JP5958487B2 - 電力変換装置及び電力変換方法 - Google Patents

電力変換装置及び電力変換方法 Download PDF

Info

Publication number
JP5958487B2
JP5958487B2 JP2014048200A JP2014048200A JP5958487B2 JP 5958487 B2 JP5958487 B2 JP 5958487B2 JP 2014048200 A JP2014048200 A JP 2014048200A JP 2014048200 A JP2014048200 A JP 2014048200A JP 5958487 B2 JP5958487 B2 JP 5958487B2
Authority
JP
Japan
Prior art keywords
circuit
phase difference
duty ratio
input
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014048200A
Other languages
English (en)
Other versions
JP2015173542A (ja
Inventor
高弘 平野
高弘 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014048200A priority Critical patent/JP5958487B2/ja
Priority to CN201510101164.8A priority patent/CN104917389B/zh
Priority to US14/641,616 priority patent/US9537408B2/en
Publication of JP2015173542A publication Critical patent/JP2015173542A/ja
Application granted granted Critical
Publication of JP5958487B2 publication Critical patent/JP5958487B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、電力変換装置及び電力変換方法に関する。
従来、複数の1次側ポートを含む1次側変換回路と、複数の2次側ポートを含み、1次側変換回路と変圧器で磁気結合する2次側変換回路との間で伝送される伝送電力を、位相差φに応じて調整する電力変換装置が知られている(例えば、特許文献1を参照)。
特開2011−193713号公報
位相差φに応じて調整される伝送電力は、1次側変換回路又は2次側変換回路のスイッチングのデューティ比Dの値によっても影響を受ける。
しかしながら、位相差φとデューティ比Dとは、独立に制御されているため、1次側変換回路のスイッチング素子のオン時間と2次側変換回路のスイッチング素子のオン時間とが重なる期間が存在しないと、位相差φを大きくしても、伝送電力の低下を招いてしまう。
そこで、伝送電力の低下を抑制することを目的とする。
上記目的を達成するため、一態様によれば、
1次側回路に構成される複数の1次側ポートと、前記1次側回路と変圧器で磁気結合する2次側回路に構成される2次側ポートとを備え、前記1次側回路のスイッチングと前記2次側回路のスイッチングとの位相差を変更して、前記1次側回路と前記2次側回路との間で伝送される伝送電力を調整し、且つ、前記1次側回路又は前記2次側回路のスイッチングのデューティ比を変更する、電力変換方法であって、
前記位相差を360度で除した値が前記デューティ比より大きいか否かを判定する判定ステップと、
前記位相差を360度で除した値が前記デューティ比より大きい場合に、前記2次側回路のデューティ比を、前記位相差を360度で除した値以上に設定する設定ステップと、
前記位相差が90度以下であるか否かを判定する判定ステップと、
前記位相差が90度以下であり、且つ、前記位相差を360度で除した値が前記デューティ比より大きい場合に、前記2次側回路のデューティ比を、前記位相差を360度で除した値以上に設定する設定ステップと、
を有する、電力変換方法が提供される。

一態様によれば、伝送電力の低下を抑制できる。
電力変換装置の実施形態である電源装置の構成例を示したブロック図 制御部の構成例を示したブロック図 1次側回路及び2次側回路のスイッチング例を示したタイミングチャート 1次側回路及び2次側回路のスイッチング例を示したタイミングチャート 1次側回路及び2次側回路のスイッチング例を示したタイミングチャート 制御部の一構成例を示したブロック図 電力変換方法の一例を示したフローチャート
<電源装置101の構成>
図1は、電力変換装置の実施形態である電源装置101の構成例を示したブロック図である。電源装置101は、例えば、電源回路10と、制御部50と、センサ部70とを備えた電源システムである。電源装置101は、例えば、自動車等の車両に搭載され、車載の各負荷に配電するシステムである。このような車両の具体例として、ハイブリッド車、プラグインハイブリッド車、電気自動車などが挙げられる。
電源装置101は、例えば、1次側高電圧系負荷(例えば、電動パワーステアリング装置(EPS)、等)61aが接続される第1入出力ポート60aと、1次側低電圧系負荷(例えば、電子制御装置(ECU)、電子制御ブレーキシステム(ECB)、等)61cが接続される第2入出力ポート60cとを、1次側ポートとして有している。
電源装置101は、例えば、2次側高電圧系負荷61b及び2次側高電圧系電源62b(例えば、主機バッテリ)が接続される第3入出力ポート60bを、2次側ポートとして有している。2次側高電圧系電源62bは、2次側高電圧系電源62bと同じ電圧系(例えば、12V系及び48V系よりも高い288V系)で動作する2次側高電圧系負荷61bに電力を供給する。2次側高電圧系電源62bの具体例として、リチウムイオン電池等の二次電池が挙げられる。
電源回路10は、上述の3つの入出力ポートを有し、それらの3つの入出力ポートのうちから任意の2つの入出力ポートが選択され、当該2つの入出力ポートの間で電力変換を行う機能を有する電力変換回路である。なお、電源回路10を備えた電源装置101は、少なくとも3つ以上の複数の入出力ポートを有し、少なくとも3つ以上の複数の入出力ポートのうちどの2つの入出力ポート間でも電力を変換することが可能な装置でもよい。
ポート電力Pa,Pc,Pbは、それぞれ、第1入出力ポート60a,第2入出力ポート60c,第3入出力ポート60bにおける入出力電力(入力電力又は出力電力)である。ポート電圧Va,Vc,Vbは、それぞれ、第1入出力ポート60a,第2入出力ポート60c,第3入出力ポート60bにおける入出力電圧(入力電圧又は出力電圧)である。ポート電流Ia,Ic,Ibは、それぞれ、第1入出力ポート60a,第2入出力ポート60c,第3入出力ポート60bにおける入出力電流(入力電流又は出力電流)である。
電源回路10は、第1入出力ポート60aに設けられるキャパシタC1と、第2入出力ポート60cに設けられるキャパシタC3と、第3入出力ポート60bに設けられるキャパシタC2とを備えている。キャパシタC1,C2,C3の具体例として、フィルムコンデンサ、アルミニウム電解コンデンサ、セラミックコンデンサ、固体高分子コンデンサなどが挙げられる。
キャパシタC1は、第1入出力ポート60aの高電位側の端子613と、第1入出力ポート60a及び第2入出力ポート60cの低電位側の端子614との間に挿入される。キャパシタC3は、第2入出力ポート60cの高電位側の端子616と、第1入出力ポート60a及び第2入出力ポート60cの低電位側の端子614との間に挿入される。キャパシタC2は、第3入出力ポート60bの高電位側の端子618と、第3入出力ポート60b及び第4入出力ポート60dの低電位側の端子620との間に挿入される。
キャパシタC1,C2,C3は、電源回路10の内部に設けられてもよいし、電源回路10の外部に設けられてもよい。
電源回路10は、1次側変換回路20と、2次側変換回路30とを含んで構成された電力変換回路である。なお、1次側変換回路20と2次側変換回路30とは、1次側磁気結合リアクトル204及び2次側磁気結合リアクトル304を介して接続され、且つ、変圧器400(センタータップ式変圧器)で磁気結合されている。第1入出力ポート60a及び第2入出力ポート60cから構成される1次側ポートと、第3入出力ポート60bから構成される2次側ポートとは、変圧器400を介して接続されている。
1次側変換回路20は、1次側フルブリッジ回路200と、第1入出力ポート60aと、第2入出力ポート60cとを含んで構成された1次側回路である。1次側フルブリッジ回路200は、変圧器400の1次側コイル202と、1次側磁気結合リアクトル204と、1次側第1上アームU1と、1次側第1下アーム/U1と、1次側第2上アームV1と、1次側第2下アーム/V1とを含んで構成された1次側電力変換部である。ここで、1次側第1上アームU1と、1次側第1下アーム/U1と、1次側第2上アームV1と、1次側第2下アーム/V1は、それぞれ、例えば、Nチャネル型のMOSFETと、当該MOSFETの寄生素子であるボディダイオードとを含んで構成されたスイッチング素子である。当該MOSFETに並列にダイオードが追加接続されてもよい。
1次側フルブリッジ回路200は、第1入出力ポート60aの高電位側の端子613に接続される1次側正極母線298と、第1入出力ポート60a及び第2入出力ポート60cの低電位側の端子614に接続される1次側負極母線299とを有している。
1次側正極母線298と1次側負極母線299との間には、1次側第1上アームU1と、1次側第1下アーム/U1とを直列接続した1次側第1アーム回路207が取り付けられている。1次側第1アーム回路207は、1次側第1上アームU1及び1次側第1下アーム/U1のオンオフのスイッチング動作による電力変換動作が可能な1次側第1電力変換回路部(1次側U相電力変換回路部)である。さらに、1次側正極母線298と1次側負極母線299との間には、1次側第2上アームV1と、1次側第2下アーム/V1とを直列接続した1次側第2アーム回路211が1次側第1アーム回路207と並列に取り付けられている。1次側第2アーム回路211は、1次側第2上アームV1及び1次側第2下アーム/V1のオンオフのスイッチング動作による電力変換動作が可能な1次側第2電力変換回路部(1次側V相電力変換回路部)である。
1次側第1アーム回路207の中点207mと1次側第2アーム回路211の中点211mを接続するブリッジ部分には、1次側コイル202と1次側磁気結合リアクトル204とが設けられている。ブリッジ部分についてより詳細に接続関係について説明すると、1次側第1アーム回路207の中点207mには、1次側磁気結合リアクトル204の1次側第1リアクトル204aの一方端が接続される。そして、1次側第1リアクトル204aの他方端には、1次側コイル202の一方端が接続される。さらに、1次側コイル202の他方端には、1次側磁気結合リアクトル204の1次側第2リアクトル204bの一方端が接続される。それから、1次側第2リアクトル204bの他方端が1次側第2アーム回路211の中点211mに接続される。なお、1次側磁気結合リアクトル204は、1次側第1リアクトル204aと、1次側第1リアクトル204aと結合係数k1で磁気結合する1次側第2リアクトル204bとを含んで構成される。
中点207mは、1次側第1上アームU1と1次側第1下アーム/U1との間の1次側第1中間ノードであり、中点211mは、1次側第2上アームV1と1次側第2下アーム/V1との間の1次側第2中間ノードである。
第1入出力ポート60aは、1次側正極母線298と1次側負極母線299との間に設けられるポートである。第1入出力ポート60aは、端子613と端子614とを含んで構成される。第2入出力ポート60cは、1次側負極母線299と1次側コイル202のセンタータップ202mとの間に設けられるポートである。第2入出力ポート60cは、端子614と端子616とを含んで構成される。
センタータップ202mは、第2入出力ポート60cの高電位側の端子616に接続されている。センタータップ202mは、1次側コイル202に構成される1次側第1巻線202aと1次側第2巻線202bとの中間接続点である。
2次側変換回路30は、2次側フルブリッジ回路300と、第3入出力ポート60bを含んで構成された2次側回路である。2次側フルブリッジ回路300は、変圧器400の2次側コイル302と、2次側磁気結合リアクトル304と、2次側第1上アームU2と、2次側第1下アーム/U2と、2次側第2上アームV2と、2次側第2下アーム/V2とを含んで構成された2次側電力変換部である。ここで、2次側第1上アームU2と、2次側第1下アーム/U2と、2次側第2上アームV2と、2次側第2下アーム/V2は、それぞれ、例えば、Nチャネル型のMOSFETと、当該MOSFETの寄生素子であるボディダイオードとを含んで構成されたスイッチング素子である。当該MOSFETに並列にダイオードが追加接続されてもよい。
2次側フルブリッジ回路300は、第3入出力ポート60bの高電位側の端子618に接続される2次側正極母線398と、第3入出力ポート60bの低電位側の端子620に接続される2次側負極母線399とを有している。
2次側正極母線398と2次側負極母線399との間には、2次側第1上アームU2と、2次側第1下アーム/U2とを直列接続した2次側第1アーム回路307が取り付けられている。2次側第1アーム回路307は、2次側第1上アームU2及び2次側第1下アーム/U2のオンオフのスイッチング動作による電力変換動作が可能な2次側第1電力変換回路部(2次側U相電力変換回路部)である。さらに、2次側正極母線398と2次側負極母線399との間には、2次側第2上アームV2と、2次側第2下アーム/V2とを直列接続した2次側第2アーム回路311が2次側第1アーム回路307と並列に取り付けられている。2次側第2アーム回路311は、2次側第2上アームV2及び2次側第2下アーム/V2のオンオフのスイッチング動作による電力変換動作が可能な2次側第2電力変換回路部(2次側V相電力変換回路部)である。
2次側第1アーム回路307の中点307mと2次側第2アーム回路311の中点311mを接続するブリッジ部分には、2次側コイル302と2次側磁気結合リアクトル304とが設けられている。ブリッジ部分についてより詳細に接続関係について説明すると、2次側第1アーム回路307の中点307mには、2次側磁気結合リアクトル304の2次側第1リアクトル304aの一方端が接続される。そして、2次側第1リアクトル304aの他方端には、2次側コイル302の一方端が接続される。さらに、2次側コイル302の他方端には、2次側磁気結合リアクトル304の2次側第2リアクトル304bの一方端が接続される。それから、2次側第2リアクトル304bの他方端が2次側第2アーム回路311の中点311mに接続される。なお、2次側磁気結合リアクトル304は、2次側第1リアクトル304aと、2次側第1リアクトル304aと結合係数k2で磁気結合する2次側第2リアクトル304bとを含んで構成される。
中点307mは、2次側第1上アームU2と2次側第1下アーム/U2との間の2次側第1中間ノードであり、中点311mは、2次側第2上アームV2と2次側第2下アーム/V2との間の2次側第2中間ノードである。
第3入出力ポート60bは、2次側正極母線398と2次側負極母線399との間に設けられるポートである。第3入出力ポート60bは、端子618と端子620とを含んで構成される。
第3入出力ポート60bのポート電圧Vbは、2次側低電圧系電源62bの電圧に依存して変動する。
図1において、電源装置101は、センサ部70を備えている。センサ部70は、第1乃至第3入出力ポート60a,60c,60bの少なくとも一つのポートにおける入出力値Yを所定の検出周期で検出し、その検出した入出力値Yに対応する検出値Ydを制御部50に対して出力する検出手段である。検出値Ydは、入出力電圧を検出して得られた検出電圧でもよいし、入出力電流を検出して得られた検出電流でもよいし、入出力電力を検出して得られた検出電力でもよい。センサ部70は、電源回路10の内部に備えられても外部に備えられてもよい。
センサ部70は、例えば、第1乃至第3入出力ポート60a,60c,60bの少なくとも一つのポートに生ずる入出力電圧を検出する電圧検出部を有している。センサ部70は、例えば、入出力電圧Vaと入出力電圧Vcの少なくとも一方の検出電圧を1次側電圧検出値として出力する1次側電圧検出部と、入出力電圧Vbの検出電圧を2次側電圧検出値として出力する2次側電圧検出部とを有している。
センサ部70の電圧検出部は、例えば、少なくとも一つのポートの入出力電圧値をモニタする電圧センサと、該電圧センサによってモニタされた入出力電圧値に対応する検出電圧を制御部50に対して出力する電圧検出回路とを有している。
センサ部70は、例えば、第1乃至第3入出力ポート60a,60c,60bの少なくとも一つのポートに流れる入出力電流を検出する電流検出部を有している。センサ部70は、例えば、入出力電流Iaと入出力電流Icの少なくとも一方の検出電流を1次側電流検出値として出力する1次側電流検出部と、入出力電流Ibの検出電流を2次側電流検出値として出力する2次側電流検出部とを有している。
センサ部70の電流検出部は、例えば、少なくとも一つのポートの入出力電流値をモニタする電流センサと、該電流センサによってモニタされた入出力電流値に対応する検出電流を制御部50に対して出力する電流検出回路とを有している。
電源装置101は、制御部50を備えている。制御部50は、例えば、CPUを内蔵するマイクロコンピュータを備えた電子回路である。制御部50は、電源回路10の内部に備えられても外部に備えられてもよい。
制御部50は、所定の制御パラメータXの値を変化させることによって、電源回路10で行われる電力変換動作をフィードバック制御し、電源回路10の第1乃至第3の各入出力ポート60a,60c,60bにおける入出力値Yを調整できる。主な制御パラメータXとして、位相差φ及びデューティ比D(オン時間δ)の2種類の制御変数が挙げられる。
位相差φは、1次側フルブリッジ回路200と2次側フルブリッジ回路300との間で同じ相の電力変換回路部間でのスイッチングタイミングのずれ(タイムラグ)である。デューティ比D(オン時間δ)は、1次側フルブリッジ回路200及び2次側フルブリッジ回路300に構成される各電力変換回路部でのスイッチング波形のデューティ比(オン時間)である。
これらの2つの制御パラメータXは、互いに独立に制御されることが可能である。制御部50は、位相差φ及びデューティ比D(オン時間δ)を用いた1次側フルブリッジ回路200及び2次側フルブリッジ回路300のデューティ比制御及び/又は位相制御によって、電源回路10の各入出力ポートにおける入出力値Yを変化させる。
制御部50は、第1乃至第3入出力ポート60a,60c,60bの少なくとも一つのポートにおける入出力値Yの検出値Ydが、該ポートに設定された目標値Yoに収束する値に、位相差φ又はデューティ比Dが変化するように、電源回路10による電力変換動作をフィードバック制御する。目標値Yoは、例えば、各入出力ポートに接続される負荷(例えば、1次側低電圧系負荷61c等)毎に規定される駆動条件に基づいて、制御部50又は制御部50以外の所定の装置によって設定される指令値である。目標値Yoは、電力がポートから出力されるときには出力目標値として機能し、電力がポートに入力されるときには入力目標値として機能し、目標電圧値でもよいし、目標電流値でもよいし、目標電力値でもよい。
また、制御部50は、1次側変換回路20と2次側変換回路30との間で変圧器400を介して伝送される伝送電力Pが、設定された目標伝送電力に収束する値に、位相差φが変化するように、電源回路10による電力変換動作をフィードバック制御する。伝送電力は、電力伝送量とも呼ばれる。目標伝送電力は、例えば、いずれかのポートにおける検出値Ydと目標値Yoとの偏差に基づいて、制御部50又は制御部50以外の所定の装置によって設定される指令値である。
図2は、制御部50のブロック図である。制御部50は、1次側変換回路20の1次側第1上アームU1等の各スイッチング素子と2次側変換回路30の2次側第1上アームU2等の各スイッチング素子のスイッチング制御を行う機能を有する制御部である。制御部50は、電力変換モード決定処理部502と、位相差φ決定処理部504と、オン時間δ決定処理部506と、1次側スイッチング処理部508と、2次側スイッチング処理部510等を含んで構成される。制御部50は、例えば、CPUを内蔵するマイクロコンピュータを備えた電子回路である。
電力変換モード決定処理部502は、例えば、所定の外部信号(例えば、いずれかのポートにおける検出値Ydと目標値Yoとの偏差を表す信号)に基づいて、次に述べる電源回路10の電力変換モードA〜Fの中から動作モードを選択して決定する。電力変換モードは、第1入出力ポート60aから入力された電力を変換して第2入出力ポート60cへ出力するモードAと、第1入出力ポート60aから入力された電力を変換して第3入出力ポート60bへ出力するモードBがある。
そして、第2入出力ポート60cから入力された電力を変換して第1入出力ポート60aへ出力するモードCと、第2入出力ポート60cから入力された電力を変換して第3入出力ポート60bへ出力するモードDがある。
さらに、第3入出力ポート60bから入力された電力を変換して第1入出力ポート60aへ出力するモードEと、第3入出力ポート60bから入力された電力を変換して第2入出力ポート60cへ出力するモードFがある。
位相差φ決定処理部504は、電源回路10をDC−DCコンバータ回路として機能させるために、1次側変換回路20と2次側変換回路30との間でのスイッチング素子のスイッチング周期運動の位相差φを設定する機能を有する。
オン時間δ決定処理部506は、1次側変換回路20と2次側変換回路30をそれぞれ昇降圧回路として機能させるために、1次側変換回路20と2次側変換回路30のスイッチング素子のオン時間δを設定する機能を有する。
1次側スイッチング処理部508は、電力変換モード決定処理部502と位相差φ決定処理部504とオン時間δ決定処理部506の出力に基づいて、1次側第1上アームU1と、1次側第1下アーム/U1と、1次側第2上アームV1と、1次側第2下アーム/V1の各スイッチング素子をスイッチング制御する機能を有する。
2次側スイッチング処理部510は、電力変換モード決定処理部502と位相差φ決定処理部504とオン時間δ決定処理部506の出力に基づいて、2次側第1上アームU2と、2次側第1下アーム/U2と、2次側第2上アームV2と、2次側第2下アーム/V2の各スイッチング素子をスイッチング制御する機能を有する。
制御部50は、図2に示す処理に限定されず、1次側変換回路20と2次側変換回路30との間で伝送される伝送電力を制御するために必要とされる様々な処理を行うことが可能である。
<電源装置101の動作>
上記電源装置101の動作について、図1及び図2を用いて説明する。例えば、電源回路10の電力変換モードをモードDとして動作させることを要求する外部信号が入力されてきた場合には、制御部50の電力変換モード決定処理部502は、電源回路10の電力変換モードをモードDとして決定する。このとき、第2入出力ポート60cに入力された電圧が1次側変換回路20の昇圧機能によって昇圧され、その昇圧された電圧の電力が電源回路10のDC−DCコンバータ回路としての機能によって第3入出力ポート60b側へと伝送され、さらに、2次側変換回路30の降圧機能によって降圧されて第3入出力ポート60bから出力される。
ここで、1次側変換回路20の昇降圧機能について詳細に説明する。第2入出力ポート60cと第1入出力ポート60aについて着目すると、第2入出力ポート60cの端子616は、1次側第1巻線202aと、1次側第1巻線202aに直列接続される1次側第1リアクトル204aを介して、1次側第1アーム回路207の中点207mに接続される。そして、1次側第1アーム回路207の両端は、第1入出力ポート60aに接続されているため、第2入出力ポート60cの端子616と第1入出力ポート60aとの間には昇降圧回路が取り付けられていることとなる。
さらに、第2入出力ポート60cの端子616は、1次側第2巻線202bと、1次側第2巻線202bに直列接続される1次側第2リアクトル204bを介して、1次側第2アーム回路211の中点211mに接続される。そして、1次側第2アーム回路211の両端は、第1入出力ポート60aに接続されているため、第2入出力ポート60cの端子616と第1入出力ポート60aとの間には、昇降圧回路が並列に取り付けられていることとなる。なお、2次側変換回路30は、1次側変換回路20とほぼ同様の構成を有する回路であるため、1次側変換回路20と同様に昇降圧機能を有する。
次に、電源回路10のDC−DCコンバータ回路としての機能について詳細に説明する。第1入出力ポート60aと第3入出力ポート60bについて着目すると、第1入出力ポート60aには、1次側フルブリッジ回路200が接続され、第3入出力ポート60bは、2次側フルブリッジ回路300が接続されている。そして、1次側フルブリッジ回路200のブリッジ部分に設けられる1次側コイル202と、2次側フルブリッジ回路300のブリッジ部分に設けられる2次側コイル302とが結合係数kTで磁気結合することで、変圧器400が巻き数1:Nのセンタータップ式変圧器として機能する。したがって、1次側フルブリッジ回路200と2次側フルブリッジ回路300でのスイッチング素子のスイッチング周期運動の位相差φを調整することで、第1入出力ポート60aに入力された電力を変換して第3入出力ポート60bに伝送させ、あるいは、第3入出力ポート60bに入力された電力を変換して第1入出力ポート60aに伝送させることができる。
図3は、制御部50の制御によって、電源回路10に構成される各アームのオンオフのスイッチング波形のタイミングチャートを示す図である。図3において、U1は、1次側第1上アームU1のオンオフ波形であり、V1は、1次側第2上アームV1のオンオフ波形であり、U2は、2次側第1上アームU2のオンオフ波形であり、V2は、2次側第2上アームV2のオンオフ波形である。1次側第1下アーム/U1、1次側第2下アーム/V1、2次側第1下アーム/U2、2次側第2下アーム/V2のオンオフ波形は、それぞれ、1次側第1上アームU1、1次側第2上アームV1、2次側第1上アームU2、2次側第2上アームV2のオンオフ波形を反転した波形である(図示省略)。なお、上下アームの両オンオフ波形間には、上下アームの両方がオンすることで貫通電流が流れないようにデッドタイムが設けられているとよい。また、図3において、ハイレベルがオン状態を表し、ローレベルがオフ状態を表している。
ここで、U1とV1とU2とV2の各オン時間δを変更することで、1次側変換回路20と2次側変換回路30の昇降圧比を変更することができる。例えば、U1とV1とU2とV2の各オン時間δを互いに等しくすることで、1次側変換回路20の昇降圧比と2次側変換回路30の昇降圧比を等しくできる。
オン時間δ決定処理部506は、1次側変換回路20と2次側変換回路30の昇降圧比が互いに等しくなるように、U1とV1とU2とV2の各オン時間δを互いに等しくする(各オン時間δ=1次側オン時間δ11=2次側オン時間δ12=時間値β)。
1次側変換回路20の昇降圧比は、1次側フルブリッジ回路200に構成されるスイッチング素子(アーム)のスイッチング周期Tに占めるオン時間δの割合であるデューティ比Dによって決まる。同様に、2次側変換回路30の昇降圧比は、2次側フルブリッジ回路300に構成されるスイッチング素子(アーム)のスイッチング周期Tに占めるオン時間δの割合であるデューティ比Dによって決まる。1次側変換回路20の昇降圧比は、第1入出力ポート60aと第2入出力ポート60cとの間の変圧比であり、2次側変換回路30の昇降圧比は、第3入出力ポート60bと第4入出力ポート60dとの間の変圧比である。
したがって、例えば、
1次側変換回路20の昇降圧比
=第2入出力ポート60cの電圧/第1入出力ポート60aの電圧
=δ11/T=β/T
2次側変換回路30の昇降圧比
=第4入出力ポート60dの電圧/第3入出力ポート60bの電圧
=δ12/T=β/T
と表される。つまり、1次側変換回路20と2次側変換回路30の昇降圧比は互いに同じ値(=β/T)である。
なお、図3のオン時間δは、1次側第1上アームU1及び1次側第2上アームV1のオン時間δ11を表すとともに、2次側第1上アームU2及び2次側第2上アームV2のオン時間δ12を表す。また、1次側フルブリッジ回路200に構成されるアームのスイッチング周期Tと2次側フルブリッジ回路300に構成されるアームのスイッチング周期Tは等しい時間である。
また、U1とV1との位相差は、180度(π)で動作させ、U2とV2との位相差も180度(π)で動作させる。さらに、U1とU2の位相差φを変更することで、1次側変換回路20と2次側変換回路30の間の電力伝送量Pを調整することができ、位相差φ>0であれば、1次側変換回路20から2次側変換回路30に伝送し、位相差φ<0であれば、2次側変換回路30から1次側変換回路20に伝送することができる。
位相差φは、1次側フルブリッジ回路200と2次側フルブリッジ回路300との間で同じ相の電力変換回路部間でのスイッチングタイミングのずれ(タイムラグ)である。例えば、位相差φは、1次側第1アーム回路207と2次側第1アーム回路307との間でのスイッチングタイミングのずれであり、1次側第2アーム回路211と2次側第2アーム回路311との間でのスイッチングタイミングのずれである。それらのずれは互いに等しいまま制御される。つまり、U1とU2の位相差φ及びV1とV2の位相差φは、同じ値に制御される。
したがって、例えば、電源回路10の電力変換モードをモードFとして動作させることを要求する外部信号が入力されてきた場合に、電力変換モード決定処理部502はモードFを選択することを決定する。そして、オン時間δ決定処理部506は、1次側変換回路20を第2入出力ポート60cに入力された電圧を昇圧して第1入出力ポート60aに出力する昇圧回路として機能させる場合の昇圧比を規定するオン時間δを設定する。なお、2次側変換回路30では、オン時間δ決定処理部506によって設定されたオン時間δによって規定された降圧比で第3入出力ポート60bに入力された電圧を降圧して第4入出力ポート60dに出力する降圧回路として機能する。さらに、位相差φ決定処理部504は、第1入出力ポート60aに入力された電力を所望の電力伝送量Pで第3入出力ポート60bに伝送するための位相差φを設定する。
1次側スイッチング処理部508は、1次側変換回路20を昇圧回路として、かつ、1次側変換回路20をDC−DCコンバータ回路の一部として機能させるように、1次側第1上アームU1と、1次側第1下アーム/U1と、1次側第2上アームV1と、1次側第2下アーム/V1の各スイッチング素子をスイッチング制御する。
2次側スイッチング処理部510は、2次側変換回路30を降圧回路として、かつ、2次側変換回路30をDC−DCコンバータ回路の一部として機能させるように、2次側第1上アームU2と、2次側第1下アーム/U2と、2次側第2上アームV2と、2次側第2下アーム/V2の各スイッチング素子をスイッチング制御する。
上記のように、1次側変換回路20および2次側変換回路30を昇圧回路あるいは降圧回路として機能させることができ、かつ、電源回路10を双方向DC−DCコンバータ回路としても機能させることができる。したがって、電力変換モードA〜Lの全てのモードの電力変換を行うことができ、換言すれば、4つの入出力ポートのうちから選択された2つの入出力ポート間で電力変換をすることができる。
制御部50により位相差φ、等価インダクタンスL、等に応じて調整される伝送電力P(電力伝送量Pともいう)は、1次側変換回路20と2次側変換回路30において一方の変換回路から他方の変換回路に変圧器400を介して送られる電力であり、
P=(N×Va×Vb)/(π×ω×L)×F(D,φ)
・・・式1
で表される。
なお、Nは、変圧器400の巻き数比、Vaは、第1入出力ポート60aの入出力電圧(1次側変換回路20の1次側正極母線298と1次側正極母線299との間の電圧)、Vbは、第3入出力ポート60bの入出力電圧(2次側変換回路30の1次側正極母線398と1次側正極母線399との間の電圧)である。πは、円周率、ω(=2π×f=2π/T)は、1次側変換回路20及び2次側変換回路30のスイッチングの角周波数である。fは、1次側変換回路20及び2次側変換回路30のスイッチング周波数、Tは、1次側変換回路20及び2次側変換回路30のスイッチング周期、Lは、磁気結合リアクトル204,304と変圧器400の電力伝送に関わる等価インダクタンスである。F(D,φ)は、デューティ比Dと位相差φを変数とする関数であり、デューティ比Dに依存せずに、位相差φが増加するにつれて単調増加する変数である。デューティ比D及び位相差φは、所定の上下限値に挟まれた範囲内で変化するように設計された制御パラメータである。
等価インダクタンスLは、1次側磁気結合リアクトル204及び/又は2次側磁気結合リアクトル304が接続された変圧器400の簡易等価回路上で定義できる。等価インダクタンスLは、簡易等価回路において、1次側磁気結合リアクトル204の漏れインダクタンス及び/又は2次側磁気結合リアクトルの漏れインダクタンスと、変圧器400の漏れインダクタンスとを合成した合成インダクタンスである。
例えば、2次側変換回路30側から測定される等価インダクタンスL(2次側換算値LEQ2)は、
EQ2 = 2L(1−k)N + 2L(1−k) + LT2(1−k
・・・式2
と表すことができる。
は、1次側磁気結合リアクトル204の自己インダクタンス、kは、1次側磁気結合リアクトル204の結合係数、Nは、変圧器400の巻き数比、Lは、2次側磁気結合リアクトル304の自己インダクタンス、kは、2次側磁気結合リアクトル304の結合係数、LT2は、変圧器400の2次側の励磁インダクタンス、kは、変圧器400の結合係数である。なお、第2入出力ポート60c又は第4入出力ポート60dを使用しない場合、式2において、第1項又は第2項で表される漏れインダクタンスが無い場合もありうる。
ところで、伝送電力Pは、制御部50による位相差φの変更によって調整されるが、デューティ比Dの影響も受ける。具体的には、デューティ比Dのラップ(重なり)が存在する状態であるか、デューティ比Dのラップが存在しない状態であるかによって、位相差φの変更に伴う伝送電力Pの増減が変化する。
図4は、制御部50の制御によって、電源回路10に構成される各アーム(2次側第1上アームU2、2次側第2上アームV2、1次側第1上アームU1、1次側第2上アームV1)のオンオフのスイッチング波形のタイミングチャートを示す図である。
図4(A)に示す期間W1において、1次側変換回路のスイッチング素子のオン時間と2次側変換回路のスイッチング素子のオン時間とは重なっている(斜線部参照)。即ち、デューティ比Dのラップが存在する状態であり、伝送電力Pは、位相差φを大きくするにつれて大きくなる。原理的には、位相差φが90度に達するまでは、伝送電力Pは、位相差φを大きくするにつれて大きくなる。
図4(B)に示す期間W2おいて、1次側変換回路のスイッチング素子のオン時間と2次側変換回路のスイッチング素子のオン時間とは重なっていない(斜線部参照)。即ち、デューティ比Dのラップが存在しない状態であり、伝送電力Pは、位相差φを大きくするにつれて小さくなる。これは、期間W2で、電力伝送には起因しない回路内を、無駄に循環する循環電流が発生するためである。
つまり、1次側変換回路のスイッチング素子のオン時間と2次側変換回路のスイッチング素子のオン時間とが適切に設定されていないと(デューティ比Dのラップが存在しない状態であると)、伝送電力Pは、位相差φを大きくしても、小さくなってしまう。
そこで、制御部50は、1次側変換回路20のデューティ比D1、2次側変換回路30のデューティ比D2を、適切に設定し、伝送電力の低下を抑制する。
例えば、制御部50は、位相差φが90度以下であり、且つ、(位相差φ/360度)>(オン時間δ/スイッチング周期T=デューティ比D)の関係式を満たす場合、1次側変換回路20のデューティ比D1を、デューティ比D(PID算出値)に設定し、2次側変換回路30のデューティ比D2を、位相差φを360度で除した値(位相差φ/360度)以上に設定する。制御部50がこのような設定を行うことにより、図5に示すように、1次側変換回路20のスイッチング素子のオン時間(例えば、δ1)の始端と2次側変換回路30のスイッチング素子のオン時間(例えば、δ2)の終端とが重なる状態とすることができる(図5のγ軸参照)。
即ち、制御部50が、2次側変換回路30のデューティ比D2を、1次側変換回路のスイッチング素子のオン時間と2次側変換回路のスイッチング素子のオン時間とが重なる期間が存在するように設定することで、位相差φを大きくしても(但し、90度まで)、位相差φに比例させて、伝送電力Pを大きくすることが可能になる。なお、1次側変換回路20のデューティ比D1を、位相差φを360度で除した値(位相差φ/360度)以上に設定し、2次側変換回路30のデューティ比D2を、デューティ比D(PID算出値)に設定することも可能である。
又、例えば、制御部50は、位相差φが90度以下であり、且つ、(位相差φ/360度)≦(オン時間δ/スイッチング周期T=デューティ比D)の関係式を満たす場合、1次側変換回路20のデューティ比D1及び2次側変換回路30のデューティ比D2を、デューティ比D(PID算出値)に設定する。
ここで、1次側変換回路20のデューティ比D1、2次側変換回路30のデューティ比D2の設定について、具体例を挙げて説明する。
位相差φが100度の場合について考える。この場合、制御部50は、位相差φが90度より大きいため、位相差φを強制的に90度に固定する。
例えば、デューティ比Dが0.2の場合、(位相差φ/360度)>(オン時間δ/スイッチング周期T=デューティ比D)の関係式において、0.25>0.2を満たすため、制御部50は、1次側変換回路20のデューティ比D1を、0.2(PID算出値)に設定し、2次側変換回路30のデューティ比D2を、0.25に設定する。
例えば、デューティ比Dが0.3の場合、(位相差φ/360度)>(オン時間δ/スイッチング周期T=デューティ比D)の関係式において、0.25≦0.30を満たすため、制御部50は、1次側変換回路20のデューティ比D1及び2次側変換回路30のデューティ比D2を、0.3(PID算出値)に設定する。
図6は、PID算出値を算出する制御部50の構成例を示したブロック図である。制御部50は、PID制御部51、等を有している。PID算出値は、例えば、位相差φの指令値φo、デューティ比Dの指令値Doである。
PID制御部51は、PID制御によって、1次側ポートと2次側ポートの少なくとも一つのポートのポート電圧を目標電圧に収束させるための位相差φの指令値φoを、スイッチング周期T毎に生成する位相差指令値生成部を有する。例えば、PID制御部51の位相差指令値生成部は、ポート電圧Vaの目標電圧とセンサ部70によって取得されたポート電圧Vaの検出電圧との偏差に基づいてPID制御を行うことによって、当該偏差を零に収束させるための指令値φoをスイッチング周期T毎に生成する。
制御部50は、PID制御部51によって生成された指令値φoに従って、1次側変換回路20及び2次側変換回路30のスイッチング制御を行うことによって、ポート電圧が目標電圧に収束するように、式1によって定められる伝送電力Pを調整する。
また、PID制御部51は、PID制御によって、1次側ポートと2次側ポートの少なくとも一つのポートのポート電圧を目標電圧に収束させるためのデューティ比Dの指令値Doを、スイッチング周期T毎に生成するデューティ比指令値生成部を有する。例えば、PID制御部51のデューティ比指令値生成部は、ポート電圧Vcの目標電圧とセンサ部70によって取得されたポート電圧Vcの検出電圧との偏差に基づいてPID制御を行うことによって、当該偏差を零に収束させるための指令値Doをスイッチング周期T毎に生成する。
なお、PID制御部51は、デューティ比Dの指令値Doに代えて、オン時間δの指令値δoを生成するオン時間指令値生成部を有してもよい。
PID制御部51は、積分ゲインI1、微分ゲインD1、比例ゲインP1に基づいて、位相差φの指令値φoを調整し、積分ゲインI2、微分ゲインD2、比例ゲインP2に基づいて、デューティ比Dの指令値Doを調整する。
なお、ポート電圧Va、ポート電圧Vc、デューティ比Dの間には、ポート電圧Va×デューティ比D=ポート電圧Vcという関係が成立する。従って、一定のポート電圧Va(例えば、10V)を降圧して、ポート電圧Vcを増やしたい場合(例えば、1Vから5V)は、デューティ比Dを増加させれば良い(例えば、10%から50%)。逆に、一定のポート電圧Vc(例えば、5V)を昇圧して、ポート電圧Vaを増やしたい場合(例えば、10Vから50V)は、デューティ比Dを減少させれば良い(例えば、50%から10%)。つまり、PID制御部51は、制御対象(第1入出力ポート60a又は第2入出力ポート60c)を切り替えることによって、デューティ比Dの制御方向(デューティ比Dを増減させる方向)を、昇圧動作する場合と、降圧動作する場合とで、逆にする。
<電源装置101の動作のフローチャート>
図7は、電力変換方法の一例を示したフローチャートである。図7の電力変換方法は、制御部50によって実行される。
ステップS10において、制御部50は、位相差φが90度以下であるか否かを判定する。位相差φが90度以下である場合(YES)、制御部50は、ステップS20の処理を行う。位相差φが90度より大きい場合(NO)、制御部50は、ステップS40の処理を行う。
ステップS10における判定により、制御部50は、1次側変換回路20と2次側変換回路30との間で電力伝送を行うことができる状態であるか否かを判定することができる。
ステップS20において、制御部50は、位相差φ/360度(位相差φを360度で除した値)が、オン時間δ/スイッチング周期T(=デューティ比D(PID算出値))より大きいか否かを判定する。位相差φ/360度が、デューティ比Dより大きい場合(YES)、制御部50は、ステップS30の処理を行う。位相差φ/360度が、デューティ比D以下である場合(NO)、制御部50は、ステップS50の処理を行う。
ステップS20における判定により、制御部50は、1次側変換回路20のスイッチング素子のオン時間と、2次側変換回路30のスイッチング素子のオン時間とが重なる期間が存在するか否か(デューティ比Dのラップが存在する状態であるか否か)を判定することができる。
ステップS30において、制御部50は、1次側変換回路20のデューティ比D1を、デューティ比D(PID算出値)に設定し、2次側変換回路30のデューティ比D2を、位相差φを360度で除した値以上に設定し、再び、ステップS10へ戻る。
ステップS40において、制御部50は、位相差φを、強制的に90度に固定する。
ステップS50において、制御部50は、1次側変換回路20のデューティ比D1及び2次側変換回路30のデューティ比D2を、デューティ比D(PID算出値)に設定し、再び、ステップS10へ戻る。
上述の様に、制御部50は、ステップS10及びステップS20での判定に基づいて、1次側変換回路20のデューティ比D1、2次側変換回路30のデューティ比D2を、適切に設定する。これにより、電力伝送には起因しない回路内を、無駄に循環する循環電流の発生を防ぎ、伝送電力の低下を抑制することができる。
以上、電力変換装置及び電力変換方法を実施形態例により説明したが、本発明は上記実施形態例に限定されるものではない。他の実施形態例の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
例えば、上述の実施形態では、スイッチング素子の一例として、オンオフ動作する半導体素子であるMOSFETを挙げた。しかしながら、スイッチング素子は、例えば、IGBT、MOSFETなどの絶縁ゲートによる電圧制御型パワー素子でもよいし、バイポーラトランジスタでもよい。
また、2次側を1次側と定義し、1次側を2次側と定義してもよい。
また、本発明は、少なくとも3つ以上の複数の入出力ポートを有し、少なくとも3つ以上の複数の入出力ポートのうちどの2つの入出力ポート間でも電力を変換することが可能な電力変換装置に適用できる。
20 1次側変換回路
30 2次側変換回路
50 制御部
60a 第1入出力ポート
60b 第3入出力ポート
60c 第2入出力ポート
62b 2次側高電圧系電源
62c 1次側低電圧系電源
101 電源装置(電力変換装置の一例)
400 変圧器
U*,V* 上アーム
/U*,/V* 下アーム

Claims (6)

  1. 1次側回路に構成される複数の1次側ポートと、前記1次側回路と変圧器で磁気結合する2次側回路に構成される2次側ポートとを備え、前記1次側回路のスイッチングと前記2次側回路のスイッチングとの位相差を変更して、前記1次側回路と前記2次側回路との間で伝送される伝送電力を調整し、且つ、前記1次側回路又は前記2次側回路のスイッチングのデューティ比を変更する、電力変換方法であって、
    前記位相差を360度で除した値が前記デューティ比より大きいか否かを判定する判定ステップと、
    前記位相差を360度で除した値が前記デューティ比より大きい場合に、前記2次側回路のデューティ比を、前記位相差を360度で除した値以上に設定する設定ステップと、
    前記位相差が90度以下であるか否かを判定する判定ステップと、
    前記位相差が90度以下であり、且つ、前記位相差を360度で除した値が前記デューティ比より大きい場合に、前記2次側回路のデューティ比を、前記位相差を360度で除した値以上に設定する設定ステップと、を有する、電力変換方法。
  2. 前記位相差が、90度より大きい場合に、前記位相差を90度に固定する固定ステップと、を有する、請求項に記載の電力変換方法。
  3. 前記位相差を360度で除した値が、前記デューティ比以下である場合に、前記1次側回路のデューティ比及び前記2次側回路のデューティ比を、前記デューティ比に設定する設定ステップと、を有する、請求項1又は2に記載の電力変換方法。
  4. 複数の1次側ポートを備える1次側回路と、
    2次側ポートを備え、前記1次側回路と変圧器で磁気結合する2次側回路と、
    前記1次側回路のスイッチングと前記2次側回路のスイッチングとの位相差を変更することによって、前記1次側回路と前記2次側回路との間で伝送される伝送電力を制御し、且つ、前記1次側回路又は前記2次側回路のスイッチングのデューティ比を制御する制御部と、を備える電力変換装置であって、
    前記制御部は、
    前記位相差を360度で除した値が前記デューティ比より大きいか否かを判定し、
    前記位相差を360度で除した値が前記デューティ比より大きい場合に、前記2次側回路のデューティ比を、前記位相差を360度で除した値以上に設定する、
    前記制御部は、
    前記位相差が90度以下であるか否かを判定し、
    前記位相差が90度以下であり、且つ、前記位相差を360度で除した値が前記デューティ比より大きい場合に、前記2次側回路のデューティ比を、前記位相差を360度で除した値以上に設定する、
    電力変換装置。
  5. 前記制御部は、
    前記位相差が、90度より大きい場合に、前記位相差を90度に固定する、請求項に記載の電力変換装置。
  6. 前記制御部は、
    前記位相差を360度で除した値が、前記デューティ比以下である場合に、前記1次側回路のデューティ比及び前記2次側回路のデューティ比を、前記デューティ比に設定する、請求項4又は5に記載の電力変換装置。

JP2014048200A 2014-03-11 2014-03-11 電力変換装置及び電力変換方法 Expired - Fee Related JP5958487B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014048200A JP5958487B2 (ja) 2014-03-11 2014-03-11 電力変換装置及び電力変換方法
CN201510101164.8A CN104917389B (zh) 2014-03-11 2015-03-06 电力变换装置以及电力变换方法
US14/641,616 US9537408B2 (en) 2014-03-11 2015-03-09 Power conversion with controlled phase difference and duty ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014048200A JP5958487B2 (ja) 2014-03-11 2014-03-11 電力変換装置及び電力変換方法

Publications (2)

Publication Number Publication Date
JP2015173542A JP2015173542A (ja) 2015-10-01
JP5958487B2 true JP5958487B2 (ja) 2016-08-02

Family

ID=54070069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014048200A Expired - Fee Related JP5958487B2 (ja) 2014-03-11 2014-03-11 電力変換装置及び電力変換方法

Country Status (3)

Country Link
US (1) US9537408B2 (ja)
JP (1) JP5958487B2 (ja)
CN (1) CN104917389B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807649B2 (ja) * 2013-02-15 2015-11-10 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP5935789B2 (ja) * 2013-12-24 2016-06-15 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP5928518B2 (ja) * 2014-04-09 2016-06-01 トヨタ自動車株式会社 電力変換装置及びその制御方法
JP6135663B2 (ja) * 2014-12-26 2017-05-31 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP6237697B2 (ja) * 2015-05-12 2017-11-29 トヨタ自動車株式会社 電力変換装置の制御方法及び電力変換装置
CN107393705B (zh) * 2016-03-11 2022-02-08 马克西姆综合产品公司 集成变压器和耦合电感器以及相关联的开关功率转换器和方法
US10230306B2 (en) * 2016-05-09 2019-03-12 Omron Corporation Bidirectional DC/DC converter
JP6771156B2 (ja) * 2017-03-29 2020-10-21 パナソニックIpマネジメント株式会社 電力変換装置
JP7279694B2 (ja) * 2020-08-25 2023-05-23 トヨタ自動車株式会社 制御装置
US11575326B2 (en) * 2020-11-27 2023-02-07 Lear Corporation Wide high voltage-input range DC-DC converter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213571A (ja) * 1986-03-12 1987-09-19 Kosuke Harada 高周波位相差制御形電源装置
JPH04127869A (ja) * 1990-09-18 1992-04-28 Nippon Telegr & Teleph Corp <Ntt> 整流回路
JP4181292B2 (ja) * 2000-07-13 2008-11-12 株式会社東芝 電力変換装置
JP2009201242A (ja) * 2008-02-21 2009-09-03 Toyota Motor Corp 電力変換装置
JP5195002B2 (ja) * 2008-05-09 2013-05-08 トヨタ自動車株式会社 Dcdcコンバータ
JP5210824B2 (ja) * 2008-11-21 2013-06-12 新電元工業株式会社 双方向dc/dcコンバータ
JP5815939B2 (ja) * 2010-02-17 2015-11-17 株式会社豊田中央研究所 電力変換回路及び電力変換回路システム
US8310293B2 (en) * 2010-06-08 2012-11-13 Stmicroelectronics, Inc. PWM signal generator for digital controlled power supply
JP5783195B2 (ja) * 2013-02-18 2015-09-24 トヨタ自動車株式会社 電源装置及び制御方法
US9042125B1 (en) * 2013-03-15 2015-05-26 Rockwell Collins, Inc. Series resonant power converter system and method with improved efficiency
US9641089B2 (en) * 2013-07-11 2017-05-02 Mitsubishi Electric Corporation DC-DC converter

Also Published As

Publication number Publication date
US9537408B2 (en) 2017-01-03
JP2015173542A (ja) 2015-10-01
US20150263632A1 (en) 2015-09-17
CN104917389A (zh) 2015-09-16
CN104917389B (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
JP5958487B2 (ja) 電力変換装置及び電力変換方法
JP6160547B2 (ja) 電力変換装置及び電力変換方法
JP5971269B2 (ja) 電力変換装置及び電力変換方法
JP5812040B2 (ja) 電力変換装置
JP5928519B2 (ja) 電力変換装置及び電力変換方法
JP5807658B2 (ja) 電力変換装置及び電力変換方法
JP5929943B2 (ja) 電力変換装置及び電力変換方法
JP6003932B2 (ja) 電力変換装置及びその起動方法
JP6036741B2 (ja) 電力変換装置
JP6135663B2 (ja) 電力変換装置及び電力変換方法
JP5807667B2 (ja) 電力変換装置及び電力補正方法
JP6102898B2 (ja) 電力変換装置
JP5807659B2 (ja) 電力変換装置及び電力変換方法
JP5838997B2 (ja) 電力変換装置及び電力補正方法
US20150295502A1 (en) Power conversion device and power conversion method
JP2015204639A (ja) 電力変換装置及びその制御方法
JP2014230372A (ja) 電力変換装置及び電力変換方法
JP5935789B2 (ja) 電力変換装置及び電力変換方法
JP5790709B2 (ja) 電力変換装置及び電力変換方法
JP2014230373A (ja) 電力変換装置及び電圧変換方法
JP2015104287A (ja) 電力変換装置及び電力変換方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R151 Written notification of patent or utility model registration

Ref document number: 5958487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees