少量の着色剤又は染料であっても効率よく樹脂粒子を着色でき、フルオレン骨格を有する樹脂由来の特性を損なうことなく、樹脂粒子に優れた着色性を付与できる。
また、本発明の樹脂粒子は、通常、比較的疎水性が高く、水性媒体に対する分散が困難なフルオレン骨格を有する樹脂で構成されている上に、ナノサイズでかつ着色剤を含んでいるにもかかわらず、意外にも、水性媒体に対する分散性に優れている。しかも、樹脂粒子は、水性媒体を含む分散液(ラテックス)において、樹脂粒子同士の凝集が抑制され、安定的に分散している。さらに、ナノサイズの樹脂粒子を、粒子径においてバラツキが小さい形態で(さらには球状の形態で)分散できる。このように本発明の樹脂粒子は、フルオレン骨格を有する樹脂由来の優れた特性(高屈折率など)を有する樹脂粒子を含む安定なラテックスとして使用することもでき、水性インク(印刷用インクなど)などに好適である。
図1は、参考例1で得られた樹脂粒子のSEM写真である。 図2は、実施例1で得られた樹脂粒子のSEM写真である。 図3は、実施例2で得られた樹脂粒子のSEM写真である。 図4は、実施例3で得られた樹脂粒子のSEM写真である。 図5は、実施例4で得られた樹脂粒子のSEM写真である。 図6は、比較例1で得られた粉末のSEM写真である。 図7は、比較例1で得られた粉末の粒度分布を示す図である。 図8は、参考例2で得られた混合物のSEM写真である。 図9は、参考例3で得られた混合物のSEM写真である。
本発明の樹脂粒子は、フルオレン骨格を有する樹脂で構成され、染料を含む。
[フルオレン骨格を有する樹脂]
樹脂粒子を構成するフルオレン骨格を有する樹脂(単に樹脂などということがある)は、ラジカル重合性樹脂であってもよいが、通常、縮合系樹脂(縮重合系樹脂)であってもよい。また、樹脂は、通常、熱可塑性樹脂であってもよい。
代表的な樹脂としては、フルオレン骨格を有するポリエステル樹脂、フルオレン骨格を有するポリカーボネート樹脂、フルオレン骨格を有するポリアミド樹脂、フルオレン骨格を有するポリウレタン樹脂などのフルオレン骨格を有する縮合系樹脂(縮合系熱可塑性樹脂)が挙げられる。
樹脂は、どのような態様でフルオレン骨格を含んでいてもよいが、通常、フルオレン骨格を有するモノマーを重合成分とする樹脂であってもよい。フルオレン骨格を有するモノマーとしては、樹脂の種類に応じて適宜選択でき、例えば、フルオレン骨格を有するポリオール(例えば、ジオール)、フルオレン骨格を有するポリアミン(例えば、ジアミン)、フルオレン骨格を有するポリカルボン酸(例えば、ジカルボン酸)、フルオレン骨格を有するポリイソシアネート(例えば、ジイソシアネート)などが挙げられる。例えば、フルオレン骨格を有するジオールは、ポリエステル樹脂、ポリカーボネート樹脂などのジオール成分として、フルオレン骨格を有するジカルボン酸は、ポリエステル樹脂、ポリアミド樹脂などのジカルボン酸成分として利用できる。
これらの中でも、フルオレン骨格を有するポリエステル樹脂が代表的である。以下に、ポリエステル樹脂について詳述する。
フルオレン骨格を有するポリエステル樹脂は、フルオレンジカルボン酸成分(例えば、フルオレン−2,7−ジカルボン酸などのジカルボキシフルオレン、9,9−ジ(2−カルボキシエチル)フルオレンなどの9,9−ジ(カルボキシアルキル)フルオレン、これらのエステル形成性誘導体)などを重合成分とするポリエステル樹脂であってもよいが、通常、9,9−ビスアリールフルオレン骨格を有するポリエステル樹脂であってもよい。
このようなポリエステル樹脂は、代表的には、ジカルボン酸成分と、9,9−ビスアリールフルオレン骨格を有するジオールを含むジオール成分とを重合成分とするポリエステル樹脂であってもよい。
(ジカルボン酸成分)
ジカルボン酸成分としては、脂肪族ジカルボン酸成分[例えば、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、デカンジカルボン酸、これらのエステル形成性誘導体(例えば、C1−2アルキルエステルなどの後述の誘導体など)などの飽和脂肪族ジカルボン酸成分(例えば、C2−12アルカンジカルボン酸成分などのアルカンジカルボン酸成分)など]、脂環族ジカルボン酸成分、芳香族ジカルボン酸成分などが挙げられる。
ジカルボン酸成分は、樹脂粒子における要求性能に応じて適宜選択でき、例えば、複屈折性の観点からは、脂環族ジカルボン酸成分を好適に使用でき、屈折率などの観点からは、芳香族ジカルボン酸成分を好適に使用できる。これらのジカルボン酸成分は、単独で又は2種以上組み合わせてもよい。
脂環族ジカルボン酸成分としては、脂環族ジカルボン酸、脂環族ジカルボン酸のエステル形成性誘導体などが含まれる。脂環族ジカルボン酸としては、例えば、飽和脂環族ジカルボン酸[例えば、シクロアルカンジカルボン酸(例えば、1,4−シクロヘキサンジカルボン酸などのC5−10シクロアルカン−ジカルボン酸)、ジ又はトリシクロアルカンジカルボン酸(例えば、デカリンジカルボン酸など)など]などが含まれる。エステル形成性誘導体としては、例えば、エステル{例えば、アルキルエステル[例えば、メチルエステル、エチルエステルなどの低級アルキルエステル(例えば、C1−4アルキルエステル、特にC1−2アルキルエステル)など}、酸ハライド(酸クロライドなど)、酸無水物などが挙げられる。
脂環族ジカルボン酸成分は、単独で又は2種以上組み合わせてもよい。また、脂環族ジカルボン酸成分は、他のジカルボン酸成分(脂肪族ジカルボン酸成分、後述の芳香族ジカルボン酸成分など)と組み合わせてもよい。なお、脂環族ジカルボン酸成分を主成分とする場合、ジカルボン酸成分全体に対する脂環族ジカルボン酸成分の割合は、例えば、50モル%以上、好ましくは70モル%以上、さらに好ましくは80モル%以上、特に90モル%以上であってもよい。
芳香族ジカルボン酸成分としては、芳香族ジカルボン酸、芳香族ジカルボン酸のエステル形成性誘導体(前記例示の誘導体など)などが含まれる。芳香族ジカルボン酸としては、例えば、アレーンジカルボン酸[例えば、ベンゼンジカルボン酸(テレフタル酸、イソフタル酸、フタル酸;メチルテレフタル酸、メチルイソフタル酸などのC1−4アルキルベンゼンジカルボン酸など)、ナフタレンジカルボン酸(例えば、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸などの同一又は異なる環に2つのカルボキシル基を有するナフタレンジカルボン酸)など]、アリールアレーンジカルボン酸(4,4’−ビフェニルジカルボン酸など)、ジアリールアルカンジカルボン酸(4,4’−ジフェニルメタンジカルボン酸など)、ジアリールケトンジカルボン酸(4,4’−ジフェニルケトンジカルボン酸など)、フルオレン骨格を有するジカルボン酸{例えば、9,9−ジ(カルボキシアルキル)フルオレン[例えば、9,9−ジ(カルボキシメチル)フルオレン、9,9−ジ(2−カルボキシエチル)フルオレンなどの9,9−ジ(カルボキシC1−4アルキル)フルオレン]、9,9−ビス(カルボキシアリール)フルオレン[例えば、9,9−ビス(4−カルボキシフェニル)フルオレンなど]、ジカルボキシフルオレン(例えば、2,7−ジカルボキシフルオレン)、9,9−ジアルキル−ジカルボキシフルオレン(例えば、2,7−ジカルボキシ−9,9−ジメチルフルオレンなど)など}などが挙げられる。
芳香族ジカルボン酸成分は、単独で又は2種以上組み合わせてもよい。なお、芳香族ジカルボン酸成分は、多環式芳香族ジカルボン酸成分(ナフタレンジカルボン酸成分など)を含んでいてもよい。芳香族ジカルボン酸成分を多環式芳香族ジカルボン酸成分で構成すると、ポリエステル樹脂の屈折率などを大きくでき、ポリエステル樹脂の光学的特性をより一層向上できる。また、芳香族ジカルボン酸成分を、非対称単環式芳香族ジカルボン酸成分(例えば、イソフタル酸成分などの前記例示の成分)で構成してもよい。非対称単環式芳香族ジカルボン酸成分を用いると、芳香族ジカルボン酸由来の高屈折率や高耐熱性などの特性を維持しつつ、複屈折性を低下させることができ、さらに、ポリエステル樹脂の吸水性(又は吸湿性)を抑えることもできる。
また、芳香族ジカルボン酸成分は、他のジカルボン酸成分(脂肪族ジカルボン酸成分、脂環族ジカルボン酸成分など)と組み合わせてもよい。なお、ジカルボン酸成分を芳香族ジカルボン酸成分を主成分として構成する場合、ジカルボン酸成分全体に対する芳香族ジカルボン酸成分の割合は、50モル%以上、好ましくは70モル%以上、さらに好ましくは80モル%以上、特に90モル%以上であってもよい。
(ジオール成分)
ジオール成分は、9,9−ビスアリールフルオレン骨格を有するジオール化合物(単に、フルオレン骨格を有するジオールなどということがある)を少なくとも含んでいる。このようなフルオレン骨格を有するジオールは、9,9−ビスアリールフルオレン骨格を有している限り、フルオレンや、フルオレンの9位に置換したアリール基に、置換基(後述の置換基など)を有していてもよい。
このようなフルオレン骨格を有するジオールは、代表的には、下記式(1)で表される化合物であってもよい。
(式中、環Zは芳香族炭化水素環を示し、Rは置換基を示し、Rはアルキレン基を示し、Rは置換基を示し、kは0〜4の整数、mは0以上の整数、nは0以上の整数である。)
上記式(1)において、環Zで表される芳香族炭化水素環としては、ベンゼン環、縮合多環式芳香族炭化水素環などが挙げられる。縮合多環式芳香族炭化水素環としては、縮合二環式炭化水素(例えば、ナフタレンなどのC8−20縮合二環式炭化水素)環などの縮合二乃至四環式炭化水素環などが挙げられる。なお、2つの環Zは同一の又は異なる環であってもよく、通常、同一の環であってもよい。好ましい環Zには、ベンゼン環およびナフタレン環が含まれる。
基Rとしては、例えば、シアノ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子など)、炭化水素基(後述のRの項で例示のアルキル基、アリール基など)などの非反応性置換基が挙げられる。なお、kが複数(2以上)である場合、基Rは異なっていてもよく、同一であってもよい。また、2つのベンゼン環に置換する基Rは同一であってもよく、異なっていてもよい。基Rの結合位置は、特に限定されない。好ましい置換数kは、0〜1である。フルオレンを構成する2つのベンゼン環において、置換数kは、互いに同一又は異なっていてもよい。
前記式(1)において、基Rで表されるアルキレン基としては、例えば、エチレン基、プロピレン基などのC2−6アルキレン基(特にC2−4アルキレン基)が挙げられる。なお、mが2以上であるとき、アルキレン基は同一又は異なるアルキレン基で構成されていてもよい。また、2つの芳香族炭化水素環Zにおいて、基Rは同一であっても、異なっていてもよく、通常同一であってもよい。オキシアルキレン基(OR)の数(付加モル数)mは、0以上であればよく、特に1以上[例えば、1〜12(例えば、1〜8)、好ましくは1〜4、さらに好ましくは1〜2]であってもよい。なお、置換数mは、異なる環Zに対して、同一であっても、異なっていてもよい。
また、前記式(1)において、ヒドロキシル基含有基[すなわち、−O−(RO)−H]の置換位置は、特に限定されず、環Zの適当な置換位置に置換していればよい。例えば、ヒドロキシル基含有基は、環Zがベンゼン環である場合、フェニル基の2〜6位(例えば、フェニル基の3位、4位など)に置換していればよく、好ましくは4位に置換していてもよい。ヒドロキシル基含有基は、環Zが縮合多環式炭化水素環である場合、縮合多環式炭化水素環において、フルオレンの9位に結合した炭化水素環とは別の炭化水素環(例えば、ナフタレン環の5位、6位など)に少なくとも置換している場合が多い。
環Zに置換する置換基Rとしては、通常、非反応性置換基、例えば、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などのC1−12アルキル基、好ましくはC1−8アルキル基、さらに好ましくはC1−6アルキル基など)、シクロアルキル基(シクロへキシル基などのC5−10シクロアルキル基など)、アリール基(フェニル基、トリル基などのC6−14アリール基など)、アラルキル基(ベンジル基、フェネチル基などのC6−10アリール−C1−4アルキル基など)などの炭化水素基;アルコキシ基(メトキシ基、エトキシ基などのC1−8アルコキシ基)などの基−OR[式中、Rは炭化水素基(前記例示の炭化水素基など)を示す。];アルキルチオ基(メチルチオ基などC1−8アルキルチオ基など)などの基−SR(式中、Rは前記と同じ。);アシル基(アセチル基などのC1−6アシル基など);アルコキシカルボニル基(メトキシカルボニル基などのC1−4アルコキシ−カルボニル基など);ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など);ニトロ基;シアノ基;置換アミノ基(ジメチルアミノ基などのジアルキルアミノ基など)などが挙げられる。
これらのうち、代表的には、基Rは、炭化水素基、−OR(式中、Rは前記と同じ)、−SR(式中、Rは前記と同じ。)、アシル基、アルコキシカルボニル基、ハロゲン原子、ニトロ基、シアノ基又は置換アミノ基であってもよい。
好ましい基Rとしては、アルキル基(例えば、C1−6アルキル基)、シクロアルキル基(例えば、C5−8シクロアルキル基)、アリール基(例えば、C6−10アリール基)、アラルキル基(例えば、C6−8アリール−C1−2アルキル基)、アルコキシ基(C1−4アルコキシ基など)などが挙げられる。さらに好ましい基Rは、アルキル基[C1−4アルキル基(特にメチル基)など]、アリール基[例えば、C6−10アリール基(特にフェニル基)など]などである。
なお、同一の環Zにおいて、nが複数(2以上)である場合、基Rは互いに異なっていてもよく、同一であってもよい。また、2つの環Zにおいて、基Rは同一であってもよく、異なっていてもよい。また、好ましい置換数nは、0〜8、好ましくは0〜4(例えば、0〜3)、さらに好ましくは0〜2であってもよい。なお、異なる環Zにおいて、置換数nは、互いに同一又は異なっていてもよく、通常同一であってもよい。
具体的なフルオレン骨格を有するジオール(又は前記式(1)で表される化合物)には、9,9−ビス(ヒドロキシ(ポリ)アルコキシフェニル)フルオレン類[又は9,9−ビス(ヒドロキシ(ポリ)アルコキシフェニル)フルオレン骨格を有する化合物]、9,9−ビス(ヒドロキシ(ポリ)アルコキシナフチル)フルオレン類[又は9,9−ビス(ヒドロキシ(ポリ)アルコキシナフチル)フルオレン骨格を有する化合物]などの前記式(1)においてmが1以上である化合物、これらに対応し、mが0である化合物などが含まれる。
9,9−ビス(ヒドロキシ(ポリ)アルコキシフェニル)フルオレン類には、例えば、9,9−ビス(ヒドロキシアルコキシフェニル)フルオレン{例えば、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンなどの9,9−ビス(ヒドロキシC2−4アルコキシフェニル)フルオレン}、9,9−ビス(アルキル−ヒドロキシアルコキシフェニル)フルオレン{例えば、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル]フルオレンなどの9,9−ビス(モノ又はジC1−4アルキル−ヒドロキシC2−4アルコキシフェニル)フルオレン}、9,9−ビス(アリール−ヒドロキシアルコキシフェニル)フルオレン{例えば、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンなどの9,9−ビス(モノ又はジC6−10アリール−ヒドロキシC2−4アルコキシフェニル)フルオレン}などの9,9−ビス(ヒドロキシアルコキシフェニル)フルオレン類(前記式(1)において、mが1である化合物);9,9−ビス(ヒドロキシジアルコキシフェニル)フルオレン{例えば、9,9−ビス{4−[2−(2−ヒドロキシエトキシ)エトキシ]フェニル}フルオレンなどの9,9−ビス(ヒドロキシジC2−4アルコキシフェニル)フルオレン}などの9,9−ビス(ヒドロキシポリアルコキシフェニル)フルオレン類(前記式(1)において、mが2以上である化合物)などが含まれる。
また、9,9−ビス(ヒドロキシ(ポリ)アルコキシナフチル)フルオレン類としては、前記9,9−ビス(ヒドロキシ(ポリ)アルコキシフェニル)フルオレン類に対応し、フェニル基がナフチル基に置換した化合物、例えば、9,9−ビス(ヒドロキシアルコキシナフチル)フルオレン{例えば、9,9−ビス[6−(2−ヒドロキシエトキシ)−2−ナフチル]フルオレンなどの9,9−ビス(ヒドロキシC2−4アルコキシナフチル)フルオレン}などの9,9−ビス(ヒドロキシアルコキシナフチル)フルオレン類}などの9,9−ビス(ヒドロキシポリアルコキシナフチル)フルオレン類などが含まれる。
フルオレン骨格を有するジオールは、単独で又は2種以上組み合わせてもよい。
前記ジオール成分は、前記フルオレン骨格を有するジオール(ジオール成分(A1)ということがある)のみで構成してもよく、フルオレン骨格を有するジオールと、脂肪族ジオール成分などの他のジオール成分(非フルオレン系ジオール成分)とを含んでいてもよい。
このような脂肪族ジオール成分(ジオール成分(A2)ということがある)としては、例えば、鎖状脂肪族ジオール[例えば、アルカンジオール(エチレングリコール、プロピレングリコール、1,4−ブタンジオールなどのC2−10アルカンジオール、好ましくはC2−6アルカンジオール、さらに好ましくはC2−4アルカンジオール)、ポリアルカンジオール(例えば、ジエチレングリコールなどのジ乃至テトラC2−4アルカンジオールなど)など]、脂環族ジオール[例えば、シクロアルカンジオール(シクロヘキサンジオールなど)、ジ(ヒドロキシアルキル)シクロアルカン(シクロヘキサンジメタノールなど)など]などが挙げられる。これらの脂肪族ジオール成分は、単独で又は2種以上組み合わせてもよい。
これらのうち、耐熱性や屈折率の点から、脂肪族ジオール成分として、特に、アルカンジオール(例えば、エチレングリコールなどのC2−4アルカンジオール)などの低分子量の脂肪族ジオール成分を好適に使用してもよい。
ジオール成分(A1)と、ジオール成分(A2)(脂肪族ジオール成分)との割合は、例えば、前者/後者(モル比)=99/1〜50/50、好ましくは95/5〜60/40(例えば、93/7〜65/35)、さらに好ましくは90/10〜70/30(例えば、88/12〜75/25)程度であってもよい。
なお、ジオール成分は、非脂肪族ジオール成分と組み合わせてもよい。このようなジオール成分としては、例えば、芳香族ジオール{例えば、1,4−ベンゼンジメタノールなどのジ(ヒドロキシC1−4アルキル)C6−10アレーン、ビフェノール、ビスフェノール類[例えば、ビスフェノールAなどのビス(ヒドロキシフェニル)C1−10アルカンなど]又はそのアルキレンオキシド付加体など}などが挙げられる。他のジオール成分は単独で又は二種以上組み合わせてもよい。
ジオール成分において、フルオレン骨格を有するジオール(ジオール成分(A1))の割合は、ジオール成分全体に対して、30モル%以上(例えば、40〜100モル%)の範囲から選択できる。特に、ポリエステル樹脂中に高濃度でフルオレン骨格を導入しつつ、効率よく高分子量化するという観点からは、例えば、50モル%以上(例えば、55〜100モル%程度)、好ましくは60モル%以上(例えば、65〜99モル%程度)、さらに好ましくは70モル%以上(例えば、75〜95モル%程度)であってもよい。
なお、ジカルボン酸成分及び/又はジオール成分は、樹脂粒子の水分散性を向上させるなどの目的で、強イオン性基(例えば、スルホ基、スルホン酸塩基など)を有していてもよい。このような強イオン性基を有していることで、例えば、ジカルボン酸成分(強イオン性基を有しないジカルボン酸成分)と、強イオン性基を有するジカルボン酸成分[例えば、5−ナトリウムスルホイソフタル酸などのスルホン酸塩基(例えば、アルカリ金属塩など)を有するジカルボン酸成分(例えば、芳香族ジカルボン酸成分)など]とを組み合わせて用いることで、ポリエステル樹脂に強イオン性基を導入できる。本発明では、このような強イオン性基を有しないポリエステル樹脂であっても、水性媒体(特に水)に対して安定に分散できる。
なお、ポリエステル樹脂は、前記ジカルボン酸成分と前記ジオール成分とを反応(重合又は縮合)させることにより製造できる。重合方法(製造方法)としては、使用するジカルボン酸成分の種類などに応じて適宜選択でき、慣用の方法、例えば、溶融重合法(ジカルボン酸成分とジオール成分とを溶融混合下で重合させる方法)、溶液重合法、界面重合法などが例示できる。好ましい方法は、溶融重合法である。
フルオレン骨格を有する樹脂(例えば、ポリエステル樹脂などの縮合系樹脂)の数平均分子量は、樹脂の種類にもよるが、熱可塑性樹脂において、例えば、5000〜500000(例えば、7000〜300000)、好ましくは8000〜200000、さらに好ましくは9000〜150000程度であってもよく、通常10000〜100000(例えば、11000〜70000)程度であってもよい。
フルオレン骨格を有する樹脂(例えば、ポリエステル樹脂)又は樹脂粒子の屈折率は、例えば、波長589nmにおいて、1.55以上(例えば、1.56〜1.8程度)、好ましくは1.58以上(例えば、1.59〜1.75程度)、さらに好ましくは1.6以上(例えば、1.61〜1.7程度)であってもよく、通常1.62〜1.75(例えば、1.63〜1.7程度)であってもよい。
また、フルオレン骨格を有する樹脂(例えば、ポリエステル樹脂)又は樹脂粒子のガラス転移温度(Tg)は、例えば、100℃以上(例えば、110〜300℃)、好ましくは115℃以上(例えば、115〜250℃)、さらに好ましくは120℃以上(例えば、120〜230℃)程度であってもよい。
[染料]
本発明では、樹脂粒子(又はフルオレン骨格を有する樹脂)に含有させる添加剤の中でも、特に、染料(又は色素)を選択する。なお、染料には、顔料は含まれない。フルオレン骨格を有する樹脂と、染料とを組み合わせ、後述の特定の方法で粒子化することで、ナノサイズで、かつ比較的均一な粒径で粒子化でき、染料を樹脂粒子中に分散又は含有させることができる。
このような染料は、特に限定されず、機能性染料(又は機能性色素)、例えば、近紫外吸収色素、蛍光色素(蛍光染料)、フォトクロミック色素、有機光導電材料(キャリアー生成材料、キャリアー移動材料など)、液晶表示用色素、太陽エネルギー貯蔵材料、レーザー用色素、写真用色素、ジアゾ感光紙用色素、熱変色性色素(示温性色素)、感圧・感熱色素(カラーフォーマー)、昇華転写用色素、トナー用電荷移動剤などであってもよい。
染料は、後述の良溶媒(フルオレン骨格を有する樹脂に対する良溶媒)及び/又は貧溶媒(フルオレン骨格を有する樹脂に対する貧溶媒)に溶解可能であってもよく、特に、良溶媒に溶解可能(良溶媒にのみ溶解可能)であってもよい。また、染料は、水性媒体に対して溶解性又は不溶性(難溶性)であってもよく、通常、不溶性であってもよい。さらに、染料は、通常、疎水性(又は油溶性)であってもよい。
なお、染料は、通常、芳香環(芳香族骨格)を有する染料(化合物)であってもよい。芳香環を有する染料は、フルオレン骨格を有する樹脂に対する分散性又は相溶性に優れているようであり、後述の特定の方法との組み合わせにより、より一層、高い分散性で樹脂粒子中に分散させやすい。
染料としては、有機系染料(又は有機染料)や無機系染料(又は無機染料)などが含まれる。
有機染料としては、アゾ系染料(ピグメントイエロー、ハンザイエロー、ベンジジンイエロー、パーマネントレッド、ブリリアントカーミン6Bなど)、フタロシアニン系染料(フタロシアニンブルー、フタロシアニングリーンなど)、レーキ系染料(レーキレッド、ウォッチャンレッドなど)、シアニン系染料、カルバゾール系染料、ピロメテン系染料、アントラキノン系染料、ナフトキノン系染料、キナクリドン系染料、ペリレン系染料、ペリノン系染料、イソインドリン系染料、ジオキサジン系染料、スレン系染料、有機蛍光染料[例えば、オキサゾール系化合物、スチルベン系化合物、ナフタルイミド系化合物、ベンズイミダゾール系化合物、ローダミン系化合物、チオフェン系化合物、フタル酸系化合物、チアジン系化合物、クマリン系化合物、オキサジン系化合物、スチレンビフェニル系化合物、ピラゾロン系化合物、ジスチリルビフェニル系化合物、イミダゾール系化合物、イミダゾロン系化合物、トリアゾール系化合物、ピリジン系化合物、ピリダジン系化合物、キナクリドン系化合物、オキサシアニン系化合物、カルボスチリル系化合物、メチン系化合物、アゾメチン系化合物、キサンテン系化合物など]などが含まれる。
無機染料としては、例えば、バナジウム系染料(バナジウム化合物、以下同じ。)、クロム系染料、モリブデン系染料、マンガン系染料、鉄系染料(シュウ酸鉄など)などの金属(遷移金属など)を含む染料などが挙げられる。なお、無機染料には、樹脂粒子において着色する無機成分[例えば、フルオレン骨格を有する樹脂との相互作用(配位又は錯形成など)により着色する成分]、例えば、金属イオン(例えば、バナジウム、クロム、マンガン、コバルト、ニッケル、銅などの遷移金属のカチオン)又は金属イオンを含む化合物なども含まれる。
染料は、単独で又は2種以上組み合わせてもよい。
特に、有機系染料は、フルオレン骨格を有する樹脂に対する分散性又は相溶性に優れており、好適に使用できる。有機系染料は、芳香環(芳香族骨格)を有している場合が多いため、このような観点からも好適である。そのため、特に、染料は、少なくとも有機系染料を含んでいてもよい。
染料の割合は、フルオレン骨格を有する樹脂100重量部に対し、0.01〜100重量部程度の範囲から選択でき、例えば、0.05〜50重量部、好ましくは0.1〜30重量部程度であってもよい。特に、本発明では、後述のように染料を樹脂粒子中に均一に分散又は含有できるため、十分な着色効果が得られる。そのため、染料の割合は、フルオレン骨格を有する樹脂100重量部に対して、0.01〜40重量部(例えば、0.05〜30重量部)、好ましくは0.1〜20重量部、さらに好ましくは0.5〜15重量部(例えば、1〜12重量部)程度であってもよく、特に10重量部以下(例えば、0.01〜8重量部、好ましくは0.05〜5重量部、さらに好ましくは0.1〜3重量部)程度の小割合とすることもできる。
一方、染料は、フルオレン骨格を有する樹脂に対する分散性に優れており、高割合で染料を含有させることもできる。このような場合、染料の割合は、フルオレン骨格を有する樹脂100重量部に対して、5重量部以上(例えば、5〜100重量部)、好ましくは6重量部以上(例えば、6〜80重量部)、さらに好ましくは7重量部以上(例えば、7〜60重量部)、特に8重量部以上(例えば、8〜50重量部)であってもよい。
なお、染料は、樹脂粒子中に含有(又は分散)されていればよく、その一部が樹脂粒子表面に付着(又は樹脂粒子表面を被覆)していてもよいが、通常、フルオレン骨格を有する樹脂中に染料のすべてが含有されている。また、染料は、樹脂粒子(又はフルオレン骨格を有する樹脂)中に、凝集することなく分散(均一に分散)又は溶解(分子分散)している。
なお、本発明の樹脂粒子は、添加剤として染料を必須として含んでいるが、含有させることができ、かつ本発明の効果を害しない範囲であれば、必要に応じて、他の添加剤、例えば、可塑剤、軟化剤、分散剤、離型剤、安定化剤(ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などの酸化防止剤、紫外線吸収剤、熱安定化剤など)、帯電防止剤、難燃剤、アンチブロッキング剤、結晶核成長剤、充填剤(ガラス繊維や炭素繊維などの繊維状充填剤など)、難燃剤、導電剤、非染料系の着色剤(例えば、顔料など)などを含んでいてもよい。これらの他の添加剤は、単独で又は二種以上組み合わせて使用してもよい。
本発明の樹脂粒子は、通常、ナノサイズ(ナノ粒子)である。樹脂粒子(分散粒子)の個数平均粒子径(個数換算粒度分布から求めた粒子径)は、1000nm以下(例えば、1〜900nm)の範囲から選択でき、例えば、800nm以下(例えば、3〜700nm)、好ましくは600nm以下(例えば、5〜500nm)、さらに好ましくは500nm以下(例えば、10〜400nm)、特に400nm以下(例えば、15〜350nm)程度であってもよく、通常3〜500nm(例えば、5〜450nm、好ましくは10〜400nm、さらに好ましくは20〜350nm、特に30〜300nm)であってもよい。
また、本発明の樹脂粒子は、通常、全体的に樹脂粒子が微細化されており、実質的に粗大粒子を含まない場合が多い。例えば、樹脂粒子の最大粒子径は、3000nm以下(例えば、2000nm以下)の範囲から選択でき、1500nm以下(例えば、1200nm以下)、好ましくは1000nm以下(例えば、800nm以下)、さらに好ましくは700nm以下(例えば、600nm以下)、特に500nm以下(例えば、400nm以下)であってもよい。
さらに、樹脂粒子は、粒子径のバラツキが小さく、比較的均一な粒子径を有している。例えば、樹脂粒子の粒径の変動係数(CV値)は、50%以下(例えば、1〜45%程度)、好ましくは40%以下(例えば、2〜40%程度)、さらに好ましくは35%以下(例えば、3〜35%程度)、通常5〜40%(例えば、10〜35%)程度であってもよい。
なお、前記変動係数(CV値)は、下記式
変動係数(%)=(粒子径の標準偏差/数平均粒子径)×100
を用いて算出できる。
樹脂粒子の形態(又は形状)は、異形状(棒状、扁平状、不定形状など)などであってもよいが、通常、球状(又はほぼ球状)であってもよい。
本発明の樹脂粒子は、その表面が溶媒成分で被覆されていてもよい。本発明の樹脂粒子(又は後述のラテックス)は、後述するように、通常、樹脂粒子を含む分散液(非水性分散液)を経て得られるが、このような分散液由来の溶媒成分(非水性溶媒など)の一部が残存し、樹脂粒子表面を被覆することがある。本発明の樹脂粒子は、水性媒体(特に水)に対する分散性に優れているが、このような樹脂粒子表面を被覆する溶媒成分により、より一層水性媒体中において樹脂粒子の分散安定性を向上させる場合がある。なお、このような理由は定かではないが、表面を被覆する溶媒成分が、樹脂粒子の分散剤ないし界面活性剤(乳化剤)的な役割を果たしているものと考えられる。
このような溶媒成分としては、非水性溶媒(又は非水性媒体)、例えば、後述のフルオレン骨格を有する樹脂に対する良溶媒(環状エーテル類など)及び/又は貧溶媒(ニトリル類などの非水性の貧溶媒)などが挙げられる。
溶媒成分(例えば、非水性溶媒)の割合は、樹脂粒子100重量部に対して、例えば、5重量部以下(例えば、0.0001〜4重量部)、好ましくは3重量部以下(例えば、0.001〜2重量部)、さらに好ましくは1重量部以下(例えば、0.01〜0.8重量部)であってもよく、0.05重量部以上(例えば、0.05〜5重量部、好ましくは0.07〜3重量部、さらに好ましくは0.1〜2重量部)であってもよい。
なお、樹脂粒子は、後述のように、製造工程で経るラテックスの形態でそのまま使用することもでき、ラテックスから分離して使用することもできる。ラテックスから分離する場合には、乾燥処理の有無などによっては、このような溶媒成分の量がラテックスにおける場合よりも少なくなる場合[例えば、樹脂粒子100重量部に対する溶媒成分の割合が0.5重量部以下(例えば、0.0001〜0.3重量部)、好ましくは0.1重量部以下(例えば、0.0005〜0.07重量部)、さらに好ましくは0.05重量部以下(例えば、0.001〜0.03重量部)程度である場合]がある。本発明では、このような溶媒成分の割合が小さい場合であっても、通常、水に対する優れた分散性(再分散性)を担保できる。
なお、ラテックスにおける溶媒成分(例えば、非水性溶媒)の割合は、ガスクロマトグラフィー分析におけるガスクロマトグラム面積比で、水性媒体100に対して10以下(例えば、0.01〜7)、好ましくは5以下(例えば、0.05〜4)、さらに好ましくは3以下(例えば、0.1〜2.5)、特に2以下(例えば、0.2〜1.5程度)であってもよい。
さらに、本発明の樹脂粒子は、通常、疎水性であるフルオレン骨格を有する樹脂および染料で構成されているにもかかわらず、水性媒体(特に水)に対して分散可能である。特に、その分散性の程度は非常に高く、分散剤(界面活性剤)を用いなくても、分散可能である。このような理由は定かではないが、後述のように、本発明の樹脂粒子が特定の方法により得られる安定なラテックスを経て製造されることや、前記のように、この方法により樹脂粒子表面に微量の溶媒成分が残存し、この溶媒成分が分散剤的な役割を果たすことなどもその一因として考えられる。
[製造方法]
本発明の樹脂粒子は、特に限定されないが、通常、特定の方法により得られるラテックスを経て製造できる。具体的には、本発明の樹脂粒子は、樹脂粒子(フルオレン骨格を有する樹脂および染料を含む粒子)がフルオレン骨格を有する樹脂(又は粒子)に対する良溶媒および貧溶媒で構成された溶媒(溶媒成分)中に分散した分散液において、前記溶媒(溶媒成分)と水性媒体とを置換して、水性媒体中に樹脂粒子が分散したラテックス(水性ラテックス)を得る溶媒置換工程を経て製造できる。
分散液には、フルオレン骨格を有する樹脂に対する良溶媒および貧溶媒が含まれている。すなわち、貧溶媒を含むことで、フルオレン骨格を有する樹脂は、良溶媒に溶解することなく、分散液において、粒子の形態を保持している。なお、分散液におけるフルオレン骨格を有する樹脂粒子の形態(形状、粒径、粒径分布など)が、本発明の樹脂粒子(又は前記ラテックスにおける樹脂粒子)の形態に反映される場合が多い。そのため、分散液における樹脂粒子の形状や粒径は前記と同様の範囲から選択できる。例えば、分散液における樹脂粒子は、球状(又はほぼ球状)のナノサイズの粒子である場合が多い。
ここで、染料は、分散液中に存在させることができればよく、通常、良溶媒及び/又は貧溶媒に対して溶解又は分散させてもよいが、通常、添加剤は、少なくとも良溶媒に対して溶解可能である場合が多い。特に、良溶媒(又は良溶媒のみ)に対して溶解可能であってもよい。
分散液は、通常、フルオレン骨格を有する樹脂および染料を良溶媒に溶解させた溶液と、貧溶媒とを混合することにより得られる。このような溶液と貧溶媒との混合により、良溶媒に溶解していたフルオレン骨格を有する樹脂が、染料を含有させつつ粒子化され(粒子状に析出し)、良溶媒および貧溶媒を含む溶媒中に分散する。
そのため、前記方法は、フルオレン骨格を有する樹脂および染料が良溶媒[フルオレン骨格を有する樹脂(および染料)に対する良溶媒]に溶解した溶液と、貧溶媒[フルオレン骨格を有する樹脂(および染料)に対する貧溶媒]とを混合し、樹脂粒子を良溶媒および貧溶媒で構成された溶媒中に分散(又は生成)させる(樹脂粒子が良溶媒および貧溶媒で構成された溶媒中に分散した分散液を得る)粒子生成工程を含んでいてもよい。
ここで、溶液と貧溶媒との混合は、溶液に貧溶媒を混合(添加)することによって行ってもよく、貧溶媒に溶液を混合(添加)することにより行ってもよい。特に、ラテックスを効率よく得るためには、分散液は、前者の方法、すなわち、溶液に貧溶媒を添加(混合)することにより、調製することが好ましい。
染料を分散液中に存在させる方法としては、特に限定されないが、例えば、染料は、良溶媒に溶解させて貧溶媒と混合してもよい。このような場合、予め染料をフルオレン骨格を有する樹脂とともに良溶媒に溶解させて貧溶媒と混合してもよく、染料が良溶媒に溶解した溶液を別途調製し、フルオレン骨格を有する樹脂が良溶媒に溶解した溶液とともに、貧溶媒と混合してもよい。
なお、溶液に対する貧溶媒の混合は、所定量の貧溶媒が溶液と接触するよう、比較的短時間のうちに行ってもよい。
分散液において、良溶媒としては、フルオレン骨格を有する樹脂(および染料)が溶解する溶媒であれば限定されず、樹脂の種類に応じて選択でき、例えば、環状エーテル類(例えば、テトラヒドロフラン(THF)、ジオキソランなど)、鎖状ケトン類(例えば、アセトン、エチルメチルケトンなどのアルカノン)、ハロゲン系溶媒(例えば、塩化メチレン、クロロホルムなどのハロアルカン)などの非水性溶媒(水性媒体でない溶媒)が挙げられる。良溶媒は単独で又は2種以上組み合わせてもよい。
良溶媒は、比較的低沸点であるのが好ましく、例えば、沸点120℃以下(例えば、35〜110℃)、好ましくは100℃以下(例えば、40〜95℃)、さらに好ましくは90℃以下(例えば、45〜85℃)、特に80℃以下(例えば、50〜75℃)程度であってもよい。特に、良溶媒の沸点は、水性媒体の沸点以下(例えば、水の沸点である100℃以下)であってもよい。このように比較的低沸点の良溶媒を用いることで、蒸留により水性媒体との置換が容易となる。なお、良溶媒は、水と共沸可能であってもよい。
良溶媒の比誘電率(25℃)は、例えば、20以下(例えば、1.5〜18)、好ましくは15以下(例えば、2〜12)、さらに好ましくは10以下(例えば、3〜9)であってもよい。適度な比誘電率を有する良溶媒を用いることで、樹脂(および染料)の溶解性と水性媒体との親和性を適度に保持できる。なお、良溶媒は、水性媒体(特に水)に対して混和可能であってもよい。
また、良溶媒の粘度(20℃)は、1.8mPa・s以下(例えば、0.1〜1.6mPa・s)、好ましくは1.5mPa・s以下(例えば、0.2〜1.3mPa・s)、さらに好ましくは1.2mPa・s以下(例えば、0.3〜1.1mPa・s)、特に1mPa・s以下(例えば、0.4〜0.8mPa・s)程度であってもよい。このような粘度の良溶媒を用いると、短時間に混合状態が形成され、粒子径のバラツキの小さい粒子を効率よく得やすい。
貧溶媒もまた、樹脂の種類に応じて選択できる。具体的な貧溶媒としては、例えば、ニトリル類(例えば、アセトニトリル、プロピオニトリルなど)などの他、水性媒体[例えば、水、アルコール類(例えば、メタノール、エタノール、イソプロパノールなどのC1−4アルカノール)など]などが含まれる。貧溶媒は単独で又は2種以上組み合わせてもよい。なお、前記のように、貧溶媒は、染料を溶解可能であってもよく、特に、染料を溶解しない溶媒であってもよい。
貧溶媒は、比較的低沸点であるのが好ましく、例えば、非水性の貧溶媒の沸点は120℃以下(例えば、40〜110℃)、好ましくは100℃以下(例えば、45〜98℃)、さらに好ましくは95℃以下(例えば、50〜95℃)、特に90℃以下(例えば、55〜85℃)程度であってもよい。特に、貧溶媒の沸点は、水性媒体の沸点以下(例えば、水の沸点である100℃以下)であってもよい。このように比較的低沸点の貧溶媒を用いることで、蒸留により水性媒体との置換が容易となる。なお、貧溶媒(非水性の貧溶媒)は、水と共沸可能であってもよい。
水を除く貧溶媒の比誘電率(25℃)は、例えば、15〜60(例えば、22〜55)、好ましくは25〜50(例えば、27〜47)、さらに好ましくは30〜45(例えば、35〜40)程度であってもよい。なお、貧溶媒は、水性媒体(特に水)に対して混和可能であってもよい。
また、貧溶媒の粘度(20℃)は、2.5mPa・s以下(例えば、0.1〜2.5mPa・s)、好ましくは2mPa・s以下(例えば、0.2〜2.2mPa・s)、さらに好ましくは1.8mPa・s以下(例えば、0.25〜1.5mPa・s)、特に1.3mPa・s以下(例えば、0.3〜1.2mPa・s)程度であってもよい。
フルオレン骨格を有する樹脂(又は樹脂粒子)の割合は、良溶媒100重量部に対して、0.1〜30重量部(例えば、0.5〜20重量部)、好ましくは1〜15重量部(例えば、1.5〜12重量部)、さらに好ましくは2〜10重量部(例えば、3〜8重量部)程度であってもよい。
貧溶媒の割合は、フルオレン骨格を有する樹脂(又は樹脂粒子)および良溶媒の総量(又は溶液)1重量部に対して、0.5重量部以上(例えば、0.7〜30重量部)の範囲から選択でき、例えば、1重量部以上(例えば、1.2〜20重量部)、好ましくは1.5重量部以上(例えば、1.7〜15重量部)、さらに好ましくは2重量部以上(例えば、2.5〜10重量部)程度であってもよく、通常1.5〜10重量部(例えば、2〜8重量部、好ましくは2.5〜5重量部)程度であってもよい。なお、貧溶媒の量が少なすぎると、樹脂粒子の一部が良溶媒に溶解(再溶解)して樹脂粒子の生成効率を低下させる場合があり、多すぎると水性媒体への溶媒置換に長時間を要し、作業性を低下させる場合がある。
また、貧溶媒の割合は、フルオレン骨格を有する樹脂(又は樹脂粒子)1重量部に対して、例えば、3重量部以上(例えば、5〜500重量部)、好ましくは10重量部以上(例えば、15〜400重量部)、さらに好ましくは20重量部以上(例えば、25〜300重量部)程度であってもよく、通常20〜200重量部(例えば、30〜150重量部、好ましくは40〜120重量部)程度であってもよい。
溶液と貧溶媒との混合は、通常、撹拌下(撹拌力又は撹拌剪断力の存在下)で行ってもよい。撹拌において、攪拌手段の回転数(回転速度)は、例えば、30rpm以上(例えば、40〜10000rpm)、好ましくは50rpm以上(例えば、70〜7000rpm)、さらに好ましくは100rpm以上(例えば、150〜5000rpm)程度であってもよい。
溶媒置換工程では、上記のようにして得られた分散液における溶媒成分と、水性媒体とを置換する。水性媒体としては、水、アルコール類(例えば、メタノール、エタノール、イソプロパノールなどのC1−4アルカノール)などが挙げられる。これらの水性媒体は、単独で又は2種以上組み合わせてもよい。通常、水性媒体は、水を主成分とする水性媒体であってもよく、特に、水(実質的に水のみ)であってもよい。なお、水を主成分とする水性媒体において、水の割合は、水性媒体全体に対して、50重量%以上、好ましくは70重量%以上、さらに好ましくは90重量%以上であってもよい。
溶媒成分と水性媒体との置換方法は、特に限定されないが、通常、分散液における樹脂粒子の形態を効率よく保持させるため、分散液から前記溶媒成分(少なくとも良溶媒を含む溶媒成分)を除去(分離)しつつ分散液に水性媒体を添加し、分散液中の溶媒成分を水性媒体に置換する方法であってもよい。
なお、溶媒成分における貧溶媒が水性媒体(水など)で構成されている場合、分散液から良溶媒のみを分離除去することにより、水性媒体で置換してもよく、貧溶媒としての水性媒体を良溶媒とともに除去してもよい。また、溶媒成分は、樹脂粒子を得ることができる範囲で、一部を分離することなく残存させてもよい。例えば、前記のように、一部残存した溶媒成分は、樹脂粒子の表面を被覆して分散剤的に作用し、再度水などに分散させた場合に樹脂粒子を安定化させる場合がある。また、前記のように、貧溶媒が水性媒体である場合には、良溶媒を添加する水性媒体で置換するような形態で分離し、貧溶媒自体はその一部又は全部を分散液から分離することなく残存させてもよい。
溶媒成分(少なくとも良溶媒)は、特に限定されないが、例えば、蒸発又は揮発により除去してもよい。代表的な溶媒置換工程では、分散液を蒸留しつつ、分散液に水性媒体を添加してもよい。このような蒸発により溶媒成分を分離する場合、溶媒成分の沸点を水性媒体の沸点以下とすると、効率よく溶媒成分を分離しやすい。
溶媒置換工程では、前記分散液における樹脂粒子の形態を効率よく保持させるため、溶媒置換工程において(工程全体に亘って)、樹脂粒子の濃度を大きく変動させたり、良溶媒の割合が大きくなりすぎないように調整しつつ、溶媒置換してもよい。例えば、分散液中のフルオレン骨格を有する樹脂(又は樹脂粒子)の割合は、溶媒置換工程において(又は溶媒置換工程全体に亘って)、0.05〜50重量%、好ましくは0.1〜30重量%、さらに好ましくは0.2〜20重量%、特に0.3〜10重量%程度に保持してもよい。また、溶媒置換工程において、分散液中のフルオレン骨格を有する樹脂(又は樹脂粒子)の割合を、良溶媒100重量部に対して、50重量部以下(例えば、30重量部以下)、好ましくは20重量部以下(例えば、15重量部以下)、さらに好ましくは10重量部以下(例えば、8重量部以下)に保持してもよい。
蒸発(蒸留)は、溶媒成分(特に、良溶媒)の沸点に応じて適宜選択でき、加熱下で行ってもよく、減圧下で行ってもよく、加熱および減圧下で行ってもよい。例えば、常圧下で蒸発させる場合には、分散液の加熱温度(蒸留温度)は、溶媒成分(特に、良溶媒)の沸点以上の温度(および水性媒体の沸点以下の温度)であってもよい。
このようにして、水性媒体中に樹脂粒子が分散したラテックスが得られる。なお、ラテックスにおいて、樹脂粒子の割合は、例えば、0.01〜50重量%、好ましくは0.1〜30重量%、さらに好ましくは0.2〜20重量%、特に0.3〜10重量%程度であってもよく、通常0.1〜10重量%(例えば、0.2〜7重量%、好ましくは0.3〜5重量%)程度であってもよい。このようなラテックスは、分散剤(又は界面活性剤)を含んでいなくても、安定である。例えば、本発明のラテックスは、長期に亘って(例えば、1ヶ月以上)放置(静置)しても、樹脂粒子が沈降(及び/又は凝集)しない。そのため、樹脂粒子は、後述のように、さらに、ラテックスから分離することで得られるが、用途によっては、樹脂粒子は、ラテックスとしてそのまま(又は必要に応じて水性媒体中における樹脂粒子の濃度を調整して)使用することもできる。
樹脂粒子は、さらに、このような溶媒置換工程で得たラテックスから水性媒体を分離する粒子分離工程を経て、ラテックスから分離できる。このようなラテックスを経る方法により樹脂粒子を得ることで、ラテックスから樹脂粒子を分離しても、凝集などすることなく、樹脂粒子の形態を保持している。しかも、前記のように、このような方法を経て分離した樹脂粒子は、意外にも、水性媒体に対して容易に再分散可能である。
粒子分離工程において、分離方法として特に限定されないが、例えば、蒸発又は揮発により水性媒体を除去してもよい。蒸発は、ラテックスを慣用の方法で処理、例えば、ラテックスを加熱(水性媒体の沸点以上の温度に加熱)処理、減圧処理、これらを組み合わせて処理することにより行うことができる。なお、蒸発処理(乾燥処理)は、樹脂粒子表面に溶媒成分を残存させるため、穏和な条件で行ってもよいが、高温下や減圧下で蒸発又は乾燥しても、水性媒体に対する再分散性などは十分に担保できる場合が多い。
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
(参考例1)
9,9−ビスフェニルフルオレン骨格を有するポリエステル樹脂(大阪ガスケミカル(株)製、「OKP4」)を5重量%の割合で含むテトラヒドロフラン(THF)溶液50gに、アセトニトリル150gを室温にて混合攪拌(モータの回転速度200rpm)して樹脂粒子を含む分散液を作製した。
そして、得られた樹脂粒子分散THF・アセトニトリル混合液を3つ口フラスコに入れてマントルヒータで加熱することにより、THF及びアセトニトリルを蒸発させた。この際、同時に水を添加し、樹脂粒子分散濃度がほぼ一定になるように、樹脂粒子を溶媒から取り出すことなく、水性溶媒分散処理をした。
液温度及び蒸気温度が100℃付近で安定したところで加熱を停止して水置換を完了させた。そのまま室温まで放冷して樹脂粒子が分散した水性分散液を得た。水性分散液における残留有機溶剤量を確認したところ、水に対するTHF量およびアセトニトリル量は、いずれもガスクロマトグラム面積比(ガスクロマトグラフィーで確認)で1%であり、樹脂粒子100重量部に対して0.5重量部であった。
なお、水性分散液(樹脂粒子濃度0.58重量%)を1ヶ月静置した後においても、樹脂粒子の沈降は認められず、安定なラテックスを形成していた。
また、水性分散液(樹脂粒子濃度0.58重量%)を、そのまま、市販のインクジェットプリンタ(エプソン製、EP−302)のインクカートリッジに白インクとして充填し、印刷試験を行ったところ、目詰まり等の不具合は生じず良好な印刷パターンを得た。印刷パターンでは、樹脂粒子の屈折率が大きいため、光散乱が大きく、下地が透けることなく白で覆うことができた。
続いて、水性分散液から樹脂粒子を濾過により分離し、真空乾燥処理して樹脂粒子を得、この樹脂粒子についてSEM写真を得た。図1に樹脂粒子のSEM写真を示す。SEM写真から明らかなように、ナノメータサイズでかつ球状(又はほぼ球状)の粒子(又はこの粒子が水に分散した分散液)が得られていることがわかる。また、SEM写真から測定した樹脂粒子の粒径範囲は80〜360nm、個数換算粒度分布から求めた平均粒子径は150nm、変動係数は31%であった。なお、これらの値は、SEM写真のうち任意の20個の粒子について測定した。
なお、分離した樹脂粒子を、水に対して、超音波処理しながら攪拌混合し、同様の濃度になるまで再分散させて新たに水性分散液を得た。この水性分散液は、1ヶ月静置した後においても、樹脂粒子の沈降は認められず、安定なラテックスを形成していた。
さらに、新たに作製した水性分散液を用いて、前記と同様にして印刷試験を行ったところ、同様に良好な印刷パターンを得ることができた。
(実施例1)
参考例1において、THF溶液に代えて、9,9−ビスフェニルフルオレン骨格を有するポリエステル樹脂を5重量%および青色染料(日本化薬(株)製、「Kayaset Blue A−2R」、アントラキノン系染料、THFに可溶)を0.1重量%の割合で含むTHF溶液50gを用いたこと以外は、参考例1と同様にして樹脂粒子が分散した水性分散液を得た。なお、水性分散液において、樹脂粒子は均一に着色しており、付着物や沈降物は存在しなかった。
そして、得られた水性分散液(樹脂粒子濃度0.68重量%)を1ヶ月静置した後においても、樹脂粒子の沈降は認められなかった。また、得られた水性分散液(樹脂粒子濃度0.68重量%)について、参考例1と同様の印刷試験を行ったところ、目詰まり等の不具合は生じず良好な印刷パターンを得た。
さらに、参考例1と同じ要領で樹脂粒子を分離し、SEM観察及び粒度分布測定を行った。図2に樹脂粒子のSEM写真を示す。SEM写真からも明らかなように、染料を含むナノメータサイズでかつ球状(又はほぼ球状)の粒子(又はこの粒子が水に分散した分散液)が得られていることがわかる。また、SEM写真から測定した粒径範囲は60〜240nm、個数換算粒度分布から求めた平均粒子径は130nm、変動係数は28.2%であった。このように、樹脂粒子に染料を含有させても、参考例1と粒径及び粒度分布にほとんど変化がなく、球状で、かつナノメータサイズを保持していることを確認した。
なお、分離した樹脂粒子を、参考例1と同じ要領で水に対して再分散させ、新たに水性分散液を得た。この水性分散液は、1ヶ月静置した後においても、樹脂粒子の沈降は認められず、安定なラテックスを形成していた。
さらに、新たに作製した水性分散液を用いて、参考例1と同様にして印刷試験を行ったところ、同様に良好な印刷パターンを得ることができた。
(実施例2)
参考例1において、THF溶液に代えて、9,9−ビスフェニルフルオレン骨格を有するポリエステル樹脂を5重量%および青色染料(日本化薬(株)製、「Kayaset Blue A−2R」、アントラキノン系染料、THFに可溶)を0.25重量%の割合で含むTHF溶液50gを用いたこと以外は、参考例1と同様にして樹脂粒子が分散した水性分散液を得た。なお、水性分散液において、樹脂粒子は均一に着色しており、付着物や沈降物は存在しなかった。
そして、得られた水性分散液(樹脂粒子濃度0.68重量%)を1ヶ月静置した後においても、樹脂粒子の沈降は認められなかった。また、得られた水性分散液(樹脂粒子濃度0.68重量%)について、参考例1と同様の印刷試験を行ったところ、目詰まり等の不具合は生じず良好な印刷パターンを得た。
さらに、参考例1と同じ要領で樹脂粒子を分離し、SEM観察及び粒度分布測定を行った。図3に樹脂粒子のSEM写真を示す。SEM写真からも明らかなように、染料を含むナノメータサイズでかつ球状(又はほぼ球状)の粒子(又はこの粒子が水に分散した分散液)が得られていることがわかる。また、SEM写真から測定した粒径範囲は80〜360nm、個数換算粒度分布から求めた平均粒子径は150nm、変動係数は32.2%であった。このように、樹脂粒子に染料を含有させても、参考例1と粒径及び粒度分布にほとんど変化がなく、球状で、かつナノメータサイズを保持していることを確認した。
なお、分離した樹脂粒子を、参考例1と同じ要領で水に対して再分散させ、新たに水性分散液を得た。この水性分散液は、1ヶ月静置した後においても、樹脂粒子の沈降は認められず、安定なラテックスを形成していた。
さらに、新たに作製した水性分散液を用いて、参考例1と同様にして印刷試験を行ったところ、同様に良好な印刷パターンを得ることができた。
(実施例3)
参考例1において、THF溶液に代えて、9,9−ビスフェニルフルオレン骨格を有するポリエステル樹脂を5重量%および青色染料(日本化薬(株)製、「Kayaset Blue A−2R」、アントラキノン系染料、THFに可溶)を0.5重量%の割合で含むTHF溶液50gを用いたこと以外は、参考例1と同様にして樹脂粒子が分散した水性分散液を得た。なお、水性分散液において、樹脂粒子は均一に着色しており、付着物や沈降物は存在しなかった。
そして、得られた水性分散液(樹脂粒子濃度0.68重量%)を1ヶ月静置した後においても、樹脂粒子の沈降は認められなかった。また、得られた水性分散液(樹脂粒子濃度0.68重量%)について、参考例1と同様の印刷試験を行ったところ、目詰まり等の不具合は生じず良好な印刷パターンを得た。
さらに、参考例1と同じ要領で樹脂粒子を分離し、SEM観察及び粒度分布測定を行った。図4に樹脂粒子のSEM写真を示す。SEM写真からも明らかなように、染料を含むナノメータサイズでかつ球状(又はほぼ球状)の粒子(又はこの粒子が水に分散した分散液)が得られていることがわかる。また、SEM写真から測定した粒径範囲は70〜310nm、個数換算粒度分布から求めた平均粒子径は153nm、変動係数は27.3%であった。このように、樹脂粒子に染料を含有させても、参考例1と粒径及び粒度分布にほとんど変化がなく、球状で、かつナノメータサイズを保持していることを確認した。
なお、分離した樹脂粒子を、参考例1と同じ要領で水に対して再分散させ、新たに水性分散液を得た。この水性分散液は、1ヶ月静置した後においても、樹脂粒子の沈降は認められず、安定なラテックスを形成していた。
さらに、新たに作製した水性分散液を用いて、参考例1と同様にして印刷試験を行ったところ、同様に良好な印刷パターンを得ることができた。
(実施例4)
参考例1において、THF溶液に代えて、9,9−ビスフェニルフルオレン骨格を有するポリエステル樹脂を5重量%および黒色染料(日本化薬(株)製、「Kayaset Black A−N」、アントラキノン系染料、THFに可溶)を0.1重量%の割合で含むTHF溶液50gを用いたこと以外は、参考例1と同様にして樹脂粒子が分散した水性分散液を得た。なお、水性分散液において、樹脂粒子は均一に着色しており、付着物や沈降物は存在しなかった。
そして、得られた水性分散液(樹脂粒子濃度0.68重量%)を1ヶ月静置した後においても、樹脂粒子の沈降は認められなかった。また、得られた水性分散液(樹脂粒子濃度0.68重量%)について、参考例1と同様の印刷試験を行ったところ、目詰まり等の不具合は生じず良好な印刷パターンを得た。
さらに、参考例1と同じ要領で樹脂粒子を分離し、SEM観察及び粒度分布測定を行った。図5に樹脂粒子のSEM写真を示す。SEM写真からも明らかなように、染料を含むナノメータサイズでかつ球状(又はほぼ球状)の粒子(又はこの粒子が水に分散した分散液)が得られていることがわかる。また、SEM写真から測定した粒径範囲は60〜360nm、個数換算粒度分布から求めた平均粒子径は152nm、変動係数は32.3%であった。このように、樹脂粒子に染料を含有させても、参考例1と粒径及び粒度分布にほとんど変化がなく、球状で、かつナノメータサイズを保持していることを確認した。
なお、分離した樹脂粒子を、参考例1と同じ要領で水に対して再分散させ、新たに水性分散液を得た。この水性分散液は、1ヶ月静置した後においても、樹脂粒子の沈降は認められず、安定なラテックスを形成していた。
さらに、新たに作製した水性分散液を用いて、参考例1と同様にして印刷試験を行ったところ、同様に良好な印刷パターンを得ることができた。
(比較例1)
特開2009−256669号公報の実施例5と同様の方法にて、樹脂粒子を得た。すなわち、9,9−ビスフェニルフルオレン骨格を有するポリエステル樹脂(大阪ガスケミカル(株)製、「OKP4」)を10重量%の割合で含むTHF/アセトン混合溶液[THF/アセトン(重量比)=10/7]を作製した。そして、樹脂溶液の20倍体積量のメタノール中に、シリンジを用いてこの混合用液を滴下注入し、乳濁液を得た。得られた乳濁液を濾過して白色固体を得た。この白色固体をメタノールで洗浄、その後乾燥させて樹脂粒子粉末を得た。図6に得られた粉末のSEM写真を示す。SEM写真から明らかなように、粒子は球状の形態を有しておらず、ナノメータサイズでもなかった。
そして、得られた粉末を参考例1と同様にして水への再分散を試みたが、直ちに沈降物が見られた。そのため、さらに、分散剤(花王(株)製、アミート105)とともに水に加えて超音波ホモジナイザーで分散処理して粒子分散処理を行ったが、同様に直ちに沈降物が見られた。得られた水分散液の上澄みの粒度分布を図7に示す。
また、得られた分散液の沈降物をステンレスメッシュでろ別した分散液部分を用い、参考例1と同様の印刷試験を試みた。しかし、沈降物を除去しても、印刷試験開始直後から、目詰まりして、印刷パターンを得ることはできなかった。
(参考例2)
参考例1において、THF溶液に代えて、9,9−ビスフェニルフルオレン骨格を有するポリエステル樹脂を5重量%および黒色顔料(電気化学工業(株)製、デンカブラック)を0.25重量%の割合で含むTHF溶液50gを用いたこと以外は、参考例1と同様にして樹脂粒子が分散した水性分散液を得た。しかしながら、水性分散液は、白色の分散液と黒色の凝集物にはっきりと分かれており、樹脂粒子は着色されていなかった。
さらに、参考例1と同じ要領で分離したところ、白色の粒子と黒色の凝集物とが完全に分離したごま塩状の混合物が得られた。この混合物についてSEM観察を行った。図8に混合物のSEM写真を示す。なお、SEM写真において、粒子以外の部分は黒色顔料の凝集物である。
(参考例3)
参考例1において、THF溶液に代えて、9,9−ビスフェニルフルオレン骨格を有するポリエステル樹脂を5重量%および黒色顔料(三菱化学(株)製、カーボンブラックMA‐100)を0.25重量%の割合で含むTHF溶液50gを用いたこと以外は、参考例1と同様にして樹脂粒子が分散した水性分散液を得た。しかしながら、水性分散液は、白色の分散液と黒色の凝集物にはっきりと分かれており、樹脂粒子は着色されていなかった。
さらに、参考例1と同じ要領で分離したところ、白色部分と黒色部分とが完全に分離したごま塩状の混合物が得られた。この混合物についてSEM観察を行った。図9に混合物のSEM写真を示す。なお、SEM写真において、粒子以外の部分は黒色顔料の凝集物である。
本発明の樹脂粒子は、高屈折率などの特性を有するフルオレン骨格を有する樹脂と染料とで構成されており、種々の用途において着色ナノ粒子として使用できる。具体的には、インク(インクジェットプリンタ用インクなど)、トナー(コピー機用トナー、レーザープリンタ用トナーなど)、色素レーザー、電子ペーパー、化粧品などに使用できる。特に、本発明の樹脂粒子は、水性媒体に対して安定的に分散できるので、水性用途、例えば、各種インク、中でもインクジェット印刷のようにインクを微小孔に通すプロセスがある印刷用途(印刷用インク)に好適である。

Claims (15)

  1. フルオレン骨格を有する樹脂で構成された樹脂粒子であって、染料を含み、変動係数が50%以下のナノ粒子である樹脂粒子。
  2. フルオレン骨格が9,9−ビスアリールフルオレン骨格である請求項1記載の樹脂粒子。
  3. 個数平均粒子径が3〜500nmであり、最大粒子径が800nm以下である請求項1又は2記載の樹脂粒子。
  4. 変動係数が40%以下である請求項1〜3のいずれかに記載の樹脂粒子。
  5. 形状が球状又はほぼ球状である請求項1〜4のいずれかに記載の樹脂粒子。
  6. 染料が、有機系染料を含む請求項1〜5のいずれかに記載の樹脂粒子。
  7. 染料の割合が、フルオレン骨格を有する樹脂100重量部に対して0.05〜50重量部である請求項1〜6のいずれかに記載の樹脂粒子。
  8. フルオレン骨格を有する樹脂が9,9−ビスアリールフルオレン骨格を有するポリエステル樹脂で構成され、染料が有機系染料を含み、染料の割合がフルオレン骨格を有する樹脂100重量部に対して0.1〜20重量部であり、個数平均粒子径が30〜300nmであり、最大粒子径が500nm以下であり、変動係数が35%以下の球状粒子である請求項1〜7のいずれかに記載の樹脂粒子。
  9. 表面が溶媒成分で被覆されている請求項1〜8のいずれかに記載の樹脂粒子。
  10. 分散剤を用いることなく、水に分散可能である請求項1〜9のいずれかに記載の樹脂粒子。
  11. フルオレン骨格を有する樹脂および染料が、フルオレン骨格を有する樹脂に対する良溶媒に溶解した溶液に、フルオレン骨格を有する樹脂に対する貧溶媒を添加し、良溶媒および貧溶媒で構成された溶媒中に樹脂粒子を生成させて分散液を得る粒子生成工程と、
    前記溶媒と水性媒体とを置換し、水性媒体中に樹脂粒子が分散したラテックスを得る溶媒置換工程とを経る請求項1〜10のいずれかに記載の樹脂粒子の製造方法
  12. 溶媒置換工程において、分散液から溶媒を除去しつつ水性媒体を添加する請求項11記載の製造方法
  13. 良溶媒および貧溶媒として、水性媒体の沸点以下の溶媒を用い、溶媒置換工程において、蒸発又は揮発により溶媒を除去する請求項11又は12記載の製造方法
  14. 溶媒置換工程において、分散液中のフルオレン骨格を有する樹脂の割合を0.1〜30重量%に保持するとともに、分散液中のフルオレン骨格を有する樹脂の割合を良溶媒100重量部に対して20重量部以下に保持する請求項11〜13のいずれかに記載の製造方法
  15. さらに、溶媒置換工程で得たラテックスから水性媒体を分離する粒子分離工程を経る請求項11〜14のいずれかに記載の製造方法
JP2012276639A 2012-12-19 2012-12-19 フルオレン骨格を有する着色樹脂粒子及びその製造方法 Active JP5993298B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276639A JP5993298B2 (ja) 2012-12-19 2012-12-19 フルオレン骨格を有する着色樹脂粒子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012276639A JP5993298B2 (ja) 2012-12-19 2012-12-19 フルオレン骨格を有する着色樹脂粒子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2014118528A JP2014118528A (ja) 2014-06-30
JP5993298B2 true JP5993298B2 (ja) 2016-09-14

Family

ID=51173654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276639A Active JP5993298B2 (ja) 2012-12-19 2012-12-19 フルオレン骨格を有する着色樹脂粒子及びその製造方法

Country Status (1)

Country Link
JP (1) JP5993298B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002026A1 (ja) * 2014-07-02 2016-01-07 日立化成株式会社 転写形感光性屈折率調整フィルム
JP6313180B2 (ja) * 2014-09-30 2018-04-18 大阪ガスケミカル株式会社 樹脂粒子の分散液及び分散性樹脂粒子並びにそれらの製造方法
JP6831650B2 (ja) * 2016-03-28 2021-02-17 大阪ガスケミカル株式会社 高屈折率ポリカーボネート系樹脂及び成形体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782385A (ja) * 1993-09-09 1995-03-28 Toyobo Co Ltd 樹脂粒子
JP2008201959A (ja) * 2007-02-21 2008-09-04 Fuji Xerox Co Ltd 樹脂粒子分散液、静電荷像現像トナー、液体現像剤、及び、塗料
JP5199680B2 (ja) * 2008-01-10 2013-05-15 大阪瓦斯株式会社 フルオレン系ポリエステル樹脂微粒子及びその製造方法
JP5350856B2 (ja) * 2008-03-28 2013-11-27 大阪瓦斯株式会社 フルオレン含有ポリエステル系樹脂粒子及びその製造方法
JP5937885B2 (ja) * 2011-05-10 2016-06-22 大阪ガスケミカル株式会社 フルオレン骨格を有する樹脂粒子を含むラテックス及びその製造方法

Also Published As

Publication number Publication date
JP2014118528A (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
KR100849962B1 (ko) 열가소성 수지 미립자 수성 분산체의 제조 방법 및전자사진용 토너
EP1898267B1 (en) Process for production of liquid developer
JP5114905B2 (ja) 顔料、顔料組成物及び顔料分散体
JP5175547B2 (ja) 液体現像剤およびその製造方法
US20100062361A1 (en) Liquid developing agent and process for producing the same
KR101449778B1 (ko) 액체 현상제 조성물 및 이의 제조 방법
WO2014168131A1 (ja) トナー用樹脂およびトナー
JP4269655B2 (ja) 熱可塑性樹脂微粒子水性分散体の製造方法および電子写真用トナー
JP2010090380A (ja) 蛍光ナノ粒子を使用して製造される蛍光固体インク
JP5993298B2 (ja) フルオレン骨格を有する着色樹脂粒子及びその製造方法
JP5937885B2 (ja) フルオレン骨格を有する樹脂粒子を含むラテックス及びその製造方法
WO2016136921A1 (ja) 顔料微粒子、顔料分散体、感光性着色組成物及びカラーフィルター
CA3105058A1 (en) Ink composition and method or printing ink
CN103443712A (zh) 品红色调色剂
TW201946981A (zh) 色材分散液、組合物、膜、光學濾光器及顯示裝置
TW201141868A (en) Dispersion of pigment fine particle and photocurable composition and a novel compound using the same
JP5777598B2 (ja) 静電潜像現像用トナーの製造方法
JP2004012581A (ja) 非磁性一成分現像用トナー
JP4277254B2 (ja) 熱可塑性樹脂微粒子水性分散体の製造方法および電子写真用トナー
KR20030068617A (ko) 폴리에스터 입자 내부에 왁스를 캡슐화시킨 정전 잠상현상용 토너 조성물 및 그 제조 방법
JP2011506702A (ja) ドーピングカプセル、そのドーピングカプセルを含む複合系、および、それの利用方法
JP2004326001A (ja) 電子写真用トナーの製造方法
JP2023036362A (ja) 多孔質樹脂粒子含有白色組成物及び該多孔質樹脂粒子含有白色組成物の製造方法
JP2004263027A (ja) 熱可塑性樹脂微粒子水性分散体の製造方法および電子写真用トナー
JP7109943B2 (ja) 顔料分散体、トナーの製造方法、水性インク及びトリアゾ化合物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160819

R150 Certificate of patent or registration of utility model

Ref document number: 5993298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250