JP5921475B2 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP5921475B2
JP5921475B2 JP2013060653A JP2013060653A JP5921475B2 JP 5921475 B2 JP5921475 B2 JP 5921475B2 JP 2013060653 A JP2013060653 A JP 2013060653A JP 2013060653 A JP2013060653 A JP 2013060653A JP 5921475 B2 JP5921475 B2 JP 5921475B2
Authority
JP
Japan
Prior art keywords
wiring
semiconductor device
metal
carbon nanotube
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013060653A
Other languages
English (en)
Other versions
JP2014187161A (ja
Inventor
達朗 斎藤
達朗 斎藤
和田 真
真 和田
厚伸 磯林
厚伸 磯林
明広 梶田
明広 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013060653A priority Critical patent/JP5921475B2/ja
Priority to US13/958,093 priority patent/US20140284814A1/en
Publication of JP2014187161A publication Critical patent/JP2014187161A/ja
Application granted granted Critical
Publication of JP5921475B2 publication Critical patent/JP5921475B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/94Specified use of nanostructure for electronic or optoelectronic application in a logic circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Description

本発明の実施形態は、カーボンナノチューブを用いた半導体装置及びその製造方法に関する。
低抵抗配線材料として期待されるカーボンナノチューブ(CNT:Carbon Nanotube)を用いた半導体装置が開発されている。この半導体装置において、カーボンナノチューブをコンタクトとして用いる場合、長距離配線において低抵抗な配線を実現できる。
例えば、3次元デバイス等の高アスペクト比のコンタクトを形成する場合、様々な高さや径のコンタクトを同一層内に形成する必要がある。この場合、高さが高く径の大きいコンタクトでは、カーボンナノチューブを用いることにより、ビアの低抵抗化が期待できる。しかし、高さが低く微細なコンタクトでは、カーボンナノチューブを適用した場合、ビア抵抗を従来の金属材料と同等又はそれ以下にすることは困難である。
特開2010−225701号公報
ビアの低抵抗化を図ることが可能な半導体装置及びその製造方法を提供する。
実施形態による半導体装置は、第1の配線と、前記第1の配線と同一層に配置された第2の配線と、前記第1の配線の底面に接続され、カーボンナノチューブで形成された長さが500nm以上の第1のビアと、前記第2の配線の底面に接続され、金属で形成された長さが500nm未満の第2のビアと、を具備する。前記第1のビアは前記第2のビアより太い。
一実施形態に係る半導体装置の概略的な構造を示す断面図。 一実施形態に係るビア抵抗のバリスティック長依存性を示す図。 一実施形態に係る半導体装置の製造工程を示す断面図。 図3に続く、一実施形態に係る半導体装置の製造工程を示す断面図。 図4に続く、一実施形態に係る半導体装置の製造工程を示す断面図。 図5に続く、一実施形態に係る半導体装置の製造工程を示す断面図。 図6に続く、一実施形態に係る半導体装置の製造工程を示す断面図。 図7に続く、一実施形態に係る半導体装置の製造工程を示す断面図。 図8に続く、一実施形態に係る半導体装置の製造工程を示す断面図。 図9に続く、一実施形態に係る半導体装置の製造工程を示す断面図。 図10に続く、一実施形態に係る半導体装置の製造工程を示す断面図。
以下、実施の形態について、図面を参照して説明する。この説明に際し、全図にわたり、共通する部分には共通する参照符号を付す。
[1]概要
近年、低抵抗材料として、フラーレンのような新規炭素材料が、配線材料に応用されている。特に、コンタクトプラグへの応用としては、カーボンナノチューブ(CNT)が検討されている。カーボンナノチューブとは、ベンゼン環が平面状に規則的に並んだ膜の積層炭素材料であるグラフェンが、直径10〜100nmの筒状構造になっている炭素材料である。グラフェンとは、ベンゼン環が平面状に規則的に並んだ膜が、1〜100層程度積層した極めて薄い炭素材料である。
カーボンナノチューブは、その量子化伝導特性により、金属配線に替わるLSI用の低抵抗配線として使用することが期待できる。特に、バリスティック(Ballistic)長が非常に長い(約100nm〜1um)ため、長距離配線の電気伝導においてより有利である。さらに、カーボンナノチューブの構造が筒状であり、CVD(Chemical Vapor Deposition)法で垂直に成膜することが可能であることから、カーボンナノチューブは、縦方向配線の形成プロセスと優れた整合性を持つ。このように、カーボンナノチューブは、縦方向配線として優れた電気特性を有する材料であり、特に長距離配線において低抵抗な配線を実現する可能性がある。
一方、通常の微細配線接続に用いられるような短く径が小さいコンタクトにカーボンナノチューブを用いた場合、形成可能なカーボンナノチューブの本数が制限され、カーボンナノチューブのバリスティック長を活かすことができない。このため、金属ビアと同等の抵抗を実現するためには、さらなる低抵抗化が求められる。
特に、長距離コンタクトによる接続を必要とする3次元デバイスの中には、長距離コンタクトと同一層内に、微細な低抵抗コンタクトを必要とするデバイスも多い。この場合、同一層内にて、長距離コンタクトの低抵抗化と微細コンタクトの低抵抗化とを実現することが重要である。
そこで、本実施形態は、3次元デバイス等の複数の高さや径のコンタクトビアが同一層に存在する半導体装置において、長距離コンタクトにはカーボンナノチューブビアを用い、微細コンタクトには金属ビアを用いることで、同一層内にカーボンナノチューブビアと金属ビアとが混在する構造を提案する。
尚、本実施形態では、異なる金属配線層同士を接続する部材及びトランジスタ等の素子と金属配線層とを接続する部材の両方をビアと称するが、本実施形態のビアは、トランジスタ等の素子と金属配線とを接続するコンタクトも含まれる。
[2]構造
図1を用いて、一実施形態に係る半導体装置の概略的な構造について説明する。本実施形態の半導体装置は、例えば、LSIの多層配線を備えた3次元デバイスである。
図1に示すように、トランジスタやキャパシタ等の半導体素子(図示せず)が形成された半導体基板1上に、複数の電極2及び複数の配線12、20、21が形成されている。周辺回路領域では、配線20と配線12との間、配線20と半導体基板1上の半導体素子との間及び配線20と電極2との間を接続するためのカーボンナノチューブビア30が形成されている。メモリセル領域では、ビア3を介して配線21と半導体基板1上の半導体素子との間を接続するための金属ビア40が形成されている。
カーボンナノチューブビア30は、金属ビア40より長く(高く)、金属ビア40より太い(径が大きい)。つまり、ビア高さが高く径の大きいビアホール14に対しては、カーボンナノチューブビア30が形成され、ビア高さが低く微細なビアホール18に対しては、金属ビア40が形成されている。
カーボンナノチューブビア30及び金属ビア40は、同一層(同一レイヤー、同一レベル)に形成されている。換言すると、カーボンナノチューブビア30及び金属ビア40は、同一層に形成された配線20、21に接続されている。配線20、21は、同じ絶縁膜11の上面上に形成されており、同じ高さに配置されている。配線20の底面の高さは、配線21の底面の高さと同じである。カーボンナノチューブビア30の上面の高さは、金属ビア40の上面の高さと同じである。カーボンナノチューブビア30の底面の高さは、金属ビア40の底面の高さは異なる。カーボンナノチューブビア30の底面は、金属ビア40の底面より半導体基板1に近い。カーボンナノチューブビア30は、例えば、コントロールゲート電極や半導体基板1上の半導体素子に接続されるビアである。
カーボンナノチューブビア30は、触媒下地層15、触媒層16及びカーボンナノチューブ17で形成されている。触媒下地層15は、ビアホール14の底面及び側面に形成され、触媒層16は、ビアホール14の底面及び側面の触媒下地層15上に形成され、カーボンナノチューブ17は、ビアホール14の底面の触媒層16から垂直方向に伸びて(成長して)ビアホール14内を埋め込んでいる。
触媒下地層15は、カーボンナノチューブ17の形成を容易にするための補助膜であり、カーボンナノチューブ17の均一成長を促進し、周囲の絶縁膜や下層コンタクト中への触媒の拡散を防止する。触媒下地層15の材料としては、例えば、Ta,Ti,Ru,W,Al等、これらの材料の窒化物や酸化物、又は、これらの材料を含む積層材料が挙げられる。
触媒層16は、カーボンナノチューブ17を成長させるために必要な層である。触媒層16の材料としては、Co,Ni,Fe,Ru,Cu等の単体金属、少なくともこれらの材料のいずれかを含む合金、又は、これらの材料の炭化物等が挙げられる。触媒層16は、分散状態となった不連続膜であることが望ましい。これにより、ビアホール14内に高密度のカーボンナノチューブ17を成長させることができる。触媒層16を不連続膜とする場合、例えば膜厚は5nmより小さいことが望ましい。
カーボンナノチューブ17は、電気伝導層となる。カーボンナノチューブ17を固定化する目的で、例えばCVD法により形成した絶縁膜や金属がカーボンナノチューブ17に埋め込まれていてもよい。
金属ビア40の材料としては、例えば、W,Cu,Ni,Al等が挙げられる。
配線21は、金属ビア40を構成する金属膜と異なる金属膜で別に形成されてもよい。配線20、21は、金属ビア40を構成する金属膜と同じ金属膜で形成されてもよい。
尚、図示せぬ拡散防止層(Diffusion Barrier)が配線構造を被覆するように成膜されてもよい。拡散防止層には、例えばSiN等が用いられる。
また、カーボンナノチューブビア30が形成される領域は周辺回路領域に限定されず、金属ビア40が形成される領域はメモリセル領域に限定されない。カーボンナノチューブビア30及び金属ビア40がそれぞれ形成される領域は、メモリセル領域、周辺回路領域及び選択ゲート領域のいずれかの領域でもよいし、これらの中の同じ領域内に混在してもよい。
[2−1]ビアの高さ
図2を用いて、本実施形態の半導体装置に用いるカーボンナノチューブビア30の高さについて説明する。
本実施形態は、長距離配線においてはカーボンナノチューブの方が金属より抵抗が低く、短距離配線においては金属の方がカーボンナノチューブより抵抗が低いことを利用した低抵抗配線構造である。
ここで、長距離配線と短距離配線との境界線は、カーボンナノチューブのバリスティック長によって決まる。
図2は、ビア抵抗のバリスティック長依存性の試算を示す。本図では、多層のカーボンナノチューブの層数Nが4、8、16、32、64の場合を例に挙げ、カーボンナノチューブが最密に充填されたと仮定した場合のビア径が80nm、高さhが2400nm、アスペクト比(A/R)が30のカーボンナノチューブビア抵抗を示している。また、通常のビア材料として用いられているW(タングステン)を比較対象としている。
図2に示すように、いずれの層数Nのカーボンナノチューブも、バリスティック長が長くなるにしたがって、ビア抵抗が低下している。一方、Wのビア抵抗は、長さに依存せず、ビア抵抗が一定(約300Ω)となっている。
このような関係の下、長尺でも安定的に自立可能と考えられる16〜32層程度のカーボンナノチューブのビア抵抗が、Wのビア抵抗より低くなるのは、バリスティック長が500nm以上であることが分かる。よって、カーボンナノチューブにおけるビア抵抗のバリスティック長依存性により、高さが500nm以上のビアに対しては、カーボンナノチューブビアを形成することが有効である。一方、高さが500nm(例えば、ビア径=80nm、A/R=6)未満のビアに対しては、カーボンナノチューブのビア抵抗は高さによらず一定(例えば、6450Ω/本数・層数)となり、Wビアの方が低抵抗となる。
以上のように、バリスティック長が500nmのカーボンナノチューブを用いる場合、ビア高さが500nm以上のビアに関しては、カーボンナノチューブの方が従来の金属材料よりも低抵抗化が可能である。しかし、ビア高さが500nm未満では、カーボンナノチューブ内での電子の散乱がないため、抵抗は一定になる。このため、カーボンナノチューブの場合、ビア高さが低くなればなるほど、金属ビアに比べて低抵抗化が困難となる。従って、ビア高さが500nm未満のビアに関しては、従来の金属材料の方がカーボンナノチューブよりも低抵抗化に有効である。
そこで、本実施形態では、ビア高さが500nm未満のビアでは金属ビア40を用い、ビア高さが500nm以上のビアではカーボンナノチューブビア30を用いるとよい。
[2−2]ビアの径
カーボンナノチューブビア30の場合、ビア側壁に触媒層16及び下地層15が形成されること、金属的な電気特性を有するカーボンナノチューブの径が20nm以上であることから、カーボンナノチューブを微細なビアに適用することが困難である。
例えば、ビア側壁の触媒層16及び下地層15等のトータルの膜厚が20nmの場合、径が60nm以下のビアでは、所望のカーボンナノチューブ17を形成することができない。
そこで、本実施形態では、ビア径が60nm未満のビアでは金属ビア40を用い、ビア径が60nm以上のビアではカーボンナノチューブビア30を用いるとよい。
[3]製造方法
図3(a)及び(b)から図11(a)及び(b)を用いて、一実施形態に係る半導体装置の製造方法について説明する。尚、各図(a)は、例えば周辺回路領域であり、各図(b)は、例えばメモリセル領域である。
まず、図3(a)及び(b)に示すように、トランジスタやキャパシタ等の半導体素子(図示せず)が形成された半導体基板(図示せず)上に絶縁膜11が形成され、この絶縁膜11内に半導体素子に接続する配線12、13が形成される。絶縁膜11には、例えばTEOS(Tetra Ethyl Ortho Silicate)膜を用い、配線12、13の導電材料には、例えばW,Cu,Alの単体金属を用いる。ここで、配線12と配線13とは、太さや幅、形成されるレイヤー等が異なる。例えば、配線12は、配線13と比べて、太く、幅が広く、基板に近い深い位置に形成される。
次に、配線12、13及び絶縁膜11上に、上層配線のビアを形成するための絶縁膜11が形成される。この絶縁膜11は、例えばSiOC膜からなる。絶縁膜11は、例えばCVD法や塗布法により成膜される。この絶縁膜11は、誘電率を下げる目的で微小空孔(Pore)を含んだ膜であってもよい。
次に、絶縁膜11のRIE(Reactive Ion Etching)ダメージ及びCMP(Chemical Mechanical Polish)ダメージに対する保護膜として、キャップ膜(図示せず)が形成される。キャップ膜は、例えばSiOやSiOC膜である。キャップ膜は、絶縁膜11がRIEダメージに強い膜(例えばTEOS膜)や微小空孔(Pore)を含まないSiOC膜の場合には、特に成膜しなくてもよい。以上までのプロセスは既存の配線形成の方法と変わらない。
次に、図4(a)に示すように、キャップ膜上にレジスト(図示せず)が塗布され、リソグラフィの工程を経て、レジストがパターニングされる。このパターニングされたレジストをマスクとして、絶縁膜11がRIEにより加工される。これにより、絶縁膜11内に、配線12の表面を露出するビアホール14が形成される。尚、この際、図4(b)に示すように、配線13の表面を露出するビアホールは形成されない。
次に、図5(a)及び(b)に示すように、例えばCVD法を用いて、ビアホール14の底面の配線12の露出面上、ビアホール14の側面の絶縁膜11上及び絶縁膜11の上面上に、触媒の下地層15が形成され、この下地層15上に触媒層16が形成される。
ここで、下地層15は、カーボンナノチューブ17の作製を容易にするための補助膜となる。下地層15は、ビアホール14の底面の部分と絶縁膜11の上面上の部分が、均一な膜厚で形成されることが望ましい。触媒層16は、カーボンナノチューブ17の成長のために用いられる。触媒層16は、高密度なカーボンナノチューブ17を成長させるために、分散状態となった不連続膜であることが望ましい。
次に、図6(a)及び(b)に示すように、ビアホール14の底面の触媒層16及び絶縁膜11の上面の触媒層16から、電気伝導層となるカーボンナノチューブ17が成長される。カーボンナノチューブ17の成膜には、例えばCVD法を用いる。CVD法の炭素源には、メタン、アセチレン等の炭化水素系ガス又はその混合ガスを使用し、キャリアガスには、水素や希ガスを使用する。例えば、処理温度の上限は1000℃程度、下限は200℃程度であり、成長温度は350度程度が望ましい。リモートプラズマを使用し、さらにイオン、電子を除去するために、基板上部に電極(図示せず)を設置し、電圧を印加するのも効果的である。この場合、印加電圧は0〜±100V程度が好ましい。その後、SOD(Spin on Direct;塗布膜)のSiO膜等を、カーボンナノチューブ17中に含浸させ、カーボンナノチューブ17を固定する。
次に、図7(a)及び(b)に示すように、例えばCMPにより、絶縁膜11の上面上に余剰に形成されているカーボンナノチューブ17、触媒層16及び下地層15が除去される。この時、低誘電率化の目的で、キャップ絶縁膜も除去されてもよい。このようにして、絶縁膜11内にカーボンナノチューブビア30が形成される。
次に、図8(b)に示すように、絶縁膜11上にレジスト(図示せず)が塗布され、リソグラフィの工程を経て、レジストがパターニングされる。このパターニングされたレジストをマスクとして、絶縁膜11がRIEにより加工される。これにより、絶縁膜11内に、配線13の表面を露出するビアホール18が形成される。尚、この際、図8(a)の領域はレジストで覆われている。
次に、図9(a)及び(b)に示すように、絶縁膜11上に金属膜19が形成され、この金属膜19でビアホール18が埋め込まれる。金属膜19の材料としては、例えば、W,Al,Cu等が挙げられる。ここで、金属膜19の下に図示せぬバリアメタル層を形成してもよい。バリアメタル層の成膜法には、例えばPVD(Physical Vapor Deposition)法、CVD法、原子層気相成長法等が用いられる。バリアメタル層の材料には、例えばTa,Ti,Ru,Co,Mn等や、これら元素の窒化物や酸化物が用いられる。
次に、図10(a)及び(b)に示すように、金属膜19上にレジスト(図示せず)が塗布され、リソグラフィの工程を経て、RIEにより金属膜19が加工される。これにより、カーボンナノチューブビア30に接続する配線20、配線13に接続する金属ビア40、金属ビア40に接続する配線21が形成される。
尚、配線20、21は、金属ビア40と同じ金属膜19で金属ビア40と同時に形成することに限定されない。例えば、絶縁膜11上に金属膜19を形成した後、CMPで絶縁膜11上の金属膜19を除去し、金属ビア40を形成する。その後、カーボンナノチューブビア30及び金属ビア40上に新たに金属膜を成膜し、この金属膜をRIE加工することで、配線20、21を形成してもよい。
最後に、図11(a)及び(b)に示すように、配線20、21及び絶縁膜11上に絶縁膜22が形成され、図示せぬ上部層が形成される。
[4]効果
本実施形態は、3次元デバイス等の複数の高さや径のビアが同一層に存在する半導体装置において、高さが高く径の大きいビアにはカーボンナノチューブビア30を用い、高さが低く微細なビアには金属ビア40を用い、同一層内にカーボンナノチューブビア30と金属ビア40とが混在する構造にする。このため、高さが高く径の大きいビアホール14内には、カーボンナノチューブビア30が形成されることにより、高さが高く径の大きいビアでの低抵抗化を実現しつつ、高さが低く微細なビアホール18内には、金属ビア40が形成されることにより、高さが低く微細なビアの抵抗上昇を回避することが可能である。よって、複数の高さや径のビアが同一層に存在する半導体装置において、このようなビアの全てを金属ビア又はカーボンナノチューブビアで形成する場合と比べて、高さが高く径の大きいビア及び高さが低く微細なビアの両方の低抵抗化を図ることができる。
また、カーボンナノチューブビア30の場合、プロセス上、ビアホール14の埋め込みはカーボンナノチューブ17で行い、上層配線20は別に形成する。そこで、本実施形態では、カーボンナノチューブビア30の上層配線20は、金属ビア40及び上層配線21の形成に用いる金属膜19を用いることで、金属ビア40及び上層配線21と同時に形成することができる。よって、本実施形態の製造方法によれば、カーボンナノチューブビア30の上層配線20の形成を、金属ビア40の一括でのビアホール18の埋め込み及び上層配線21の形成のプロセスと共存させることができる。
本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
以下に、本実施形態に含まれる発明を付記する。
(1) 第1の配線と、
前記第1の配線と同一層に配置された第2の配線と、
前記第1の配線の底面に接続され、カーボンナノチューブで形成された第1のビアと、
前記第2の配線の底面に接続され、金属で形成された第2のビアと、
を具備する半導体装置。
(2) 前記第1のビアの径は、60nm以上であり、
前記第2のビアの径は、60nm未満である、前記(1)に記載の半導体装置。
(3) 前記第1のビアの上面は、前記第2のビアの上面と同じ高さである、前記(1)に記載の半導体装置。
(4) 前記第1及び第2の配線は、前記金属で形成されている、前記(1)に記載の半導体装置。
(5) 第1の領域と第2の領域とを有する絶縁膜を形成する工程と、
前記第1の領域の前記絶縁膜内に第1のビアホールを形成する工程と、
前記第1のビアホール内に、カーボンナノチューブからなる第1のビアを形成する工程と、
前記第2の領域の前記絶縁膜内に第2のビアホールを形成する工程と、
前記第2のビアホール内に、金属からなる第2のビアを形成する工程と、
を具備する半導体装置の製造方法。
(6) 前記第2のビアホールを形成した後、前記第1及び第2の領域の前記絶縁膜上、前記第1のビア上及び前記第2のビアホール内に、前記金属からなる金属膜を形成する工程と、
前記金属膜を加工することで、前記第1のビアに接続する第1の配線を形成し、前記第2のビアホール内に前記第2のビアを形成し、前記第2のビアに接続する第2の配線を形成する工程と、
をさらに具備する、前記(5)に記載の半導体装置の製造方法。
(7) 前記第2のビアホールは、前記第1のビアを形成した後に形成する、前記(5)に記載の半導体装置の製造方法。
(8) 前記第1のビアは、前記第2のビアより長い、前記(5)に記載の半導体装置の製造方法。
(9) 前記第1のビアの長さは、500nm以上であり、
前記第2のビアの長さは、500nm未満である、前記(5)に記載の半導体装置の製造方法。
(10) 前記第1のビアは、前記第2のビアより太い、前記(5)に記載の半導体装置の製造方法。
(11) 前記第1のビアの径は、60nm以上であり、
前記第2のビアの径は、60nm未満である、前記(5)に記載の半導体装置の製造方法。
(12) 前記第1のビアの上面は、前記第2のビアの上面と同じ高さである、前記(5)に記載の半導体装置の製造方法。
(13) 前記第1のビアの底面は、前記第2のビアの底面より半導体基板に近い、前記(5)に記載の半導体装置の製造方法。
11、22…絶縁膜、12、13…配線、14、18…ビアホール、15…下地層、16…触媒層、17…カーボンナノチューブ、19…金属膜、20、21…配線、30…カーボンナノチューブビア、40…金属ビア。

Claims (9)

  1. 第1の配線と、
    前記第1の配線と同一層に配置された第2の配線と、
    前記第1の配線の底面に接続され、カーボンナノチューブで形成された長さが500nm以上の第1のビアと、
    前記第2の配線の底面に接続され、金属で形成された長さが500nm未満の第2のビアと、
    を具備し、
    前記第1のビアは、前記第2のビアより太く
    前記第1のビアは、周辺回路領域に形成され、
    前記第2のビアは、メモリセル領域に形成され、
    前記第1のビアは、ビアホールの底面及び側面に形成された下地層と、前記ビアホールの前記底面及び前記側面の前記下地層上に形成された触媒層と、前記触媒層から伸びて前記ビアホールを埋め込む前記カーボンナノチューブと、を有し、
    前記触媒層は、分散状態となった不連続膜である、半導体装置。
  2. 第1の配線と、
    前記第1の配線と同一層に配置された第2の配線と、
    前記第1の配線の底面に接続され、カーボンナノチューブで形成された長さが500nm以上の第1のビアと、
    前記第2の配線の底面に接続され、金属で形成された長さが500nm未満の第2のビアと、
    を具備し、
    前記第1のビアは前記第2のビアより太い半導体装置。
  3. 前記第1のビアの底面は、前記第2のビアの底面より半導体基板に近い、請求項2に記載の半導体装置。
  4. 前記第1のビアは、周辺回路領域に形成され、
    前記第2のビアは、メモリセル領域に形成される、請求項2に記載の半導体装置。
  5. 前記第1のビアは、ビアホールの底面及び側面に形成された下地層と、前記ビアホールの前記底面及び前記側面の前記下地層上に形成された触媒層と、前記触媒層から伸びて前記ビアホールを埋め込む前記カーボンナノチューブと、を有する、請求項2に記載の半導体装置。
  6. 前記触媒層は、分散状態となった不連続膜である、請求項に記載の半導体装置。
  7. 前記第1のビアのビア径は60nm以上であり、前記第1のビアのビア径は60nm未満であることを特徴とする請求項1または2に記載の半導体装置。
  8. 第1の領域と第2の領域とを有する絶縁膜を形成する工程と、
    前記第1の領域の前記絶縁膜内に第1のビアホールを形成する工程と、
    前記第1のビアホール内に、カーボンナノチューブからなる長さが500nm以上の第1のビアを形成する工程と、
    前記第2の領域の前記絶縁膜内に前記第1のビアホールよりも径が小さい第2のビアホールを形成する工程と、
    前記第2のビアホール内に、金属からなる長さが500nm未満の第2のビアを形成する工程と、
    を具備する半導体装置の製造方法。
  9. 前記第1のビアのビア径は60nm以上であり、前記第1のビアのビア径は60nm未満であることを特徴とする請求項8に記載の半導体装置の製造方法。
JP2013060653A 2013-03-22 2013-03-22 半導体装置及びその製造方法 Active JP5921475B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013060653A JP5921475B2 (ja) 2013-03-22 2013-03-22 半導体装置及びその製造方法
US13/958,093 US20140284814A1 (en) 2013-03-22 2013-08-02 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013060653A JP5921475B2 (ja) 2013-03-22 2013-03-22 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2014187161A JP2014187161A (ja) 2014-10-02
JP5921475B2 true JP5921475B2 (ja) 2016-05-24

Family

ID=51568589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013060653A Active JP5921475B2 (ja) 2013-03-22 2013-03-22 半導体装置及びその製造方法

Country Status (2)

Country Link
US (1) US20140284814A1 (ja)
JP (1) JP5921475B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150526A (ja) * 2020-03-19 2021-09-27 キオクシア株式会社 半導体装置、半導体記憶装置、及び、半導体装置の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244262A1 (en) * 2003-06-30 2010-09-30 Fujitsu Limited Deposition method and a deposition apparatus of fine particles, a forming method and a forming apparatus of carbon nanotubes, and a semiconductor device and a manufacturing method of the same
CN100585826C (zh) * 2005-03-11 2010-01-27 株式会社瑞萨科技 半导体集成电路器件的制造方法
JP4718894B2 (ja) * 2005-05-19 2011-07-06 株式会社東芝 半導体装置の製造方法
US20070148963A1 (en) * 2005-12-27 2007-06-28 The Hong Kong University Of Science And Technology Semiconductor devices incorporating carbon nanotubes and composites thereof
WO2008026237A1 (en) * 2006-08-28 2008-03-06 Fujitsu Limited Carbon nanotube materials, process for production thereof, and electronic components and devices
JP5181512B2 (ja) * 2007-03-30 2013-04-10 富士通セミコンダクター株式会社 電子デバイスの製造方法
JP2010056227A (ja) * 2008-08-27 2010-03-11 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP5423029B2 (ja) * 2009-02-12 2014-02-19 富士通セミコンダクター株式会社 半導体装置の製造方法
JP5238775B2 (ja) * 2010-08-25 2013-07-17 株式会社東芝 カーボンナノチューブ配線の製造方法
JP2012222088A (ja) * 2011-04-06 2012-11-12 Renesas Electronics Corp 半導体装置
US20130047348A1 (en) * 2011-08-31 2013-02-28 Charles Robert Smith Method and Kit For Depilation

Also Published As

Publication number Publication date
JP2014187161A (ja) 2014-10-02
US20140284814A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP5550515B2 (ja) グラフェン配線およびその製造方法
JP5755618B2 (ja) 半導体装置
US9117885B2 (en) Graphene interconnection and method of manufacturing the same
JP5395542B2 (ja) 半導体装置
US8487449B2 (en) Carbon nanotube interconnection and manufacturing method thereof
JP2016058521A (ja) 半導体装置およびその製造方法
JP5951568B2 (ja) 半導体装置及びその製造方法
JP6225596B2 (ja) 配線構造の製造方法及び配線構造
JP5921475B2 (ja) 半導体装置及びその製造方法
US10910309B2 (en) Nanotube structure based metal damascene process
JP2015138901A (ja) 半導体装置及びその製造方法
JP6244770B2 (ja) カーボン導電構造及びその製造方法
JP2016063097A (ja) カーボンナノチューブ配線構造およびその製造方法
JP5813682B2 (ja) 半導体装置及びその製造方法
JP2012169563A (ja) 記憶装置及びその製造方法
JP2016171245A (ja) 半導体装置およびその製造方法
JP2017168505A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R151 Written notification of patent or utility model registration

Ref document number: 5921475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350