JP5908095B2 - 光起電力素子およびその製造方法 - Google Patents

光起電力素子およびその製造方法 Download PDF

Info

Publication number
JP5908095B2
JP5908095B2 JP2014533026A JP2014533026A JP5908095B2 JP 5908095 B2 JP5908095 B2 JP 5908095B2 JP 2014533026 A JP2014533026 A JP 2014533026A JP 2014533026 A JP2014533026 A JP 2014533026A JP 5908095 B2 JP5908095 B2 JP 5908095B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
main surface
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014533026A
Other languages
English (en)
Other versions
JPWO2014034677A1 (ja
Inventor
達郎 綿引
達郎 綿引
秀一 檜座
秀一 檜座
剛彦 佐藤
剛彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5908095B2 publication Critical patent/JP5908095B2/ja
Publication of JPWO2014034677A1 publication Critical patent/JPWO2014034677A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、光起電力素子およびその製造方法に係り、特に非晶質半導体層と結晶半導体基板を合わせて構成されるヘテロ接合型の光起電力素子およびその製造方法に関する。
結晶系半導体基板を用いた結晶系太陽電池は、光電変換効率が高く、特に結晶シリコン基板を用いた結晶シリコン太陽電池はすでに広く実用化されている。中でも導電性薄膜として非晶質または微結晶半導体薄膜を用いたヘテロ接合型太陽電池において、その導電性薄膜と結晶基板の間に真性な半導体薄膜を有する太陽電池が開発されている。この太陽電池は、結晶表面と導電性薄膜との間にある真性半導体膜が表面の欠陥を不活性化し、かつ導電型薄膜からの不純物拡散およびキャリアの再結合による損失を防止する作用を持つことから、高い開放電圧を得ることができる。従って光電変換効率が高い。
このような太陽電池においては、高い開放電圧を維持しながら、短絡電流と曲線因子を高くすることが特性向上において必要である。短絡電流を高めるには、より多くの光を吸収するために光学的・電気的に有効な入射面をできるだけ多く有することが重要である。また、曲線因子については素子の全域にわたって直列抵抗をできるだけ低減しつつ、並列抵抗を十分高くすることが必要である。そのためには、電気的に直列抵抗が十分に低くなるように透明導電膜が配置されていることが重要である。
この理想的な状況を実現するためには、基板の全面において欠陥を不活性化するためのパッシベーション膜で覆い、その上から基板の受光面(入射面)の全面にエミッタ層として基板と異なる導電型を有する半導体層で覆い、かつ基板の入射面に形成されたエミッタ層の全面を透明導電膜で覆う必要がある。また、同時に、裏面は基板と同じ導電型の半導体層で覆い、かつ電極で前記半導体層を覆う必要がある。
しかし、現実としては、半導体層の作製において、従来より用いられているCVD法では、製膜対象の面以外の基板側面や反対側の面に回り込んで膜が堆積してしまうことがある。これにより、基板の端部近辺では接合が設計通りに形成されずに、キャリア収集ができなくなり特性の低下が引き起こされることがある。また透明導電膜の製膜方法として、従来より用いられているスパッタ法でも主面だけでなく側面に回り込んで膜が製膜されてしまう。これにより、側面、膜対象の面の端部、あるいは反対側の面の端部で正負極の電極が短絡し、特性の劣化が起こり易い。
そこで、特許文献1では、結晶半導体基板の第1主面から側面にまで回り込むように真性非晶質半導体と第2導電型の非晶質半導体層および導電性薄膜を堆積し、かつ第2主面および側面にまで回り込むように真性非晶質半導体と第1導電型の非晶質半導体および導電性薄膜を堆積し、その後レーザー等によっていずれかの主面上にて溝を形成することで正負極の電極を分離し、リークを防ぎつつパッシベーション膜の有効領域を最大限確保する技術が開示されている。
しかしながら、異なる導電型による接合が形成された面において溝を形成した場合は、リークは防げるものの、溝を形成した外側の領域においてはキャリアの収集ができなくなり有効面積は減少する。また同一導電型による接合が形成された面において溝を形成した場合は、基板を通じて正負の電極が短絡しており、リーク電流が無視できないため、特性の劣化が著しい。いずれの場合も、溝の形成のための追加工程を必要とし、パッシベーション膜および導電性膜への溝の形成により、プロセスが煩雑になる。
特許文献2では、結晶半導体基板の裏面側に、基板よりも小面積となるようにマスクを用いて、真性半導体層および導電型半導体層を順に製膜することにより、基板端部のリークを防ぐ構成が開示されている。または先に真性半導体層を基板全面に堆積し、その後導電型半導体層を堆積することにより、全面をパッシベーションする技術が開示されている。
しかし、基板よりも小面積に真性半導体層を堆積する方法では、裏面の一部に真性半導体層がなく、表面のパッシベーションができないため、生成されたキャリアが再結合してしまい、特性が著しく低下してしまう。また、基板全面に先に真性半導体層を堆積する手法では、パッシベーション膜は基板全面に形成されるものの、その上に堆積される透明導電膜による端部でのリークを防ぐ手段はなく、開放電圧および短絡電流の低下が引き起こされる。
特許文献3では、単結晶シリコン基板の第1主面に第1導電型非晶質シリコン層および電極層を製膜したのち、リークを防止する目的で接触防止層を形成し、その後第2主面に第2導電型非晶質シリコン層および電極層を形成する技術が開示されている。
しかし、リークを防止する接触防止層の形成のための追加工程が必要であり、また側面のみに厚い絶縁層を形成するプロセスは量産性が悪く、容易でない。また第2主面に非晶質半導体層を形成する前に第1主面に電極層を形成する必要があり、その際に第2主面の端部でパッシベーション膜のない基板表面に対して電極層の回り込みによる接触が起き易く、有効面積の減少とともに、開放電圧の低下を招くなど特性の劣化が引き起こされる。
特許第3349308号公報 特許第3825585号公報 特開2011−60971号公報
しかしながら、上記従来の技術によれば、リーク電流を防ぐために追加の複雑なプロセスを必要とする、あるいはリーク電流を防ぐために有効面積を基板よりも小さく制限する必要があり、効率の低下が引き起こされるという問題があった。
本発明は、上記に鑑みてなされたもので、新たな追加プロセスを必要とせず、有効面積を基板の受光面側の主面および側面の全面とし高効率で、かつリーク電流を防ぐことのできる光起電力素子およびその製造方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明の光起電力素子は、第1主面と、側面と、第2主面とを備えた、第1導電型の半導体基板と、前記半導体基板の前記第1主面全体を覆い、前記第1主面から前記側面を経て前記第2主面の周縁部を覆うように形成された第2導電型の半導体層と、前記第2導電型の半導体層と前記半導体基板の間に介在せしめられた第1の真性半導体層と、前記第2導電型の半導体層に当接し、前記第1主面から前記側面まで到達するように形成された第1の透明導電膜と、前記半導体基板の前記第2主面に形成された第1導電型の半導体層と、前記第1導電型の半導体層と前記半導体基板の間に介在せしめられた第2の真性半導体層と、前記半導体基板の前記第2主面に、前記第1導電型の半導体層上に当接するように設けられた第2の透明導電膜とを備える。そして第2の透明導電膜は、端部が前記半導体基板の前記第2主面の外縁よりも内側に位置するように形成され、第2の透明導電膜の端部から、前記第2主面に向かう法線上で前記第1の透明導電膜と交差することのないように形成され、前記第2主面上第1の透明導電膜の端部と前記第2の透明導電膜の端部の間に位置する領域に、前記第1の真性半導体層、前記第2導電型の半導体層、前記第2の真性半導体層、前記第1導電型半導体層の順に積層された構造、あるいは前記第1の真性半導体層、前記第2導電型の半導体層、前記第1導電型半導体層の順に積層された構造のいずれか一方を備えることを特徴とする。
本発明によれば、半導体基板の第1主面、側面および第2主面の周縁部に、実質真性な半導体層(真性半導体層)および半導体基板と異なる導電型を有する半導体薄膜を備え、かつ第1主面および側面に第1の透明導電膜を有し、第2主面上に真性半導体層および半導体基板と同じ導電型を有する半導体層を備え、その上に半導体基板よりも小面積の第2の透明導電膜を有する。そして、第2主面上において第1の透明導電膜の端部と第2の透明導電膜の端部の間に真性半導体および半導体基板と異なる導電型を有する半導体薄膜、真性半導体層および半導体基板と同じ導電型を有する半導体層をこの順に備えることで、半導体基板の端部での第1の透明導電膜との間のリーク電流を抑制する。さらに、第1および第2の透明導電膜間の間隔および端部においてもそれぞれの膜の順序を確保し、pin接合又はpn接合を形成しているため、基板との間の接合における順方向電流は有効に流れ、かつ半導体薄膜表面・界面や半導体薄膜端面を流れる逆方向電流は阻止することで、電荷の流れを正常に維持し、集電効果を発揮し電池機能を発揮せしめ得ると共にリーク電流を防ぐようにしている。この構成により、新たな膜の追加あるいは複雑な追加プロセスを必要とすることなく、各層の端部制御のみで光学的・電気的な有効面積を最大にし、かつ第1および第2の透明導電膜間だけでなく、半導体基板と第1の透明導電膜との間のリーク電流を防ぐことができる。
図1は、本発明の実施の形態1の光起電力素子を示す断面図である。 図2は、本発明の実施の形態1の光起電力素子の製造工程を示す図であり、(a)〜(c)は工程断面図である。 図3は、本発明の実施の形態1の光起電力素子の製造においてCVD装置を示す断面模式図であり、(a)は第2導電型の半導体層の形成に用いられるCVD装置、(b)は、第1導電型の半導体層の形成に用いられるCVD装置を示す断面模式図である。 図4は、本発明の実施の形態1の光起電力素子の製造工程を示すフローチャートである。 図5は、本発明の実施の形態1の光起電力素子と比較例の出力特性を示す比較図である。 図6は、本発明の実施の形態2の光起電力素子を示す断面図である。 図7は、本発明の実施の形態2の光起電力素子の製造工程を示すフローチャートである。 図8は、本発明の実施の形態3の光起電力素子を示す断面図である。 図9は、本発明の実施の形態3の光起電力素子の製造工程を示すフローチャートである。 図10は、本発明の実施の形態4の光起電力素子を示す断面図である。 図11は、本発明の実施の形態4の光起電力素子の製造工程を示すフローチャートである。 図12は、比較例の光起電力素子を示す断面図である。 図13は、本発明の実施の形態5の光起電力素子を示す断面図である。 図14は、本発明の実施の形態5の光起電力素子の製造工程を示すフローチャートである。 図15は、本発明の実施の形態5の光起電力素子の第2の製造工程を示すフローチャートである。
以下に、本発明にかかる光起電力素子およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、その要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため各層あるいは各部材の縮尺が実際と異なる場合があり、各図面間においても同様である。
実施の形態1.
図1は、本実施の形態にかかる光起電力素子を示す断面図、図2は同光起電力素子の製造工程を示す図であり、(a)〜(c)は工程断面図、図3は、同光起電力素子の製造装置における基板の製膜領域を制御するための基板配置を示す模式図であり、(a)は第2導電型の半導体層の形成に用いられるCVD装置、(b)は、第1導電型の半導体層の形成に用いられるCVD装置を示す断面模式図である。図4は、本発明の実施の形態1の光起電力素子の製造工程を示すフローチャートである。
本実施の形態1の光起電力素子では、半導体基板の第1主面全体を覆い、側面を経て第2主面の周縁部を覆うように、所定幅にわたり、第1の真性半導体層を介して、第2導電型の半導体層が形成されている。一方半導体基板の第2主面には第2の真性半導体層を介して、第1導電型の半導体層が形成されている。そしてこの第2導電型の半導体層に当接し、第1主面から側面まで到達するように形成された第1の透明導電膜と、第1導電型の半導体層上に当接するように設けられた第2の透明導電膜とを備えている。そしてさらに、第2の透明導電膜は、端部が半導体基板の第2主面の外縁よりも内側に位置するように形成され、第2の透明導電膜の端部から、半導体基板表面に向かう法線上で第1の透明導電膜と交差することのないように形成されている。そしてさらに第2主面上において、第1の透明導電膜の端部と第2の透明導電膜の端部の間に、第1の真性半導体層、第2導電型の半導体層、第2の真性半導体層、第1導電型半導体層の順に積層された構造を備える。つまり、半導体基板の第2主面の端部においても、それぞれの膜の順序を確保し、pin接合を形成しているため、基板との間の接合における順方向電流は有効に流れ、かつ半導体薄膜表面・界面または半導体薄膜端面を流れる逆方向電流は阻止されることで、電荷の流れを正常に維持することで、リーク電流が抑制されるとともに集電効果を発揮し電池機能を発揮せしめ得るようにしている。
なお、第2の透明導電膜は、外縁が半導体基板の第2主面の外縁から所定の距離だけ内側に位置するように形成され、第2の透明導電膜の外縁から、半導体基板表面に向かう法線上で第1の透明導電膜と交差することのないように形成される。同様に第1の真性半導体層、第2導電型の半導体層、第2の真性半導体層、第1導電型半導体層の順に積層された構造も第2主面の外縁から所定の距離だけ内側に位置するように形成されている。
ここでは、第1主面1Aと、側面1Cと、第2主面1Bとを備え、厚さ100〜500μmのn型の単結晶シリコン基板(以下n型シリコン基板ということもある)1を第1導電型の半導体基板として用いる。そして第1の真性半導体層としては第1の非晶質シリコンi層2、第2の真性半導体層としては第2の非晶質シリコンi層3が用いられる。また第2導電型の半導体層としては非晶質シリコンp層4、第1導電型の半導体層としては非晶質シリコンn層5が用いられる。また第1の透明導電膜としては、第1のITO(酸化インジウム錫)層6、第2の透明導電膜としては、第2のITO(酸化インジウム錫)層7が用いられる。8は集電用の金属電極である。
すなわち、本実施の形態1の光起電力素子では、図1に示すようにこのn型シリコン基板1の第1主面1A全体を覆い、側面1Cを経て第2主面1Bの周縁部の所定幅にわたって形成された、非晶質シリコンp層4が、第1の非晶質シリコンi層2を介して形成されている。そしてこの非晶質シリコンp層4に当接し、第1主面1Aから側面1Cまで到達するように第1のITO層6が形成されている。一方n型シリコン基板1の第2主面1Bには第2の非晶質シリコンi層3を介して非晶質シリコンn層5が形成されている。この上層に第2のITO層7が形成されている。この第2のITO層7の端部からn型シリコン基板1表面に向かう法線S0は、第1のITO層6のn型シリコン基板1の第2主面1B上での端部Seから所定の距離Xだけ内側に位置するように形成される。そして、第1の透明導電膜と前記第2の透明導電膜の端部の平面方向における距離Xが0.1mm以上3mm以下である。また、さらに前記第1の真性半導体層、前記第2導電型の半導体層、前記第2の真性半導体層、前記第1導電型半導体層の順に積層された構造は第2主面1B上での端部Seから平面方向における距離が0.1mm以上3mm以下である。
また、ここでは、第1のITO層6は、ほぼn型シリコン基板1の外縁まで延びており、第のITO層からn型シリコン基板1の第2主面1Bに向かう法線S0上で第のITO層と交差することのないようにされている。第1のITO層6の端部Seとn型シリコン基板1の外縁は一致しており、第2のITO層7の外縁はn型シリコン基板1の外縁から所定の距離Xだけ内側に位置するように形成される。第2のITO層7の外縁から、n型シリコン基板1表面に向かう法線S0上で、第2のITO層7は第1のITO層6と交差することのないように形成されている。なお、本実施の形態中では、表面が平坦でない場合もあるため、法線としているが、表面が平坦である場合は垂線と読み替えることができるものとする。
また、n型シリコン基板1と異なる導電型を有する非晶質シリコンp層4よりも上層に、n型シリコン基板1と同じ導電型を有する非晶質シリコンn層5が配置されている。
次に、本実施の形態1の光起電力素子の製造方法について図4のフローチャートに従って説明する。ここで、被処理基板としては、n型の単結晶シリコン基板すなわちn型シリコン基板1を用いるが、通常、引き上げにより得られたインゴットをスライスすることにより切り出されたものであるため、表面に自然酸化膜、および構造的欠陥、金属等による汚染をはらんでいる。このため、ここで用いられるn型シリコン基板1に対して洗浄および、ダメージ層エッチングを行う(S1001)。
n型シリコン基板1に対し、洗浄、ダメージ層エッチングを行った後、n型シリコン基板1内の不純物を除去するためにゲッタリングを行う(S1002)。ゲッタリング工程では、処理温度1000℃程度のリンの熱拡散により形成されたリンガラス層に不純物を偏析させ、リンガラス層をフッ化水素等でエッチングする。
ゲッタリング後、基板表面での光反射損失を低減させる目的でアルカリ溶液および添加剤を用いたウェットエッチングにより、テクスチャを形成する(S1003)。アルカリ溶液には水酸化カリウム、水酸化ナトリウム等を、添加剤にはイソプロピルアルコール等を用いる。なお、図1〜3では、本実施の形態の構成の理解を容易にするため凹凸形状は描画せず、平坦とした。
テクスチャ形成後、ヘテロ接合界面となるn型単結晶シリコン基板1表面のパーティクル、有機物汚染、金属汚染を除去するために基板洗浄を実施する(S1004)。洗浄には、いわゆるRCA洗浄や、SPM洗浄(硫酸過酸化水素水洗浄)、HPM洗浄(塩酸過酸化水素水洗浄)、DHF洗浄(希弗酸洗浄)、アルコール洗浄等を用いる。
ここでRCA洗浄とは、まずウェーハを希フッ酸水溶液(HF)の中に入れ、表面の薄いシリコン酸化膜を溶出する。このときシリコン酸化膜が溶出すると同時に、その上に付着していた多くの異物も同時に取り去られる。さらに、アンモニア(NH4OH)+過酸化水素(H22)で、有機物やパーティクルを除去する。次いで塩酸(HC1)+過酸化水素(H22)で金属類を除去し、最後に超純水で仕上げを行う方法である。
上記のいずれかの洗浄方法を用いて、基板洗浄を行った後、ヘテロ接合、および、pn、nn+接合を形成するために、n型シリコン基板1上に、順次各導電型の半導体層を形成する。上記テクスチャ形成工程、洗浄工程を経て得られたn型シリコン基板1は、厚さ100〜500μmであった。
まず、図2(a)に示すように、n型シリコン基板1の第1主面1A全面を覆うとともにこの第1主面1Aから、側面1Cおよび第2主面1Bの周縁部にわたり、プラズマCVD法を用いて約1〜10nmの厚さの第1の非晶質シリコンi層2、および約5〜50nmの厚さの非晶質シリコンp層4をこの順に堆積する(S1005:第1の真性非晶質半導体層形成,S1006:第2導電型非晶質半導体層形成)。ここで、第1の非晶質シリコンi層2、非晶質シリコンp層4はそれぞれ非晶質を用いているが、微結晶シリコンを用いてもよい。
このとき、第1主面1Aおよび側面1Cだけでなく、第2主面1Bの周縁部に所定の非晶質シリコン層を堆積するため、図3(a)に示すような構造のプラズマCVD装置を用いる。プラズマCVD法では第1主面1A上に堆積を行う際、原料ガスの回りこみにより、製膜領域が他面にまで回り込むように膜が堆積する。そこで、被処理基板であるn型シリコン基板1よりも小面積の凸部を有する凸型の構造体を支持台102として用いるだけで、第2主面1Bの端部Seからの膜の堆積距離を制御することができる。
ここで用いられるプラズマCVD装置100は、図3(a)および(b)に模式図を示すように、処理室101を備えている。処理室101は、チャンバー壁によって囲まれた真空引き可能な空間である。チャンバー壁には、処理室101内に不純物含有プロセスガスを供給するガス供給部104および排気部105が形成されている。またこの処理室101内には、アノード電極を兼ねた支持台102とカソード電極103とが、互いに対向するように配置されている。カソード電極103には、例えばシャワー状に複数の開口部(図示せず)が設けられている。カソード電極103は、高周波(RF)電源106に電気的に接続されている。アノード電極を兼ねた支持台102は、例えば、グランド電位に電気的に接続されている。また、処理室101は排気部105を介して真空ポンプなどの排気系(図示せず)および処理室内圧力計(図示せず)に接続されている。
この半導体製膜装置であるプラズマCVD装置100では、排気105を介して真空ポンプにより処理室101内が真空引きされたあと、被処理基板であるn型シリコン基板1が、図示しない搬送機構によりアノード電極を兼ねた支持台102上に配置される。このとき、支持台102に保持されたn型シリコン基板1における2つの主面(表面である第1主面1Aおよび裏面である第2主面1B)のうち第1主面1Aがカソード電極103側に向いている。そして、アノード電極として用いられる支持台102とカソード電極103との間の空間に、ガス供給源(図示せず)からプロセスガス制御系としてのマスフローコントローラ(図示せず)、ガス供給部104を経て、カソード電極103のシャワー状の開口部(図示せず)を介してプロセスガスが供給される。また、高周波電源106より供給される高周波電力(高周波バイアス)がカソード電極103に印加され、カソード電極103とアノード電極として用いられる支持台102との間の空間にプロセスガスのプラズマが生成される。プラズマ中で生成される化学活性種が製膜前駆体となり、n型シリコン基板1の第1主面1Aで反応し所望の膜が製膜される。このとき、第2主面1Bよりも小面積の平坦な凸部を持つ支持台102に載置されたn型シリコン基板1では、第1主面1Aから側面1Cを経て第2主面1Bの周縁部までこの製膜前駆体が回り込み、第1の非晶質シリコンi層2、および非晶質シリコンp層4がこの順に堆積される。
続いて図2(b)に示すように、第2工程として、第1の非晶質シリコンi層2および非晶質シリコンp層4の形成された、n型シリコン基板1の第1主面1Aの全面に透明導電膜として第1のITO層6を形成する(S1007:第1の透明導電膜形成)。第1のITO層6の製膜にはスパッタ法あるいはCVD法が用いられる。透明導電膜の材料は、ITOの他、例えば酸化インジウム、酸化亜鉛、SnO2等が挙げられるが、これらの材料に限定されるわけではない。図3(b)は、第1のITO層6を形成する際のプラズマCVD装置の断面図を示している。このように平坦なステージで構成された支持台102Sの上にn型シリコン基板1を設置することで、第1主面1Aの全面および側面1Cに、第1のITO層6を形成することができる。このとき、製膜条件によっては第1主面1Aおよび側面1Cだけでなく第2主面1Bの周縁部にも回り込んで第1のITO層6が製膜される。この第1のITO層6が第2主面1B上に回り込む距離は、図1に示した第1工程で製膜した非晶質シリコンi層2および非晶質シリコンp層4の第2主面1Bにおける回り込み距離より十分小さくなるように、図3(a)に示す支持台構造を作製することが可能である。このとき、第1のITO層6の製膜をスパッタ法で行なう場合にも、n型シリコン基板1を支持するための支持台は同様の形状を用いることで、所望の断面形状を得ることが可能となる。
続いて、図2(c)に示すように、第3工程として第2主面1Bの全面にプラズマCVD法を用いて約1〜10nmの厚さの真性な非晶質シリコン層(第2の非晶質シリコンi層)3および約5〜50nmの厚さのn型非晶質シリコン層(非晶質シリコンn層)5をこの順に堆積する(S1008:第2の真性非晶質半導体層形成,S1009:第1導電型非晶質半導体層形成)。この際真性な非晶質シリコン層およびn型非晶質シリコン層の作製には図3(b)に示した構造のCVD装置を用いる。また、第2の非晶質シリコンi層3、非晶質シリコンn層5はそれぞれ非晶質を用いているが、微結晶シリコンを用いてもよい。
そしてその後、マスクを用いて第2主面1Bに基板よりも小面積となるように透明導電膜(第2のITO層7)を形成する(S1010:第2の透明導電膜形成)。そして最後に、第1主面1Aおよび第2主面1Bに金属電極8を形成する(S1011:電極形成)。
以上のように、本実施の形態の光起電力素子によれば、リーク電流を防ぎつつ、有効面積を最大にして、特性の向上を図ることができる。第1のITO層6と第2のITO層7の距離を制御することで、各非晶質層を介してITO間に流れるリーク電流を抑制することができる。さらに、第1のITO層6と第2のITO層7と間の間に、第1の非晶質シリコンi層2、非晶質シリコンp層4、第2の非晶質シリコンi層3、非晶質シリコンn層5の順に積層された構造を有することで、各非晶質層を介して第1のITO層6とn型シリコン基板1の間に流れるリーク電流を抑制することができる。それだけでなく、n型シリコン基板1の第2主面1Bの端部においても、それぞれの膜の順序を確保し、pin接合を形成しているため、電荷の流れを正常に維持することで、電池機能を発揮せしめ得るようにしている。したがってこの端部においても、第2のITO層7は、n型シリコン基板1の端部から距離Xだけ退出しているものの、第1のITO層6との間で電荷の流れが生成され、集電効果を奏功し電池面積として作用する。また、新たな膜の追加あるいは煩雑な追加プロセスを新たに必要とせず、各層の端部制御のみで光学的・電気的な有効面積を最大にし、かつ第1および第2のITO層6,7間だけでなく、n型シリコン基板1と第1のITO層6との間のリーク電流を防ぐことができる。これに対し、特許文献3のように接触防止層を設けた場合、機能させるためには厚さを維持する必要があり、有効電池面積の低下を招くことになる。また、回り込みによる開放電圧の低下を免れ得ない。
図5は本実施の形態の光起電力素子において、曲線aは、図1に示すように裏面側の透明導電膜である第2のITO層7の端とn型シリコン基板1の端部との距離Xを変化させたときの出力特性の変化を示すグラフである。このとき、n型シリコン基板1の端部Seから第1の非晶質シリコンi層2、非晶質シリコンp層4、第2の非晶質シリコンi層3、非晶質シリコンn層5の順に積層された構造の平面方向における距離は、Xが0.5mmより大きい場合は、0.5mmに固定した。また、この積層された構造の平面方向における距離が、0.5mm以下である場合は、Xと同じ長さである。このときn型シリコン基板1の抵抗率は2Ωcmであった。ここでは第1のITO層(透明導電膜)6の端部はほぼn型シリコン基板1の端部Seと一致している。そして、第2のITO層7は、端部が第1のITO層(透明導電膜)6の端部から距離Xだけ内側にくるように形成される。この距離Xはn型シリコン基板1の端部Seより全周でこの距離だけ小面積に透明導電膜(第2のITO層7)を形成していることを意味している。なお特性評価した光起電力素子においてはn型シリコン基板1が厚さ100μmのn型単結晶シリコン基板(基板抵抗率約2Ωcm)、非晶質シリコンi層2,3はそれぞれ10nm、非晶質シリコンp層4および非晶質シリコンn層5は厚さ約20nmである。また比較例として追加工程の必要ないマスク製膜を用いて第1および第2主面の両面の透明導電膜である第1および第2のITO層6,7の製膜を行った図12に示す構造の特性を図5に曲線bで示す。この比較例では、第1主面1Aおよび第2主面1Bの透明導電膜である第1および第2のITO層6,7がn型シリコン基板1よりも小面積に形成されており、リーク電流を抑制する構造となっている。図5において距離Xはn型シリコン基板1の端部Seからこのn型シリコン基板1の第2主面上における第2のITO層(透明導電膜)7の端部までの距離である。
図5の曲線aと曲線bとの比較から理解できるように、第1および第2のITO層(透明導電膜)6,7の距離Xが約0.1〜3mmの範囲にあれば比較例の光起電力素子よりも良好な出力特性を維持することができる。好ましくは0.25〜2.5mm、さらに好ましくは0.5〜2.0mmの範囲にあれば、通常の設計範囲においてはいつでも比較例の光起電力素子よりも良好な特性を得ることができる。第2主面1B側の透明導電膜(第2のITO層7)が基板よりも小面積であっても、透明導電膜(第1のITO層6)との接触または不良な接合と接触しなければ、発生したキャリアは消滅することなくある程度発電に寄与でき、総合的に図12に示すような比較例の光起電力素子と比べて同等以上の出力を得ることができると考えられる。
以上の結果から、本実施の形態では、第2主面1Bの周縁部において第1の透明導電膜の端部と第2の透明導電膜の端部の平面方向における距離を0.1mm以上3mm以内とする。そしてさらに第2主面1B上で、第1と第2のITO層6,7間で、第1の非晶質シリコンi層2、非晶質シリコンp層4、第2の非晶質シリコンi層3、非晶質シリコンn層5の順に積層された構造の平面方向における距離を0.1mm以上3mm以内とすることで、リーク電流の発生もなく、高効率化をはかることができる。
好ましくは、また第2主面1Bの周縁部において第1の透明導電膜の端部と第2の透明導電膜の端部の平面方向における距離を0.25mm以上2.5mm以内、さらに好ましくは0.5mm以上2.0mm以内とし、かつ第2主面1B上で、第1と第2のITO間で、第1の非晶質シリコンi層2、非晶質シリコンp層4、第2の非晶質シリコンi層3、非晶質シリコンn層5の順に積層された構造の平面方向における距離を0.25mm以上2.5mm以、さらに好ましくは0.5mm以上2.0mm以内とすると、より高効率の特性が得られる。
また、第2主面1Bの周縁部において、回り込んで形成された第1の非晶質シリコンi層2と非晶質シリコンp層4のそれぞれの膜厚は、製膜条件によっては第1主面1A上に形成された時の膜厚よりも薄くなる場合もあるが、第1主面1A上での膜厚と比較し、それぞれの膜厚の50%以上、かつ第1の非晶質シリコン層2と非晶質シリコンp層4の上層に配置された第2の非晶質シリコンi層3と非晶質シリコンn層5の積層構造がn型シリコン基板1の周縁部から0.1mm以上3mm以内の範囲にあると、リーク電流抑制効果と集電効果が両立でき、良好な特性が得られる。好ましくは、回り込んで形成された第1の非晶質シリコン層2と非晶質シリコンp層4のそれぞれの膜厚は第1主面1A上に形成されたそれぞれの膜の膜厚の80%以上で、積層構造の長さが0.25mm以上2.5mm以内、さらに好ましくは0.5mm以上2.0mm以内であれば、リーク電流は特性に影響を与えないほど抑制され、より高い出力特性を得ることができる。ここで、回り込んで形成された第1の非晶質シリコンi層2と非晶質シリコンp層4のそれぞれの膜厚は、第1主面1A上でのそれぞれの膜厚の50%以上としたのは、50%程度であるとほぼ各層の機能を奏するためである。80%程度以上であるとほぼ完全に各層の機能を奏するためである。
なお、本実施の形態においては、第1の非晶質シリコンi層2、n型シリコン基板1と異なる導電型の非晶質シリコンp層4、第2の非晶質シリコンi層3、n型シリコン基板1と同じ導電型を有する非晶質シリコンn層5を形成しているが、第1および第2の非晶質シリコンi層2,3を先に形成してもよい。この場合、第1と第2のITO層6,7間で、第1の非晶質シリコンi層2、非晶質シリコンp層4、非晶質シリコンn層5の順に積層された構造が形成されるが、この構成でも各非晶質層を介して第1のITO層6とn型シリコン基板1の間に流れるリーク電流を抑制することができる。
しかしながら、非晶質シリコンn層5を非晶質シリコンp層4より先に製膜し、非晶質シリコンp層4とn型シリコン基板の間に非晶質シリコンn層5が挿入されると、上から順にp型非晶質シリコン/n型非晶質シリコン/n型結晶シリコンという構成(真性非晶質シリコン層を無視)となって、良好な特性を得ることができない。特性が良好でない理由は、pn接合間に特性の悪い接合が形成される為、キャリアの収集が効率よく行えないためである。
以上の点からも、本実施の形態の工程のように、p型非晶質シリコン層をn型半導体層よりも先に製膜して、n型非晶質シリコン/p型非晶質シリコン/n型結晶シリコンという構成をとる場合の方が特性は良好である。pn接合は基板と非晶質シリコン層との間で形成するのが特性上望ましいからである。
また、第2主面1B上に形成された非晶質シリコンp層4の端部では厚さの不均一性のため、ダイオード特性が劣化しリークが発生しやすい。このため、前述の設計範囲内において、第2主面1B上の周縁部において第2のITO層7と、第1の非晶質シリコンi層2、非晶質シリコンp層4、第2の非晶質シリコンi層3、非晶質シリコンn層5の積層構造の間に、n型シリコン基板1の第2主面1Bに接する第2の非晶質シリコンi層3、非晶質シリコンn層5の積層構造を備えることで、劣化したダイオードへの電気的な接触を避けることができる。これにより、より高い特性を得ることが可能である。
ここで、n型の単結晶シリコン基板1の抵抗率の値は約4Ωcm以下であれば、同様の結果になる。n型の単結晶シリコン基板1の抵抗率が4Ωcmを越えると、シリーズ抵抗の増大により出力が低下してしまう。
実施の形態2.
図6は本発明の実施の形態2による光起電力素子の構造を示す断面図である。図7はこの光起電力素子の製造工程を示すフローチャートである。図6の光起電力素子は、第2主面1Bに第2の非晶質シリコンi層3および非晶質シリコンn層5の堆積時に、マスクを用いることにより、非晶質シリコンi層3、非晶質シリコンn層5が基板(n型シリコン基板1)よりも小面積となるように形成されている。その他の構成については図1に示した実施の形態1の光起電力素子と同様であるので、説明は省略する。
図7のフローチャートに示すように、第1のITO層6を形成する工程(ステップS1007:第1の透明導電膜形成)に先立ち、マスクを用いて第2主面1B側の第2の非晶質シリコンi層3および非晶質シリコンn層5を形成する(ステップS1008S:マスクを用いて第2の真性非晶質半導体層形成,ステップS1009S:マスクを用いて第1導電型非晶質半導体層形成)。その他のステップについては図4に示した実施の形態1の光起電力素子の製造ステップと同様であるので、説明は省略する。
本実施の形態では、透明導電膜(第1および第2のITO層6,7)の形成を非晶質シリコンn層5の形成後に行うことができる。このため、第1主面1A側の透明導電膜である第1のITO層6を形成後に第2の非晶質シリコンi層3を形成する場合と比較して、n型シリコン基板1の金属汚染を低減することができるため、特性の改善を図ることができる。
実施の形態3.
図8は本発明の実施の形態3による光起電力素子の構造を示す断面図である。図9はこの光起電力素子の製造工程を示すフローチャートである。図8の光起電力素子は、第1のITO層(透明導電膜)6の形成に先立ち、第2主面1Bに第2の非晶質シリコンi層3および非晶質シリコンn層5を形成している。その他の構成については図1に示した実施の形態1の光起電力素子と同様であるので、説明は省略する。なお、本実施の形態では、実施の形態2とは異なり、第2の非晶質シリコンi層3および非晶質シリコンn層5は、第2主面1Bの全面に形成されるが、この際、第2の非晶質シリコンi層3および非晶質シリコンn層5は第2主面1Bだけでなく、側面1Cおよび第1主面1Aの周縁部にまで形成されている。
図9のフローチャートに示すように、第1のITO層6を形成する工程(ステップS1007:第1の透明導電膜形成)に先立ち、マスクを用いることなく第2主面1B側の第2の非晶質シリコンi層3および非晶質シリコンn層5を形成する(ステップS1008:第2の真性非晶質半導体層形成、ステップS1009:第1導電型非晶質半導体層形成)。その他のステップについては図4に示した実施の形態1の光起電力素子の製造ステップと同様であるので、説明は省略する。
本実施の形態では、実施の形態2と同様、透明導電膜(第1および第2のITO層6,7)の形成を非晶質シリコンn層5の形成後に行うことができる。このため、第1主面1A側の透明導電膜である第1のITO層6を形成した後に第2の非晶質シリコンi層3を形成する場合と比較して、n型シリコン基板1の金属汚染を低減することができるため、特性の改善を図ることができる。またこの際、第2の非晶質シリコンi層3および非晶質シリコンn層5は第2主面1Bだけでなく、側面1Cおよび第1主面1Aの周縁部に形成される。すなわち、透明導電膜(第1および第2のITO層6,7)の形成前にn型シリコン基板1の全面を半導体層で覆うため、n型シリコン基板1の金属汚染による特性劣化がなく、かつ非晶質シリコンn層5形成のためのマスク合わせの必要もないため、特性が良好で、かつ生産性に優れている。
なお、側面方向で非晶質シリコンn層5と第1のITO層6とが接触しているが、図5に示されるように、基板端部から透明導電膜端部までの距離が0.5mm以上であれば特性に悪影響を与える恐れはない。
実施の形態4.
図10は本発明の実施の形態4による光起電力素子の構造を示す断面図である。図11はこの光起電力素子の製造工程を示すフローチャートである。図10の光起電力素子はn型シリコン基板1の全面に実質的に真性な非晶質シリコン層である第1の非晶質シリコンi層2を形成した(ステップS1005S)後、非晶質シリコンp層4(ステップS1006)、第1のITO層(透明導電膜)6(ステップS1007)、非晶質シリコンn層5(ステップS1009)、第2のITO層(透明導電膜)7(ステップS1010)をこの順に形成し、最後に金属電極8を形成する(ステップS1011)。
図11のフローチャートに示すように、図4における第1の真性半導体層形成ステップであるS1005をn型シリコン基板1全面に非晶質シリコンi層を形成する工程とし(S1005S)、第2の真性半導体層形成ステップS1008を省略する。その他のステップについては図4に示した実施の形態1の光起電力素子の製造ステップと同様であるので、説明は省略する。
本実施の形態では、透明導電膜の形成前にn型シリコン基板1の全面に真性非晶質シリコン層を形成しているため、金属汚染の問題がない。また非晶質シリコンn層5の形成の際にマスクを必要としないため、マスクの着脱などに起因する汚染もなく、特性が良好で、かつ生産性に優れている。
なお、本実施の形態でも、実施の形態3と同様、側面方向で非晶質シリコンn層5と第1のITO層6とが接触しているが、図5に示されるように、基板端部から透明導電膜端部までの距離が0.5mm以上であれば特性に悪影響を与える恐れはない。
実施の形態5.
図13は本発明の実施の形態5による光起電力素子の構造を示す断面図である。図14はこの光起電力素子の製造工程を示すフローチャートである。図13の光起電力素子はn型シリコン基板1の第1主面1A、側面1Cおよび第2主面1Bの周縁部に実質的に真性な非晶質シリコン層である第1の非晶質シリコンi層2を形成した(ステップS1005)後に、マスクを用いて第2の非晶質シリコンi層3を形成する(ステップS1008)。次に非晶質シリコンp層4を形成する(ステップS1006S)。この時、図3(a)に示した構造のCVD装置を用いるが、第1の非晶質シリコンi層2を形成する時に用いたよりも大きく、かつn型シリコン基板1よりも小さい面積の凸部を有する凸型の構造体を支持台102として用いることで、目的とする構造を作製することができる。その後、非晶質シリコンn層5(ステップS1009)、第1のITO層6(ステップS1007)、第2のITO層7(ステップS1010)をこの順に形成し、最後に金属電極8を形成する(ステップS1011)。この場合、第1のITO層6と第2のITO層7の間に、第1の非晶質シリコンi層2、非晶質シリコンp層4、非晶質シリコンn層5の積層構造が作製できる。
あるいは図15のフローチャートに示すように、第2の非晶質シリコンi層3を形成する(ステップS1008)工程に先立ち、非晶質シリコンp層4を製膜(ステップS1006S)してもよい。この時、図3(a)に示した構造のCVD装置を用いるが、非晶質シリコンi層2を形成する時に用いたよりも大きく、かつn型シリコン基板1よりも小さい面積の凸部を有する凸型の構造体を支持台102として用いることで、目的とする構造を作製することができる。その他のステップについては実施の形態1の光起電力素子の製造ステップと同様であるので、説明は省略する。この場合、第1のITO層6と第2のITO層7の間に、第1の非晶質シリコンi層2、非晶質シリコンp層4、第2の非晶質シリコンi層3、非晶質シリコンn層5の積層構造も形成される。
本実施の形態では、透明導電膜の形成前にn型シリコン基板1の全面に真性非晶質シリコンを形成しているため、金属汚染の問題がない。また、第2主面1Bの周縁部において、第1の非晶質シリコンi層2と第2の非晶質シリコンi層3が重なる領域が形成されることで、実質的に厚い真性な非晶質シリコン層を形成できる。このとき、実質的に厚く形成された真性な非晶質シリコン層の領域の半導体基板の、中心に向かう方向における長さが0.05mm以上であれば、各非晶質層を介して第1のITO層6とn型シリコン基板1の間に流れるリーク電流を抑制できる。実質的に厚く形成された真性な非晶質シリコン層の領域の、半導体基板の周縁から中心に向かう方向における長さが0.05mmに満たないと実質厚く形成された真性な非晶質シリコン層構造によるリーク電流の抑制は難しい。一方、非晶質シリコンp層4および非晶質シリコンn層5の積層構造の領域の半導体基板の周縁から中心に向かう方向における長さが0.1mmは必要である。また、2.9mmを超えると、金属電極8に印加した電界が、この間にできた接合に対して十分に印加できず、集電効果を維持するのが困難となる。したがって、真性な非晶質シリコン層の領域の半導体基板の周縁から中心に向かう方向における長さは、0.05mm以上2.9mm以下の範囲としたとき、リーク電流を抑制でき、かつ集電効果を維持できるため、特性が良好である。
好ましくは、前記実質的に厚く形成された非晶質シリコン層の領域の、半導体基板の中心に向かう方向における長さを0.1mm以上2.4mm以下、さらに好ましくは0.1mm以上1.9mm以下の範囲とすることで、よりリーク電流を抑制でき、かつ集電効率が高いので、高い特性を得ることができる。
なお、本実施の形態でも、実施の形態3と同様、側面方向で非晶質シリコンn層5と第1のITO層6とが接触しているが、図5に示したように、基板端部から透明導電膜端部までの距離が0.5mm以上であれば特性に悪影響を与える恐れはない。
なお、本実施の形態1〜5で用いられるプラズマCVD装置では、半導体基板よりも小さい面積の凸部を有する支持台を用いている。そしてこの凸部に半導体基板の第1主面または第2主面を当接させ、第1又は第2主面全体を覆い、側面を経て第2又は第1主面の周縁部の所定幅まで到達するように製膜する。各膜の形成に際して、凸部の大きさを調整することで、この回り込みの距離を高精度に調整することができる。この回り込みの距離は均一であるのが望ましいが、偏位した構造でもよい。例えば第1および第2の透明導電膜の端部間に位置する半導体層が、一部のみがpipn構造他はpin構造となっているような構成でもよい。
又、透明導電膜としては、ITOに限定されることなく、酸化スズ、酸化亜鉛など、適宜変更可能である。
また、半導体基板としては、単結晶シリコン基板、多結晶シリコン基板などの結晶シリコン基板の他、シリコンカーバイド基板などのシリコン化合物基板をはじめとする結晶シリコン系基板などにも適用可能である。真性または各導電型の非晶質シリコン薄膜についても、微結晶シリコン系薄膜、多結晶シリコン系薄膜などの結晶系薄膜にも適用可能である。
以上のように、本発明にかかる光起電力素子およびその製造方法は、複雑な追加プロセスを必要とせず製造時間を短縮でき、かつリーク電流を防ぎつつ基板の有効面積を最大にし、変換効率の向上に有用であり、特に、太陽光発電に適している。
1 n型シリコン基板、2 第1の非晶質シリコンi層、3 第2の非晶質シリコンi層、4 非晶質シリコンp層、5 非晶質シリコンn層、6 第1のITO層、7 第2のITO層、8 金属電極、100 プラズマCVD装置、101 処理室、102,102S 支持台(アノード電極)、103 カソード電極、104 ガス供給部、105 排気部、106 高周波(RF)電源、Se 端部、S0 第2のITO層7の端部からn型シリコン基板1表面に向かう法線。

Claims (15)

  1. 第1主面と、側面と、第2主面とを備えた、第1導電型の半導体基板と、
    前記半導体基板の前記第1主面全体を覆い、前記第1主面から前記側面を経て前記第2主面の周縁部を覆うように形成された、第2導電型の半導体層と、
    前記第2導電型の半導体層と前記半導体基板の間に介在せしめられた第1の真性半導体層と、
    前記第2導電型の半導体層に当接し、前記第1主面から前記側面まで到達するように形成された第1の透明導電膜と、
    前記半導体基板の前記第2主面に形成された第1導電型の半導体層と、
    前記第1導電型の半導体層と前記半導体基板の間に介在せしめられた第2の真性半導体層と、
    前記半導体基板の前記第2主面に、前記第1導電型の半導体層上に当接するように設けられた第2の透明導電膜とを備え、
    前記第2の透明導電膜は、端部が前記半導体基板の前記第2主面の外縁よりも内側に位置するように形成され、かつ前記第2の透明導電膜の端部から、前記第2主面に向かう法線上で前記第1の透明導電膜と交差することのないように形成され、
    前記第2主面上で、第1の透明導電膜の端部と前記第2の透明導電膜の端部の間に位置する領域に、前記第1の真性半導体層、前記第2導電型の半導体層、前記第2の真性半導体層、前記第1導電型の半導体層の順に積層された構造、あるいは前記第1の真性半導体層、前記第2導電型の半導体層、前記第1導電型の半導体層の順に積層された構造の少なくとも一方を備えることを特徴とする光起電力素子。
  2. 前記半導体基板の前記第2主面の周縁部において、前記第1の透明導電膜の端部と前記第2の透明導電膜の端部の間に、前記第1の真性半導体層、前記第2導電型の半導体層、前記第2の真性半導体層、前記第1導電型半導体層の順に積層された構造、または前記第1の真性半導体層、前記第2導電型の半導体層、前記第1導電型半導体層の順に積層された構造の領域が、前記半導体基板の第2主面上での端部から中心に向かう方向における長さが0.1mm以上3mm以下であり、かつ前記第1の透明導電膜の端部と前記第2の透明導電膜の端部の間隔が、0.1mm以上3mm以下であることを特徴とする請求項1に記載の光起電力素子。
  3. 前記第1導電型の半導体層が、前記第2導電型の半導体層よりも上層に配置されたことを特徴とする請求項1または2に記載の光起電力素子。
  4. 前記半導体基板の側面において、前記第1の透明導電膜は、前記第2導電型の半導体層に当接し、前記第2の真性半導体層および前記第1導電型の半導体層の積層体の上層に配されたことを特徴とする請求項1から3のいずれか1項に記載の光起電力素子。
  5. 前記第1の真性半導体層および前記第2導電型の半導体層は、
    前記半導体基板の前記第2主面の周縁部まで形成されており、
    前記周縁部において、積層された前記第1の真性半導体層、前記第2導電型半導体層、前記第2の真性半導体層、前記第1導電型半導体層と、前記第2の透明導電膜との間に、前記半導体基板の前記第2主面に接する前記第2の真性半導体層、前記第1導電型半導体層を備えることを特徴とする請求項1から4のいずれか1項に記載の光起電力素子。
  6. 記第2導電型半導体層および前記第1の真性半導体層が、前記第1主面での膜厚の50%以上の膜厚を維持して
    前記半導体基板の前記側面から前記第2主面の周縁に回り込む距離が前記第2主面の端部から0.1mm以上3mm以内であることを特徴とする請求項1から5のいずれか1項に記載の光起電力素子。
  7. 前記半導体基板は結晶シリコン基板であり、
    前記第1および第2導電型の半導体層および前記第1および第2の真性半導体層は非晶質または微結晶シリコン系薄膜層であることを特徴とする請求項1から6のいずれか1項に記載の光起電力素子。
  8. 前記第2主面上の周縁部において前記第1の透明導電膜の端部と前記第2の透明導電膜の端部の間に、前記第1の真性半導体層と前記第2の真性半導体層が重なるように形成された構造を備えることを特徴とする請求項1に記載の光起電力素子。
  9. 前記第2主面上の周縁部において、前記第2の真性半導体層が前記第1の真性半導体層と重なって形成される領域が、前記第2主面の中心に向かう方向に対し、0.1mm以上であることを特徴とする請求項8に記載の光起電力素子。
  10. 第1主面と、側面と、第2主面とを備えた、第1導電型の半導体基板上に、
    第1の真性半導体層を介して前記半導体基板の前記第1主面全体を覆い、前記側面を経て前記第2主面の周縁部まで到達するように、第2導電型の半導体層を形成する工程と、
    前記第2導電型の半導体層に当接し、前記第1主面から前記側面まで到達する第1の透明導電膜を形成する工程と、
    少なくとも前記半導体基板の前記第2主面上に第2の真性半導体層を介して、前記第2主面に、第1導電型の半導体層を形成する工程と、
    前記半導体基板の前記第2主面で、前記第1導電型の半導体層上に当接する第2の透明導電膜を形成する工程とを含み、
    前記第2の透明導電膜は、端部が前記半導体基板の前記第2主面の外縁よりも内側に位置するように形成され、
    前記第2の透明導電膜の端部から、前記第2主面に向かう法線上で前記第1の透明導電膜と交差することのないように形成され、
    前記第2主面上で、前記第1の透明導電膜の端部と前記第2の透明導電膜の端部の間に位置する領域に、前記第1の真性半導体層、前記第2導電型の半導体層、前記第2の真性半導体層、前記第1導電型半導体層の順に積層された構造、または前記第1の真性半導体層、前記第2導電型の半導体層、前記第1導電型半導体層の順に積層された構造のいずれか一方を備えることを特徴とする光起電力素子の製造方法。
  11. 前記各工程は、前記半導体基板よりも小さい面積の凸部を有する支持台を使用する工程であり、
    前記各工程は、前記支持台の前記凸部に前記半導体基板の前記第1主面または前記第2主面を当接させ、
    各層が、前記第1又は第2主面全体を覆い、前記側面を経て前記第2又は第1主面の周縁部まで到達する距離を調整する工程を含むことを特徴とする請求項10に記載の光起電力素子の製造方法。
  12. 前記第2導電型の半導体層を形成する工程は、
    前記第1の真性半導体層を形成する時よりも大きく、かつ前記半導体基板よりも小さい面積の凸部を有する支持台を用い、前記凸部に前記半導体基板の前記第2主面を当接させ、
    前記第1主面全体を覆い、前記側面を経て前記第2主面の周縁部まで到達するように、前記第2導電型の半導体層を形成する工程であることを特徴とする請求項11に記載の光起電力素子の製造方法。
  13. 前記第1の透明導電膜を形成する工程は、前記第1および第2の真性半導体層を形成する工程の後に実行されることを特徴とする請求項10から12のいずれか1項に記載の光起電力素子の製造方法。
  14. 前記第2主面上の周縁部であって前記第1の透明導電膜の端部と前記第2の透明導電膜の端部の間に、前記第1の真性半導体層と前記第2の真性半導体層が重なるように形成することを特徴とする請求項10から12のいずれか1項に記載の光起電力素子の製造方法。
  15. 前記半導体基板は結晶シリコン基板であり、
    前記第1および第2導電型の半導体層および前記第1および第2の真性半導体層は非晶質または微結晶シリコン系薄膜層であることを特徴とする請求項10から14のいずれか1項に記載の光起電力素子の製造方法。
JP2014533026A 2012-08-29 2013-08-27 光起電力素子およびその製造方法 Active JP5908095B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012189220 2012-08-29
JP2012189220 2012-08-29
PCT/JP2013/072899 WO2014034677A1 (ja) 2012-08-29 2013-08-27 光起電力素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP5908095B2 true JP5908095B2 (ja) 2016-04-26
JPWO2014034677A1 JPWO2014034677A1 (ja) 2016-08-08

Family

ID=50183489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014533026A Active JP5908095B2 (ja) 2012-08-29 2013-08-27 光起電力素子およびその製造方法

Country Status (4)

Country Link
US (1) US20150214398A1 (ja)
JP (1) JP5908095B2 (ja)
CN (1) CN104584237B (ja)
WO (1) WO2014034677A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068340A1 (ja) * 2013-11-08 2015-05-14 パナソニックIpマネジメント株式会社 太陽電池
WO2016052046A1 (ja) * 2014-09-30 2016-04-07 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュールおよびその製造方法
CN105810770B (zh) * 2014-12-30 2017-10-03 新日光能源科技股份有限公司 异质结太阳能电池及其制造方法
KR20170019597A (ko) * 2015-08-12 2017-02-22 엘지전자 주식회사 태양 전지 및 그 제조 방법
KR101778128B1 (ko) * 2016-01-20 2017-09-13 엘지전자 주식회사 태양전지
JP6681754B2 (ja) * 2016-03-14 2020-04-15 株式会社カネカ 積層型光電変換装置およびその製造方法
WO2017179317A1 (ja) * 2016-04-13 2017-10-19 株式会社カネカ 結晶シリコン系太陽電池およびその製造方法、ならびに太陽電池モジュール
WO2018034266A1 (ja) 2016-08-15 2018-02-22 シャープ株式会社 光電変換素子および光電変換装置
JP7013805B2 (ja) * 2016-11-30 2022-02-01 ソニーグループ株式会社 光電変換素子および固体撮像装置
CN110400854A (zh) * 2018-04-25 2019-11-01 君泰创新(北京)科技有限公司 异质结太阳能电池及其制备方法
WO2020202840A1 (ja) * 2019-03-29 2020-10-08 株式会社カネカ 太陽電池の製造方法および太陽電池
DE102019123758A1 (de) 2019-09-05 2021-03-11 Schaeffler Technologies AG & Co. KG Wellgetriebe zur variablen Ventilsteuerung einer Brennkraftmaschine
DE102019123785A1 (de) 2019-09-05 2021-03-11 Meyer Burger (Germany) Gmbh Rückseitenemitter-Solarzellenstruktur mit einem Heteroübergang sowie Verfahren und Vorrichtung zur Herstellung derselben
FR3131083A1 (fr) * 2021-12-16 2023-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule photovoltaïque a contacts passives et a revêtement antireflet
CN115799350A (zh) * 2022-11-11 2023-03-14 通威太阳能(金堂)有限公司 太阳电池及其制备方法
CN116995134A (zh) 2023-05-16 2023-11-03 天合光能股份有限公司 太阳能电池的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129904A (ja) * 1995-10-26 1997-05-16 Sanyo Electric Co Ltd 光起電力素子およびその製造方法
JP2001044461A (ja) * 1999-07-26 2001-02-16 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2004228281A (ja) * 2003-01-22 2004-08-12 Sanyo Electric Co Ltd 光起電力装置
JP2006237363A (ja) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd 光起電力素子
JP2011060971A (ja) * 2009-09-09 2011-03-24 Kaneka Corp 結晶シリコン太陽電池及びその製造方法
WO2012059878A1 (en) * 2010-11-05 2012-05-10 Roth & Rau Ag Edge isolation by lift-off

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129904A (ja) * 1995-10-26 1997-05-16 Sanyo Electric Co Ltd 光起電力素子およびその製造方法
JP2001044461A (ja) * 1999-07-26 2001-02-16 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2004228281A (ja) * 2003-01-22 2004-08-12 Sanyo Electric Co Ltd 光起電力装置
JP2006237363A (ja) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd 光起電力素子
JP2011060971A (ja) * 2009-09-09 2011-03-24 Kaneka Corp 結晶シリコン太陽電池及びその製造方法
WO2012059878A1 (en) * 2010-11-05 2012-05-10 Roth & Rau Ag Edge isolation by lift-off

Also Published As

Publication number Publication date
CN104584237B (zh) 2017-03-08
CN104584237A (zh) 2015-04-29
JPWO2014034677A1 (ja) 2016-08-08
WO2014034677A1 (ja) 2014-03-06
US20150214398A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5908095B2 (ja) 光起電力素子およびその製造方法
JP5421701B2 (ja) 結晶シリコン太陽電池及びその製造方法
EP2215665B1 (en) Solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
US8945976B2 (en) Method for making solar cell having crystalline silicon P—N homojunction and amorphous silicon heterojunctions for surface passivation
JP5774204B2 (ja) 光起電力素子およびその製造方法、太陽電池モジュール
US20090211623A1 (en) Solar module with solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
KR20170048515A (ko) 개선된 전면 접점 이종접합 공정
US9761749B2 (en) Photoelectric conversion device
CN114497290A (zh) 一种背接触异质结太阳能电池制造方法
WO2019144611A1 (zh) 异质结太阳能电池及其制备方法
JP2014093418A (ja) 光起電力装置およびその製造方法、光起電力モジュール
JP5948148B2 (ja) 光電変換装置
JP6207414B2 (ja) 光起電力素子およびその製造方法
US8889981B2 (en) Photoelectric device
TWM517422U (zh) 具有局部鈍化的異質接面太陽能電池結構
JP2000133828A (ja) 薄膜太陽電池及びその製造方法
JP4169463B2 (ja) 光起電力素子の製造方法
TWI443852B (zh) 太陽能電池形成方法
TWI605603B (zh) 半導體基板
JP2014135319A (ja) 太陽電池及び太陽電池モジュール
TWI625865B (zh) 太陽能電池結構及其製造方法
WO2013121538A1 (ja) 半導体製膜装置、半導体装置の製造方法、および半導体装置
KR20130113002A (ko) 식각 용액 보호층을 이용한 선택적 에미터층을 형성하는 방법
JP2016004916A (ja) 太陽電池の製造方法および太陽電池
JP2015060884A (ja) 太陽電池およびその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160322

R150 Certificate of patent or registration of utility model

Ref document number: 5908095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250