JP5936313B2 - Electronic component mounting structure - Google Patents

Electronic component mounting structure Download PDF

Info

Publication number
JP5936313B2
JP5936313B2 JP2011096111A JP2011096111A JP5936313B2 JP 5936313 B2 JP5936313 B2 JP 5936313B2 JP 2011096111 A JP2011096111 A JP 2011096111A JP 2011096111 A JP2011096111 A JP 2011096111A JP 5936313 B2 JP5936313 B2 JP 5936313B2
Authority
JP
Japan
Prior art keywords
electronic component
cover
mounting structure
heat transfer
transfer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011096111A
Other languages
Japanese (ja)
Other versions
JP2012227472A5 (en
JP2012227472A (en
Inventor
潤 田原
潤 田原
熊谷 隆
隆 熊谷
中島 泰
泰 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011096111A priority Critical patent/JP5936313B2/en
Publication of JP2012227472A publication Critical patent/JP2012227472A/en
Publication of JP2012227472A5 publication Critical patent/JP2012227472A5/ja
Application granted granted Critical
Publication of JP5936313B2 publication Critical patent/JP5936313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子部品を搭載した基板を筐体に設置した電子部品の実装構造体に関する。   The present invention relates to an electronic component mounting structure in which a substrate on which an electronic component is mounted is installed in a casing.

コンデンサなどのチップ部品は、線膨張係数が銅と大きく異なるという点で、実装構造に制約が多い。
例えば、このような線膨張係数のおおきな違いは、チップコンデンサの端部の厚膜電極を回路基板の電極パッドに半田接合で実装した場合、使用時の温度変化に伴い接合部に熱応力が生じる。そして、発生した応力がチップコンデンサ本体に集中すると、最悪チップコンデンサが破壊するとの懸念があった。
Chip components such as capacitors have many restrictions on the mounting structure in that the linear expansion coefficient is significantly different from that of copper.
For example, when the thick film electrode at the end of the chip capacitor is mounted on the electrode pad of the circuit board by solder bonding, a thermal stress is generated at the bonded portion as the temperature changes during use. . When the generated stress is concentrated on the chip capacitor body, there is a concern that the worst chip capacitor is destroyed.

このような熱応力によるチップコンデンサの破壊を防止する手段として、電極形状により、半田が濡れる領域を限定して、半田付けによる拘束がチップコンデンサ本体にはならずに、電極内となるようにする等の工夫が行われている。
しかし、この手段でも、サイズが大きな大容量のチップコンデンサでは、使用時の温度変化に伴う熱応力が増大し、厚膜電極に直接半田付けすると、発生する熱応力がチップコンデンサの耐力を超えてしまうとの問題があった。
As a means to prevent the destruction of the chip capacitor due to such thermal stress, the area where the solder gets wet is limited by the shape of the electrode so that the restriction due to soldering is not in the chip capacitor body but in the electrode. Etc. have been devised.
However, even with this method, in a large-capacity chip capacitor with a large size, the thermal stress accompanying the temperature change during use increases, and when soldering directly to a thick film electrode, the generated thermal stress exceeds the proof stress of the chip capacitor. There was a problem with it.

上記の問題を解決するチップ部品の実装構造体として、電極に低線膨張係数の金属端子が接合された複合積層セラミックコンデンサを、金属端子を介して配線基板に半田接合するものが提案されている。この構造体は、金属端子の高さが該コンデンサの厚みより大きくなっており、該コンデンサが、熱応力の影響を防ぐ空隙を設けて配線基板に実装されている(例えば、特許文献1参照)。   As a mounting structure for a chip component that solves the above problems, a composite multilayer ceramic capacitor in which a metal terminal having a low linear expansion coefficient is bonded to an electrode is soldered to a wiring board via the metal terminal. . In this structure, the height of the metal terminal is larger than the thickness of the capacitor, and the capacitor is mounted on the wiring board with a gap that prevents the influence of thermal stress (for example, see Patent Document 1). .

特許文献1記載のチップ部品の実装構造体は、チップ部品の金属端子を介して配線基板に半田接合したものであり、チップ部品からの熱は金属端子を介して基板へ伝達されるが、金属端子はバネ性を有する薄板で形成されており、熱抵抗が大きいので、伝熱性が低く、チップ部品の放熱が不十分になるとの問題があった。   The chip component mounting structure described in Patent Document 1 is solder-bonded to a wiring board via a metal terminal of the chip component, and heat from the chip component is transmitted to the substrate via the metal terminal. Since the terminal is formed of a thin plate having a spring property and has a large thermal resistance, there is a problem that heat conductivity is low and heat dissipation of the chip component is insufficient.

チップ部品を搭載した配線基板を用いた電子機器は、例えば、電動パワーステアリング、電動コンプレッサ、電動エアコン、電動ポンプ、DC―DCコンバータ、インバータ等の車載用電装品にも用いられている。
特許文献1記載のチップ部品の実装構造体は、このような用途では、使用温度が高くなるので、チップ部品の放熱性がさらに不十分であるとの問題があった。
それと、車載用電装品には、大きな振動が加わるので、薄板の金属端子を介して回路基板に半田接合した実装構造体では、振動がチップ部品に伝達し、チップ部品が破損するとの問題もあった。
Electronic devices using a wiring board on which chip components are mounted are also used for in-vehicle electrical components such as an electric power steering, an electric compressor, an electric air conditioner, an electric pump, a DC-DC converter, and an inverter.
The chip component mounting structure described in Patent Document 1 has a problem that the heat dissipation property of the chip component is further insufficient because the use temperature becomes high in such applications.
In addition, since large vibrations are applied to in-vehicle electrical components, the mounting structure that is soldered to the circuit board via thin metal terminals has a problem that the vibration is transmitted to the chip components and the chip components are damaged. It was.

そこで、電極を介した配線基板への伝熱以外の伝熱経路により、電子部品の熱を放熱する実装構造体が望まれている。
電子部品の放熱を配線基板側への伝熱によらない、電子部品の実装構造体には、コンデンサやコイル等の部品を配線基板面へは実装せず、各部品が収納されるケース体のケース枠部に搭載し、これらの部品におけるケース枠部側の反対側の面と、ケース体のケース蓋部の内面との間に伝熱材を設けたものがある。
この実装構造体では、実装部品である、コンデンサやコイル等から発生する熱は、伝熱材を介してケース蓋部に伝達され、ケース蓋部の外表面から放熱される(例えば、特許文献2参照)。
Therefore, a mounting structure that dissipates the heat of the electronic component by a heat transfer path other than the heat transfer to the wiring board via the electrode is desired.
The electronic component mounting structure does not rely on heat transfer to the wiring board side for heat dissipation of electronic components. Components such as capacitors and coils are not mounted on the wiring board surface. There are some which are mounted on the case frame and provided with a heat transfer material between the surface opposite to the case frame in these components and the inner surface of the case lid of the case body.
In this mounting structure, heat generated from a capacitor, a coil, or the like, which is a mounting component, is transmitted to the case lid through a heat transfer material and radiated from the outer surface of the case lid (for example, Patent Document 2). reference).

特開平11−045821号公報(第3頁、第10図)Japanese Patent Laid-Open No. 11-045821 (page 3, FIG. 10) 特開2010−167871号公報(第7−8頁、第4図)Japanese Patent Laying-Open No. 2010-167871 (page 7-8, FIG. 4)

特許文献2に記載の実装構造体では、コンデンサやコイル等の部品はケース枠部に搭載され、ケース蓋部もケース枠部に搭載されており、コンデンサやコイル等の部品が発生する熱は、伝熱材を介してケース蓋体に伝達され、放熱は、ほとんどケース蓋体の表面から行われるので、コンデンサやコイル等の部品からの発熱量が大きい場合、放熱が不十分になるとの問題があった。   In the mounting structure described in Patent Document 2, components such as a capacitor and a coil are mounted on the case frame, and the case lid is also mounted on the case frame, and the heat generated by the components such as the capacitor and the coil is The heat is transferred to the case lid via a heat transfer material, and the heat is released almost from the surface of the case lid. Therefore, when the amount of heat generated from components such as capacitors and coils is large, there is a problem that the heat dissipation becomes insufficient. there were.

また、半殻状のケース蓋部をケース枠部に設置することにより、ケース蓋部の内面で伝熱材をコンデンサやコイル等の部品の面に押圧しているので、伝熱材を部品に押し付ける圧力を調整できず、押し付け圧力が弱いと、振動が加わった場合に伝熱材がずれたり取れたりし、逆に押し付け圧力が強いと、部品に無理な力が加わり、部品が破損するとの問題があった。   In addition, by installing the half-shell-shaped case lid on the case frame, the heat transfer material is pressed against the surface of the component such as a capacitor or coil on the inner surface of the case lid, so the heat transfer material is used as the component. If the pressing pressure cannot be adjusted and the pressing pressure is weak, the heat transfer material may be displaced or removed when vibration is applied.On the other hand, if the pressing pressure is strong, excessive force is applied to the part and the part is damaged. There was a problem.

本発明は、上記のような課題を解決するためになされたものであり、配線基板に実装されたチップ部品の、耐熱応力性と耐振動性と放熱性との向上を図った、信頼性に優れるとともに高温環境でも使用可能な、電子部品の実装構造体を提供することである。   The present invention has been made in order to solve the above-described problems, and has improved the heat stress resistance, vibration resistance, and heat dissipation of the chip component mounted on the wiring board, and has improved reliability. It is an object to provide an electronic component mounting structure that is excellent and can be used in a high-temperature environment.

本発明に係わる電子部品の実装構造体は、配線基板と、配線基板の回路パターンに実装された電子部品と、電子部品の両端に設けられた電極と、電子部品における回路パターン側の反対側の面に配設された伝熱材と、伝熱材における電子部品との接触面の反対側の面に接触するとともに、回路パターンに対して平行に固定された覆体とを備えた電子部品の実装構造体であって、電子部品がチップ部品であり、電極が、回路パターンと接合する回路接合部と、電子部品を回路パターンから浮かすとともにバネ性がある立脚部とを有しており、回路パターン面から電子部品の伝熱材側の面までの高さである電子部品の設置高さと伝熱材の厚みとの合計が、覆体を固定する前より、固定後の方が薄くなっており、伝熱材のばね定数が電極のばね定数よりも小さくなっており、覆体が、スペーサを介して配線基板に、金属のボルトとナットで固定されており、配線基板の回路パターン形成面から覆体の内表面までの間隔が、電子部品の設置高さより大きく、覆体を固定する前の電子部品の設置高さと伝熱材の厚みとの合計より小さくなるように、スペーサの高さを設定したものである。   An electronic component mounting structure according to the present invention includes a wiring board, an electronic component mounted on the circuit pattern of the wiring board, electrodes provided at both ends of the electronic component, and the side opposite to the circuit pattern side of the electronic component. An electronic component comprising: a heat transfer material disposed on the surface; and a cover that is in contact with the surface of the heat transfer material opposite to the contact surface with the electronic component and is fixed in parallel to the circuit pattern. A mounting structure in which an electronic component is a chip component, and an electrode has a circuit bonding portion for bonding to a circuit pattern, and a standing leg portion that floats the electronic component from the circuit pattern and has a spring property. The total height of the electronic component, which is the height from the pattern surface to the heat transfer material side surface of the electronic component, and the thickness of the heat transfer material is thinner after fixing than before fixing the cover. The spring constant of the heat transfer material is the spring constant of the electrode. The cover is fixed to the wiring board via spacers with metal bolts and nuts, and the distance from the circuit pattern forming surface of the wiring board to the inner surface of the cover is an electronic component. The height of the spacer is set so as to be smaller than the total of the installation height of the electronic component before fixing the cover and the thickness of the heat transfer material.

本発明に係わる電子部品の実装構造体は、配線基板と、配線基板の回路パターンに実装された電子部品と、電子部品の両端に設けられた電極と、電子部品における回路パターン側の反対側の面に配設された伝熱材と、伝熱材における電子部品との接触面の反対側の面に接触するとともに、回路パターンに対して平行に固定された覆体とを備えた電子部品の実装構造体であって、電子部品がチップ部品であり、電極が、回路パターンと接合する回路接合部と、電子部品を回路パターンから浮かすとともにバネ性がある立脚部とを有しており、回路パターン面から電子部品の伝熱材側の面までの高さである電子部品の設置高さと伝熱材の厚みとの合計が、覆体を固定する前より、固定後の方が薄くなっており、伝熱材のばね定数が電極のばね定数よりも小さくなっており、覆体が、スペーサを介して配線基板に、金属のボルトとナットで固定されており、配線基板の回路パターン形成面から覆体の内表面までの間隔が、電子部品の設置高さより大きく、覆体を固定する前の電子部品の設置高さと伝熱材の厚みとの合計より小さくなるように、スペーサの高さを設定したものであり、配線基板に実装されたチップ部品の耐熱応力性と耐振動性と放熱性とが優れている。   An electronic component mounting structure according to the present invention includes a wiring board, an electronic component mounted on the circuit pattern of the wiring board, electrodes provided at both ends of the electronic component, and the side opposite to the circuit pattern side of the electronic component. An electronic component comprising: a heat transfer material disposed on the surface; and a cover that is in contact with the surface of the heat transfer material opposite to the contact surface with the electronic component and is fixed in parallel to the circuit pattern. A mounting structure in which an electronic component is a chip component, and an electrode has a circuit bonding portion for bonding to a circuit pattern, and a standing leg portion that floats the electronic component from the circuit pattern and has a spring property. The total height of the electronic component, which is the height from the pattern surface to the heat transfer material side surface of the electronic component, and the thickness of the heat transfer material is thinner after fixing than before fixing the cover. The spring constant of the heat transfer material is the spring constant of the electrode. The cover is fixed to the wiring board via spacers with metal bolts and nuts, and the distance from the circuit pattern forming surface of the wiring board to the inner surface of the cover is an electronic component. The height of the spacer is set to be smaller than the total of the installation height of the electronic component and the thickness of the heat transfer material before fixing the cover, and is mounted on the wiring board. The chip component is excellent in heat stress resistance, vibration resistance and heat dissipation.

本発明の実施の形態1に係わる電子部品の実装構造体の断面模式図である。It is a cross-sectional schematic diagram of the mounting structure of the electronic component concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わる電子部品の実装構造体において配線基板に放熱体を設けた状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state which provided the heat sink in the wiring board in the mounting structure of the electronic component concerning Embodiment 1 of this invention. 参考の形態に係わる電子部品の実装構造体の断面模式図である。It is a cross-sectional schematic diagram of the mounting structure of the electronic component concerning a reference form. 参考の形態に係わる電子部品の実装構造体の断面模式図である。 It is a cross-sectional schematic diagram of the mounting structure of the electronic component concerning a reference form . 参考の形態に係わる電子部品の実装構造体の断面模式図である。It is a cross-sectional schematic diagram of the mounting structure of the electronic component concerning a reference form. 参考の形態に係わる電子部品の実装構造体における、別の形状の突出部が設けられた覆体を説明する図である。It is a figure explaining the cover body in which the protrusion part of another shape was provided in the mounting structure of the electronic component concerning a reference form. 参考の形態に係わる電子部品の実装構造体における覆体を説明する、上面模式図(a)と側面模式図(b)とである。It is the upper surface schematic diagram (a) and side surface schematic diagram (b) explaining the cover body in the mounting structure of the electronic component concerning a reference form. 参考の形態に係わる電子部品の実装構造体における、別例の覆体を説明する側面模式図である。It is a side surface schematic diagram explaining the cover of another example in the mounting structure of the electronic component concerning a reference form. 本発明の実施の形態2に係わる電子部品の実装構造体における覆体を説明する、内表面模式図(a)と側面模式図(b)とである。It is the inner surface schematic diagram (a) and side surface schematic diagram (b) explaining the cover in the mounting structure of the electronic component concerning Embodiment 2 of this invention. 本発明の実施の形態2に係わる電子部品の実装構造体における、別例の覆体を説明する側面模式図である。It is a side surface schematic diagram explaining the cover of another example in the mounting structure of the electronic component concerning Embodiment 2 of this invention. 本発明の実施の形態3に係わる電子部品の実装構造体で用いられる覆体の伝熱材接触面の状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state of the heat-transfer material contact surface of the cover used by the mounting structure of the electronic component concerning Embodiment 3 of this invention. 本発明の実施の形態3における覆体の伝熱材接触面に形成された、第1の形状の突起部(a)と第2の形状の突起部(b)とを示す平面模式図である。It is a plane schematic diagram which shows the 1st shape projection part (a) and the 2nd shape projection part (b) which were formed in the heat-transfer material contact surface of the cover in Embodiment 3 of this invention. . 本発明の実施の形態4に係わる電子部品の実装構造体における電子部品の、第1の形状の電極(a)と第2の形状の電極(b)とを示す正面模式図である。It is a front schematic diagram which shows the electrode (a) of a 1st shape, and the electrode (b) of a 2nd shape of the electronic component in the mounting structure of the electronic component concerning Embodiment 4 of this invention. 本発明の実施の形態5に係わる電子部品の実装構造体における電子部品の、第1の形状の電極(a)と第2の形状の電極(b)とを示す側面模式図である。It is a side surface schematic diagram which shows the electrode (a) of a 1st shape, and the electrode (b) of a 2nd shape of the electronic component in the mounting structure of the electronic component concerning Embodiment 5 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係わる電子部品の実装構造体の断面模式図である。
図1に示すように、本実施の形態の電子部品の実装構造体100は、配線基板30と、配線基板30の回路パターンに実装された電子部品10と、電子部品10の両端に設けられた電極20と、電子部品10の回路パターン側の反対側の面に配設された伝熱材40と、伝熱材40の電子部品10との接触面(電子部品接触面と記す)の反対側の面(覆体接触面と記す)に配設された覆体50と、覆体50と配線基板30との間に設けられたスペーサ75と、覆体50をスペーサ75を介して配線基板30に固定する固定機構である、ボルト70とナット71とを備えており、覆体50が回路パターン面と平行に配線基板30に固定されている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of a mounting structure for an electronic component according to Embodiment 1 of the present invention.
As shown in FIG. 1, the electronic component mounting structure 100 according to the present embodiment is provided on the wiring substrate 30, the electronic component 10 mounted on the circuit pattern of the wiring substrate 30, and both ends of the electronic component 10. The electrode 20, the heat transfer material 40 disposed on the surface opposite to the circuit pattern side of the electronic component 10, and the contact surface (referred to as an electronic component contact surface) of the heat transfer material 40 with the electronic component 10. A cover 50 disposed on the surface (referred to as a cover contact surface), a spacer 75 provided between the cover 50 and the wiring substrate 30, and the cover 50 via the spacer 75. The cover 50 is fixed to the wiring substrate 30 in parallel with the circuit pattern surface.

本実施の形態では、配線基板30は、表面に絶縁層を介して銅箔の回路パターンが形成されているアルミ基板である。
電子部品10は、抵抗やコンデンサの表面実装用チップ部品であり、その両端には、電極20が接続されており、電極20の一端は内側に折り曲げられており、折曲げられた部分が、配線基板30の回路パターンに半田で接合される回路接合部24aとなっている。
In the present embodiment, the wiring substrate 30 is an aluminum substrate on which a copper foil circuit pattern is formed via an insulating layer.
The electronic component 10 is a chip component for surface mounting of a resistor or a capacitor, and electrodes 20 are connected to both ends thereof, and one end of the electrode 20 is bent inward, and the bent portion is a wiring. A circuit joint portion 24a is joined to the circuit pattern of the substrate 30 with solder.

また、電極20には立脚部24bが設けられており、回路接合部24aと電子部品10の回路パターン側の面との間に空隙が形成されている。すなわち、電子部品10は、配線基板30から浮いた状態で実装されている。
また、電極20には、例えば、42アロイが用いられ、その幅は電子部品10の幅と同じとし、厚みはバネ性をもたせるため0.1〜0.2mmと薄くし、電子部品10を配線基板30から浮かせる立脚部24bの高さは、0.3mm〜1mm程度である。
Further, the electrode 20 is provided with a standing leg portion 24b, and a gap is formed between the circuit joint portion 24a and the surface of the electronic component 10 on the circuit pattern side. That is, the electronic component 10 is mounted in a state of being lifted from the wiring board 30.
Further, for example, a 42 alloy is used for the electrode 20, the width thereof is the same as the width of the electronic component 10, and the thickness is made as thin as 0.1 to 0.2 mm in order to provide springiness, and the electronic component 10 is wired. The height of the leg portion 24b that floats from the substrate 30 is about 0.3 mm to 1 mm.

本実施の形態の電子部品の実装構造体100では、電子部品10が、立脚部24bが設けられた電極20を介して配線基板の回路パターンに接合されているので、電子部品10に、パッケージサイズの略称が3216、4532、5750のような大きいチップ部品を用いても、チップ部品に生じる熱応力を低減することができる。
また、電子部品10が、セラミックが主たる構成材料のコンデンサである場合、電極20を形成する材料に、5ppm/℃程度の低線膨張係数の42アロイを用いると、熱応力の低減に、特に有効である。また、電極20を形成する材料には、42アロイ以外に、いわゆるインバー合金が用いられ、同様に熱応力を低減することができる。
In the electronic component mounting structure 100 according to the present embodiment, the electronic component 10 is bonded to the circuit pattern of the wiring board via the electrode 20 provided with the standing leg portion 24b. Even if a large chip component such as 3216, 4532, or 5750 is used, the thermal stress generated in the chip component can be reduced.
Further, when the electronic component 10 is a capacitor mainly composed of ceramic, using a 42 alloy having a low linear expansion coefficient of about 5 ppm / ° C. as the material for forming the electrode 20 is particularly effective for reducing thermal stress. It is. In addition to the 42 alloy, a so-called Invar alloy is used as the material for forming the electrode 20, and the thermal stress can be similarly reduced.

本実施の形態の電子部品の実装構造体100では、電子部品10の熱は、電極20を介して配線基板30に伝導し、配線基板30から放熱される以外に、電子部品10の伝熱材40との接触面(伝熱材接触面と記す)が伝熱材40を介して覆体50の内表面と接しているので、覆体50にも伝導し、覆体50の外表面から放熱される。放熱性の面から覆体50は金属であることが好ましい。
それと、覆体50に伝導した熱は、ボルト70を金属で形成することにより、配線基板30へ効率良く伝導でき、配線基板30から放熱される。
In the electronic component mounting structure 100 of the present embodiment, the heat of the electronic component 10 is conducted to the wiring board 30 through the electrode 20 and is radiated from the wiring board 30, and the heat transfer material of the electronic component 10 is also used. Since the contact surface with 40 (referred to as a heat transfer material contact surface) is in contact with the inner surface of the cover 50 via the heat transfer material 40, it is also conducted to the cover 50 and radiated from the outer surface of the cover 50. Is done. The cover 50 is preferably a metal from the viewpoint of heat dissipation.
In addition, the heat conducted to the cover 50 can be efficiently conducted to the wiring board 30 and is radiated from the wiring board 30 by forming the bolts 70 of metal.

本実施の形態では、電極20が薄板で形成されており、電極20の伝熱面積が小さいので、電極20を介して配線基板30に伝導する熱量は小さい。特に電極20に42アロイを用いた場合は、42アロイの熱伝導率が小さいので、配線基板30に伝導する熱量がさらに小さくなる。
しかし、本実施の形態の電子部品の実装構造体100は、電極以外にも電子部品の熱を伝導し外部に放熱する経路を有しており、放熱性が優れている。
In the present embodiment, since the electrode 20 is formed of a thin plate and the heat transfer area of the electrode 20 is small, the amount of heat conducted to the wiring board 30 via the electrode 20 is small. In particular, when 42 alloy is used for the electrode 20, the heat conductivity of the 42 alloy is small, so that the amount of heat conducted to the wiring board 30 is further reduced.
However, the electronic component mounting structure 100 according to the present embodiment has a path for conducting heat of the electronic component and dissipating it to the outside in addition to the electrodes, and has excellent heat dissipation.

本実施の形態の電子部品の実装構造体100では、配線基板30の回路パターン面と覆体50の内表面との間隔をスペーサ75で調整することにより、電子部品10と覆体50との間に設置された伝熱材40に加わる圧力を調整して、伝熱材40の電子部品接触面と電子部品10の伝熱材接触面との確実な接触、および、伝熱材40の覆体接触面と覆体50の内表面との確実な接触を実現し、電子部品10から覆体50への熱伝導における熱抵抗を低くすることにより、放熱性を向上させている。   In the electronic component mounting structure 100 according to the present embodiment, the distance between the circuit pattern surface of the wiring board 30 and the inner surface of the cover 50 is adjusted by the spacer 75, so that the space between the electronic component 10 and the cover 50 is adjusted. By adjusting the pressure applied to the heat transfer material 40 installed in the heat transfer material 40, reliable contact between the electronic component contact surface of the heat transfer material 40 and the heat transfer material contact surface of the electronic component 10, and the cover of the heat transfer material 40 Heat radiation is improved by realizing reliable contact between the contact surface and the inner surface of the cover 50 and by reducing thermal resistance in heat conduction from the electronic component 10 to the cover 50.

また、覆体50から伝熱材40を介して電子部品10に加わる押圧力も調整できるので、この押圧力による電子部品の破壊も防止できる。
それと、電極20に立脚部24bが設けられており、立脚部24bはバネ性を有しているので、例え、覆体50から電子部品10への押圧力が過剰になっても、立脚部24bが押圧力を緩和するので、電子部品10の破壊を防止できる。
Moreover, since the pressing force applied to the electronic component 10 from the cover 50 through the heat transfer material 40 can be adjusted, the destruction of the electronic component due to the pressing force can also be prevented.
In addition, the electrode 20 is provided with a standing leg portion 24b, and the standing leg portion 24b has a spring property. For example, even if the pressing force from the cover 50 to the electronic component 10 becomes excessive, the standing leg portion 24b. Since the pressing force is reduced, the electronic component 10 can be prevented from being broken.

また、電子部品10は、伝熱材40を介して覆体50から押圧力が加えられ、伝熱材40を介してではあるが、覆体50で固定されているので、振動が加わっても、電子部品10が大きく振動するのが防止でき、耐振性が優れている。それと、スペーサ75を調整することにより、確実に押圧力を加えることができ、伝熱材40が、ずれたり外れたりすることも防止できる。   In addition, the electronic component 10 is pressed by the cover 50 through the heat transfer material 40 and is fixed by the cover 50 through the heat transfer material 40, so even if vibration is applied. The electronic component 10 can be prevented from vibrating greatly and has excellent vibration resistance. In addition, by adjusting the spacer 75, it is possible to reliably apply a pressing force, and it is possible to prevent the heat transfer material 40 from being displaced or detached.

伝熱材40の厚みは、熱抵抗を下げるので、できるだけ薄い方が好ましい。
そこで、本実施の形態の電子部品の実装構造体では、配線基板30の回路パターン面から電子部品10の伝熱材接触面までの高さ(電子部品の設置高さと記す)と伝熱材40の厚みとの合計が、覆体50を配線基板30へ固定する前より、固定後の方が薄くなるように、スペーサ75の高さが調整されている。
すなわち、配線基板30の回路パターン形成面から配線基板30に固定した覆体50の伝熱材接触面である内表面までの間隔が、電子部品10の設置高さより大きく、覆体50を固定する前の電子部品10の設置高さと伝熱材40の厚みとの合計より小さくなるように、スペーサ75の高さが設定されている。
The thickness of the heat transfer material 40 is preferably as thin as possible because it reduces the thermal resistance.
Therefore, in the electronic component mounting structure according to the present embodiment, the height from the circuit pattern surface of the wiring board 30 to the heat transfer material contact surface of the electronic component 10 (referred to as the installation height of the electronic component) and the heat transfer material 40. The height of the spacer 75 is adjusted such that the total thickness of the spacer 75 is thinner after the cover 50 is fixed to the wiring board 30 than before the cover 50 is fixed to the wiring board 30.
That is, the distance from the circuit pattern forming surface of the wiring board 30 to the inner surface that is the heat transfer material contact surface of the cover 50 fixed to the wiring board 30 is larger than the installation height of the electronic component 10, and the cover 50 is fixed. The height of the spacer 75 is set so as to be smaller than the total of the installation height of the previous electronic component 10 and the thickness of the heat transfer material 40.

このような構造になっているので、覆体50を固定すると、覆体50が伝熱材40を電子部品10に押し付けるように圧力がかかり、伝熱材40がグリースや接着剤のように流動性のある材質の場合は、伝熱材40を排斥し、シートの場合は、伝熱材40を圧延して薄くして、伝熱材40の低熱抵抗化が図れる。併せて、電子部品10と伝熱材40との間、および伝熱材40と覆体50との間の、接触熱抵抗も低減でき、さらに放熱性を高めることができる。
付け加えて、個々の電子部品の実装のばらつきにより生じる高さの差も吸収でき、全ての接触箇所で放熱性を改善できる。
Since it has such a structure, when the cover 50 is fixed, pressure is applied so that the cover 50 presses the heat transfer material 40 against the electronic component 10, and the heat transfer material 40 flows like grease or an adhesive. In the case of a material having a characteristic, the heat transfer material 40 can be removed, and in the case of a sheet, the heat transfer material 40 can be rolled and thinned to reduce the heat resistance of the heat transfer material 40. In addition, contact thermal resistance between the electronic component 10 and the heat transfer material 40 and between the heat transfer material 40 and the cover 50 can be reduced, and heat dissipation can be further improved.
In addition, height differences caused by variations in mounting of individual electronic components can be absorbed, and heat dissipation can be improved at all contact points.

そして、伝熱材40に、可撓性のある材料を用い、そのバネ定数をバネ性のある電極20のバネ定数よりも小さく設定しておくと、伝熱材40の厚みを押圧力により薄くすることが容易に達成できる。
そのような、伝熱材40の材料としては、例えばシリコーンシートなどが挙げられ、熱伝導率6W/mK程度のものが好ましい。
If a flexible material is used for the heat transfer material 40 and the spring constant thereof is set smaller than the spring constant of the electrode 20 having the spring property, the thickness of the heat transfer material 40 is reduced by the pressing force. Can be easily achieved.
Examples of such a material for the heat transfer material 40 include a silicone sheet, and those having a thermal conductivity of about 6 W / mK are preferable.

また、伝熱材40のバネ定数を電極20のものより小さくすると、例えば、伝熱材シートの厚みばらつきや実装後の電子部品の設置高さ変動を吸収するように、伝熱材40の厚みを大きくした場合でも、伝熱材40が大きく変形し、電極20の変形量が増大するのを抑え、電極20が破損するのを防止できる。
また、電子部品10が傾いて実装された場合に、覆体50を電子部品10に直接押し当てる構成の場合では、覆体50が電子部品10に片当たりするが、本実施の形態のように、伝熱材40を介在させることで片当たりが発生せず、片当たりによる応力の増大を防止し、電子部品10の破損を防ぐことができる。
Further, when the spring constant of the heat transfer material 40 is made smaller than that of the electrode 20, for example, the thickness of the heat transfer material 40 is absorbed so as to absorb variations in the thickness of the heat transfer material sheet and variations in the installation height of the electronic component after mounting. Even when the heat transfer material 40 is increased, it is possible to prevent the heat transfer material 40 from being greatly deformed and the deformation amount of the electrode 20 from increasing, and to prevent the electrode 20 from being damaged.
In the case where the cover 50 is directly pressed against the electronic component 10 when the electronic component 10 is mounted at an inclination, the cover 50 hits the electronic component 10 as in the present embodiment. By interposing the heat transfer material 40, no piece contact occurs, the increase of stress due to the piece contact can be prevented, and the electronic component 10 can be prevented from being damaged.

図2は、本発明の実施の形態1に係わる電子部品の実装構造体において配線基板に放熱体を設けた状態を示す断面模式図である。
図2に示す、本実施の形態の電子部品の実装構造体100において、配線基板30の電子部品実装面の反対側の面にヒートシンク等の放熱体90を設けた電子部品の実装構造体100aは、配線基板30側の熱抵抗を小さくし、放熱性を高めることができる。
配線基板30と放熱体90の間には伝熱材を設けることが好ましく、また、ねじ止め等で配線基板30と放熱体90とを機械的に接続することにより、耐振性を向上することができる。
FIG. 2 is a schematic cross-sectional view showing a state in which a radiator is provided on the wiring board in the electronic component mounting structure according to Embodiment 1 of the present invention.
In the electronic component mounting structure 100 of the present embodiment shown in FIG. 2, an electronic component mounting structure 100a in which a heat sink 90 such as a heat sink is provided on the surface opposite to the electronic component mounting surface of the wiring board 30 is shown. The thermal resistance on the wiring board 30 side can be reduced and the heat dissipation can be improved.
It is preferable to provide a heat transfer material between the wiring board 30 and the radiator 90, and vibration resistance can be improved by mechanically connecting the wiring board 30 and the radiator 90 by screwing or the like. it can.

本実施の形態の電子部品の実装構造体100と100aとは、電子部品の設置高さと伝熱材40の厚みとの合計が、覆体50を配線基板30へ固定する前より、固定後の方が薄くなるように設定されており、常時、押圧力が電子部品および伝熱材にかけられた状態となり、振動が加わっても振動エネルギが減衰し、不必要な共振により電子部品の振幅が増大するのを防止できる。
また、伝熱材40が電子部品10と覆体50との間に介在するので、覆体50が電子部品10に片当たりして擦れるなどの不具合が防止できる。
In the electronic component mounting structures 100 and 100a according to the present embodiment, the sum of the height of the electronic component and the thickness of the heat transfer material 40 is greater than before the cover 50 is fixed to the wiring board 30. It is set to be thinner, and the pressing force is always applied to the electronic component and heat transfer material, and even if vibration is applied, the vibration energy is attenuated, and the amplitude of the electronic component increases due to unnecessary resonance. Can be prevented.
In addition, since the heat transfer material 40 is interposed between the electronic component 10 and the cover 50, problems such as the cover 50 hitting the electronic component 10 and rubbing against it can be prevented.

本実施の形態では、配線基板30と覆体50との固定は、ねじ止めとしたが、スペーサを設けておけば、覆体50を配線基板30に対して圧力をかけることができる固定法で良く、圧入やパッチン止め、板バネによる固定が挙げられ、押え機構を設けても良い。
また、配線基板30の覆体50への固定が、ねじ止めの場合、ねじ70の締め付けトルクで伝熱材40の厚み管理ができるなら、スペーサ75を省略しても良い。
In this embodiment, the wiring substrate 30 and the cover 50 are fixed by screws, but if a spacer is provided, the cover 50 can be fixed by a method that can apply pressure to the wiring substrate 30. For example, press-fitting, patching, and fixing with a leaf spring may be mentioned, and a pressing mechanism may be provided.
In addition, when fixing the wiring board 30 to the cover 50 is a screw, the spacer 75 may be omitted if the thickness of the heat transfer material 40 can be controlled by the tightening torque of the screw 70.

図3は、参考の形態に係わる電子部品の実装構造体の断面模式図である。
図3に示すように、電子部品の実装構造体200は、配線基板30と、配線基板30の回路パターンに実装された、第1の電子部品10aと第2の電子部品11と第3の電子部品12と、第1の電子部品10aの両端に設けられた電極20aと、各電子部品が搭載された配線基板30を固定した筐体本体60と、筐体本体60の蓋となる覆体50aと、覆体50aと第1の電子部品10aとの間に配設された伝熱材40とを備えている。
すなわち、電子部品を実装した配線基板30は、筐体本体60と覆体50aとで形成される筐体に収納されている。
FIG. 3 is a schematic cross-sectional view of an electronic component mounting structure according to a reference embodiment.
As shown in FIG. 3, the electronic component mounting structure 200 includes a wiring substrate 30, a first electronic component 10 a, a second electronic component 11, and a third electronic component mounted on the circuit pattern of the wiring substrate 30. The component 12, the electrodes 20 a provided at both ends of the first electronic component 10 a, the case main body 60 to which the wiring board 30 on which each electronic component is mounted is fixed, and the cover 50 a serving as a lid of the case main body 60 And a heat transfer material 40 disposed between the cover 50a and the first electronic component 10a.
That is, the wiring board 30 on which electronic components are mounted is housed in a housing formed by the housing body 60 and the cover 50a.

筐体本体60は、配線基板30を搭載した部分(基板搭載部と記す)60bと基板搭載部60bの周囲に設けられた壁である周壁部60aとを備えており、覆体50aが、周壁部60aの上面に接するとともに、配線基板30の回路パターンに対して平行に、配置されている。
伝熱材40は、覆体50aの内表面と第1の電子部品10aの伝熱材接触面との間に、これらの面と接して配設されている。
The housing main body 60 includes a portion (referred to as a substrate mounting portion) 60b on which the wiring board 30 is mounted and a peripheral wall portion 60a that is a wall provided around the substrate mounting portion 60b. It is in contact with the upper surface of the part 60 a and is arranged in parallel to the circuit pattern of the wiring board 30.
The heat transfer material 40 is disposed between and in contact with the inner surface of the cover 50a and the heat transfer material contact surface of the first electronic component 10a.

図3において、配線基板30は、表面に絶縁層を介して銅箔で回路パターンが形成されているアルミ基板である。
筐体本体60は、フィン61が設けられており、電子部品が搭載された配線基板30からの熱を放熱する放熱体でもあり、金属で形成されるのが好ましい。
覆体50aも、放熱性の面から金属であることが好ましい。
伝熱材40は、実施の形態1のものと同様である。
In FIG. 3, a wiring substrate 30 is an aluminum substrate having a circuit pattern formed of copper foil on the surface via an insulating layer.
The housing body 60 is provided with fins 61 and is also a heat radiator that dissipates heat from the wiring board 30 on which electronic components are mounted, and is preferably formed of metal.
The cover 50a is also preferably a metal from the viewpoint of heat dissipation.
The heat transfer material 40 is the same as that of the first embodiment.

第2の電子部品11は、半導体素子をパッケージングした部品であり、半田接合面全体に電極を形成しており、耐熱応力性が高い。
第3の電子部品12は、パッケージサイズの略称が1005、1608、2012のような、小さいチップ部品であり、耐熱応力性が高く、チップ部品本体の側面から裏面および表面にかけて設けられた電極21を配線基板30に半田付けしても問題なく使用できる。
第1の電子部品10aは、実施の形態1における電子部品10と同様の、パッケージサイズの略称が3216、4532、5750等である、大きいな抵抗やコンデンサ等のチップ部品である。
第1の電子部品10aの電極20aの構造も、実施の形態1における電子部品10の電極20の構造と同様である。
The second electronic component 11 is a component in which a semiconductor element is packaged. An electrode is formed on the entire solder joint surface, and the heat resistance is high.
The third electronic component 12 is a small chip component whose package size abbreviations are 1005, 1608, 2012, has high heat stress resistance, and has an electrode 21 provided from the side surface to the back surface and the front surface of the chip component body. Even if soldered to the wiring board 30, it can be used without any problem.
The first electronic component 10a is a chip component such as a large resistor or capacitor whose package size abbreviations are 3216, 4532, 5750, etc., similar to the electronic component 10 in the first embodiment.
The structure of the electrode 20a of the first electronic component 10a is the same as the structure of the electrode 20 of the electronic component 10 in the first embodiment.

図3において、配線基板30は筐体本体60に、ねじ73等により機械的に固定されているが、配線基板30と筐体本体60との接触熱抵抗を小さくするため、配線基板30と筐体本体60との間に伝熱材を設けて固定しても良い。
また、覆体50aは、筐体本体60の周壁部60aの上面に、ねじ72等の固定機構により機械的に固定されており、蓋である覆体50aとケース本体である筐体本体60とで、ケースを形成している。
また、覆体50aは、配線基板30の回路パターン形成面と平行になっているので、筐体本体60の周壁部60aにより、覆体50aの内表面と配線基板30の回路パターン形成面との間隔が規定されている。
In FIG. 3, the wiring board 30 is mechanically fixed to the housing main body 60 with screws 73 or the like, but in order to reduce the contact thermal resistance between the wiring board 30 and the housing main body 60, A heat transfer material may be provided between the body body 60 and fixed.
The cover 50a is mechanically fixed to the upper surface of the peripheral wall 60a of the housing main body 60 by a fixing mechanism such as a screw 72, and the cover 50a serving as a lid and the housing main body 60 serving as a case main body. The case is formed.
Further, since the cover 50 a is parallel to the circuit pattern forming surface of the wiring board 30, the peripheral wall 60 a of the housing body 60 causes the inner surface of the cover 50 a and the circuit pattern forming surface of the wiring board 30 to be formed. The interval is specified.

そして、図3に示された電子部品の実装構造体200でも、第1の電子部品10aの設置高さと伝熱材40の厚みとの合計が、覆体50aを周壁部60aへ固定する前より、固定後の方が薄くなるように、周壁部60aの高さが調整されている。
すなわち、配線基板30の回路パターン形成面から周壁部60aに固定された覆体50aの伝熱材接触面である内表面までの間隔(配線基板から覆体までの間隔と記す)が、第1の電子部品10aの設置高さより大きく、覆体50aを固定する前の第1の電子部品10aの設置高さと伝熱材40の厚みとの合計より小さくなるように、周壁部60aの高さが設定されている。
図3においても、伝熱材40には、流動性のあるグリースや接着剤、あるいは、押圧されて薄くなるシートが用いられる。
Also in the electronic component mounting structure 200 shown in FIG. 3, the total of the installation height of the first electronic component 10a and the thickness of the heat transfer material 40 is greater than before the cover 50a is fixed to the peripheral wall portion 60a. The height of the peripheral wall portion 60a is adjusted so that the thickness after fixing becomes thinner.
That is, the distance from the circuit pattern forming surface of the wiring board 30 to the inner surface that is the heat transfer material contact surface of the cover 50a fixed to the peripheral wall portion 60a (referred to as the distance from the wiring board to the cover) is the first. The height of the peripheral wall 60a is smaller than the total installation height of the electronic component 10a and smaller than the total of the installation height of the first electronic component 10a and the thickness of the heat transfer material 40 before fixing the cover 50a. Is set.
Also in FIG. 3, the heat transfer material 40 is made of fluid grease or adhesive, or a sheet that is pressed and thinned.

サイズが大きく発熱量が大きいチップ部品である第1の電子部品10aは、その電極構造が実施の形態1における電子部品10の電極構造と同様であり、部品にかかる熱応力を低減できるようになっている。
そのため、第1の電子部品10aから配線基板まで、すなわち、第1の電子部品10aから放熱体である筐体本体60までの熱抵抗が大きく、この熱伝導経路による放熱は不十分である。
The first electronic component 10a, which is a chip component having a large size and a large calorific value, has the same electrode structure as the electrode structure of the electronic component 10 in the first embodiment, and can reduce thermal stress applied to the component. ing.
Therefore, the thermal resistance from the first electronic component 10a to the wiring board, that is, from the first electronic component 10a to the housing body 60, which is a heat radiating body, is large, and heat dissipation through this heat conduction path is insufficient.

しかし、図3に示された電子部品の実装構造体200では、配線基板30から覆体50aまでの間隔が、上記のようになっているので、第1の電子部品10aからの熱は、伝熱材40を介して覆体50aまで伝導され、覆体50aの外表面から放熱することができる。それと、覆体50aに伝導した熱は、筐体本体60へも伝導され、筐体本体60からも放熱される。   However, in the electronic component mounting structure 200 shown in FIG. 3, since the distance from the wiring board 30 to the cover 50a is as described above, the heat from the first electronic component 10a is transferred. It is conducted to the cover 50a through the heat material 40, and can be radiated from the outer surface of the cover 50a. In addition, the heat conducted to the cover 50 a is also conducted to the housing body 60 and is radiated from the housing body 60.

また、配線基板30から覆体50aまでの間隔が、上記のようになっているので、第1の電子部品10aは、伝熱材40を介して覆体50aから押圧力が加えられ、伝熱材40を介してではあるが、覆体50aで固定されており、耐振性が優れている。それと、周壁部60aの高さを調整することにより、確実に押圧力を加えることができ、伝熱材40がずれたり外れたりすることも防止できる。
また、第1の電子部品10aの電極構造が実施の形態1の電子部品10の電極構造と同様であるので、第1の電子部品10aに覆体50aから加わる押圧力を、バネ性がある立脚部で緩和でき、第1の電子部品10aの破壊を防止できる。
また、覆体50aが第1の電子部品10aに片当たりするのも防止できる。
In addition, since the distance from the wiring board 30 to the cover 50a is as described above, the first electronic component 10a is pressed by the cover 50a via the heat transfer material 40, and the heat transfer Although it is via the material 40, it is fixed by the cover 50a and has excellent vibration resistance. And by adjusting the height of the surrounding wall part 60a, a pressing force can be applied reliably and it can also prevent that the heat-transfer material 40 slip | deviates or remove | deviates.
Further, since the electrode structure of the first electronic component 10a is the same as the electrode structure of the electronic component 10 of the first embodiment, the pressing force applied to the first electronic component 10a from the cover 50a is applied to the spring-like stance stand. It can be relaxed at the portion, and the destruction of the first electronic component 10a can be prevented.
Further, it is possible to prevent the cover 50a from hitting the first electronic component 10a.

図3においては、配線基板30に、放熱性が高いのでアルミ基板を用いているが、樹脂を用いたプリント基板やセラミック基板でも良い。
プリント基板の場合、筐体本体60からの放熱性を高めるために、発熱部品直下にスルーホールや銅柱などを設けて熱抵抗を下げるのが好ましい。しかし、配線基板30の裏面に電極があり、この電極と筐体本体60との電位が異なる場合は、配線基板30と筐体本体60との間に絶縁層を設ける。
In FIG. 3, an aluminum substrate is used for the wiring board 30 because of its high heat dissipation, but a printed board or a ceramic board using a resin may be used.
In the case of a printed circuit board, in order to improve the heat dissipation from the housing body 60, it is preferable to reduce the thermal resistance by providing a through hole, a copper pillar, or the like directly under the heat generating component. However, when there is an electrode on the back surface of the wiring board 30 and the potential of the electrode and the casing body 60 are different, an insulating layer is provided between the wiring board 30 and the casing body 60.

また、樹脂を用いたプリント基板や、低熱伝導率のセラミック材で形成されたセラミック基板の場合は、第1の電子部品10aから、放熱体でもある筐体本体60までの熱抵抗が、さらに増大するので、第1の電子部品の熱を覆体50aから放熱する本構成が特に有効となる。
図3では、配線基板30に電子部品を搭載しているが、筐体本体60の表面に絶縁層を介して銅箔による回路パターンを形成し、この回路パターンに電子部品を搭載しても良い。この場合は、特に、第2の電子部品11や第3の電子部品12の放熱性が向上する。
Further, in the case of a printed circuit board using a resin or a ceramic substrate formed of a ceramic material with low thermal conductivity, the thermal resistance from the first electronic component 10a to the housing body 60, which is also a radiator, further increases. Therefore, this configuration in which the heat of the first electronic component is radiated from the cover 50a is particularly effective.
In FIG. 3, electronic components are mounted on the wiring board 30, but a circuit pattern made of copper foil may be formed on the surface of the housing body 60 via an insulating layer, and the electronic components may be mounted on this circuit pattern. . In this case, in particular, the heat dissipation of the second electronic component 11 and the third electronic component 12 is improved.

図3では、第1の電子部品10aに伝熱材が設けられているが、第2の電子部品11や第3の電子部品12に伝熱材を設けて、これらの電子部品の熱を覆体に伝導し、覆体から放熱しても良い。
図3では、配線基板30の筐体本体60への固定、および、覆体50aの筐体本体60への固定は、ねじ止めとしたが、配線基板30を筐体本体60に圧力をかける固定法、および、覆体50aを筐体本体60に対して圧力をかける固定法を用いることができ、このような固定法として、圧入やパッチン止め、板バネによる固定が挙げられ、押え機構を設けても良い。
In FIG. 3, the first electronic component 10a is provided with a heat transfer material, but the second electronic component 11 and the third electronic component 12 are provided with a heat transfer material to cover the heat of these electronic components. It may be conducted to the body and radiated from the cover.
In FIG. 3, the wiring substrate 30 is fixed to the housing body 60 and the cover 50a is fixed to the housing body 60 by screws, but the wiring substrate 30 is fixed to apply pressure to the housing body 60. And a fixing method in which the cover 50a is pressed against the housing body 60. Examples of such fixing methods include press-fitting, patching, and fixing by a leaf spring, and a presser mechanism is provided. May be.

図4は、参考の形態に係わる電子部品の実装構造体の断面模式図である。
図4に示すように、電子部品の実装構造体300は、覆体に、伝熱材40との接触部の反対側である外表面にフィン51が設けられた覆体50bを用いた以外、図3に示された電子部品の実装構造体と同様であり、図3に示された電子部品の実装構造体と同様な効果を有する。
また、覆体の伝熱材40との接触部の反対側にフィン51が設けられているので、放熱性が向上している。
それと、フィン51が覆体の補強にもなるので、覆体の厚みを薄くすることができる。
FIG. 4 is a schematic cross-sectional view of an electronic component mounting structure according to a reference embodiment .
As shown in FIG. 4, the electronic component mounting structure 300 uses a cover 50 b in which fins 51 are provided on the outer surface on the opposite side of the contact portion with the heat transfer material 40, as the cover. The electronic component mounting structure shown in FIG. 3 is similar to the electronic component mounting structure shown in FIG. 3 and has the same effect as the electronic component mounting structure shown in FIG.
Moreover, since the fin 51 is provided on the opposite side of the contact part with the heat transfer material 40 of the cover, the heat dissipation is improved.
And since the fin 51 also serves as reinforcement of the cover, the thickness of the cover can be reduced.

フィン51は、伝熱材を介して覆体にねじ止めなどで機械的に接続しても良いが、覆体とフィンを一体に成型することが、効率的であり、且つ熱抵抗を下げるので好ましい。
図4では、フィン51が、覆体の発熱する電子部品の周辺のみに設けられているが、覆体全域の外表面に設けても良い。
覆体の伝熱材との接触部の反対側にフィンを設けることは、実施の形態1の電子部品の実装構造体にも適用でき、同様な効果を有する。
The fin 51 may be mechanically connected to the cover by screwing or the like via a heat transfer material. However, it is efficient to form the cover and the fin integrally, and the thermal resistance is lowered. preferable.
In FIG. 4, the fins 51 are provided only around the electronic component that generates heat from the cover, but may be provided on the outer surface of the entire cover.
Providing the fin on the opposite side of the contact portion of the cover with the heat transfer material can also be applied to the electronic component mounting structure of Embodiment 1 and has the same effect.

図5は、参考の形態に係わる電子部品の実装構造体の断面模式図である。
図5に示すように、電子部品の実装構造体400は、覆体に、内表面における第1の電子部品10aが投影される部分に、第1の突出部53が設けられた覆体50cが用いられ、配線基板30の回路パターン形成面から周壁部60aに固定された覆体50cの伝熱材接触面である第1の突出部53の表面までの間隔が、第1の電子部品10aの設置高さより大きく、覆体50cを固定する前の第1の電子部品10aの設置高さと伝熱材40の厚みとの合計より小さくなるように、周壁部60aの高さが設定されている以外、図3に示された電子部品の実装構造体と同様であり、図3に示された電子部品の実装構造体と同様な効果を有する。
FIG. 5 is a schematic cross-sectional view of an electronic component mounting structure according to a reference embodiment.
As shown in FIG. 5, the electronic component mounting structure 400 includes a cover 50 c in which a first protrusion 53 is provided in a portion where the first electronic component 10 a on the inner surface is projected on the cover. The distance from the circuit pattern forming surface of the wiring board 30 to the surface of the first protrusion 53, which is the heat transfer material contact surface of the cover 50c fixed to the peripheral wall 60a, is that of the first electronic component 10a. Other than the height of the peripheral wall portion 60a being set so as to be smaller than the total of the installation height of the first electronic component 10a and the thickness of the heat transfer material 40 before the cover 50c is fixed. 3 is the same as the electronic component mounting structure shown in FIG. 3, and has the same effect as the electronic component mounting structure shown in FIG.

電子部品の実装構造体400は、覆体50cが、内表面の第1の電子部品10aの投影部に第1の突出部53が設けられているので、図5に示すように配線基板30に、第1の電子部品10aの設置高さより、かなり高い電子部品13が搭載されていても、第1の電子部品10aと覆体50cとの間に配設される伝熱材40の厚みを薄くでき、第1の電子部品10aの熱を覆体へ伝導する伝導路の熱抵抗が増大するのが防止できる。   In the electronic component mounting structure 400, the cover 50c is provided with the first projecting portion 53 on the projected portion of the first electronic component 10a on the inner surface. Even when the electronic component 13 that is considerably higher than the installation height of the first electronic component 10a is mounted, the thickness of the heat transfer material 40 disposed between the first electronic component 10a and the cover 50c is reduced. It is possible to prevent an increase in the thermal resistance of the conduction path that conducts the heat of the first electronic component 10a to the cover.

図5において、第1の突出部53の伝熱材40との接触面のサイズは、第1の電子部品10aの伝熱材接触面のサイズより大きめになっており、覆体50cにおける第1の突出部53の周囲に向かって熱を広げることができ、放熱性を高めることができる。
図示しないが、図4に示すように、覆体における、伝熱材との接触部の反対側の外表面にフィンを設けても良い。
In FIG. 5, the size of the contact surface of the first projecting portion 53 with the heat transfer material 40 is larger than the size of the heat transfer material contact surface of the first electronic component 10a. The heat can be spread toward the periphery of the protruding portion 53, and the heat dissipation can be enhanced.
Although not shown, as shown in FIG. 4 , fins may be provided on the outer surface of the cover opposite to the contact portion with the heat transfer material.

図6は、別の参考の形態に係わる電子部品の実装構造体における、別の形状の第1の突出部が設けられた覆体を説明する図である。
図6に示すように、別の形状の第1の突出部が設けられた覆体50dは、肉厚を大きく変化させずに覆体を塑性変形させて形成した第1の突出部54を備えたものである。この第1の突出部54はプレス加工により形成でき、覆体の製造が容易である。
FIG. 6 is a diagram for explaining a cover provided with a first protrusion having a different shape in an electronic component mounting structure according to another reference embodiment.
As shown in FIG. 6, the cover 50d provided with the first protrusion of another shape includes a first protrusion 54 formed by plastic deformation of the cover without greatly changing the thickness. It is a thing. The first protrusion 54 can be formed by press working, and the cover can be easily manufactured.

図示しないが、第1の突出部は、覆体における、第1の電子部品が投影される部分に加え、他の電子部品が投影される部分にも設けても良く、この場合、この突出部と他の電子部品との間に伝熱材を配設して、他の電子部品の熱を覆体から放熱することもできる。   Although not shown, the first protrusion may be provided on a portion of the cover where the first electronic component is projected, as well as on a portion where another electronic component is projected. It is also possible to dissipate heat from the cover by disposing a heat transfer material between the cover and the other electronic component.

図7は、別の参考の形態に係わる電子部品の実装構造体における覆体を説明する、上面模式図(a)と側面模式図(b)とである。
図7に示す電子部品の実装構造体は、覆体に、覆体50cの第1の突出部53の三方の周囲に、第1の突出部53を囲んで、貫通孔80が設けられた覆体50eを用いた以外、図5に示す電子部品の実装構造体と同様である。
FIG. 7 is a schematic top view (a) and a schematic side view (b) for explaining a cover in a mounting structure for an electronic component according to another reference embodiment.
The electronic component mounting structure shown in FIG. 7 is a cover in which a through hole 80 is provided around the first protrusion 53 around the three sides of the first protrusion 53 of the cover 50c. The electronic component mounting structure shown in FIG. 5 is the same as that shown in FIG. 5 except that the body 50e is used.

図8は、別の参考の形態に係わる電子部品の実装構造体における、別例の覆体を説明する側面模式図である。
図8に示す電子部品の実装構造体は、覆体に、覆体50dの第1の突出部54の三方の周囲に、第1の突出部54を囲んで、貫通孔80が設けられた覆体50fを用いた以外、図5に示す電子部品の実装構造体400と同様である。
FIG. 8 is a schematic side view illustrating another example of the cover in the electronic component mounting structure according to another reference embodiment.
The electronic component mounting structure shown in FIG. 8 has a cover in which a through-hole 80 is provided around the first protrusion 54 around the first protrusion 54 of the cover 50d. Except for using the body 50f, the electronic component mounting structure 400 is the same as that shown in FIG.

図8に示す形態では、覆体の第1の突出部の三方の周囲に、第1の突出部を囲んで貫通孔が設けられているので、覆体の伝熱材を介して第1の電子部品に押圧力を加える部分がバネ性を有することとなり、第1の電子部品に加わる応力を緩和できる。
また、第1の電子部品の周囲の対流を促進して放熱性を向上することもできる。
In the form shown in FIG. 8, since the through-hole is provided around the first protrusion of the cover so as to surround the first protrusion, the first protrusion is interposed via the heat transfer material of the cover. The portion to which the pressing force is applied to the electronic component has a spring property, and the stress applied to the first electronic component can be relaxed.
In addition, heat dissipation can be improved by promoting convection around the first electronic component.

実施の形態2.
図9は、本発明の実施の形態2に係わる電子部品の実装構造体における覆体を説明する、内表面模式図(a)と側面模式図(b)とである。
図9に示す本実施の形態の電子部品の実装構造体は、覆体に、覆体50aの内表面に第1の電子部品10aの外周を囲むように形成された第2の突出部55が設けられた覆体50gを用いた以外、図3に示された電子部品の実装構造体と同様である。
Embodiment 2. FIG.
FIGS. 9A and 9B are an inner surface schematic diagram (a) and a side surface schematic diagram (b) for explaining a cover in the electronic component mounting structure according to the second embodiment of the present invention .
The electronic component mounting structure according to the present embodiment shown in FIG. 9 has a second protrusion 55 formed on the inner surface of the cover 50a so as to surround the outer periphery of the first electronic component 10a. 3 is the same as the electronic component mounting structure shown in FIG. 3 except that the provided cover 50g is used.

この覆体50gを用いた電子部品の実装構造体では、伝熱材40の位置決めが容易になり生産性が向上するとともに、伝熱材40のずれが防止でき長期信頼性が向上する。
図9(b)に示すように、第2の突出部55をフィン構造にすると放熱性も向上する。
この覆体の構造は、実施の形態1や図4に示された電子部品の実装構造体にも適用できる。
In the electronic component mounting structure using the cover 50g, the positioning of the heat transfer material 40 is facilitated and the productivity is improved, and the displacement of the heat transfer material 40 can be prevented and the long-term reliability is improved.
As shown in FIG. 9B, when the second protrusion 55 has a fin structure, heat dissipation is improved.
This cover structure can also be applied to the electronic component mounting structure shown in the first embodiment or FIG .

図10は、本発明の実施の形態2に係わる電子部品の実装構造体における、別例の覆体を説明する側面模式図である。
図10に示す本実施の形態の電子部品の実装構造体は、覆体に、覆体50aの外表面に厚み方向の溝56を形成し、覆体50aの内表面側に突部を、第1の電子部品10aの外周を囲むように設けた覆体50hを用いた以外、図3に示された電子部品の実装構造体と同様である。
FIG. 10 is a schematic side view illustrating another example of the cover in the electronic component mounting structure according to Embodiment 2 of the present invention .
In the electronic component mounting structure according to the present embodiment shown in FIG. 10, a groove 56 in the thickness direction is formed on the outer surface of the cover 50a in the cover, and a protrusion is formed on the inner surface side of the cover 50a. 3 is the same as the electronic component mounting structure shown in FIG. 3 except that a cover 50h provided so as to surround the outer periphery of one electronic component 10a is used.

この覆体50hを用いた電子部品の実装構造体では、伝熱材40の位置決めが容易になり生産性が向上するとともに、覆体における、伝熱材を介して第1の電子部品に押圧力を加える部分がバネ性を有することとなり、第1の電子部品に加わる応力を緩和できる。
この覆体の構造は、実施の形態1の電子部品の実装構造体にも適用できる。
In the electronic component mounting structure using the cover 50h, positioning of the heat transfer material 40 is facilitated and productivity is improved, and the first electronic component in the cover is pressed against the first electronic component via the heat transfer material. The portion to which is added has springiness, and the stress applied to the first electronic component can be relaxed.
This cover structure can also be applied to the electronic component mounting structure of the first embodiment.

実施の形態3.
図11は、本発明の実施の形態3に係わる電子部品の実装構造体で用いられる覆体の伝熱材接触面の状態を示す断面模式図である。
図12は、本発明の実施の形態3における覆体の伝熱材接触面に形成された、第1の形状の突起部(a)と第2の形状の突起部(b)とを示す平面模式図である。
Embodiment 3 FIG.
FIG. 11: is a cross-sectional schematic diagram which shows the state of the heat-transfer material contact surface of the cover used with the mounting structure of the electronic component concerning Embodiment 3 of this invention.
FIG. 12 is a plan view showing a first shape protrusion (a) and a second shape protrusion (b) formed on the heat transfer material contact surface of the cover according to Embodiment 3 of the present invention. It is a schematic diagram.

図11に示すように、本実施の形態の電子部品の実装構造体は、覆体が、伝熱材接触面に複数の細かい突起部52が設けられた覆体50iである以外、実施の形態1の電子部品の実装構造体と同様である。
そして、伝熱材接触面の突起部52の形状は、例えば、図12(a)に示す溝状突起部521や図12(b)に示すバンプ状突起部522が挙げられる。
As shown in FIG. 11, the electronic component mounting structure according to the present embodiment is the same as the embodiment except that the cover is a cover 50 i provided with a plurality of fine protrusions 52 on the heat transfer material contact surface. This is the same as the electronic component mounting structure 1.
And as for the shape of the projection part 52 of a heat-transfer material contact surface, the groove-like projection part 521 shown to Fig.12 (a) and the bump-like projection part 522 shown to FIG.12 (b) are mentioned, for example.

本実施の形態のような、伝熱材接触面に突起部52が形成された覆体50iでは、覆体50iで伝熱材40を押圧した時、伝熱材がグリースや接着剤等の流動性のものの場合、伝熱材の排斥効果が高まるとともに、伝熱材の領域に熱伝導性が高い覆体が混在する状態となり、熱抵抗を低減することがで、放熱性を高めることができる。
また、伝熱材がシートの場合、伝熱材を薄く延ばすことに加え、やはり伝熱材の領域に熱伝導性が高い覆体が混在する状態となり、熱抵抗を低減することができ、放熱性を高めることができる。
In the cover 50i in which the protrusion 52 is formed on the heat transfer material contact surface as in the present embodiment, when the heat transfer material 40 is pressed by the cover 50i, the heat transfer material flows such as grease or adhesive. In the case of a heat-resistant material, the heat transfer material has a higher drainage effect, and a cover with high heat conductivity is mixed in the heat transfer material region, so that the heat resistance can be reduced and the heat dissipation can be improved. .
In addition, when the heat transfer material is a sheet, in addition to extending the heat transfer material thinly, the heat transfer material region also contains a cover with high thermal conductivity, which can reduce the thermal resistance and release heat. Can increase the sex.

覆体50iの突起部52は、先端が平坦でも良いが、図11に示すように、先端を細くした方が、効果が大であり好ましい。
また、突起部52が溝状突起部521である場合、溝の方向は電子部品10の短手方向が好ましい。
そして、突起部52は、覆体50iの製造時に同時に形成することができる。
本実施の形態の複数の細かい突起部が設けられた覆体は、実施の形態2の覆体として適用でき、同様な効果を有する。
The protrusion 52 of the cover 50i may have a flat tip, but as shown in FIG. 11, it is preferable to make the tip narrower because the effect is great.
When the protrusion 52 is a groove-like protrusion 521, the direction of the groove is preferably the short direction of the electronic component 10.
And the projection part 52 can be formed simultaneously with the manufacture of the cover 50i.
The cover provided with a plurality of fine protrusions of the present embodiment can be applied as the cover of the second embodiment and has the same effect.

実施の形態4.
図13は、本発明の実施の形態4に係わる電子部品の実装構造体における電子部品の、第1の形状の電極(a)と第2の形状の電極(b)とを示す正面模式図である。
図13に示すように、本実施の形態の電子部品の実装構造体は、電子部品10の電極における立脚部が屈曲している以外、実施の形態1の電子部品の実装構造体と同様である。
Embodiment 4 FIG.
FIG. 13: is a front schematic diagram which shows the electrode (a) of a 1st shape, and the electrode (b) of a 2nd shape of the electronic component in the mounting structure of the electronic component concerning Embodiment 4 of this invention. is there.
As shown in FIG. 13, the electronic component mounting structure according to the present embodiment is the same as the electronic component mounting structure according to the first embodiment, except that standing legs of the electrodes of the electronic component 10 are bent. .

すなわち、本実施の形態における、第1の形状の電極は、図13(a)に示すように、立脚部24bが一定の角度で内側に屈曲した電極20bであり、第2の形状の電極は、図13(b)に示すように、立脚部24bがくの字状に内側に屈曲した電極20cである。   That is, in the present embodiment, as shown in FIG. 13A, the first shape electrode is an electrode 20b in which the standing leg portion 24b is bent inward at a certain angle, and the second shape electrode is As shown in FIG. 13B, the standing leg portion 24b is an electrode 20c bent inwardly in a dogleg shape.

本実施の形態の電子部品の実装構造体は、実施の形態1の電子部品の実装構造体と同様な効果を有するとともに、電子部品の電極が上記のような形状であるので、立脚部24bのバネ性が高く、押圧力を緩和する能力が大きく、電子部品10の破壊を防止する効果が大きい。
本実施の形態の電子部品の電極は、実施の形態2及び実施の形態3の、電子部品あるいは第1の電子部品の電極にも適用でき、同様な効果を有する。
The electronic component mounting structure according to the present embodiment has the same effects as the electronic component mounting structure according to the first embodiment, and the electrodes of the electronic component have the above-described shape. The spring property is high, the ability to relieve the pressing force is large, and the effect of preventing the electronic component 10 from being broken is great.
The electrode of the electronic component of the present embodiment can be applied to the electrode of the electronic component or the first electronic component of the second and third embodiments, and has the same effect.

実施の形態5.
図14は、本発明の実施の形態5に係わる電子部品の実装構造体における電子部品の、第1の形状の電極(a)と第2の形状の電極(b)とを示す側面模式図である。
本実施の形態の電子部品の実装構造体は、電子部品10の各端部に接合された電極に、第1の形状の電極として図14(a)に示した、長手方向で分割されている電極20d、あるいは、第2の形状の電極として図14(b)に示した、回路接合部と電子部品との接合部とが、長手方向で分割されている電極20eを用いた以外、実施の形態1の電子部品の実装構造体と同様である。
Embodiment 5 FIG.
FIG. 14 is a schematic side view showing the first shape electrode (a) and the second shape electrode (b) of the electronic component in the electronic component mounting structure according to Embodiment 5 of the present invention. is there.
The electronic component mounting structure according to the present embodiment is divided in the longitudinal direction as shown in FIG. 14A as an electrode having a first shape on the electrodes joined to the respective end portions of the electronic component 10. The electrode 20d or the electrode 20e shown in FIG. 14B as the second shape electrode is used except that the electrode 20e in which the junction between the circuit junction and the electronic component is divided in the longitudinal direction is used. This is the same as the electronic component mounting structure according to the first aspect.

本実施の形態の電子部品の実装構造体は、実施の形態1の電子部品の実装構造体と同様な効果を有するとともに、電子部品10が、図14(a)あるいは図14(b)にあるように、少なくとも電極の電子部品との接合部と回路接合部とが、電極の長手方向で分割されており、電極の配線基板30に半田接合する面積が広くなり熱応力が増大する場合でも、熱応力を緩和することができる。
本実施の形態では、電極全体あるいは局部の分割は2分割であるが、加工が可能であれば、これに限定されない。
本実施の形態の電子部品の電極は、実施の形態2〜実施の形態4の、電子部品あるいは第1の電子部品の電極として適用でき、同様な効果を有する。
The electronic component mounting structure of the present embodiment has the same effect as the electronic component mounting structure of the first embodiment, and the electronic component 10 is shown in FIG. 14 (a) or FIG. 14 (b). As described above, even when at least the joint portion of the electrode with the electronic component and the circuit joint portion are divided in the longitudinal direction of the electrode, and the area where the electrode is solder-bonded to the wiring board 30 increases, the thermal stress increases. Thermal stress can be relaxed.
In the present embodiment, the whole electrode or the local division is divided into two, but it is not limited to this as long as processing is possible.
The electrode of the electronic component of the present embodiment can be applied as the electrode of the electronic component or the first electronic component of Embodiments 2 to 4 , and has the same effect.

本発明に係わる電子部品の実装構造体は、配線基板に搭載されたチップ部品に加わる熱応力を低減するとともに、このチップ部品からの熱を効率よく放熱するものであり、高温環境で使用される機器に用いられる。   The electronic component mounting structure according to the present invention reduces thermal stress applied to the chip component mounted on the wiring board and efficiently radiates heat from the chip component, and is used in a high temperature environment. Used for equipment.

10 電子部品、10a 第1の電子部品、11 第2の電子部品、
12 第3の電子部品、13 電子部品、
20,20a,20b,20c,20d,20e,21 電極、
24a 回路接合部、24b 立脚部、30 配線基板、40 伝熱材、
50,50a,50b,50c,50d,50e,50f,50g 覆体、
50h,50i 覆体、51 フィン、52 突起部、521 溝状突起部、
522 バンプ状突起部、53,54 第1の突出部、55 第2の突出部、56 溝、60 筐体本体、60a 周壁部、60b 基板搭載部、61 フィン、70 ボルト、71 ナット、72,73 ねじ、75 スペーサ、80 貫通孔、90 放熱体、
100,100a,200,300,400 電子部品の実装構造体。
10 electronic component, 10a first electronic component, 11 second electronic component,
12 Third electronic component, 13 Electronic component,
20, 20a, 20b, 20c, 20d, 20e, 21 electrodes,
24a circuit junction part, 24b stand part, 30 wiring board, 40 heat transfer material,
50, 50a, 50b, 50c, 50d, 50e, 50f, 50g
50h, 50i Cover, 51 fin, 52 projection, 521 groove projection,
522 Bump-like protrusion, 53, 54 First protrusion, 55 Second protrusion, 56 groove, 60 Housing body, 60a Perimeter wall, 60b Substrate mounting part, 61 Fin, 70 Bolt, 71 Nut, 72, 73 screws, 75 spacers, 80 through holes, 90 heat sinks,
100, 100a, 200, 300, 400 Electronic component mounting structure.

Claims (9)

配線基板と、上記配線基板の回路パターンに実装された電子部品と、上記電子部品の両端に設けられた電極と、上記電子部品における上記回路パターン側の反対側の面に配設された伝熱材と、上記伝熱材における上記電子部品との接触面の反対側の面に接触するとともに、上記回路パターンに対して平行に固定された覆体とを備えた電子部品の実装構造体であって、
上記電子部品がチップ部品であり、上記電極が、上記回路パターンと接合する回路接合部と、上記電子部品を上記回路パターンから浮かすとともにバネ性がある立脚部とを有しており、上記回路パターン面から上記電子部品の伝熱材側の面までの高さである電子部品の設置高さと上記伝熱材の厚みとの合計が、上記覆体を固定する前より、固定後の方が薄くなっており、上記伝熱材のばね定数が上記電極のばね定数よりも小さくなっており、
上記覆体が、スペーサを介して上記配線基板に、金属のボルトとナットとで固定されており、上記配線基板の回路パターン形成面から上記覆体の内表面までの間隔が、上記電子部品の設置高さより大きく、上記覆体を固定する前の上記電子部品の設置高さと上記伝熱材の厚みとの合計より小さくなるように、上記スペーサの高さを設定した電子部品の実装構造体。
A wiring board; an electronic component mounted on the circuit pattern of the wiring board; electrodes provided on both ends of the electronic component; and heat transfer disposed on a surface of the electronic component opposite to the circuit pattern side. A mounting structure for an electronic component comprising: a cover that is in contact with a surface of the heat transfer material opposite to the contact surface with the electronic component and is fixed in parallel to the circuit pattern. And
The electronic component is a chip component, and the electrode has a circuit joint portion that joins the circuit pattern, and a standing leg portion that floats the electronic component from the circuit pattern and has a spring property. The total height of the electronic component, which is the height from the surface to the heat transfer material side surface of the electronic component, and the thickness of the heat transfer material is thinner after fixing than before fixing the cover. The spring constant of the heat transfer material is smaller than the spring constant of the electrode,
The cover is fixed to the wiring board via a spacer with metal bolts and nuts, and the distance from the circuit pattern forming surface of the wiring board to the inner surface of the cover is such that the electronic component An electronic component mounting structure in which a height of the spacer is set to be smaller than a total of an installation height of the electronic component before fixing the cover and a thickness of the heat transfer material.
上記配線基板における上記電子部品の実装面の反対側に、放熱体を設けたことを特徴とする請求項1に記載の電子部品の実装構造体。 2. The electronic component mounting structure according to claim 1, wherein a heat radiator is provided on a side opposite to the mounting surface of the electronic component on the wiring board. 上記覆体における外表面側に、フィンを設けたことを特徴とする請求項1または請求項2に記載の電子部品の実装構造体。 The electronic component mounting structure according to claim 1, wherein fins are provided on an outer surface side of the cover. 上記覆体の内表面における上記電子部品の外周に、第2の突出部を設けたことを特徴とする請求項1または請求項2に記載の電子部品の実装構造体。 3. The electronic component mounting structure according to claim 1, wherein a second protrusion is provided on an outer periphery of the electronic component on the inner surface of the cover. 上記覆体の外表面に上記覆体の厚み方向の溝を形成して、上記覆体の内表面側に突部を設けたことを特徴とする請求項1または請求項2に記載の電子部品の実装構造体。 The electronic component according to claim 1, wherein a groove in the thickness direction of the cover is formed on the outer surface of the cover, and a protrusion is provided on the inner surface side of the cover. Implementation structure. 上記覆体の上記伝熱材との接触面に、複数の細かい突起部が設けられたことを特徴とする請求項1ないし請求項5のいずれか1項に記載の電子部品の実装構造体。 6. The electronic component mounting structure according to claim 1, wherein a plurality of fine protrusions are provided on a contact surface of the cover with the heat transfer material. 上記電極の立脚部が、屈曲していることを特徴とする請求項1ないし請求項6のいずれか1項に記載の電子部品の実装構造体。 The electronic component mounting structure according to any one of claims 1 to 6, wherein a standing portion of the electrode is bent. 上記電極が、少なくとも上記電子部品の接合部と上記回路接合部とにおいて、上記電極の長手方向で分割されていることを特徴とする請求項1ないし請求項7のいずれか1項に記載の電子部品の実装構造体。 The electron according to any one of claims 1 to 7, wherein the electrode is divided in a longitudinal direction of the electrode at least in a joint portion of the electronic component and the circuit joint portion. Component mounting structure. 上記電極の厚みが、0.2mm以下であることを特徴とする請求項1ないし請求項8のいずれか1項に記載の電子部品の実装構造体。 The electronic component mounting structure according to any one of claims 1 to 8, wherein the electrode has a thickness of 0.2 mm or less.
JP2011096111A 2011-04-22 2011-04-22 Electronic component mounting structure Active JP5936313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096111A JP5936313B2 (en) 2011-04-22 2011-04-22 Electronic component mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096111A JP5936313B2 (en) 2011-04-22 2011-04-22 Electronic component mounting structure

Publications (3)

Publication Number Publication Date
JP2012227472A JP2012227472A (en) 2012-11-15
JP2012227472A5 JP2012227472A5 (en) 2013-11-28
JP5936313B2 true JP5936313B2 (en) 2016-06-22

Family

ID=47277278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096111A Active JP5936313B2 (en) 2011-04-22 2011-04-22 Electronic component mounting structure

Country Status (1)

Country Link
JP (1) JP5936313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110678032A (en) * 2019-11-01 2020-01-10 珠海格力电器股份有限公司 Electrical apparatus box and air conditioner

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949681B2 (en) * 2013-06-25 2016-07-13 株式会社豊田自動織機 Electric compressor
JP6453195B2 (en) * 2015-09-29 2019-01-16 日立オートモティブシステムズ株式会社 In-vehicle control device
JP6672724B2 (en) * 2015-11-10 2020-03-25 Tdk株式会社 Power supply
JP6402942B2 (en) 2015-12-11 2018-10-10 株式会社オートネットワーク技術研究所 Electrical junction box
WO2017098899A1 (en) * 2015-12-11 2017-06-15 株式会社オートネットワーク技術研究所 Electrical junction box
JP2018034587A (en) * 2016-08-30 2018-03-08 ダイキョーニシカワ株式会社 Heat radiation structure of component to be connected
JP2018098927A (en) * 2016-12-14 2018-06-21 株式会社オートネットワーク技術研究所 Electric connection box
JP6958438B2 (en) 2018-03-08 2021-11-02 株式会社デンソー Heat dissipation device for electronic components
JP7124795B2 (en) * 2019-06-27 2022-08-24 株式会社村田製作所 Electronic component module, electronic component unit, and electronic component module manufacturing method
JP7452184B2 (en) 2020-03-30 2024-03-19 富士電機株式会社 power converter
JP7152465B2 (en) * 2020-12-16 2022-10-12 Necプラットフォームズ株式会社 cooling structure and computer
KR20230026887A (en) * 2021-08-18 2023-02-27 현대자동차주식회사 Inverter apparatus for mobility
JP2024037427A (en) * 2022-09-07 2024-03-19 ヤマハ発動機株式会社 electric vehicle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747902Y2 (en) * 1989-03-30 1995-11-01 ローム株式会社 Mounting device for mounting chip type electronic components
JPH06104139A (en) * 1992-09-21 1994-04-15 Matsushita Electric Ind Co Ltd Ceramic chip part
JPH1065385A (en) * 1996-08-21 1998-03-06 Mitsubishi Electric Corp Substrate case structure
JPH1145821A (en) * 1997-07-25 1999-02-16 Tdk Corp Composite laminated ceramic capacitor having metal terminals
JP3492504B2 (en) * 1997-11-28 2004-02-03 エヌイーシーコンピュータテクノ株式会社 Heat dissipation device for electronic components
JP4023054B2 (en) * 1999-12-07 2007-12-19 株式会社デンソー Electronic circuit unit
JP4273673B2 (en) * 2001-03-19 2009-06-03 株式会社デンソー Heating element mounting structure
JP2004186294A (en) * 2002-12-02 2004-07-02 Denso Corp Electronic apparatus
JP4860552B2 (en) * 2007-06-08 2012-01-25 日本オプネクスト株式会社 Semiconductor device
JP4796999B2 (en) * 2007-07-17 2011-10-19 日立オートモティブシステムズ株式会社 Electronic control unit
JP4400662B2 (en) * 2007-09-12 2010-01-20 株式会社デンソー Electronic circuit component mounting structure
JP2009176990A (en) * 2008-01-25 2009-08-06 Panasonic Corp Electronic device unit
JP5045649B2 (en) * 2008-11-17 2012-10-10 株式会社村田製作所 Ceramic capacitor and electronic component including the same
JP5353251B2 (en) * 2009-01-07 2013-11-27 Tdk株式会社 Multilayer capacitor and multilayer capacitor mounting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110678032A (en) * 2019-11-01 2020-01-10 珠海格力电器股份有限公司 Electrical apparatus box and air conditioner

Also Published As

Publication number Publication date
JP2012227472A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5936313B2 (en) Electronic component mounting structure
US9271427B2 (en) Flexible thermal transfer strips
JP2009117612A (en) Circuit module and method of manufacturing the same
WO2007105580A1 (en) Base for power module
JP2014036033A (en) Semiconductor device
JP2002217343A (en) Electronic device
JP4402602B2 (en) Capacitor cooling structure and power conversion device
WO2009110045A1 (en) Structure for attaching component having heating body mounted thereon
TW200836044A (en) Heat-dissipating module
JP6048238B2 (en) Electronic equipment
JP5640616B2 (en) Heat dissipation structure for electronic components
WO2014140098A1 (en) Heat spreader with flat pipe cooling element
JP2005012127A (en) Electronic control apparatus
WO2012164756A1 (en) Radiator structure
JP4046623B2 (en) Power semiconductor module and fixing method thereof
JP2020061482A (en) Heat dissipation structure
JP2010021410A (en) Thermo-module
WO2021145096A1 (en) Electronic device
JP2008227043A (en) Radiating substrate and power source unit using the same
JP5669657B2 (en) Semiconductor device
WO2023112709A1 (en) Mounting board, and electric apparatus equipped with mounting board
CN213716878U (en) Packaging structure
JP6060053B2 (en) Power semiconductor device
WO2023090102A1 (en) Mounting board and electrical equipment having mounting board installed thereon
JP2004165251A (en) Radiating device for electronic component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150309

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160510

R150 Certificate of patent or registration of utility model

Ref document number: 5936313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250