JP5939272B2 - 試験装置及び試験方法 - Google Patents

試験装置及び試験方法 Download PDF

Info

Publication number
JP5939272B2
JP5939272B2 JP2014069758A JP2014069758A JP5939272B2 JP 5939272 B2 JP5939272 B2 JP 5939272B2 JP 2014069758 A JP2014069758 A JP 2014069758A JP 2014069758 A JP2014069758 A JP 2014069758A JP 5939272 B2 JP5939272 B2 JP 5939272B2
Authority
JP
Japan
Prior art keywords
timing
semiconductor element
test
current
test target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014069758A
Other languages
English (en)
Other versions
JP2015190923A (ja
Inventor
洋平 岩橋
洋平 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014069758A priority Critical patent/JP5939272B2/ja
Priority to US14/645,119 priority patent/US9500695B2/en
Priority to DE102015103886.2A priority patent/DE102015103886B4/de
Priority to CN201510142715.5A priority patent/CN104950236B/zh
Publication of JP2015190923A publication Critical patent/JP2015190923A/ja
Application granted granted Critical
Publication of JP5939272B2 publication Critical patent/JP5939272B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2608Circuits therefor for testing bipolar transistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2621Circuits therefor for testing field effect transistors, i.e. FET's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2608Circuits therefor for testing bipolar transistors
    • G01R31/261Circuits therefor for testing bipolar transistors for measuring break-down voltage or punch through voltage therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Power Conversion In General (AREA)

Description

本明細書で開示する技術は、半導体素子を試験する試験装置及び半導体素子を試験する試験方法に関する。
特許文献1には、電源と、コイルと、半導体素子への電流の流入を遮断するための遮断手段を備える試験装置が開示されている。遮断手段は、半導体素子の破壊を検出すると、半導体素子への電流の流入の遮断を開始する。遮断が完了すると半導体素子に電流が流入しなくなる。これにより、半導体素子の破壊が進行して試験装置が損傷することの抑制が図られている。
特開2013−108802号公報
特許文献1の試験装置では、遮断手段は、半導体素子の破壊が検出された後に半導体素子への電流の遮断を開始する。そのため、遮断を開始してから遮断が完了するまでの間に、破壊された半導体素子に電流が流入し、半導体素子の破壊が進行するおそれがある。
本明細書では、半導体素子に十分に負荷を与えることができるとともに、半導体素子が破壊した場合に半導体素子の破壊の進行を適切に抑制することができる技術を開示する。
本明細書で開示する試験装置は、半導体素子を試験する試験装置である。試験装置は、電源と、インダクタと、ダイオードと、電流遮断機構とを有している。電源は、半導体素子に供給する電源電圧を発生させる。インダクタは、電源と半導体素子との間に設けられる。ダイオードは、インダクタと並列に接続され、アノードがインダクタの負極側に接続され、カソードがインダクタの正極側に接続される。電流遮断機構は、電源と半導体素子との間に設けられ、半導体素子への電流の流入を遮断可能である。電流遮断機構は、半導体素子のターンオフに起因して半導体素子に印加される電圧がサージ電圧まで上昇した後に安定するタイミングより先に半導体素子への電流の流入の遮断を開始し、そのタイミング以降に遮断を完了する。
発明者による鋭意研究の結果、半導体素子を試験する場合、半導体素子のターンオフに起因して半導体素子に印加される電圧がサージ電圧まで上昇した後に安定するタイミングまで半導体素子に電流を流すことができれば、半導体素子に十分な負荷を与えられることが判明した。また、半導体素子が破壊されるのは、多くの場合、半導体素子に印加される電圧の値がサージ電圧まで上昇する間もしくは上昇した後であることも判明した。上記の試験装置では、電流遮断機構は、半導体素子のターンオフに起因して半導体素子に印加される電圧がサージ電圧まで上昇した後に安定するタイミングより先に半導体素子への電流の流入の遮断を開始し、そのタイミング以降に遮断を完了する。そのため、上記の試験装置によれば、半導体素子に十分な負荷を与えることができる。仮に、半導体素子が破壊される場合であっても、半導体素子の破壊が検出された後に、半導体素子への電流の流入の遮断を開始する構成と比べて、半導体素子の破壊の進行を適切に抑制することができる。従って、上記の試験装置によると、半導体素子に負荷を適切に与えることができるとともに、半導体素子が破壊した場合に半導体素子の破壊の進行を適切に抑制することができる。
また、電流遮断機構は、半導体素子がターンオフを開始するタイミングより後に遮断を開始してもよい。
本明細書で開示する試験方法は、半導体素子を試験する方法である。試験に用いられる試験装置は、上記と同様の構成を有する。この試験方法では、電流遮断機構に、半導体素子のターンオフに起因して半導体素子に印加される電圧がサージ電圧まで上昇した後に安定するタイミングより先に半導体素子への電流の流入の遮断を開始させ、そのタイミング以降に遮断を完了させる。
上記の試験方法によると、半導体素子に十分に負荷を与えることができるとともに、半導体素子が破壊した場合に半導体素子の破壊の進行を適切に抑制することができる。
また、電流遮断機構に、半導体素子がターンオフを開始するタイミングより後に遮断を開始させるようにしてもよい。
第1実施例の試験装置を示す回路図。 第1実施例において、試験対象素子が破壊されない場合におけるVg1、Ic1、Vce1、Vg2のそれぞれの値の推移を示すグラフ。 第1実施例において、試験対象素子が破壊される場合におけるVg1、Ic1、Vce1、Vg2のそれぞれの値の推移を示すグラフ。 比較例において、試験対象素子が破壊される場合におけるVg1、Ic1、Vce1、Vg2のそれぞれの値の推移を示すグラフ。 第2実施例の試験装置を示す回路図。
(第1実施例)
(試験装置2の構成;図1)
図1に示すように、本実施例の試験装置2は、試験対象である半導体素子(以下では試験対象素子と呼ぶ)40に対して誘導負荷試験を行うための装置である。この試験装置2は、電源10、インダクタ20、ダイオード30、試験対象素子40、遮断用素子50、及び、ゲート電圧制御回路60を有している。
試験対象素子40は、IGBTである。変形例では、試験対象素子40は、MOSFET等、任意のパワーデバイスであってもよい。試験対象素子40は、試験を行う毎に交換される。本実施例の試験装置2を用いた試験においては、試験対象素子40は、後述の所定のタイミングでターンオフを開始するように、ゲート電圧制御回路60によって制御されている。
電源10は、試験対象素子40に供給する電源電圧を発生させる。電源電圧は例えば600Vである。
インダクタ20は、電源10と遮断用素子50との間に接続されている。インダクタ20は、誘導負荷試験の負荷として用いられる。
ダイオード30は、インダクタ20と並列に接続されている。ダイオード30のアノードは、電源10の負極側に接続される。ダイオード30のカソードは、電源10の正極側に接続される。ダイオード30は、試験対象素子40のターンオフ時にインダクタ20によって誘起される電流を流す。
遮断用素子50は、インダクタ20と試験対象素子40との間に接続されている。遮断用素子50は、IGBTである。変形例では、遮断用素子50は、他の任意のスイッチング素子であってもよい。遮断用素子50がオフ状態の間は、試験対象素子への電流の流入が遮断される。本実施例の試験装置2を用いた試験においては、遮断用素子50は、後述の所定のタイミングでターンオフを開始するように、ゲート電圧制御回路60によって制御されている。
ゲート電圧制御回路60は、試験対象素子40のゲート電圧と、遮断用素子50のゲート電圧とを制御する。
(試験装置2を用いた試験)
図2及び図3は、本実施例の試験装置2を用いた試験を実施する場合における、試験対象素子40に印加されるゲート電圧Vg1、試験対象素子40に印加されるコレクタ―エミッタ間電圧Vce1、試験対象素子40に流れる電流Ic1、及び、遮断用素子50に印加されるゲート電圧Vg2の値を示すグラフである。図2は、試験中に試験対象素子40が破壊されない場合(即ち、試験対象素子40が正常である場合)の各値を示す。図3は、試験中に試験対象素子40が破壊される場合(即ち、試験対象素子40に異常が存在する場合)の各値を示す。
(試験対象素子40が破壊されない場合;図2)
図2を参照して、試験中に試験対象素子40が破壊されない場合の例を説明する。タイミングt0においては、試験対象素子40と遮断用素子50が共にオンされている。即ち、試験対象素子40のゲート電極及び遮断用素子50のゲート電極には、それぞれ、所定の値のゲート電圧Vg1、Vg2が印加されている。この時、試験対象素子40に印加される電圧Vce1は低い値を示す。また、試験対象素子40には、所定の値の電流Ic1が流れている。
図2の例では、その後、タイミングt1で、ゲート電圧制御回路60が、試験対象素子40のターンオフを開始する。即ち、ゲート電圧制御回路60は、タイミングt1から試験対象素子40のゲート電圧Vg1の値を徐々に低減させ、ターンオフ開始から所定時間経過後に0とする。
タイミングt1で試験対象素子40のターンオフが開始されると、次いで試験対象素子40に印加される電圧Vce1が上昇し始める。電圧Vce1は、電源電圧(600V)よりも高い値まで上昇する。以下では、この電源電圧(600V)よりも高い電圧のことをサージ電圧と呼ぶ。電圧Vce1は、サージ電圧まで上昇した後、タイミングt3以降は、電源電圧に近い一定の値で安定する。また、タイミングt1で試験対象素子40のターンオフが開始されると、試験対象素子40に流れる電流Ic1が徐々に減衰し、ターンオフ開始から所定時間経過後のタイミングt3でほぼ0になる。タイミングt3では、Vg1が0であり、Vce1が電源電圧に近い一定の値で安定し、Ic1がほぼ0である。その後、タイミングt4において、Ic1が完全に0になり、試験対象素子40が完全にオフ状態に移行する。
本実施例では、ゲート電圧制御回路60は、タイミングt1から一定時間Δtの経過後のタイミングt2において、遮断用素子50のターンオフ(即ち、試験対象素子40への電流の流入の遮断)を開始する。即ち、ゲート電圧制御回路60は、タイミングt2から遮断用素子50のゲート電圧Vg2を徐々に低下させ、ターンオフ開始から所定時間経過後のタイミングt5で0とする。時間Δtは、タイミングt2が、タイミングt1より後であって、タイミングt3よりも先となるように設定されている。ゲート電圧Vg2が0になると、その後、遮断用素子50が完全にオフ状態に移行する。即ち、試験対象素子40への電流の流入の遮断が完了する。
ここで、試験装置2を用いて誘導負荷試験を行う場合、試験対象素子40のターンオフが開始されたことによって電圧Vce1がサージ電圧まで上昇し、その後、電源電圧に近い一定の値で安定するタイミングt3まで試験対象素子40に電流を流すことができれば、試験対象素子40には十分な負荷を与えられる。図2の例では、遮断用素子50が完全にオフするタイミングt5が、タイミングt3より後であるので、タイミングt3まで試験対象素子40に電流を流すことが可能であり、試験対象素子40に十分な負荷を与えることができる。従って、本実施例の試験装置2を用いて試験を行えば、適切に試験を行うことができる。
(試験対象素子40が破壊される場合;図3)
図3を参照して、試験中に試験対象素子40が破壊される場合の例を説明する。タイミングt0においては、試験対象素子40と遮断用素子50が共にオンされている。即ち、タイミングt0では、試験対象素子40のゲート電極及び遮断用素子50のゲート電極には、それぞれ、所定の値のゲート電圧Vg1、Vg2が印加されている。試験対象素子40に印加される電圧Vce1は低い値を示す。また、試験対象素子40には所定の値の電流Ic1が流れている。
図3の例でも、その後、タイミングt1で、ゲート電圧制御回路60が、試験対象素子40のターンオフを開始する。
タイミングt1で試験対象素子40のターンオフが開始されると、試験対象素子40に印加される電圧Vce1がサージ電圧まで上昇する。電圧Vce1は、サージ電圧まで上昇した後、タイミングt3以降は、電源電圧に近い一定の値で安定する。また、タイミングt1で試験対象素子40のターンオフが開始されると、試験対象素子40に流れる電流Ic1が徐々に減衰する。
ただし、図3の例では、電流Ic1が完全に0になる前のタイミングt14で、試験対象素子40が破壊される。試験対象素子40が破壊されると、電流Ic1の値が再び上昇し始める。また、Vce1の値は0になる。
図3の例でも、図2の例と同様に、ゲート電圧制御回路60が、タイミングt1から一定時間Δt経過後のタイミングt2で、遮断用素子50のターンオフを開始する。タイミングt2は、試験対象素子40のターンオフが開始されるタイミングt1より後であって、Vce1が電源電圧に近い一定の値で安定するタイミングt3よりも先のタイミングである。遮断用素子50のターンオフが開始されると、遮断用素子50のゲート電圧Vg2の値は徐々に低減され、ターンオフ開始から所定時間経過後のタイミングt5で0になる。即ち、タイミングt5で、試験対象素子40への電流の流入の遮断が完了する。
タイミングt5で試験対象素子40への電流の流入の遮断が完了すると、タイミングt14で試験対象素子40が破壊されたことによって上昇し始めていた電流Ic1の値が0になる。
(比較例;図4)
ここで、本実施例の試験装置の作用効果を十分に説明するために、図4を参照して、従来の試験装置を用いて本実施例と同様の試験を行った場合の比較例を説明する。従来の試験装置も、図1に示す試験装置2と同様に、電源10、インダクタ20、ダイオード30、試験対象素子40、遮断用素子50、及び、ゲート電圧制御回路60を備える。ただし、従来の試験装置では、遮断用素子50が、試験対象素子40が破壊されたことが検出された後でターンオフを開始するように制御されている点が本実施例とは異なる。
図4に示すように、タイミングt20においては、試験対象素子40と遮断用素子50が共にオンされている。図4の例でも、その後のタイミングt21で、ゲート電圧制御回路60が、試験対象素子40のターンオフを開始する。
タイミングt21で試験対象素子40のターンオフが開始されると、試験対象素子40に印加される電圧Vce1がサージ電圧まで上昇する。電圧Vce1は、サージ電圧まで上昇した後、タイミングt22以降は、電源電圧に近い一定の値で安定する。また、タイミングt22で試験対象素子40のターンオフが開始されると、試験対象素子40に流れる電流Ic1が徐々に減衰する。
ただし、図4の例では、電流Ic1が完全に0になる前のタイミングt23で、試験対象素子40が破壊される。試験対象素子40が破壊されると、電流Ic1の値が再び上昇し始める。また、Vce1の値は0になる。
比較例では、ゲート電圧制御回路60は、タイミングt23で試験対象素子40が破壊されたことを検出した後のタイミングt24で、遮断用素子50のターンオフ(即ち、試験対象素子40への電流の流入の遮断)を開始する。その後、タイミングt25で、遮断用素子50のターンオフが完了し、試験対象素子40への電流の流入の遮断が完了する。
タイミングt25で試験対象素子40への電流の流入の遮断が完了すると、t14で試験対象素子40が破壊されたことによって上昇し始めていた電流Ic1の値が0になる。
上記の比較例では、タイミングt23で試験対象素子40が破壊されたことが検出された後のタイミングt24で、遮断用素子50のターンオフが開始される。そのため、図4の例のように、タイミングt23で試験対象素子40が破壊される場合、タイミングt23からある程度時間が経過した後のタイミングt25にならないと、遮断用素子50のターンオフが完了しない。即ち、比較例では、試験対象素子40が破壊されたタイミングt23から電流が遮断されるタイミングt25までの時間が長い。また、電流Ic1は、タイミングt23からタイミングt25の間に上昇する。即ち、図4の比較例では、破壊後の試験対象素子40に大きい電流が長時間に亘って流れる。従って、従来の試験装置を用いて試験を行い、試験対象素子40が破壊される場合には、試験対象素子40の破壊が進行してしまうと共に、試験装置2にも多大な負荷が加わる。
これに対し、図3に示すように、本実施例では、電圧Vce1が電源電圧に近い一定の値で安定するタイミングt3より先のタイミングt2で、遮断用素子50のターンオフが開始される。そのため、図3の例のように、タイミングt3の直後のタイミングt14で試験対象素子40が破壊される場合であっても、タイミングt14の経過後、比較的早いタイミングt5で遮断用素子50のターンオフが完了する。そのため、図3に示すように、破壊後の試験対象素子には、タイミングt14からタイミングt5までの比較的短い時間、しかも、比較的小さい電流が流れるに過ぎない。従って、試験対象素子40が破壊される場合であっても、試験対象素子40の破壊の進行が少なく済む。試験装置2に与えられる負荷も少なく済む。
従って、本実施例の試験装置2を用いて試験を行えば、試験対象素子40に十分に負荷を与えながら試験を適切に行うことができるとともに、試験中に試験対象素子40が破壊した場合においても試験対象素子40の破壊の進行を抑制することができる。
本実施例と請求項の記載の対応を説明する。試験対象素子40が「半導体素子」の一例である。遮断用素子50が、「電流遮断機構」の一例である。図2、図3のタイミングt3が「タイミング」の一例である。
(第2実施例)
第2実施例の試験装置について、図5を参照して、第1実施例と異なる点を中心に説明する。本実施例の試験装置2も、電源10、インダクタ20、ダイオード30、試験対象素子40、遮断用素子50、及び、ゲート電圧制御回路60を備える点は第1実施例と共通する。本実施例の試験装置2では、遮断用素子50が、電源10とインダクタ20との間に接続されている点が第1実施例と異なる。本実施例の試験装置2を用いて試験を行う場合も、試験対象素子40と遮断用素子50のターンオフタイミングは第1実施例と同様である(図2、図3参照)。従って、本実施例の試験装置2でも、第1実施例と同様の作用効果を発揮することができる。
以上、本明細書に開示の技術の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、以下の変形例を採用してもよい。
(変形例1)図2、図3に示すように、上記の各実施例では、電圧Vce1が電源電圧に近い一定の値で安定するタイミングt3より先のタイミングt2で、遮断用素子50のターンオフが開始され、タイミングt3の経過後、比較的早いタイミングt5で遮断用素子50のターンオフが完了する。遮断用素子50のターンオフ開始のタイミングは、遮断用素子50に用いるスイッチング素子のターンオフ特性に応じて、任意に変更することができる。従って、例えば、遮断用素子50が、ターンオフ開始から完了までに比較的長い時間を要する素子である場合、遮断用素子50のターンオフの開始タイミング(図2、図3のタイミングt2)を、試験対象素子40のターンオフ開始タイミング(図2、図3のタイミングt1)よりも先にしてもよい。その場合も、遮断用素子50のターンオフが、電圧Vce1が電源電圧に近い一定の値で安定するタイミング(図2、図3のタイミングt3)以降のタイミングで完了すればよい。
(変形例2)また、遮断用素子50のターンオフが完了するタイミングが、電圧Vce1が電源電圧に近い一定の値で安定するタイミングt3とほぼ同時であってもよい。
一般的に言うと、電流遮断機構は、半導体素子のターンオフに起因して半導体素子に印加される電圧がサージ電圧まで上昇した後に安定するタイミングより先に半導体素子への電流の流入の遮断を開始し、そのタイミング以降に遮断を完了すればよい。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:試験装置
10:電源
20:インダクタ
30:ダイオード
40:試験対象素子
50:遮断用素子
60:ゲート電圧制御回路60

Claims (4)

  1. 半導体素子を試験する試験装置であって、
    前記半導体素子に印加する電源電圧を発生させる電源と、
    前記電源と前記半導体素子との間に設けられるインダクタと、
    前記インダクタと並列に接続されるダイオードであって、アノードが前記インダクタの負極側に接続され、カソードが前記インダクタの正極側に接続される、前記ダイオードと、
    前記電源と前記半導体素子との間に設けられ、前記半導体素子への電流の流入を遮断可能な電流遮断機構と、を有しており、
    前記電流遮断機構は、前記半導体素子のターンオフに起因して前記半導体素子に印加される電圧がサージ電圧まで上昇した後に安定するタイミングより先に前記半導体素子への電流の流入の遮断を開始し、前記タイミング以降に前記遮断を完了する、
    試験装置。
  2. 前記電流遮断機構は、前記半導体素子がターンオフを開始するタイミングより後に前記遮断を開始する、請求項1の試験装置。
  3. 半導体素子を試験する方法であって、
    試験に用いられる試験装置は、
    前記半導体素子に印加する電源電圧を発生する電源と、
    前記電源と前記半導体素子との間に設けられるインダクタと、
    前記インダクタと並列に接続されるダイオードであって、アノードが前記インダクタの負極側に接続され、カソードが前記インダクタの正極側に接続される、前記ダイオードと、
    前記電源と前記半導体素子との間に設けられ、前記半導体素子への電流の流入を遮断可能な電流遮断機構と、を有しており、
    前記電流遮断機構に、前記半導体素子のターンオフに起因して前記半導体素子に印加される電圧がサージ電圧まで上昇した後に安定するタイミングより先に前記半導体素子への電流の流入の遮断を開始させ、前記タイミング以降に前記遮断を完了させる、
    試験方法。
  4. 前記電流遮断機構に、前記半導体素子がターンオフを開始するタイミングより後に前記遮断を開始させる、請求項3の試験方法。
JP2014069758A 2014-03-28 2014-03-28 試験装置及び試験方法 Active JP5939272B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014069758A JP5939272B2 (ja) 2014-03-28 2014-03-28 試験装置及び試験方法
US14/645,119 US9500695B2 (en) 2014-03-28 2015-03-11 Examination device and examination method
DE102015103886.2A DE102015103886B4 (de) 2014-03-28 2015-03-17 Untersuchungseinrichtung und Untersuchungsverfahren
CN201510142715.5A CN104950236B (zh) 2014-03-28 2015-03-27 试验装置以及试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069758A JP5939272B2 (ja) 2014-03-28 2014-03-28 試験装置及び試験方法

Publications (2)

Publication Number Publication Date
JP2015190923A JP2015190923A (ja) 2015-11-02
JP5939272B2 true JP5939272B2 (ja) 2016-06-22

Family

ID=54066956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069758A Active JP5939272B2 (ja) 2014-03-28 2014-03-28 試験装置及び試験方法

Country Status (4)

Country Link
US (1) US9500695B2 (ja)
JP (1) JP5939272B2 (ja)
CN (1) CN104950236B (ja)
DE (1) DE102015103886B4 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398433B2 (ja) * 2014-07-30 2018-10-03 株式会社デンソー 半導体素子の検査回路および検査方法
KR101671704B1 (ko) * 2016-03-29 2016-11-02 주식회사 우진산전 고전력용 igbt 차단시험장치
CN114089150A (zh) * 2020-07-03 2022-02-25 富士电机株式会社 半导体芯片的试验装置及试验方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654645A (en) * 1984-09-22 1987-03-31 Sharp Kabushiki Kaisha Electric element breakdown detector
US4860152A (en) * 1989-01-30 1989-08-22 Delco Electronics Corporation Two stage protection circuit for a power MOSFET driving an inductive load
JP2890319B2 (ja) * 1989-12-06 1999-05-10 株式会社ソディック 放電加工機用電源回路
JP3193827B2 (ja) * 1994-04-28 2001-07-30 三菱電機株式会社 半導体パワーモジュールおよび電力変換装置
JP4558601B2 (ja) * 2005-07-22 2010-10-06 株式会社シバソク 試験装置
JP5363437B2 (ja) * 2010-09-08 2013-12-11 株式会社アドバンテスト 試験装置
JP5528999B2 (ja) * 2010-12-15 2014-06-25 株式会社アドバンテスト 試験装置
JP2013106464A (ja) * 2011-11-15 2013-05-30 Mitsubishi Electric Corp 半導体装置
JP5742681B2 (ja) * 2011-11-18 2015-07-01 トヨタ自動車株式会社 半導体素子の試験装置及びその試験方法
JP5875075B2 (ja) 2012-09-28 2016-03-02 アイシン・エィ・ダブリュ株式会社 車両用駆動装置

Also Published As

Publication number Publication date
US9500695B2 (en) 2016-11-22
CN104950236B (zh) 2017-05-17
US20150276848A1 (en) 2015-10-01
DE102015103886B4 (de) 2017-09-07
DE102015103886A1 (de) 2015-10-01
CN104950236A (zh) 2015-09-30
JP2015190923A (ja) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6170119B2 (ja) 電源スイッチを駆動するためのシステムおよび方法
KR102336161B1 (ko) 동적 타이밍 기능을 지니는 다단 게이트 턴오프
US10411692B2 (en) Active clamp overvoltage protection for switching power device
JP6381023B2 (ja) 突入電流制限回路
JP5939272B2 (ja) 試験装置及び試験方法
JP2008017558A (ja) スイッチング素子駆動回路
WO2015198589A1 (ja) 半導体素子の検査回路および検査方法
US9748947B1 (en) IGBT gate drive circuit and method
JP2016225696A (ja) 駆動装置
WO2015114788A1 (ja) 半導体素子の保護回路
JP2017111102A (ja) 試験方法
US9490794B1 (en) Dynamic shutdown protection circuit
JP5864222B2 (ja) トランジスタ保護回路
JP6414440B2 (ja) スイッチング素子の駆動装置
JP2015073217A (ja) 負荷駆動装置及びそれを備えた車両用空調装置並びに負荷短絡保護回路
JP6207265B2 (ja) 半導体試験装置
JP2010124627A (ja) ゲート回路
JP2016080518A (ja) 半導体素子の試験装置
JP2016140119A (ja) 電源装置
JP5862232B2 (ja) 過電圧保護回路
JP5235151B2 (ja) トランジスタ駆動回路、半導体遮断器及びトランジスタ駆動方法
JP2006162426A (ja) 半導体装置の検査装置
JP7063082B2 (ja) スイッチング素子制御回路
JP2016211421A (ja) 内燃機関用点火装置
JP2024067934A (ja) 過電流検出装置、ゲート駆動装置および過電流検出方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R151 Written notification of patent or utility model registration

Ref document number: 5939272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151