JP5915030B2 - 衛星信号受信装置、衛星信号受信方法、および、電子機器 - Google Patents

衛星信号受信装置、衛星信号受信方法、および、電子機器 Download PDF

Info

Publication number
JP5915030B2
JP5915030B2 JP2011187487A JP2011187487A JP5915030B2 JP 5915030 B2 JP5915030 B2 JP 5915030B2 JP 2011187487 A JP2011187487 A JP 2011187487A JP 2011187487 A JP2011187487 A JP 2011187487A JP 5915030 B2 JP5915030 B2 JP 5915030B2
Authority
JP
Japan
Prior art keywords
time
satellite signal
reception
circuit
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011187487A
Other languages
English (en)
Other versions
JP2013050343A (ja
JP2013050343A5 (ja
Inventor
馬場 教充
教充 馬場
克行 本田
克行 本田
秋山 利一
利一 秋山
淳 松▲崎▼
淳 松▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011187487A priority Critical patent/JP5915030B2/ja
Priority to CN201210247956.2A priority patent/CN102967866B/zh
Priority to EP12181861.1A priority patent/EP2565678B1/en
Priority to US13/597,872 priority patent/US8897097B2/en
Publication of JP2013050343A publication Critical patent/JP2013050343A/ja
Publication of JP2013050343A5 publication Critical patent/JP2013050343A5/ja
Application granted granted Critical
Publication of JP5915030B2 publication Critical patent/JP5915030B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/26Acquisition or tracking or demodulation of signals transmitted by the system involving a sensor measurement for aiding acquisition or tracking
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • G04C10/02Arrangements of electric power supplies in time pieces the power supply being a radioactive or photovoltaic source
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/02Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS
    • G04R20/04Tuning or receiving; Circuits therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Electric Clocks (AREA)
  • Circuits Of Receivers In General (AREA)

Description

本発明は、例えばGPS衛星等の位置情報衛星からの信号に基づいて測位や時刻修正を行う衛星信号受信装置、衛星信号受信方法、および、電子機器に関するものである。
GPS(Global Positioning System)衛星からの衛星信号を受信して測位や時刻修正
を行う電子機器が知られている(例えば、特許文献1)。
このような電子機器として、例えば、腕時計のように、使用者と共に移動する機器を想定した場合、電子機器が屋内や地下街等の衛星信号を受信できない環境に移動していることが考えられる。
このような衛星信号を受信できない環境で受信処理を行うと、電力を無駄に消費してしまう。特に、腕時計のように電池駆動の電子機器では、持続時間確保や、電池サイズの小型化のために、消費電流を低減する必要があり、無駄な受信処理を避ける必要があった。
このため、特許文献1では、電子機器にソーラーパネルを設け、その発電量を屋内外を判断する閾値と比較して電子機器が屋外に配置されているかを判断し、屋外と判断された場合に受信処理を行うようにしていた。
特開2008−39565号公報
ところで、ソーラーパネルの発電量は、そのソーラーパネルに照射している光の照度に対応している。このため、電子機器が日中の屋外にある場合の照度と、屋内にある場合の照度とに対応する発電量を求め、これらの発電量を区別できるように前記閾値を設定することで屋内外を判断できるものと考えられていた。
しかしながら、実際には、電子機器が屋外に配置されている場合でも、電子機器の使用状況によっては、発電量が閾値を超えない場合がある。例えば、衛星信号受信装置を備える電子機器が腕時計である場合には、ソーラーセルが袖等に覆われるために、電子機器が屋外に配置されている場合でも、発電量が閾値を超えない場合がある。また、季節や天候によっては、直射日光が当たらなかったり、弱かったりするために、電子機器が屋外に配置されている場合でも、発電量が閾値を超えない場合がある。
本発明の目的は、衛星信号を適切に受信できる衛星信号受信装置、衛星信号受信方法、および、電子機器を提供することにある。
本発明の衛星信号受信装置は、位置情報衛星から送信される衛星信号を受信する衛星信号受信装置であって、前記衛星信号を受信する受信回路と、屋外検出回路と、前記受信回路および前記屋外検出回路を制御する制御回路とを備え、前記制御回路は、前記屋外検出回路での検出結果に基づいて、前記衛星信号受信装置が屋外に配置されていると判断した場合には、前記受信回路を作動し、前記衛星信号受信装置が屋外に配置されていないと判断した屋内配置状態が、予め設定された所定時間以上の間継続した場合には、予め設定された定時受信時刻に前記受信回路を作動することを特徴とする。
本発明においては、衛星信号受信装置が屋外に配置されていると判断した場合には、衛星信号の受信を行い、屋外に配置されていないと判断した屋内配置状態が所定時間以上の間継続しない場合には、衛星信号の受信を行わない。このため、衛星信号を受信できない可能性が高い屋内配置状態では衛星信号の受信を行わないので、無駄な電力消費を抑制できる。一方で、衛星信号受信装置が屋外に配置されているにもかかわらず、衛星信号受信装置が袖に隠れていることや季節や天候の影響により、屋外であると判断できない場合であっても、屋内配置状態が所定時間以上の間継続したときには、予め設定された定時受信時刻に衛星信号の受信を行う。このため、衛星信号受信装置の配置環境の判断結果によらず、適切なタイミングで衛星信号を受信できる。
本発明の衛星信号受信装置では、前記制御回路は、前記屋内配置状態が前記所定時間以上の間継続した場合には、前記屋外検出回路の作動を停止して、前記定時受信時刻に前記受信回路を作動することが好ましい。
ここで、屋内配置状態が所定時間以上の間継続する場合、利用者が冬季にコートを着用しており毎日常に袖に隠れている場合などがある。このような場合に、屋外検出回路を作動しても、屋外であることが検出される可能性は低く、無駄な電力を消費してしまう。
本発明によれば、屋内配置状態が所定時間以上継続した場合には、屋外検出回路を作動させずに、定時受信時刻になった場合にのみ受信を行うため、無駄な電力消費を抑制できる。
本発明の衛星信号受信装置では、前記制御回路は、前記受信回路を作動した場合には、前記屋内配置状態が前記所定時間以上の間継続しても前記定時受信時刻に前記受信回路を作動させずに、前記衛星信号受信装置が屋外に配置されていると判断した場合に前記受信回路を作動することが好ましい。
ここで、定時受信時刻に受信を行う場合には、配置環境を一切考慮に入れないが、定時受信時刻を適切に設定することにより、受信が成功する確率を高めることは可能であるが、屋外検出回路での検出結果に基づき受信を行う方が成功の確率の高い受信ができる。
本発明によれば、衛星信号の受信を行った後には、定時受信時刻に行う受信よりも成功の可能性が高い屋外検出回路での検出結果に基づき受信を行うため、定時受信と屋外検出回路での検出結果に基づく受信とを両方行う場合と比べて、無駄な電力を消費することなく衛星信号を受信できる。
本発明の衛星信号受信装置では、前記制御回路は、前記衛星信号受信装置が屋外に配置されていると判断した場合に行った前記衛星信号の受信の成功時刻を、前記定時受信時刻として設定することが好ましい。
ここで、衛星信号受信装置の利用者の毎日の生活パターンは、ほぼ同じと考えられ、配置環境の検出結果にも反映されると考えられる。
本発明によれば、屋内配置状態が所定時間以上の間継続した場合には、屋外に配置されていると判断した場合に行った受信の成功時刻に受信を行うことで、受信の成功確率を高めることができる。
本発明の衛星信号受信装置では、前記制御回路は、強制受信が指示された場合には、前記受信回路を作動し、前記強制受信の指示に基づいて行った前記衛星信号の受信の成功時刻を、前記定時受信時刻として設定することが好ましい。
ここで、衛星信号の受信は屋外で受信すると成功する可能性が高い。手動で強制受信を指示した時刻には、利用者が屋外にいる可能性が高いと考えられる。
上述したように、利用者の毎日の生活パターンが同じであると仮定すると、例えば会社に通勤する途中の屋外で手動で強制受信したとすると、その強制受信した時刻には屋外にいる可能性が高い。
本発明によれば、屋内配置状態が所定時間以上の間継続した場合には、強制受信が指示された時刻に受信を行うことで、受信の成功確率を高めることができる。
本発明の衛星信号受信装置では、記憶部を備え、前記制御回路は、前記成功時刻を前記記憶部に記憶させ、前記成功時刻が複数存在する場合には、受信の成功回数が最も多い前記成功時刻を前記定時受信時刻として設定することが好ましい。
ここで、受信が成功した時刻には、利用者が屋外にいる可能性が高いと考えられる。
本発明によれば、過去における受信が成功した時刻のうち、成功回数が最も多い時刻に受信を行うことで、利用者が屋外にいる可能性が高いタイミングで受信を行うことができ、受信の成功確率を高めることができる。
本発明の衛星信号受信装置では、前記制御回路は、前記定時受信時刻に行った前記衛星信号の受信が失敗した場合には、当該定時受信時刻として設定されていた成功時刻以外の前記成功時刻のうち、前記成功回数が最も多い前記成功時刻を前記定時受信時刻として設定し、前記定時受信時刻に行った前記衛星信号の受信が成功した場合には、前記定時受信時刻を変更しないことが好ましい。
本発明によれば、成功回数が最も多い定時受信時刻に受信を失敗した場合には、当該定時受信時刻として設定されていた成功時刻以外の成功時刻のうち、成功回数が最も多い成功時刻を定時受信時刻として設定するため、利用者の生活パターンが変わった場合でも、次回の受信の成功確率を高めることができる。
本発明の衛星信号受信装置では、前記制御回路は、前記成功時刻が一定時間間隔で設定された複数の時間帯のうちいずれの時間帯に含まれるかを判定して、前記成功時刻が含まれる時間帯の特定時刻を前記定時受信時刻として設定することが好ましい。
本発明によれば、成功時刻をそのまま定時受信時刻として設定せずに、当該成功時刻が含まれる時間帯の特定時刻を定時受信時刻として設定するため、定時受信時刻の管理数を少なくできる。また、利用者が定時受信時刻を把握しやすくなる。
本発明の衛星信号受信装置では、前記制御回路は、予め設定された制御開始時刻に前記受信回路および前記屋外検出回路の制御を開始し、次回の前記制御開始時刻までの間に前記受信回路を作動しなかった場合には、当該次回の制御開始時刻に制御を開始し、前記受信回路を作動した場合には、当該次回の制御開始時刻から予め設定された設定時間経過後の制御開始時刻に制御を開始することが好ましい。
本発明によれば、受信を行ったことにより電池の電力の残量が少なくなった場合には、次回の制御開始時刻から予め設定された設定時間の間は受信を行わないため、例えば、ソーラーセルで変換された電気エネルギーで電池を充電する電子機器に衛星信号受信装置を適用した場合には、当該受信を行わない時間に充電することができ、受信中に電力が無くなってしまうという不具合を抑制できる。また、受信を行わなかったために電力の残量が多い場合には、次回の制御開始時刻に受信を行うため、迅速なタイミングで衛星信号を受信できる。
本発明の衛星信号受信装置では、ソーラーセルと、前記ソーラーセルに当たる光の照度の検出処理を行う照度検出回路と、記憶部とを備え、前記制御回路は、所定時間間隔で前記照度検出回路を作動し、前記照度検出回路で検出された照度および当該照度の検出時刻を前記記憶部に記憶させ、所定期間における前記照度が最も高い前記検出時刻を前記定時受信時刻として設定することが好ましい。
ここで、照度が高いほど、衛星信号受信装置の周囲は、建物などの衛星信号を遮るものが少ない環境であると考えられる。
本発明によれば、衛星信号を遮るものが少ない環境に衛星信号受信装置が配置されている時刻に受信を行うことで、受信の成功確率を高めることができる。
本発明の衛星信号受信装置では、前記制御回路は、前記照度が最も高い前記検出時刻が複数存在する場合には、当該照度が検出された回数が最も多い前記検出時刻を前記定時受信時刻として設定することが好ましい。
本発明によれば、過去における照度が高い検出時刻のうち、検出回数が最も多い検出時刻に受信を行うことで、利用者が屋外にいる可能性が高いタイミングで受信を行うことができ、受信の成功確率を高めることができる。
本発明の衛星信号受信装置では、ソーラーセルと、前記ソーラーセルに当たる光の照度の検出処理を行う照度検出回路と、記憶部とを備え、前記制御回路は、所定時間間隔で前記照度検出回路を作動し、前記照度検出回路で検出された照度が予め設定された第1閾値以上の場合には、前記照度の検出時刻を前記記憶部に記憶させ、前記記憶部に記憶させた前記検出時刻を前記定時受信時刻として設定することが好ましい。
本発明によれば、過去において照度が第1閾値以上であった検出時刻を選んで受信を行うことで、受信の成功確率を高めることができる。また、利用者が屋外にいることを検出できるような値に第1閾値を設定することで、利用者が屋外にいるタイミングで定時受信を行うことができる。
本発明の衛星信号受信装置では、前記制御回路は、前記検出時刻が複数存在する場合には、前記照度が検出された回数が最も多い前記検出時刻を前記定時受信時刻として設定することが好ましい。
本発明によれば、過去における照度が第1閾値以上の時刻が複数存在する場合でも、検出回数が最も多い時刻に定時受信を行うことで、利用者が屋外にいる可能性が高いタイミングで受信を行うことができ、受信の成功確率を高めることができる。
本発明の衛星信号受信装置では、前記制御回路は、前記検出時刻が一定時間間隔で設定された複数の時間帯のうちいずれの時間帯に含まれるかを判定して、前記検出時刻が含まれる時間帯の特定時刻を前記記憶部に記憶させることが好ましい。
本発明によれば、照度の検出時刻をそのまま記憶させずに、当該検出時刻が含まれる時間帯の特定時刻を検出時刻として記憶させるため、定時受信時刻の管理数を少なくできるとともに、記憶部の記憶容量を最小限に抑えることができる。また、利用者が定時受信時刻を把握しやすくなる。
本発明の衛星信号受信装置では、ソーラーセルを備え、前記屋外検出回路は、前記衛星信号受信装置が屋外に配置されているか否かの検出処理として、前記ソーラーセルに当たる光の照度の検出処理を行う照度検出回路であり、前記制御回路は、前記照度検出回路で検出された照度が予め設定された第2閾値以上の場合には、前記衛星信号受信装置が屋外に配置されていると判断し、前記第2閾値未満の場合には、屋外に配置されていないと判断することが好ましい。
ここで、昼間であれば、照度は、室内光と太陽光とでは大きく異なる。
本発明によれば、ソーラーセルに当たる光の照度に基づいて、屋外か否かを判断するため、昼間であれば屋外と屋内とを適切に区別でき、受信の成功確率を高めることができる。
本発明の衛星信号受信方法は、位置情報衛星から送信される衛星信号を受信する衛星信号受信方法であって、衛星信号受信装置が屋外に配置されているか否かを検出することと、前記衛星信号受信装置が屋外に配置されていると判断した場合には、前記衛星信号を受信し、かつ、前記衛星信号受信装置が屋外に配置されていないと判断した屋内配置状態が、予め設定された所定時間以上の間継続した場合には、予め設定された定時受信時刻に前記衛星信号を受信することと、を含むことを特徴とする。
本発明の電子機器は、上述の衛星信号受信装置と、前記ソーラーセルで変換された電気エネルギーを蓄積する電池とを備え、前記受信回路、前記照度検出回路および前記制御回路は、前記電池に蓄積された電気エネルギーにより駆動されることを特徴とする。
本発明の衛星信号受信方法および電子機器によれば、前記衛星信号受信装置と同様の作用効果を奏することができる。特に、本発明の電子機器によれば、外部の電池を用いることなく、衛星信号を受信できる。さらには、ソーラーセルを充電と配置環境の検出との両方に用いるので、電子機器の構成を簡略化できる。
電子機器の平面図である。 電子機器の概略断面図である。 電子機器の回路構成を示すブロック図である。 第1実施形態における制御回路での衛星信号の受信処理を示すフローチャートである。 充電状態検出および開放電圧検出の作動タイミングを説明する図である。 電子機器のソーラーセルに当たる光の照度とソーラーセルの開放電圧との関係を示すグラフである。 各照度検出レベルにおけるソーラーセルでの開放電圧およびソーラーセルに当たる光の照度との関係を示す図である。 第2実施形態における制御回路での衛星信号の受信処理を示すフローチャートである。 第3実施形態における制御回路での衛星信号の受信処理を示すフローチャートである。 第4実施形態における制御回路での照度検出レベルの記憶処理を示すフローチャートである。 前記第4実施形態における定時受信時刻の設定に用いる各照度検出レベルでの検出時刻および検出回数の関係を示す図である。 前記第4実施形態および第5実施形態における制御回路での衛星信号の受信処理を示すフローチャートである。 前記第5実施形態における制御回路での検出時刻の記憶処理を示すフローチャートである。 前記第5実施形態における定時受信の設定に用いる各検出時刻での検出回数を示す図である。 第1変形例における定時受信時刻の設定に用いる受信成功時刻を示す図である。 第2変形例における定時受信時刻の設定に用いる各時間帯での受信実施回数および受信成功回数の関係を示す図である。 第3変形例における定時受信時刻の設定に用いる各曜日での受信成功回数の関係を示す図である。
[第1実施形態]
以下、この発明の好適な実施の形態の一つである第1実施形態を、添付図面等を参照しながら詳細に説明する。
[電子機器の構造]
図1は、本発明の第1実施形態に係る衛星信号受信装置を備える電子機器100の平面図であり、図2は電子機器100の概略断面図である。図1から明らかなように、電子機器100は、使用者の手首に装着される腕時計(電子時計)であり、文字板11および指針12を備え、時刻を計時して表面に表示する。文字板11の大部分は、光および1.5GHz帯のマイクロ波が透過し易い非金属の材料(例えば、プラスチックまたはガラス)で形成されている。指針12は、文字板11の表面側に設けられている。また、指針12は、回転軸13を中心に回転移動する秒針121、分針122および時針123を含み、歯車を介してステップモーターで駆動される。
電子機器100では、リューズ14やボタン15、ボタン16の手動操作に応じた処理が実行される。具体的には、リューズ14が操作されると、その操作に応じて表示時刻を修正する手動修正処理が実行される。また、ボタン15が長時間(例えば3秒以上の時間)にわたって押されると、衛星信号を受信するための受信処理が実行される。また、ボタン16が押されると、受信モード(測時モードまたは測位モード)を切り替える切替処理が実行される。この際、測時モードに設定された場合には、秒針121が「Time」の位置(5秒位置)に移動し、測位モードに設定された場合には、秒針121が「Fix」の位置(10秒位置)に移動する。
また、ボタン15が短時間にわたって押されると、前回の受信処理の結果を表示する結果表示処理が行われる。例えば、測時モードで受信成功の場合には、秒針121が「Time」(5秒位置)の位置に移動し、測位モードで受信成功の場合には、秒針121が「Fix」(10秒位置)の位置に移動する。また、受信失敗の場合には秒針121が「N」の位置(20秒位置)に移動する。
なお、これらの秒針121による指示は受信中も行われる。すなわち、測時モードで受信中は秒針121が「Time」の位置(5秒位置)に移動し、測位モードで受信中は秒針121が「Fix」の位置(10秒位置)に移動する。また、GPS衛星が捕捉できない場合は秒針121が「N」の位置(20秒位置)に移動する。
図2に示すように、電子機器100は、ステンレス鋼(SUS)やチタン等の金属で構成された外装ケース17を備えている。外装ケース17は、略円筒状に形成されている。外装ケース17の表面側の開口には、ベゼル18を介して表面ガラス19が取り付けられている。ベゼル18は、衛星信号の受信性能を向上させるためにセラミックス等の非金属材料で構成される。外装ケース17の裏面側の開口には、裏蓋20が取り付けられている。外装ケース17の内部には、ムーブメント21、ソーラーセル22、GPSアンテナ23、二次電池24等が配置されている。
ムーブメント21は、ステップモーターや輪列211を含んで構成されている。ステップモーターは、モーターコイル212、ステーター、ローター等で構成されており、輪列211や回転軸13を介して指針12を駆動する。ムーブメント21の裏蓋20側には、回路基板25が配置されている。回路基板25は、コネクター26を介してアンテナ基板27および二次電池24と接続されている。
回路基板25には、GPSアンテナ23で受信した衛星信号を処理する受信回路を含むGPS受信回路30、ステップモーターの駆動制御等の各種の制御を行う制御回路40等が取り付けられている。GPS受信回路30や制御回路40は、シールド板29に覆われており、二次電池24から供給される電力で駆動される。
ソーラーセル22は、光エネルギーを電気エネルギーに変換する光発電を行う光発電素子である。ソーラーセル22は、発生した電力を出力するための電極を備え、文字板11の裏面側に配置されている。文字板11の大部分は、光が透過し易い材料で形成されているから、ソーラーセル22は、表面ガラス19および文字板11を透過した光を受光して光発電を行うことができる。
二次電池24は、電子機器100の電源であり、ソーラーセル22で発生した電力を蓄積する。電子機器100では、ソーラーセル22の二つの電極と二次電池24の二つの電極とをそれぞれ電気的に接続することが可能であり、接続時には、ソーラーセル22の光発電によって二次電池24が充電される。なお、本実施形態では、二次電池24として、携帯機器に好適なリチウムイオン電池を用いているが、リチウムポリマー電池や他の二次電池を用いてもよいし、二次電池とは異なる蓄電体(例えば容量素子)を用いてもよい。
GPSアンテナ23は、1.5GHz帯のマイクロ波を受信するアンテナであり、文字板11の裏面側に配置され、裏蓋20側のアンテナ基板27上に実装されている。文字板11に直交する方向において、GPSアンテナ23と重なる文字板11の部分は、1.5GHz帯のマイクロ波が透過し易い材料(例えば、導電率および透磁性の低い非金属の材料)で形成されている。また、GPSアンテナ23と文字板11との間には電極を備えたソーラーセル22が介在しない。よって、GPSアンテナ23は、表面ガラス19および文字板11を透過した衛星信号を受信することができる。
ところで、GPSアンテナ23とソーラーセル22の距離が近いほど、GPSアンテナ23とソーラーセル22内の金属部材が電気的に結合してロスが発生したり、GPSアンテナ23の放射パターンがソーラーセル22に遮られて小さくなったりする。そのため、受信性能が劣化しないように、実施形態では、GPSアンテナ23とソーラーセル22との距離が所定値以上になるように配置されている。
また、GPSアンテナ23は、ソーラーセル22以外の金属部材との距離も所定値以上となるように配置されている。例えば、外装ケース17やムーブメント21が金属部材で構成されている場合、GPSアンテナ23は、外装ケース17との距離およびムーブメント21との距離がともに所定値以上になるように配置される。なお、GPSアンテナ23としては、パッチアンテナ(マイクロストリップアンテナ)、ヘリカルアンテナ、チップアンテナ、逆Fアンテナ等を採用可能である。
GPS受信回路30は、二次電池24に蓄積された電力で駆動される負荷であり、各回の駆動毎に、GPSアンテナ23を通じてGPS衛星からの衛星信号の受信を試み、受信に成功した場合には、取得した軌道情報やGPS時刻情報等の情報を制御回路40へ供給し、失敗した場合には、その旨の情報を制御回路40へ供給する。なお、GPS受信回路30の構成は、公知のGPS受信回路の構成と同様であるため、その説明を省略する。
図3は、電子機器100の回路構成を示すブロック図である。この図に示すように、電子機器100は、ソーラーセル22と、二次電池24と、GPS受信回路30と、制御回路40と、ダイオード41と、充電制御用スイッチ42と、充電状態検出回路43と、電圧検出回路44と、時計部50と、記憶部60とを備えている。なお、本発明における屋外検出回路としての照度検出回路は、充電状態検出回路43と、電圧検出回路44とから構成される。
制御回路40は、衛星信号受信装置を備える電子機器100を制御するためのCPUで構成されている。この制御回路40は、後述するように、GPS受信回路30を制御して受信処理を実行する。また、制御回路40は、充電状態検出回路43、電圧検出回路44の動作を制御する。
ダイオード41は、ソーラーセル22と二次電池24とを電気的に接続する経路に設けられ、ソーラーセル22から二次電池24への電流(順方向電流)を遮断せずに、二次電池24からソーラーセル22への電流(逆方向電流)を遮断する。なお、順方向電流が流れるのは、二次電池24の電圧よりもソーラーセル22の電圧が高い場合、すなわち充電時に限られる。また、ダイオード41に代えて電界効果トランジスター(FET)を採用してもよい。
充電制御用スイッチ42は、ソーラーセル22から二次電池24への電流の経路を接続および切断するものであり、ソーラーセル22と二次電池24とを電気的に接続する経路に設けられたスイッチング素子421を備えている。スイッチング素子421がオフ状態からオン状態に遷移するとオン(接続)し、スイッチング素子421がオン状態からオフ状態へ遷移するとオフ(切断)する。
例えば、過充電により電池特性が劣化する状態にならないよう、二次電池24の電池電圧が所定値以上となる場合には、充電制御用スイッチ42をオフする。
スイッチング素子421は、pチャネル型のトランジスターであり、ゲート電圧Vg1がローレベルの場合にはオン状態となり、ハイレベルの場合にはオフ状態となる。ゲート電圧Vg1は、制御回路40に制御される。
充電状態検出回路43は、充電状態の検出タイミングを指定する2値の制御信号CTL1に基づいて作動し、ソーラーセル22から二次電池24への充電の状態(充電状態)を検出し、検出結果RS1を制御回路40へ出力する。充電状態は「充電中」または「非充電中」であり、その検出は電池電圧VCCと充電制御用スイッチ42がオンのときのソーラーセル22のPVINとに基づいて行われる。例えば、ダイオード41の降下電圧をVthとし、スイッチング素子421のオン抵抗を無視したとき、PVIN−Vth>VCCの場合には「充電中」と判定し、PVIN−Vth≦VCCの場合には「非充電中」と判定することができる。
本実施形態では、制御信号CTL1は、周期が1秒のパルス信号であり、充電状態検出回路43は、制御信号CTL1がハイレベルの期間において充電状態の検出を行う。つまり、充電状態検出回路43は、充電制御用スイッチ42を接続状態に維持したまま、充電状態の検出を1秒周期で繰り返し行う。
なお、充電状態の検出を間欠的に行うのは、充電状態検出回路43の消費電力量を低減するためである。この低減が不要であれば、充電状態が連続的に検出されるようにしてもよい。充電状態検出回路43は、例えば、コンパレーター、A/Dコンバーター等を用いて構成することができる。
電圧検出回路44は、電圧の検出タイミングを指定する2値の制御信号CTL2に基づいて作動し、この制御信号CTL2により充電制御用スイッチ42がオフとされた期間においてソーラーセル22の端子電圧PVIN、すなわちソーラーセル22の開放電圧を検出する。また、電圧検出回路44は、開放電圧の検出結果RS2を制御回路40へ出力する。
時計部50は、ムーブメント21を備え、二次電池24に蓄積された電力で駆動されて計時処理を行う。計時処理では、時刻を計時する一方、計時時刻に応じた時刻(表示時刻)を電子機器100の表面に表示させる。
記憶部60は、各種情報を記憶する。記憶部60の記憶容量は、記憶させる情報の数や大きさによって選択されればよい。
[制御回路の動作]
図4は、第1実施形態における制御回路での衛星信号の受信処理を示すフローチャートである。図5は、充電状態検出、開放電圧検出、受信処理の作動タイミングを説明する図である。図6は、電子機器のソーラーセルに当たる光の照度とソーラーセルの開放電圧との関係を示すグラフである。図7は、各照度検出レベルにおけるソーラーセルでの開放電圧およびソーラーセルに当たる光の照度との関係を示す図である。
このような電子機器100における制御回路40の動作について、図4のフローチャートに基づき説明する。
制御回路40は、毎日12時00分00秒に制御を始める。まず、制御回路40は、変数Rが「0」か否かを判定する(SA1)。この変数Rは、所定時間である24時間以内に、衛星信号の受信処理が行われた場合には、受信が成功したか否かにかかわらず、「1」に設定される。一方で、24時間以内に1回も受信処理が行われなかった場合には、すなわち、電子機器100の配置環境が屋内であると判断された屋内配置状態が24時間以上継続した場合には、「0」に設定される。なお、前記所定時間は、24時間に限らずいずれの時間としてもよいが、通常は、半日(12時間)、1日(24時間)、2日(48時間)など、半日以上の時間に設定することが好ましい。
制御回路40は、SA1でNoと判定した場合(変数Rが「1」であり、所定時間内に受信処理が行われた場合)、ソーラーセル22に当たる光の照度に対応する開放電圧の照度検出レベルが、2回連続して閾値である第2閾値レベル以上か否かを判定する(SA2)。すなわち、制御回路40は、所定時間内に受信処理が行われた場合には、詳しくは後述するが、ソーラーセル22に当たる光の照度に基づいて衛星信号の受信処理(光自動受信処理)を開始する。
具体的に、制御回路40は、図5に示すように、1秒間隔の制御信号CTL1を出力し、一定周期で充電状態検出回路43を作動する。制御信号CTL1が入力されると、充電状態検出回路43は、充電状態であるか否かを示す検出結果RS1を制御回路40に出力する。このため、制御回路40は、充電中であるか否かを判定する。なお、充電制御用スイッチ42は、後述するように、電圧検出回路44が作動されるタイミングのみオフに切り替えられる。なお、充電状態の検出を1秒間隔で行っているが、この間隔に限定されず、例えば、0.5秒間隔、10秒間隔や1分間隔に設定してもよい。
電子機器100に当たる光が暗く、ソーラーセル22で発電が行われていない場合、充電状態検出回路43は「非充電中」の検出結果RS1を制御回路40に出力する。この場合、制御回路40は充電中ではないと判定し、制御回路40からはローレベルの制御信号CTL2を出力する。
したがって、充電状態でないと判定した場合、制御回路40は、電子機器100が屋外に配置されておらず、GPS信号の受信に適した場所に配置されていない可能性が高いと判断できる。
一方、制御回路40は、充電状態であると判定した場合、電圧検出回路44を作動する。この際、前述の通り、充電制御用スイッチ42は、制御回路40によってオフ状態に切り替えられる。すなわち、制御回路40は、充電状態検出回路43で充電中であることを検出すると、1秒間隔の制御信号CTL2を出力し、電圧検出回路44を作動する。この際、充電制御用スイッチ42は、制御回路40からの制御信号CTL2によってオフ状態に制御されるので、ソーラーセル22および電圧検出回路44は、二次電池24とは切り離される。このため、電圧検出回路44は、二次電池24の充電電圧の影響を受けることなく、ソーラーセル22に当たる光の照度に対応する開放電圧を検出できる。
なお、充電制御用スイッチ42がオフ状態では充電状態検出回路43によって充電状態を検出できない。このため、制御回路40は、充電状態検出回路43に対する制御信号CTL1の出力タイミングと、電圧検出回路44に対する制御信号CTL2の出力タイミングとが一致しないように、制御信号CTL1と制御信号CTL2の出力タイミングをずらしている。
本実施形態では、電圧検出回路44で検出される開放電圧は、図6に示すように、ソーラーセル22における照度が高くなるほど高くなる。
なお、電圧検出回路44として、ソーラーセル22の開放電圧の代わりにソーラーセル22の短絡電流を検出することで、ソーラーセル22に当たる照度を検出する構成を用いてもよい。
制御回路40は、電圧検出回路44から出力される検出結果RS2により、開放電圧に対応する照度検出レベルを判定する。本実施形態では、制御回路40は照度検出レベルを図7に示す関係に基づいて判定する。なお、図7における開放電圧と照度は、各照度検出レベルにおける下限値を表したものである。例えば、制御回路40は、開放電圧が5.6V以上5.8V未満の場合、照度検出レベルが「7」であり、5.9V以上6.2V未満の場合、照度検出レベルが「9」であると判定する。
そして、制御回路40は、前述のSA2の処理、すなわち検出結果RS2により得られた照度検出レベルが、1秒間隔での電圧検出に基づいて2回連続して、予め設定された第2閾値としての第2閾値レベル以上か否かを判定する。
ここで、照度検出レベルとソーラーセルでの開放電圧との関係は、図7に示す関係に基づいて、予め設定されている。つまり、ソーラーセル22に当たる光の照度の照度検出レベルが予め設定された第2閾値レベル以上である高照度状態であるか、第2閾値レベルよりも低い低照度状態であるかを判定するための閾値は、この図に基づいて設定されている。但し、照度検出レベルとソーラーセルでの開放電圧との関係は、図7に示す関係に限定されず、適宜設定することができる。
また、蛍光灯下においてソーラーセル22に照射された場合の光の照度は通常500〜1000ルクスであるのに対し、曇りの日の日光がソーラーセル22に照射された場合の光の照度は通常5000ルクス程度である。そこで、ソーラーセル22に5000ルクスの光を当てた場合に対応する照度検出レベルである「5」を、第2閾値レベルとして規定している。
なお、第2閾値レベルは、「5」以外のレベルに規定されていてもよい。また、照度検出レベルが第2閾値レベル未満の状態が所定時間以上の間継続した場合には、第2閾値レベルを1レベル低くなるように設定し直して、GPS受信回路30を作動させる条件をより緩くしてもよい。このように、第2閾値レベルを低く設定し直すことにより、照度検出レベルが第2閾値レベル以上となりやすくなり、GPS受信回路30を作動させる機会を設けることができる。
また、ソーラーセル22が劣化して電力変換効率が落ちた場合には、ソーラーセル22に同じ照度の光が当たっても、開放電圧がより低くなり、制御回路40で判定される照度検出レベルも低くなってしまう。このような場合には、第2閾値レベルを固定してしまうと、制御回路40によって電子機器100が屋外に配置されていることを適切に判定できないため、問題が生じる。
上述のように、第2閾値レベルを低くすれば、ソーラーセル22の劣化が進むことにより、5000ルクスの光が当たった場合に、照度検出レベルが第2閾値レベルである「5」よりも低い「4」以下にしかならなくても、GPS受信回路30を作動させる機会を設けることができる。
SA2でNoと判定した場合(低照度状態である場合)、制御回路40は、電子機器100が屋外に配置されておらず、GPS信号の受信に適した場所に配置されていない可能性が高いと判断できる。
すなわち、電子機器100が屋外に配置され、かつ、昼間であれば、ソーラーセル22には、第2閾値レベル以上の光が1秒以上継続して照射されるはずである。従って、1秒間隔で開放電圧を検出した場合、2回以上連続して第2閾値レベル以上の開放電圧を検出した場合には、電子機器100が屋外に配置されている可能性が高いと判断できる。
一方、2回以上連続して第2閾値レベル以上の開放電圧を検出できない場合には、例えば、電子機器100である腕時計を装着した人が、屋内を移動しているために開放電圧が1回も第2閾値レベル以上とならない場合や、建物の窓から瞬間的に直射日光がソーラーセル22に当たったために2回以上連続して第2閾値レベル以上とはならない場合等が想定される。このような条件では、GPS衛星信号を感度よく受信することが難しい。
従って、本実施形態では、SA2において、2回連続して照度検出レベルが第2閾値レベル以上であるかを判断している。なお、このような判定としては、2回連続して照度検出レベルが第2閾値レベル以上であるかを判断するものに限定されない。例えば、利用者が屋外にいることをより高精度に判定したい場合には、3回以上連続して照度検出レベルが第2閾値レベル以上であることを条件としてもよい。
SA2でNoと判定した場合には、現在の時刻が、制御回路40が制御を始めた日の翌日の11時59分59秒以前か否か判定する(SA3)。このようにして、制御回路40は、受信処理を行わずに、予め設定された所定時間が経過したか否か判定する。この場合、所定時間は24時間である。そして、SA3でNoと判定した場合は、SA1に戻り、一定周期で充電状態検出回路43を作動する。
一方で、SA3でYesと判定した場合(所定時間経過した場合)は、変数Rを「0」に設定して(SA4)、処理を終了し、次に制御回路40での処理が開始される制御再開時刻まで待機状態に移行する。ここで、制御再開時刻は1秒後の12時00分00秒である。
一方で、SA2でYesと判定した場合には、前述の通り、GPS衛星信号の受信に適した状態になっていると予測できるので、制御回路40は、GPS受信回路30を作動してGPS衛星の受信を開始する(SA5)。
なお、SA2でYesと判定した後にSA5で開始される受信処理は、光自動受信処理あるいは後述する定時受信処理(以下、光自動受信処理と定時受信処理とをまとめて、「自動受信処理」という場合がある)である。この自動受信処理では、測時モードでの受信処理が行われる。すなわち、測位モードでは、位置を検出するために3個以上のGPS衛星から信号を受信しなければならず、受信処理時間も長くなる。このため、信号受信が終了するまで電子機器100を屋外に配置しておくことが好ましいが、自動受信処理では利用者が受信中であることに気がつかず、受信中であっても屋内に移動してしまうおそれもある。このため、測位モードでの受信は、利用者が意図して受信操作を行った場合のみ、つまり強制受信処理時のみ行うことが好ましい。
一方、測時モードでは、1つのGPS衛星からの信号受信でも時刻情報を取得でき、受信処理時間も短くできる。従って、利用者が意図しなくても、受信処理を実行することができ、自動受信処理に適している。
また、受信処理中は、アンテナ基板27の上面に指針12があると受信感度に影響するため、アンテナ基板27の上面に指針12が重ならないようにモーターを制御することが好ましい。
一方で、制御回路40は、SA1でYesと判定した場合(変数Rが「0」であり、所定時間内に受信処理が行われなかった場合)は、現在の時刻が予め設定された定時受信時刻か否かを判定する(SA6)。ここで、定時受信時刻は、詳しくは後述するが、光自動受信が成功した場合の受信開始時刻であり、記憶部60に記憶されている。
なお、定時受信時刻は、受信終了時刻であってもよい。
また、例えば、システムリセット後であって、定時受信時刻が記憶部60に記憶されていない場合には、デフォルトの時刻を定時受信時刻と見なしてSA6の処理を行ってもよいし、定時受信時刻ではなく、定時受信を行わないと判定(SA6でNoと判定)してもよい。
制御回路40は、SA6でNoと判定した場合、SA2の処理を行う。一方、制御回路40は、SA6でYesと判定した場合、SA5の処理を行う。
すなわち、制御回路40は、所定時間内に受信処理が行われなかった場合において、現在の時刻が定時受信時刻になるまでの間は、光自動受信を行えるか否かを判断する。そして、制御回路40は、定時受信時刻となったと判定すると、ソーラーセル22に当たる光の照度の大きさによらず、衛星信号の受信処理を強制的に行う定時受信を行う。
制御回路40は、SA5で開始される受信処理によりGPS衛星信号の受信に成功したか否かを判定する(SA7)。
なお、GPS受信回路30では、まず、GPS衛星の検索を行い、GPS受信回路30でGPS衛星信号を検出する。そして、GPS衛星信号を検出した場合には、引き続きGPS衛星信号の受信を継続し、時刻情報を受信する。このように時刻情報を受信できた場合には、受信処理によりGPS衛星信号の受信に成功したと判定する。それ以外の場合、すなわち、GPS受信回路30でGPS衛星信号が検出されない場合や、時刻情報を受信できなかった場合には、受信処理によりGPS衛星信号の受信に失敗したと判定する。
また、制御回路40は、受信処理によりGPS衛星信号の受信に失敗した(SA7:No)と判定した場合には、変数Rを「1」に設定して(SA8)処理を終了し、制御再開時刻である翌日の12時00分00秒まで待機状態に移行する。
なお、SA7においてNoと判定した場合に、第2閾値レベルを1レベル高くなるように設定し直してもよい。このようにすれば、翌日の12時00分00秒からSA1の処理を再開する場合に、第2閾値レベルが1レベル高くなることで、検出レベルが第2閾値レベル以上となりにくくなる。より具体的には、屋内に配置された電子機器100に照明の光が非常に強く照射され、検出レベルが第2閾値レベル以上となっていたために受信処理が行われた場合には、受信に失敗するために第2閾値レベルが1レベルずつ高くなる。そして、このように第2閾値レベルが1レベルずつ高くなることで、いずれは照明の光では検出レベルが第2閾値レベル以上とはならなくなり、屋外に移動して直射日光が照射した場合のみ第2閾値レベル以上となる。このようにして、電子機器100を使用する人の生活環境に合わせて第2閾値レベルの最適化を図ることができる。以上のように、GPS受信回路30でGPS衛星信号の受信に失敗した場合に、GPS受信回路30を作動させる条件をより厳しくすることにより、GPS衛星信号の受信に適した環境でGPS受信回路30を作動させることとなる。
一方で、制御回路40は、受信処理によりGPS衛星信号の受信に成功した(SA7:Yes)と判定した場合には、この受信が光自動受信によるものか否かを判定する(SA9)。この後、制御回路40は、光自動受信が成功した(SA9:Yes)と判定した場合には、記憶部60に記憶されている定時受信時刻を削除するとともに、今回成功した光自動受信の開始時刻(自動受信成功時刻)を定時受信時刻として記憶部60に記憶させ(SA10)、SA8の処理を行う。
一方で、制御回路40は、定時受信が成功した(SA9:No)と判定した場合には、SA10の処理を行わずにSA8の処理を行う。
なお、SA10の処理において、制御回路40は、自動受信成功時刻が「12時00分30秒」であっても、「12時00分00秒」を定時受信時刻として記憶させる。すなわち、自動受信成功時刻を定時受信時刻として記憶させる前に、当該自動受信成功時刻が1分間隔で設定された複数の時間帯のうちのいずれの時間帯に含まれるかを判定し、この時間帯の特定時刻を自動受信成功時刻として記憶させる。例えば、自動受信成功時刻が「12時00分00秒」から「12時00分59秒」までの時間帯に含まれる場合には、この時間帯の秒単位の値を切り捨てた「12時00分00秒」を定時受信時刻として記憶させる。
このような第1実施形態によれば、以下のような作用効果が得られる。
制御回路40は、電圧検出回路44で検出された開放電圧の照度検出レベルが2回連続して第2閾値レベル以上であると判定した場合、電子機器100の配置環境が屋外であると判断して、衛星信号の受信を行う。一方で、屋内配置状態が所定時間である24時間以上の間継続したときには、予め設定された定時受信時刻に衛星信号の受信を行う。
このため、受信に失敗する可能性が高い屋内配置状態では衛星信号の受信を行わないので、無駄な電力消費を抑制できる。また、電子機器100が屋外に配置されているにもかかわらず、電子機器100が袖に隠れていることなどで屋外であると判断できない場合であっても、屋内配置状態が24時間以上の間継続したときには、予め設定された定時受信時刻に衛星信号の受信を行う。このため、電子機器100の配置環境の判断結果によらず、適切なタイミングで衛星信号を受信できる。
また、制御回路40は、光自動受信または定時受信を行うと、変数Rを「1」に設定する。そして、制御回路40は、次回の処理時に変数Rが「1」の場合には、定時受信の行わずに、光自動受信のみを行う。
このため、受信処理を行った翌日には、定時受信よりも成功の可能性が高い光自動受信のみを行うため、定時受信と光自動受信とを両方行う場合と比べて、無駄な電力を消費することなく衛星信号を受信できる。
さらに、制御回路40は、過去における光自動受信の成功時刻を定時受信時刻として設定する。
このため、定時受信時刻を、利用者の生活パターンに合わせて設定することができ、受信の成功確率を高めることができる。特に、最後に光自動受信が成功した時刻を定時受信時刻として設定することで、直近の生活パターンに合わせた時刻に受信を行うことができる。
また、屋外検出回路を、ソーラーセル22に当たる光の照度を検出する充電状態検出回路43と電圧検出回路44とで構成している。
このため、昼間であれば屋内と屋外とを適切に区別でき、受信の成功確率を高めることができる。
制御回路40は、自動受信成功時刻をそのまま定時受信時刻として記憶させずに、当該自動受信成功時刻が含まれる時間帯の特定時刻を自動受信成功時刻として記憶させる。
このため、利用者は、定時受信時刻を容易に把握できる。
また、制御回路40は、充電状態検出回路43で充電状態が検出されている場合のみ、電圧検出回路44を作動しているので、充電が行われていない状態つまり光がソーラーセル22に照射していない状態で電圧検出回路44が作動されることがなく、無駄な電力消費を防止できる。
充電状態検出回路43による充電状態の検出処理を1秒間隔で行い、電圧検出回路44による発電状態の検出処理は、充電状態検出回路43によって充電中であると判定された場合のみ実行されるので、電圧検出回路44の作動時間、つまり充電制御用スイッチ42がオフされる時間を最小限に抑えることができる。このため、ソーラーセル22による充電効率の低下も抑えることができる。
[第2実施形態]
次に、本発明の第2実施形態を図面に基づいて説明する。
なお、本実施形態の電子機器の構造は、前記第1実施形態と同様であるから、その詳細な説明は省略または簡略化する。
図8は、第2実施形態における制御回路での衛星信号の受信処理を示すフローチャートである。
本実施形態では、前記第1実施形態に対して、
(i)定時受信時刻が、強制受信が成功したときの受信開始時刻である点、
(ii)変数Rが「0」の場合(受信を行わなかった場合)には、充電状態検出回路43および電圧検出回路44を作動させない点、
が異なる。
なお、強制受信とは、操作部としてのボタン15を利用者が意図して操作することにより開始される受信をいう。また、制御回路40でのSB1〜SB8の処理については、第1実施形態におけるSA1〜SA8と同様の処理である。
制御回路40は、図8に示すように、SB1〜SB6の処理を行い、SB6においてYes(現在時刻が定時受信時刻である)と判定されると、定時受信を開始し(SB5)、No(現在時刻が定時受信時刻でない)と判定されると、強制受信開始の操作がなされたか否かを判定する(SB9)。
制御回路40は、SB9でYesと判定されると、強制受信を開始し(SB5)、Noと判定されると、SB3の処理を行う。すなわち、所定時間内に受信処理が行われなかった場合には、充電状態検出回路43および電圧検出回路44を作動させないことで光自動受信を行わずに、定時受信または強制受信のみを行う。
また、制御回路40は、SB7において受信が成功したと判定されると、強制受信が成功したか否かを判定する(SB10)。成功した受信が強制受信であると判定されると(SB10でYes)、記憶部60に記憶されている定時受信時刻を削除するとともに、今回成功した強制受信の開始時刻(強制受信成功時刻)を記憶部60に記憶させて(SB11)、SB8の処理を行う。一方、光自動受信または定時受信であると判定されると(SB10でNo)、SB11の処理を行わずにSB8の処理を行う。
なお、制御回路40は、強制受信成功時刻をそのまま定時受信時刻として記憶させずに、当該強制受信成功時刻が含まれる時間帯の特定時刻を強制受信成功時刻として記憶させる。ここで、時間帯は、第1実施形態と同様に1分間隔で設定されたものであってもよいし、異なる間隔で設定されたものであってもよい。
このような第2実施形態によれば、前記第1実施形態で得られる作用効果の他に、以下の作用効果が得られる。
制御回路40は、屋内配置状態が24時間以上継続し、変数Rが「0」の場合には、充電状態検出回路43および電圧検出回路44を作動させないことで光自動受信を行わずに、定時受信を行う。
このため、光自動受信による無駄な検出処理を行うことなく衛星信号を受信できる。
制御回路40は、過去における強制受信の成功時刻を定時受信時刻として設定する。
ここで、利用者は、受信を成功させるために、屋外にいる場合に強制受信を要求すると考えられる。このため、強制受信が要求された時刻には、利用者は、屋外にいる可能性が高いと考えられる。このため、過去に強制受信が要求された時刻に定時受信を行うことで、受信の成功確率を高めることができる。
[第3実施形態]
次に、本発明の第3実施形態を図面に基づいて説明する。
なお、本実施形態の電子機器の構造は、前記第1実施形態と同様であるから、その詳細な説明は省略または簡略化する。
図9は、第3実施形態における制御回路での衛星信号の受信処理を示すフローチャートである。
本実施形態では、前記第1実施形態に対して、
(i)衛星信号の受信を行った場合には、制御開始時刻としての制御再開時刻を翌々日の12時00分00秒と設定し、受信を行っていない場合には、制御再開時刻を翌日の12時00分00秒に設定する点、
が異なる。なお、制御回路40でのSC1〜SC10の処理については、第1実施形態におけるSA1〜SA10と同様の処理である。
制御回路40は、図9に示すように、SC1〜SC10の処理を行い、SC4あるいはSC8において変数Rの設定を行うと、変数Rが「1」に設定されているか否かを判定する(SC11)。
制御回路40は、SC11においてYes(受信処理を行った)と判定されると、制御再開時刻を翌々日の12時00分00秒に設定し(SC12)、No(受信処理を行っていない)と判定されると、制御再開時刻を翌日の12時00分00秒に設定する(SC13)。
このような第3実施形態によれば、前記第1実施形態で得られる作用効果の他に、以下の作用効果が得られる。
制御回路40は、受信を行った場合には、翌々日の受信再開時刻まで受信制御を行わず、受信を行っていない場合には、翌日の受信再開時刻に受信制御を行う。
ここで、受信処理には二次電池24の電力が必要であり、受信処理を行った翌日の電力の残量は少なくなる。このため、2日続けて受信処理を行うと、受信中に電力が無くなり受信が中断してしまうおそれがある。本実施形態では、受信処理を行った翌日に受信処理を行わないため、当該翌日に二次電池24の充電を行うことが可能となり、受信が中断してしまうという不具合を抑制できる。
一方で、受信処理を行わなかった翌日には、二次電池24の電力は十分に残っている。このため、当該翌日に受信処理を行ったとしても、受信中に電力が無くなるという不具合が発生することなく、迅速なタイミングで衛星信号を受信できる。
[第4実施形態]
次に、本発明の第4実施形態を図面に基づいて説明する。
なお、本実施形態の電子機器の構造は、前記第1実施形態と同様であるから、その詳細な説明は省略または簡略化する。
図10は、第4実施形態における制御回路での照度検出レベルの記憶処理を示すフローチャートである。図11は、定時受信時刻の設定に用いる各照度検出レベルでの検出時刻および検出回数の関係を示す図である。図12は、制御回路での衛星信号の受信処理を示すフローチャートである。
本実施形態では、前記第1実施形態に対して、
(i)定時受信時刻を、過去に検出した照度検出レベルにおける検出時刻および検出回数に基づいて設定する点、
が異なる。
なお、制御回路40でのSD11〜SD17の処理については、第1実施形態におけるSA1〜SA6,SA8と同様の処理である。
制御回路40は、例えば、電子機器100が初めて利用される場合、あるいは、システムリセット後に、照度検出レベルの記憶処理を行い、数日分あるいは数時間分のデータを蓄積する。また、後述する図12に示すような衛星信号の受信処理中にも照度検出レベルの記憶処理を行い、データを蓄積していく。
すなわち、制御回路40は、所定時間毎に、あるいは、利用者のボタン操作に基づいて、一定周期で充電状態検出回路43を作動する(SD1)。ここで、一定周期としては、1秒、5秒、10秒、1分、30分などいずれの周期であってもよい。周期は、記憶部60の記憶容量や二次電池24の消費電力で決めることができる。すなわち、記憶部60の記憶容量が大きければ、後述する定時受信時刻の設定を適切に行うために、周期を短くして多くのデータを記憶すればよい。また、二次電池24の消費電力を抑えたい場合には、周期を長くすればよい。さらに、夜の時間帯に照度検出レベルの記憶処理を行わなくてもよい。これは、夜に検出される照度検出レベルは、利用者が屋外にいれば低いためである。
次に、制御回路40は、充電中であるか否かを判定し(SD2)、充電中ではない(SD2:No)と判定した場合には、SD1の処理を行う。一方、制御回路40は、SD2で充電状態である(SD2:Yes)と判定された場合、充電制御用スイッチ42をオフにして、ソーラーセル22に当たる光の照度に対応する開放電圧を検出する(SD3)。
そして、制御回路40は、例えば、図7に示す関係に基づいて、開放電圧に対応する照度検出レベルを判定して(SD4)、この判定した照度検出レベルを当該検出レベルの検出時刻とともに記憶させて(SD5)、処理を終了する。具体的に、制御回路40は、照度の検出時刻を記憶させる前に、当該検出時刻が1分間隔で設定された複数の時間帯のうちのいずれの時間帯に含まれるかを判定し、この時間帯の特定時刻を検出時刻として照度検出レベルとともに記憶させる。例えば、照度の検出時刻が「20時00分00秒」から「20時00分59秒」までの時間帯に含まれる場合には、この時間帯の秒単位の値を切り捨てた「20時00分00秒」を検出時刻として記憶させる。
なお、この時間帯は、1分間隔に限らず、5分、10分、15分、30分間隔としてもよい。また、検出時刻は、秒単位を切り捨てたものに限らず、秒単位および分単位の両方を切り捨てたものであってもよい。さらに、時間帯が例えば10分間隔で設定されている場合において、「19時55分00秒」から「20時04分59秒」までの時間帯の検出時刻は、最初の「19時55分00秒」であってもよいし、中間の「20時00分00秒」であってもよい。
また、制御回路40は、照度検出レベルと検出時刻とを記憶させる際に、当該組合せがすでに記憶部60に記憶されている場合には、当該組合せの検出回数を1増やす。一方、照度検出レベルと検出時刻との組合せが、記憶部60に記憶されていない場合には、当該組合せを新たに記憶させるとともに、検出回数が1回である旨を記憶させる。
さらに、制御回路40は、照度検出レベルが高い順かつ検出回数が多い順にデータを並び替えて、当該照度検出レベルの検出時刻を定時受信時刻として設定する優先順位を設定する。具体的に、制御回路40は、図11に示すように、まず、照度検出レベルが高い順にデータを並べ、照度検出レベルが同じ場合には、検出回数が多い順にデータを並べる。そして、この並べた順序で優先順位を設定する。ここで、図11に示す優先順位は、値が小さいほど優先順位が高いことを表すものである。
なお、検出回数を記憶部60に記憶させずに、照度検出レベルと検出時刻のみを記憶させ、同じ照度検出レベルおよび検出時刻の組合せの数をカウントすることで、検出回数を判定してもよい。また、優先順位が高い順にデータを並び替えているが、データを並び替えずに優先順位を設定してもよい。
また、制御回路40は、図12に示すように、SD11〜SD19の衛星信号の受信処理を行う。ここで、記憶部60に記憶された過去の照度検出レベルの検出結果に基づいて、優先順位が最も高い検出時刻が定時受信時刻として設定されている。図11に示す状態でSD16の処理を行う場合には、優先順位が「1」の「20時00分00秒」が定時受信時刻として設定されている。
制御回路40は、SD17の処理の後、受信が成功したか否かを判定する(SD18)。そして、制御回路40は、SD18でYesと判定した場合、定時受信時刻を変更せずに、制御再開時刻である翌日の12時00分00秒まで待機状態に移行する。
一方で、制御回路40は、SD18でNoと判定した場合、定時受信時刻を変更して(SD19)、翌日の12時00分00秒まで待機状態に移行する。具体的に、制御回路40は、定時受信時刻として設定されていた検出時刻以外の検出時刻のうち、最も優先順位が高い(最も照度検出レベルが高くかつ最も検出回数が多い)検出時刻を定時受信時刻として設定する。ここで、上述したように、制御回路40は、衛星信号の受信処理と並行して、照度検出レベルの記憶処理を行っている。このため、制御回路40は、最新のデータに基づいて、定時受信時刻を変更する。例えば、図11に示す状態において、優先順位が「1」の「20時00分00秒」での定時受信に失敗した場合には、優先順位が「2」の「7時00分00秒」を定時受信時刻として設定する。
このような第4実施形態によれば、前記第1実施形態で得られる作用効果の他に、以下の作用効果が得られる。
制御回路40は、過去に検出した照度検出レベルと、当該照度検出レベルの検出時刻とを記憶部60に記憶させ、照度検出レベルが最も高い検出時刻を定時受信時刻として設定する。
このため、建物などの衛星信号を遮るものが少ない環境下であると考えられる時刻に定時受信を行うことができ、受信の成功確率を高めることができる。
制御回路40は、照度検出レベルが最も高い検出時刻のうち、検出回数が最も多い検出時刻を定時受信時刻として設定する。
このため、過去における照度が高い検出時刻のうち、検出回数が最も多い検出時刻に受信を行うことで、受信の成功確率を高めることができる。
制御回路40は、検出時刻を定時受信時刻として設定する優先順位を、照度検出レベルが高い順かつ検出回数が多い順に設定する。そして、定時受信が失敗した場合には、定時受信時刻として設定されていた検出時刻以外の検出時刻のうち、最も優先順位が高い検出時刻を定時受信時刻として設定し、成功した場合には、定時受信時刻を変更しない。
このため、例えば、利用者の生活パターンが変わったり、照明の影響で照度検出レベルが屋と同じように高かったことにより、過去における照度が最も高い時刻に受信を失敗しても、次回の定時受信を次に照度が高いあるいは検出回数が多い時刻に行うため、次回の定時受信の成功確率を高めることができる。
[第5実施形態]
次に、本発明の第5実施形態を図面に基づいて説明する。
なお、本実施形態の電子機器の構造は、前記第1実施形態と同様であり、本実施形態の制御回路での衛星信号の受信処理は、前記第4実施形態と同様であるから、その詳細な説明は省略または簡略化する。
図13は、第5実施形態における制御回路での検出時刻の記憶処理を示すフローチャートである。図14は、定時受信時刻の設定に用いる各検出時刻での検出回数を示す図である。
本実施形態では、前記第4実施形態に対して、
(i)定時受信時刻を、過去に照度検出レベルが第1閾値としての第1閾値レベル以上となった検出時刻および検出回数に基づいて設定する点、
が異なる。
なお、制御回路40でのSE1〜SE4の処理については、第4実施形態におけるSD1〜SD4と同様の処理である。
制御回路40は、例えば、電子機器100が初めて利用される場合、あるいは、システムリセット後に、図13に示すような検出時刻の記憶処理を行い、数日分あるいは数時間分のデータを蓄積する。また、後述する衛星信号の受信処理中にも検出時刻の記憶処理を行い、データを蓄積していく。
具体的に、制御回路40は、SE1〜SE4の処理を行い、SE4で検出した開放電圧に対応する照度検出レベルが、2回連続して第1閾値レベル(例えば、「5」)以上か否かを判定する(SE5)。なお、第1閾値レベルは、図7に示す関係に基づいて設定されており、「5」以外のレベルに設定されていてもよい。
制御回路40は、照度検出レベルが2回連続して第1閾値レベル以上でない(SE5:No)と判定された場合、処理を終了する。一方で、2回連続して第1閾値レベル以上である(SE5:Yes)と判定された場合、第4実施形態と同様の処理により求められた当該照度検出レベルの検出時刻を記憶させて(SE6)、処理を終了する。具体的に、制御回路40は、SE5での検出結果に基づく検出時刻が、すでに記憶部60に記憶されている場合には、当該検出時刻の検出回数を1増やす。一方、当該検出時刻が、記憶部60に記憶されていない場合には、当該検出時刻を新たに記憶させるとともに、検出回数が1回である旨を記憶させる。
さらに、制御回路40は、検出回数が多い順にデータを並び替えて、検出時刻を定時受信時刻として設定する優先順位を設定する。具体的に、制御回路40は、図14に示すように、まず、検出回数が多い順にデータを並べ、この並べた順序で優先順位を設定する。ここで、図14に示す優先順位は、値が小さいほど優先順位が高いことを表すものである。
なお、第5実施形態では、時間帯および検出時刻が15分間隔で設定されているため、1分間隔で設定されている第4実施形態の構成と比べて、定時受信時刻の管理数をより少なくできるとともに、利用者が定時受信時刻をより把握しやすくなる。また、記憶部60の記憶容量を小さくできる。
また、制御回路40は、図12に示すように、SD11〜SD19の衛星信号の受信処理を行う。本実施形態では、制御回路40は、記憶部60に記憶された過去の検出結果に基づいて、検出回数が最も多い検出時刻を、SD11での判断基準となる定時受信時刻として設定する。
また、制御回路40は、SD19における定時受信時刻の変更処理として、定時受信時刻として設定されていた検出時刻以外の検出時刻のうち、最も優先順位が高い(最も検出回数が多い)検出時刻を定時受信時刻として設定する。ここで、上述したように、制御回路40は、衛星信号の受信処理と並行して、照度検出レベルの記憶処理を行っているため、最新のデータに基づいて、定時受信時刻を変更する。
このような第5実施形態によれば、前記第1,第4実施形態で得られる作用効果の他に、以下の作用効果が得られる。
制御回路40は、照度検出レベルが2回連続して第1閾値レベル以上の場合に、当該検出レベルの検出時刻を定時受信時刻として設定する。
このため、過去において照度検出レベルが第1閾値レベル以上であった時刻を選んで受信を行うことで、受信の成功確率を高めることができる。また、利用者が屋外にいることを検出できるような値に第1閾値レベルを設定することで、利用者が屋外にいるタイミングで定時受信を行うことができる。
制御回路40は、照度検出レベルが2回連続して第1閾値レベル以上の場合には、当該照度検出レベルの検出時刻とともに、検出回数を合わせて記憶させる。そして、制御回路40は、検出回数が最も多い検出時刻を定時受信時刻として設定する。
このため、過去における照度検出レベルが第1閾値レベル以上の時刻が複数存在する場合でも、検出回数が最も多い時刻に定時受信を行うことで、利用者が屋外にいる可能性が高いタイミングで受信を行うことができ、受信の成功確率を高めることができる。
[他の実施形態]
なお、本発明は前記実施形態の構成に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
例えば、第1〜第3実施形態において、図15に示すような関係に基づいて、定時受信時刻を設定してもよい(第1変形例)。
具体的に、制御回路40は、図4、図8、図9に示す衛星信号の受信処理を行う前に、過去の光自動受信あるいは強制受信が成功した時刻を、成功した順序に関連付けて記憶部60に記憶させる。ここでは、最大で10個の受信成功時刻を記憶させる場合を例示するが、最大数は10個に限られない。また、図15に示す例では、成功順序が「1」の受信成功時刻が1番目に新しい時刻であり、「10」が10番目に新しい時刻である。そして、制御回路40は、まず、1番目に新しい「6時10分00秒」を定時受信時刻に設定し、当該時刻で定時受信が成功した場合には、次回も同じ時刻に定時受信を開始し、失敗した場合には、2番目に新しい「6時15分00秒」を次回の定時受信時刻として設定してもよい。
また、第1〜第3実施形態において、図16に示すような関係に基づいて、定時受信時刻を設定してもよい(第2変形例)。
具体的に、制御回路40は、過去の各時間帯における光自動受信あるいは強制受信を実施した回数と、受信が成功した回数とを記憶部60に記憶させる。そして、制御回路40は、まず、1番目に受信成功回数が多い「6時00分00秒」を定時受信時刻に設定し、当該時刻で定時受信が成功した場合には、次回も同じ時刻に定時受信を開始し、失敗した場合には、2番目に受信成功回数が多い「8時00分00秒」を次回の定時受信時刻として設定してもよい。
このような構成にすれば、過去における成功回数が最も多い時刻に受信を失敗しても、次回の受信を次に成功回数が多い時刻に行うため、生活パターンが変わった場合でも、次回の受信の成功確率を高めることができる。
なお、受信成功回数ではなく、成功率(受信成功回数÷受信回数)あるいは失敗率に基づく順序で定時受信時刻を設定してもよい。
さらに、第1〜第5実施形態や第1,第2変形例において、図17に示すような関係をさらに考慮に入れて、定時受信を行ってもよい(第3変形例)。
具体的に、制御回路40は、過去の各曜日における光自動受信あるいは強制受信が成功した回数を記憶部60に記憶させる。そして、制御回路40は、まず、1番目に成功回数が多い「月曜日」のみ定時受信を行い、当該曜日に定時受信が成功した場合には、次回も同じ曜日のみ定時受信を行い、失敗した場合には、2番目に成功回数が多い「金曜日」のみ次回の定時受信を行ってもよい。
また、第1〜第5実施形態や第1〜第3変形例において、衛星信号の受信処理が1回失敗した場合には、例えば、1分、10分、30分などの所定時間経過後に受信処理を行い、所定回数失敗したら受信処理を終了してもよい。
さらに、第4,第5実施形態や第1〜第3変形例において、記憶部60に記憶された複数の時刻の中から、利用者により選択された時刻を定時受信時刻として設定してもよい。
また、第4,第5実施形態や第1〜第3変形例において、制御回路40は、定時受信が失敗した場合には、当該定時受信時刻を、次回以降の定時受信時刻の設定対象から外してもよい。
このような構成にすれば、例えば、生活パターンが変わったなどの理由により、以前に受信が成功した時刻に利用者が屋内で生活することになったとしても、受信が失敗した時刻を受信時刻の設定対象から外すことにより、受信が失敗する確率を減らすことができる。
さらに、照度検出レベルに基づいて、衛星信号の受信処理を開始したが、屋外検出回路として湿度や気温あるいは気圧を検出する構成を用い、湿度や気温あるいは気圧が所定値以上となった場合に、屋外に配置されていると判断して、衛星信号の受信処理を開始してもよい。例えば、登山に利用する衛星信号受信装置であれば、高地での気圧が低地と大きく異なるため、有効である。
さらに、第2実施形態において、光自動受信での成功時刻と強制受信での成功時刻との両方を記憶部60に記憶させ、最新の成功時刻を定時受信時刻として設定してもよい。
このような構成にすれば、最新の利用者の生活パターンに基づいて定時受信を行うことができる。さらには、第1,第2,第4,第5実施形態の定時受信時刻の設定方法を必要に応じて組み合わせ、所定の条件に基づいて第1,第2,第4,第5実施形態のいずれかの時刻を定時受信時刻として設定してもよい。
さらに、第4,5実施形態において、衛星信号の受信処理が失敗した場合であっても、定時受信時刻を変更しなくてもよい。
また、第1〜第5実施形態において、予め設定された時間帯の特定時刻を検出時刻として記憶部60に記憶させたが、受信の成功時刻や照度の検出時刻をそのまま記憶させてもよい。
また、第5実施形態において、第1閾値レベルと第2閾値レベルとを同じレベルに設定せずに、第1閾値レベルを第2閾値レベルよりも高くしてもよいし、低くしてもよい。
例えば、第1閾値レベルを第2閾値レベルよりも高くした場合、以下の効果を期待できる。すなわち、例えば、第1閾値レベルを晴天の昼間に対応するレベル(以下、高照度レベルという)まで高くすることで、利用者が確実に屋外にいた時刻を定時受信時刻として設定できる。
そして、第2閾値レベルを第1閾値レベルと同じ高照度レベルに設定すると、定時受信時刻に利用者が屋外にいたとしても、曇天や雨天あるいは電子機器100が袖に隠れるなどして、高照度レベルの照度を検出できない場合には、照度検出レベルが第2閾値レベル以上とならないため、受信処理を開始することができない。
これに対して、第2閾値レベルを第1閾値レベルよりも低く設定すれば、定時受信時刻に利用者が屋外にいれば、曇天や雨天あるいは電子機器100が袖に隠れるなどしても、照度検出レベルが第2閾値レベル以上となるため受信処理を開始することができる。
したがって、利用者が確実に屋外にいた時刻における受信機会を増やすことができ、衛星信号を高い成功確率でかつ高頻度で受信できる。
前記実施形態では、照度検出回路でソーラーセル22に当たる光の照度が高くなるほど高い値となる検出値を検出しているが、前記検出値はソーラーセル22に当たる光の照度が高くなるほど高い値となるものに限定されない。すなわち、前記検出値はソーラーセル22に当たる光の照度が高くなるほど低い値となるものであってもよい。なお、検出値がソーラーセル22に当たる光の照度が高くなるほど低い値となる場合としては、例えば、ソーラーセル22に当たる光の照度が高くなるほど、開放電圧が低くなるようなデバイスを用いる場合が挙げられる。
本発明の衛星信号受信装置を備える電子機器100は、腕時計(電子時計)に限定されず、例えば、携帯電話、登山等に用いられる携帯型のGPS受信機等、二次電池で駆動されて位置情報衛星から送信される衛星信号を受信する装置に広く利用できる。
さらに、本発明では、ソーラーセル22、二次電池24、充電制御用スイッチ42、電圧検出回路44を備えることで、ソーラーセル22に照射された光の照度を高精度に検出することができる。これらの構成による照度の検出機構は、衛星信号受信装置のみに利用されるものではなく、他の機器にも適用できる。特に、照度の検出によって、何らかの装置を起動する機器に適している。例えば、照度に応じて、照明をオン・オフしたり、照明の光量を変化させる機器や、照度に応じて受信を開始する長波の電波修正時計等に応用できる。また、本発明の衛星信号受信装置をソーラーセル22を照度検出のみに用いる電子機器に適用してもよい。
100…電子機器、22…ソーラーセル、24…二次電池、30…GPS受信回路、40…制御回路、43…充電状態検出回路(屋外検出回路、照度検出回路)、44…電圧検出回路(屋外検出回路、照度検出回路)、60…記憶部。

Claims (18)

  1. 位置情報衛星から送信される衛星信号を受信する衛星信号受信装置であって、
    前記衛星信号を受信する受信回路と、
    屋外検出回路と、
    前記受信回路および前記屋外検出回路を制御する制御回路とを備え、
    前記制御回路は、前記屋外検出回路での検出結果に基づいて、前記衛星信号受信装置が屋外に配置されていると判断した場合には、前記受信回路を作動し、
    前記衛星信号受信装置が屋外に配置されていないと判断した屋内配置状態が、予め設定された所定時間以上の間継続した場合には、予め設定された定時受信時刻に前記受信回路を作動する
    ことを特徴とする衛星信号受信装置。
  2. 請求項1に記載の衛星信号受信装置において、
    前記制御回路は、前記屋内配置状態が前記所定時間以上の間継続した場合には、前記屋外検出回路の作動を停止して、前記定時受信時刻に前記受信回路を作動する
    ことを特徴とする衛星信号受信装置。
  3. 請求項1または請求項2に記載の衛星信号受信装置において、
    前記制御回路は、前記受信回路を作動した場合には、前記屋内配置状態が前記所定時間以上の間継続しても前記定時受信時刻に前記受信回路を作動させずに、前記衛星信号受信装置が屋外に配置されていると判断した場合に前記受信回路を作動する
    ことを特徴とする衛星信号受信装置。
  4. 請求項1から請求項3のいずれかに記載の衛星信号受信装置において、
    前記制御回路は、前記衛星信号受信装置が屋外に配置されていると判断した場合に行った前記衛星信号の受信の成功時刻を、前記定時受信時刻として設定する
    ことを特徴とする衛星信号受信装置。
  5. 請求項1から請求項4のいずれかに記載の衛星信号受信装置において、
    前記制御回路は、強制受信が指示された場合には、前記受信回路を作動し、
    前記強制受信の指示に基づいて行った前記衛星信号の受信の成功時刻を、前記定時受信時刻として設定する
    ことを特徴とする衛星信号受信装置。
  6. 請求項4または請求項5に記載の衛星信号受信装置において、
    記憶部を備え、
    前記制御回路は、前記成功時刻を前記記憶部に記憶させ、
    前記成功時刻が複数存在する場合には、受信の成功回数が最も多い前記成功時刻を前記定時受信時刻として設定する
    ことを特徴とする衛星信号受信装置。
  7. 請求項6に記載の衛星信号受信装置において、
    前記制御回路は、前記定時受信時刻に行った前記衛星信号の受信が失敗した場合には、当該定時受信時刻として設定されていた成功時刻以外の前記成功時刻のうち、前記成功回数が最も多い前記成功時刻を前記定時受信時刻として設定し、前記定時受信時刻に行った前記衛星信号の受信が成功した場合には、前記定時受信時刻を変更しない
    ことを特徴とする衛星信号受信装置。
  8. 請求項4から請求項7のいずれかに記載の衛星信号受信装置において、
    前記制御回路は、前記成功時刻が一定時間間隔で設定された複数の時間帯のうちいずれの時間帯に含まれるかを判定して、前記成功時刻が含まれる時間帯の特定時刻を前記定時受信時刻として設定する
    ことを特徴とする衛星信号受信装置。
  9. 請求項1から請求項8のいずれかに記載の衛星信号受信装置において、
    前記制御回路は、予め設定された制御開始時刻に前記受信回路および前記屋外検出回路の制御を開始し、
    次回の前記制御開始時刻までの間に前記受信回路を作動しなかった場合には、当該次回の制御開始時刻に制御を開始し、前記受信回路を作動した場合には、当該次回の制御開始時刻から予め設定された設定時間経過後の制御開始時刻に制御を開始する
    ことを特徴とする衛星信号受信装置。
  10. 請求項1から請求項9のいずれかに記載の衛星信号受信装置において、
    ソーラーセルと、
    前記ソーラーセルに当たる光の照度の検出処理を行う照度検出回路と、
    記憶部とを備え、
    前記制御回路は、所定時間間隔で前記照度検出回路を作動し、
    前記照度検出回路で検出された照度および当該照度の検出時刻を前記記憶部に記憶させ、
    所定期間における前記照度が最も高い前記検出時刻を前記定時受信時刻として設定する
    ことを特徴とする衛星信号受信装置。
  11. 請求項10に記載の衛星信号受信装置において、
    前記制御回路は、前記照度が最も高い前記検出時刻が複数存在する場合には、当該照度が検出された回数が最も多い前記検出時刻を前記定時受信時刻として設定する
    ことを特徴とする衛星信号受信装置。
  12. 請求項1から請求項9のいずれかに記載の衛星信号受信装置において、
    ソーラーセルと、
    前記ソーラーセルに当たる光の照度の検出処理を行う照度検出回路と、
    記憶部とを備え、
    前記制御回路は、所定時間間隔で前記照度検出回路を作動し、
    前記照度検出回路で検出された照度が予め設定された第1閾値以上の場合には、前記照度の検出時刻を前記記憶部に記憶させ、
    前記記憶部に記憶させた前記検出時刻を前記定時受信時刻として設定する
    ことを特徴とする衛星信号受信装置。
  13. 請求項12に記載の衛星信号受信装置において、
    前記制御回路は、前記検出時刻が複数存在する場合には、前記照度が検出された回数が最も多い前記検出時刻を前記定時受信時刻として設定する
    ことを特徴とする衛星信号受信装置。
  14. 請求項10から請求項13のいずれかに記載の衛星信号受信装置において、
    前記制御回路は、前記検出時刻が一定時間間隔で設定された複数の時間帯のうちいずれの時間帯に含まれるかを判定して、前記検出時刻が含まれる時間帯の特定時刻を前記記憶部に記憶させる
    ことを特徴とする衛星信号受信装置。
  15. 請求項1から請求項14のいずれかに記載の衛星信号受信装置において、
    ソーラーセルを備え、
    前記屋外検出回路は、前記衛星信号受信装置が屋外に配置されているか否かの検出処理として、前記ソーラーセルに当たる光の照度の検出処理を行う照度検出回路であり、
    前記制御回路は、前記照度検出回路で検出された照度が予め設定された第2閾値以上の場合には、前記衛星信号受信装置が屋外に配置されていると判断し、前記第2閾値未満の場合には、屋外に配置されていないと判断する
    ことを特徴とする衛星信号受信装置。
  16. 位置情報衛星から送信される衛星信号を受信する衛星信号受信方法であって、
    衛星信号受信装置が屋外に配置されているか否かを検出することと、
    前記衛星信号受信装置が屋外に配置されていると判断した場合には、前記衛星信号を受信し、かつ、前記衛星信号受信装置が屋外に配置されていないと判断した屋内配置状態が、予め設定された所定時間以上の間継続した場合には、予め設定された定時受信時刻に前記衛星信号を受信することと、
    を含むことを特徴とする衛星信号受信方法。
  17. 請求項10から請求項15のいずれかに記載の衛星信号受信装置と、
    前記ソーラーセルで変換された電気エネルギーを蓄積する電池とを備え、
    前記受信回路、前記照度検出回路および前記制御回路は、前記電池に蓄積された電気エネルギーにより駆動される
    ことを特徴とする電子機器。
  18. 位置情報衛星から送信される衛星信号を受信する衛星信号受信装置であって、
    前記衛星信号を受信する受信回路と、
    ソーラーセルと、
    前記受信回路を制御する制御回路とを備え、
    前記制御回路は、前記ソーラーセルに当たる光の照度が、予め設定された閾値以上の場合には、前記受信回路を作動し、
    前記ソーラーセルに当たる光の照度が、前記閾値未満の状態が、所定時間以上の間継続した場合には、予め設定された定時受信時刻に前記受信回路を作動する
    ことを特徴とする衛星信号受信装置。
JP2011187487A 2011-08-30 2011-08-30 衛星信号受信装置、衛星信号受信方法、および、電子機器 Active JP5915030B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011187487A JP5915030B2 (ja) 2011-08-30 2011-08-30 衛星信号受信装置、衛星信号受信方法、および、電子機器
CN201210247956.2A CN102967866B (zh) 2011-08-30 2012-07-17 卫星信号接收装置、卫星信号接收方法以及电子设备
EP12181861.1A EP2565678B1 (en) 2011-08-30 2012-08-27 Satellite signal receiving device, satellite signal receiving method, and electronic device
US13/597,872 US8897097B2 (en) 2011-08-30 2012-08-29 Satellite signal receiving device, satellite signal receiving method, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011187487A JP5915030B2 (ja) 2011-08-30 2011-08-30 衛星信号受信装置、衛星信号受信方法、および、電子機器

Publications (3)

Publication Number Publication Date
JP2013050343A JP2013050343A (ja) 2013-03-14
JP2013050343A5 JP2013050343A5 (ja) 2014-10-09
JP5915030B2 true JP5915030B2 (ja) 2016-05-11

Family

ID=46982414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011187487A Active JP5915030B2 (ja) 2011-08-30 2011-08-30 衛星信号受信装置、衛星信号受信方法、および、電子機器

Country Status (4)

Country Link
US (1) US8897097B2 (ja)
EP (1) EP2565678B1 (ja)
JP (1) JP5915030B2 (ja)
CN (1) CN102967866B (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136163B2 (ja) * 2012-09-25 2017-05-31 セイコーエプソン株式会社 電子時計および電子時計の制御方法
JP6092724B2 (ja) * 2013-06-27 2017-03-08 セイコークロック株式会社 電波時計
JP6229426B2 (ja) * 2013-10-16 2017-11-15 セイコーエプソン株式会社 電子機器、および受信制御方法
US9483029B2 (en) * 2014-03-06 2016-11-01 Seiko Epson Corporation Timepiece and electronic timepiece
JP6354289B2 (ja) 2014-04-24 2018-07-11 セイコーエプソン株式会社 電波受信装置、電子機器、および電波受信方法
CN104020658B (zh) * 2014-06-16 2016-11-16 浙江康诚工业产品设计有限公司 一种远程求救手表
WO2016129665A1 (ja) * 2015-02-13 2016-08-18 日本電信電話株式会社 時刻同期装置、その方法及びプログラム
JP6327183B2 (ja) 2015-03-18 2018-05-23 カシオ計算機株式会社 電波受信装置、電波時計、信号取得方法及びプログラム
JP6550921B2 (ja) * 2015-05-22 2019-07-31 セイコーエプソン株式会社 電子時計、通信装置および通信システム
JP6657995B2 (ja) * 2016-01-22 2020-03-04 セイコーエプソン株式会社 電子機器および電子機器の制御方法
DE102016206935A1 (de) * 2016-04-25 2017-07-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Positionserkennung
JP6733380B2 (ja) * 2016-07-15 2020-07-29 セイコーエプソン株式会社 電子時計および電子時計の制御方法
JP6904048B2 (ja) * 2016-11-08 2021-07-14 セイコーエプソン株式会社 電子時計
JP6547812B2 (ja) * 2017-11-15 2019-07-24 カシオ計算機株式会社 受信装置、電子時計、電波受信方法及びプログラム
JP7167452B2 (ja) * 2018-03-08 2022-11-09 カシオ計算機株式会社 電子機器及び受信制御方法
JP6988855B2 (ja) * 2019-04-02 2022-01-05 カシオ計算機株式会社 電子時計、情報更新制御方法及びプログラム
CN110907981A (zh) * 2019-12-09 2020-03-24 Oppo广东移动通信有限公司 定位模式控制方法、装置及电子设备

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3000245B2 (ja) * 1992-03-04 2000-01-17 セイコーインスツルメンツ株式会社 電波規正型電子時計
JP2003087361A (ja) * 2001-09-13 2003-03-20 Denso Corp 移動通信端末装置
JP4013614B2 (ja) * 2002-03-29 2007-11-28 ブラザー工業株式会社 通信圏内誘導方法及び無線通信機器
JP4600480B2 (ja) * 2008-01-16 2010-12-15 セイコーエプソン株式会社 電子時計
US7184745B2 (en) * 2003-02-03 2007-02-27 Motorola, Inc. Wireless receiver operation
US7388812B2 (en) * 2003-09-30 2008-06-17 Seiko Epson Corporation Radio-controlled timepiece and electronic device, control method for a radio-controlled timepiece, and reception control program for a radio-controlled timepiece
US20060026650A1 (en) * 2004-07-30 2006-02-02 Samsung Electronics Co., Ltd. Apparatus and method for detecting external antenna in a mobile terminal supporting digital multimedia broadcasting service
JP2006093895A (ja) * 2004-09-21 2006-04-06 Matsushita Electric Ind Co Ltd 基地局及び移動体通信方法
JP2006194697A (ja) * 2005-01-12 2006-07-27 Seiko Epson Corp 位置情報信号受信手段を有する携帯用電子機器
JP2006349445A (ja) * 2005-06-15 2006-12-28 Citizen Miyota Co Ltd 電波時計、及び標準電波受信方法
JP2007142994A (ja) * 2005-11-22 2007-06-07 Casio Hitachi Mobile Communications Co Ltd 携帯通信端末装置及びプログラム
JP2008039565A (ja) * 2006-08-04 2008-02-21 Seiko Epson Corp 電子機器及び電子機器の時刻修正方法
US7616153B2 (en) * 2006-08-04 2009-11-10 Seiko Epson Corporation Electronic device and time adjustment method
US7439907B2 (en) * 2006-11-20 2008-10-21 Sirf Technology Holdihgs, Inc. Navigation signal receiver trajectory determination
JP5186874B2 (ja) * 2007-10-10 2013-04-24 セイコーエプソン株式会社 測位方法、プログラム、測位装置及び電子機器
JP4488066B2 (ja) * 2007-11-22 2010-06-23 セイコーエプソン株式会社 衛星信号受信装置および計時装置
JP4479785B2 (ja) * 2007-12-04 2010-06-09 カシオ計算機株式会社 位置・時刻検出装置および時計
CN201298073Y (zh) * 2008-07-23 2009-08-26 中国国际海运集装箱(集团)股份有限公司 集装箱以及集装箱用定位跟踪器
JP2010151459A (ja) * 2008-12-24 2010-07-08 Seiko Epson Corp 位置算出方法及び位置算出装置
JP5353303B2 (ja) * 2009-03-02 2013-11-27 セイコーエプソン株式会社 電子機器および電子機器の衛星信号受信方法
EP2246710B1 (en) * 2009-04-29 2014-06-11 BlackBerry Limited Method and device to determine out of coverage for mobile devices
JP2011021950A (ja) * 2009-07-14 2011-02-03 Seiko Epson Corp 衛星信号受信装置および衛星信号受信装置の制御方法
JP5272964B2 (ja) * 2009-08-18 2013-08-28 セイコーエプソン株式会社 電子時計
US9739890B2 (en) * 2009-11-04 2017-08-22 Maxlinear, Inc. GPS baseband controller architecture
US9978251B2 (en) * 2009-12-28 2018-05-22 Honeywell International Inc. Wireless location-based system and method for detecting hazardous and non-hazardous conditions
JP2011187487A (ja) 2010-03-04 2011-09-22 Sumitomo Bakelite Co Ltd 導電接続シート、端子間の接続方法、接続端子の形成方法および電子機器
US20120223860A1 (en) * 2010-08-26 2012-09-06 Maxlinear, Inc. Use of Motion or Accelerometer Sensors in Low Power Positioning System

Also Published As

Publication number Publication date
CN102967866A (zh) 2013-03-13
CN102967866B (zh) 2017-06-16
JP2013050343A (ja) 2013-03-14
EP2565678A2 (en) 2013-03-06
US8897097B2 (en) 2014-11-25
US20130052944A1 (en) 2013-02-28
EP2565678A3 (en) 2014-01-01
EP2565678B1 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5915030B2 (ja) 衛星信号受信装置、衛星信号受信方法、および、電子機器
JP5796415B2 (ja) 衛星信号受信装置および電子機器
US9798014B2 (en) Satellite signal receiving device, method of controlling satellite signal receiving device, and electronic device
JP6136163B2 (ja) 電子時計および電子時計の制御方法
JP5353303B2 (ja) 電子機器および電子機器の衛星信号受信方法
JP6354289B2 (ja) 電波受信装置、電子機器、および電波受信方法
JP6164240B2 (ja) 電子時計
JP5803436B2 (ja) 衛星信号受信装置、衛星信号受信方法、および、電子機器
US20140241133A1 (en) Satellite Signal Receiving Device, Electronic Timepiece and Satellite Signal Receiving Method
JP6428861B2 (ja) 電子時計
JP5699625B2 (ja) 衛星信号受信装置、衛星信号受信装置の制御方法、及び、電子機器
JP5703772B2 (ja) 衛星信号受信装置、衛星信号受信装置の制御方法、及び、電子機器
JP5365549B2 (ja) 衛星信号受信装置および衛星信号受信装置の制御方法
JP6233367B2 (ja) 電子時計
JP6733380B2 (ja) 電子時計および電子時計の制御方法
JP7176207B2 (ja) 電子機器および電子機器の制御方法
JP5750958B2 (ja) 電子時計、およびその制御方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5915030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150