CN111403495A - 太阳能电池及其制备方法 - Google Patents

太阳能电池及其制备方法 Download PDF

Info

Publication number
CN111403495A
CN111403495A CN201811624233.3A CN201811624233A CN111403495A CN 111403495 A CN111403495 A CN 111403495A CN 201811624233 A CN201811624233 A CN 201811624233A CN 111403495 A CN111403495 A CN 111403495A
Authority
CN
China
Prior art keywords
layer
intrinsic
solar cell
buffer layer
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811624233.3A
Other languages
English (en)
Inventor
方亮
曾燕
彭敏
张皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deyun Chuangxin (Beijing) Technology Co.,Ltd.
Original Assignee
Chengdu Everest Yongming Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Everest Yongming Technology Co ltd filed Critical Chengdu Everest Yongming Technology Co ltd
Priority to CN201811624233.3A priority Critical patent/CN111403495A/zh
Publication of CN111403495A publication Critical patent/CN111403495A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开提供一种太阳能电池,其包括:半导体衬底;形成在所述半导体衬底的第一侧的第一本征层;形成在所述第一本征层上的掺杂层;形成在所述掺杂层上的前电极;形成在所述半导体衬底的第二侧的第二本征层;形成在所述第二本征层上的缓冲层;以及形成在所述缓冲层上的金属背电极。相应地,提供一种太阳能电池的制备方法。本公开中,采用缓冲层/金属背电极替代了传统HIT太阳能电池中的N型掺杂层/透明导电层,改善了电池的长波响应,提高了电池的短路电流密度,进而提高了电池的光电转换效率。

Description

太阳能电池及其制备方法
技术领域
本公开涉及太阳能发电技术领域,具体涉及一种太阳能电池及其制备方法。
背景技术
HIT(Hetero-junction with Intrinsic Thin layer,本征薄膜异质结)太阳能电池指的是异质结非晶硅/晶硅异质结的太阳能电池,是一种利用晶体硅基板和各种薄膜制成的混合型太阳能电池。由于HIT太阳能电池具有较高的光电转换效率,较低的温度系数和相对简单的制备技术,目前已经成为光伏行业研究和开发的热门技术,是最近几年来光伏行业中太阳能电池发展的趋向,是目前主流的高效太阳能电池技术之一。
如图1所示,传统的HIT太阳能电池典型结构为:从受光面至背光面依次设置的TCO(Transparent Conductive Oxide,透明导电氧化物)前电极101、P型氢化非晶硅层102、本征型氢化非晶硅层103、N型硅衬底104、本征型氢化非晶硅层105、N型氢化非晶硅层106和TCO背电极107。发明人发现,传统的HIT太阳能电池的光电转换效率虽然高,但其中N型掺杂层(即N型氢化非晶硅层106)与透明导电层(即TCO背电极107)由于带隙和掺杂/杂质缺陷,都存在对长波段光的寄生吸收,限制了电池的长波响应,从而降低电池的短路电流密度,影响其光电转换效率。
发明内容
为了至少部分解决现有技术中存在的限制电池长波响应的技术问题而完成了本公开。
解决本公开技术问题所采用的技术方案是:
本公开提供一种太阳能电池,其包括:
半导体衬底;
形成在所述半导体衬底的第一侧的第一本征层;
形成在所述第一本征层上的掺杂层;
形成在所述掺杂层上的前电极;
形成在所述半导体衬底的第二侧的第二本征层;
形成在所述第二本征层上的缓冲层;以及
形成在所述缓冲层上的金属背电极。
本公开所述太阳能电池采用缓冲层/金属背电极替代了传统HIT太阳能电池中的掺杂层(例如N型掺杂层)/透明导电层,一方面,由于本公开在第二本征层与金属背电极之间插入缓冲层形成了后肖特基势垒结构,来选择性收集一种载流子,避免了因存在掺杂层和透明导电层产生的对长波段光的寄生吸收问题,改善了电池的长波响应,提高了电池的短路电流密度,进而提高了电池的光电转换效率;另一方面,缓冲层减少了表面态的对电池开路电压和填充因子等参数的影响。具体而言,发明人发现,如果金属背电极和第二本征层直接接触时,由于表面态的影响,电池的开路电压和填充因子衰减很多。通过在吸收层和金属电极之间引入缓冲层来消除和降低表面态的影响,从而解决这个问题。
可选地,所述缓冲层采用功函数低于4.0eV的材质。
可选地,所述缓冲层采用禁带宽度大于3.0eV的材质。
可选地,所述缓冲层的材质为LiF、Ce2(CO3)3或NaF。
可选地,所述缓冲层的厚度满足隧穿效应的实现。
可选地,所述缓冲层的厚度范围为1nm~10nm。
可选地,所述半导体衬底采用N型单晶硅片;所述掺杂层为P型掺杂层。
可选地,所述第一本征层与所述第二本征层均为本征型氢化非晶硅层;所述掺杂层为掺硼的氢化非晶硅层或氢化微晶硅层;所述前电极的材质为透明导电氧化物;所述金属背电极采用单一金属材料或至少两种金属的复合材料。
本公开还提供一种太阳能电池的制备方法,其包括如下步骤:
制备半导体衬底;
在所述半导体衬底的第一侧制备第一本征层;
在所述第一本征层上制备掺杂层;
在所述半导体衬底的第二侧制备第二本征层;
在所述第二本征层上制备缓冲层;
在所述掺杂层上制备前电极,在所述缓冲层上制备金属背电极。
本公开所述制备方法制备的太阳能电池采用缓冲层/金属背电极替代了传统HIT太阳能电池中的N型掺杂层/透明导电层,一方面,由于在第二本征层与金属背电极之间插入缓冲层形成了后肖特基势垒结构,可以避免N型掺杂层和透明导电层对长波段光的寄生吸收问题,改善了电池的长波响应,提高了电池的短路电流密度,进而提高了电池的光电转换效率;另一方面,缓冲层减少了表面态对后肖特基结构电池开路电压和填充因子等参数的影响。
可选地,在所述第二本征层上制备缓冲层的步骤具体为:采用蒸发法将缓冲层沉积在所述第二本征层上。
附图说明
图1为传统的HIT太阳能电池的结构示意图;
图2为本公开实施例1提供的太阳能电池的结构示意图;
图3为本公开实施例2提供的太阳能电池的制备流程图。
图中:101-TCO前电极;102-P型氢化非晶硅层;103-本征型氢化非晶硅层;104-N型硅衬底;105-本征型氢化非晶硅层;106-N型氢化非晶硅层;107-TCO背电极;201-前电极;202-掺杂层;203-第一本征层;204-半导体衬底;205-第二本征层;206-缓冲层;207-金属背电极。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和实施例对本公开作进一步详细描述。
在传统HIT太阳能电池中,N型掺杂层存在对长波段光的寄生吸收而限制了电池的长波响应,虽然N型掺杂层对长波段光的吸收会随着吸收层厚度的减薄而减少,即减薄N型掺杂层的厚度可以减少对电池短路电流密度的影响,但是填充因子也会随着其厚度的减少而减小。解决该问题的一种思路是选择宽带隙的材料来减少对长波段光的吸收。目前,n-a-SiO、n-μc-SiO等大带宽的材料受到广泛的关注,但是它们的光学带隙Eopt≈2.0eV,折射系数n≈2.2(波长400nm),只能有限的减少光吸收和提高光反射。
发明人解决这一问题的思路是基于肖特基势垒结构。当金属和半导体材料相接触的时候,在界面处半导体的能带弯曲,形成肖特基势垒,势垒的存在导致了较低的界面电压和较大的界面电阻。利用肖特基势垒也能分离光生载流子,其基理完全不同于传统PN结太阳能电池。在采用前肖特基势垒结构的电池中,金属层设置在入光面,和电池形成MIS结构(即金属-绝缘层-半导体结构),由于其制备简单,在理论上有较高的转换效率而被深入的研究过,但是在入光面的金属层对可见光的透光性差,这严重限制了前肖特基势垒结构电池的短路电流密度。基于这一事实,发明人考虑采用后肖特基势垒结构解决传统HIT太阳能电池存在的对长波段光的寄生吸收的问题。后肖特基势垒结构即金属层设置在半导体衬底的背面,且金属层和半导体材料接触形成肖特基势垒结构,对可见光无吸收的同时对长波具有较好的反射作用。下面通过一些实施例描述本公开的技术方案。
实施例1:
本实施例提供一种太阳能电池,如图2所示,所述太阳能电池包括:半导体衬底204、形成在半导体衬底204的第一侧(图中半导体衬底204的上表面)的第一本征层203、形成在第一本征层203上的掺杂层202、形成在掺杂层202上的前电极201、形成在半导体衬底204的第二侧(图中半导体衬底204的下表面)的第二本征层205、形成在第二本征层205上的缓冲层206,以及形成在缓冲层206上的金属背电极207。对于N型半导体衬底而言,掺杂层为P型掺杂层。
其中,第二本征层205、缓冲层206与金属背电极207形成的后肖特基势垒结构代替了传统HIT太阳能电池的背面结构,在金属与半导体之间形成具有整流作用的区域,从而在电池背面形成内建电场,当正向电压满足势垒高度时,开始产生电流。缓冲层206用于减少金属背电极207和第二本征层205直接接触时在界面形成的复合中心。
本实施例中,若金属背电极与第二本征层直接接触形成后肖特基势垒结构,则可以避免传统HIT太阳能电池中的N型掺杂层(即N型氢化非晶硅层106)和透明导电层(即背电极107)对长波段光的寄生吸收问题,同时金属背电极(如Ag的折射系数n≈0.5(波长1000nm))可以有效地增强光的反射。但是,当金属背电极与第二本征层直接接触时会形成大量的复合中心,严重影响电池的性能,而且由于表面态的影响,电池的开路电压和填充因子等参数衰减很多,而这一问题可通过在金属背电极与第二本征层之间插入缓冲层来解决,缓冲层可以减少金属和本征半导体直接接触时在界面形成的复合中心,减少表面态对后肖特基势垒结构电池的开路电压和填充因子等参数的影响。
可见,本实施例采用缓冲层/金属背电极替代了传统HIT太阳能电池中的掺杂层/透明导电层,一方面,由于第二本征层-缓冲层-金属背电极的结构形成了后肖特基势垒结构,避免了掺杂层和透明导电层的对光的吸收,同时金属背电极可提高光的反射,因此对可见光无吸收的同时对长波具有较好的反射作用,改善了电池的长波响应,提高了电池的短路电流密度,进而提高了电池的光电转换效率;另一方面,缓冲层避免或减少了金属和本征半导体直接接触时在界面形成的复合中心,减少了表面态对后肖特基结构电池开路电压和填充因子等参数的影响。因此,本实施例所述太阳能电池可称为后肖特基势垒HIT太阳能电池。
在一些实施例中,缓冲层的材质满足功函数低于4.0eV,较低的功函数有利于在电池背面形成背场(BSF),提高载流子的吸收,从而提高电池的开路电压。
在一些实施例中,缓冲层的材质满足禁带宽度大于3.0eV,较宽的禁带宽度有利于减少对长波段光的吸收。
在一些实施例中,综合上述考虑,缓冲层206的材质优选为LiF(氟化锂)、Ce2(CO3)3(碳酸铈)或NaF(氟化钠)。当然,缓冲层也可以采用其他低功函数的材质,本公开对此不作限制。
缓冲层206的厚度满足使载流子穿越所述缓冲层处的势垒,即满足隧穿效应,同时还应满足高透过率。在一些实施例中,缓冲层206的厚度经过优化,在实现高透过的同时满足隧穿效应的实现。在一些实施例中,缓冲层206的厚度范围可以为1nm~10nm,例如为1nm、3nm、5nm、7nm、9nm、10nm。在一些实施例中,缓冲层206的厚度优选为2nm~3nm,例如缓冲层206的厚度为2、2.5、3nm。
半导体衬底204的材料类型不同,所述太阳能电池的光电转换效率也不同。发明人发现,N型衬底的HIT太阳能电池由于异质结能带结构方面的优势,其光电转换效率略高于P型衬底的HIT太阳能电池,因此,在本公开的一些实施例中,半导体衬底204优选采用N型单晶硅片(n-Si),相应地,掺杂层202为P型掺杂层。
N型单晶硅片的厚度范围可以为130μm~300μm,优选为180μm。
此外,为了保证半导体衬底204的导电性,N型单晶硅片的电阻率范围可以为1.0Ω·m~5.0Ω·m,优选为3.0Ω·m。
第一本征层203为本征型氢化非晶硅层(i-a-Si-H),用于钝化半导体衬底204的第一侧,其厚度范围可以为1nm~20nm,优选为5nm~10nm。
第二本征层205为本征型氢化非晶硅层(i-a-Si-H),用于钝化半导体衬底204的第二侧,其厚度范围可以为1nm~20nm,优选为5nm~10nm。较优地,第一本征层203与第二本征层205的材质及厚度均相同。
掺杂层202为掺硼的P型氢化非晶硅层(p-a-Si:H)或P型氢化微晶硅层(p-μc-Si:H);掺杂层202的厚度范围可以为4nm~40nm,优选为10nm~20nm。
前电极201的材质为透明导电氧化物(TCO,Transparent Conductive Oxide),较优地,前电极201的材质为铟锡氧化物(ITO,Indium Tin Oxide);前电极201的厚度范围可以为50nm~120nm。
为了收集光生电流,较优地,所述太阳能电池还包括:形成在前电极201上的栅线。
金属背电极207采用单一金属材料或至少两种金属的复合材料,优选采用银或铜或二者的复合材料。
综上所述,本实施例中太阳能电池的器件结构为:ITO/p-a-Si:H/i-a-Si:H/n-Si/i-a-Si:H/缓冲层/Ag,其相比于传统HIT太阳能电池,通过优化材料的光电性能明显地改善了电池的长波响应,提高了电池的短路电流密度,进而提高了电池的光电转换效率。
实施例2:
本实施例提供一种太阳能电池的制备方法,如图3所示,所述制备方法包括如下步骤S101至S106。
S101.制备半导体衬底;
S102.在半导体衬底的第一侧制备第一本征层;
S103.在第一本征层上制备掺杂层;
S104.在半导体衬底的第二侧制备第二本征层;
S105.在第二本征层上制备缓冲层;
S106.在掺杂层上制备前电极,在缓冲层上制备金属背电极。
本实施例中,采用缓冲层/金属背电极替代了传统HIT太阳能电池中的N型掺杂层/透明导电层,一方面,由于第二本征层-缓冲层-金属背电极的结构形成了后肖特基势垒结构,避免了N型掺杂层和透明导电层的对光的吸收,同时金属背电极可提高光的反射,因此对可见光无吸收的同时对长波具有较好的反射作用,改善了电池的长波响应,提高了电池的短路电流密度,进而提高了电池的光电转换效率;另一方面,缓冲层避免或减少了金属和本征半导体直接接触时在界面形成的复合中心,减少了表面态对后肖特基结构电池开路电压和填充因子等参数的影响。因此,本实施例所述制备方法制成的太阳能电池可称为后肖特基势垒HIT太阳能电池。
下面结合具体实施例进行说明
步骤S101中提供符合要求的半导体衬底,例如包括:在N型单晶硅片的两侧表面分别制备倒金字塔绒面结构,以及对N型单晶硅片进行清洗。
其中,在N型单晶硅片的两侧表面分别制备倒金字塔绒面结构可以去掉单晶硅片表面的切割损伤层,利用陷光原理,减少电池表面光的反射,提高电池的短路电流密度,增加PN结面积,最终提高电池的光电转换效率。此外,为了去除单晶硅片表面的金属离子或有机物等污染物,需要对N型单晶硅片进行清洗,具体可分为超声波清洗和化学清洗。经过制绒和清洗的N型单晶硅片放好备用。
需要说明的是,本公开对N型单晶硅片进行制绒和清洗的先后顺序不作限制。例如,可以先对N型单晶硅片进行制绒,然后对制绒后的N型单晶硅片进行清洗;也可以先对N型单晶硅片进行清洗,然后对清洗后的N型单晶硅片进行制绒;还可以先对N型单晶硅片进行预清洗,然后对预清洗后的N型单晶硅片进行制绒,再对制绒后的N型单晶硅片再次进行清洗。
在步骤S101中,N型单晶硅片的厚度范围可以为130μm~300μm,优选为180μm;N型单晶硅片的电阻率范围可以为1.0Ω·m~5.0Ω·m,优选为3.0Ω·m。
步骤S102和步骤S103可依次进行,具体为:采用化学气相沉积法(CVD,ChemicalVapor Deposition)在半导体衬底的第一侧依次形成第一本征层和掺杂层(例如为P型掺杂层)。
其中,第一本征层为本征型氢化非晶硅层(i-a-Si-H),用于钝化半导体衬底的第一侧,其厚度范围可以为1nm~20nm,优选为5nm~10nm。
掺杂层为掺硼的P型氢化非晶硅层(p-a-Si:H)或P型氢化微晶硅层(p-μc-Si:H);掺杂层的厚度范围可以为4nm~40nm,优选为10nm~20nm。
步骤S104具体为:采用化学气相沉积法在半导体衬底的第二侧形成第二本征层。
其中,第二本征层为本征型氢化非晶硅层(i-a-Si-H),用于钝化半导体衬底的第二侧,其厚度范围可以为1nm~20nm,优选为5nm~10nm。较优地,第一本征层与第二本征层的材质及厚度均相同。
本实施例中,可以在真空腔室内采用化学气相沉积法完成第一本征层、掺杂层和第二本征层的制备,优选采用甚高频-等离子体增强化学气相沉积法(VHF-PECVD,VeryHigh Frequency-Plasma Enhanced Chemical Vapor Deposition),或者射频-等离子体增强化学气相沉积法(RF-PECVD,Radio Frequency-Plasma Enhanced Chemical VaporDeposition)。
下面通过一具体实例来描述第一本征层、掺杂层和第二本征层的制备过程:
将经过制绒和清洗的N型单晶硅片放入真空腔室内,采用电源频率为40MHz的VHF-PECVD技术在N型单晶硅片的受光面依次镀上第一本征层和掺杂层;
将镀有第一本征层和掺杂层的N型单晶硅片经过适当冷却后从真空腔室内取出,翻面后再次放入真空腔室内;
采用电源频率为40MHz的VHF-PECVD技术在N型单晶硅片的背光面镀上第二本征层。
步骤S105具体为:采用蒸发法将缓冲层沉积在第二本征层上,且沉积的厚度应满足使载流子穿越所述缓冲层的势垒,即满足隧穿效应。本实施例中,缓冲层的厚度范围可以为1nm~10nm,优选为2nm~3nm。
其中,缓冲层的材质应满足功函数低于4.0eV。较低的功函数有利于在电池背面形成背场(BSF),提高载流子的吸收,从而提高电池的开路电压。缓冲层的材质还应满足禁带宽度大于3.0eV。较宽的禁带宽度有利于减少对长波段光的吸收。综合上述两种参数,缓冲层的材质优选为LiF、Ce2(CO3)3或NaF。例如,可以在真空腔室内通过蒸发设备(ThermalEvaporator)将LiF、CeCO3或NaF蒸镀在第二本征层上,以改善电池的长波段光的量子效率。当然,缓冲层也可以采用其他低功函数的材质,本公开对此不作限制。
本实施例中,采用蒸发法制备缓冲层,其制备方法简单,和现有工艺兼容,无需增加额外的实验设备。而且,缓冲层的光学带隙和导电性能(tunneling effect)之间不发生矛盾,从而可以增加电池的短路电流密度,提高电池的光电转换效率。
在步骤S106中,前电极的材质为透明导电氧化物(TCO,Transparent ConductiveOxide),优选为铟锡氧化物(ITO,Indium Tin Oxide),其厚度范围可以为50nm~120nm;金属背电极采用单一金属材料或至少两种金属的复合材料,优选采用银或铜或二者的复合材料。
在步骤S106之后,所述制备方法还可包括如下步骤:
在前电极上制备栅线,以收集光生电流。
具体地,可采用丝网印刷的方式在前电极上制备栅线。
需要说明的是,上述步骤的顺序只是为了说明本实施例而提出的一个具体实例,本公开对上述步骤的顺序不做限定,本领域技术人员在实际应用中可按需对其进行调整。
综上所述,本实施例所述制备方法形成的太阳能电池的器件结构为:ITO/p-a-Si:H/i-a-Si:H/n-Si/i-a-Si:H/缓冲层/Ag,其相比于传统HIT太阳能电池,通过优化材料的光电性能明显地改善了电池的长波响应,提高了电池的短路电流密度,进而提高了电池的光电转换效率。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (10)

1.一种太阳能电池,其特征在于,包括:
半导体衬底;
形成在所述半导体衬底的第一侧的第一本征层;
形成在所述第一本征层上的掺杂层;
形成在所述掺杂层上的前电极;
形成在所述半导体衬底的第二侧的第二本征层;
形成在所述第二本征层上的缓冲层;以及
形成在所述缓冲层上的金属背电极。
2.根据权利要求1所述的太阳能电池,其特征在于,所述缓冲层采用功函数低于4.0eV的材质。
3.根据权利要求2所述的太阳能电池,其特征在于,所述缓冲层采用禁带宽度大于3.0eV的材质。
4.根据权利要求3所述的太阳能电池,其特征在于,所述缓冲层的材质为LiF、Ce2(CO3)3或NaF。
5.根据权利要求1所述的太阳能电池,其特征在于,所述缓冲层的厚度满足隧穿效应的实现。
6.根据权利要求5所述的太阳能电池,其特征在于,所述缓冲层的厚度范围为1nm~10nm。
7.根据权利要求1所述的太阳能电池,其特征在于,所述半导体衬底采用N型单晶硅片;所述掺杂层为P型掺杂层。
8.根据权利要求1-7中任一项所述的太阳能电池,其特征在于,所述第一本征层与所述第二本征层均为本征型氢化非晶硅层;所述掺杂层为掺硼的氢化非晶硅层或氢化微晶硅层;所述前电极的材质为透明导电氧化物;所述金属背电极采用单一金属材料或至少两种金属的复合材料。
9.一种太阳能电池的制备方法,其特征在于,包括如下步骤:
制备半导体衬底;
在所述半导体衬底的第一侧制备第一本征层;
在所述第一本征层上制备掺杂层;
在所述半导体衬底的第二侧制备第二本征层;
在所述第二本征层上制备缓冲层;
在所述掺杂层上制备前电极,在所述缓冲层上制备金属背电极。
10.根据权利要求9所述的制备方法,其特征在于,在所述第二本征层上制备缓冲层的步骤具体为:采用蒸发法将缓冲层沉积在所述第二本征层上。
CN201811624233.3A 2018-12-28 2018-12-28 太阳能电池及其制备方法 Pending CN111403495A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811624233.3A CN111403495A (zh) 2018-12-28 2018-12-28 太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811624233.3A CN111403495A (zh) 2018-12-28 2018-12-28 太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN111403495A true CN111403495A (zh) 2020-07-10

Family

ID=71413129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811624233.3A Pending CN111403495A (zh) 2018-12-28 2018-12-28 太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN111403495A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959484A (zh) * 2011-10-21 2014-07-30 应用材料公司 制造硅异质结太阳能电池的方法与设备
CN108074989A (zh) * 2016-11-14 2018-05-25 Lg电子株式会社 太阳能电池及其制造方法
CN108091711A (zh) * 2017-11-10 2018-05-29 中国科学院微电子研究所 晶体硅太阳能电池
CN108389929A (zh) * 2018-04-11 2018-08-10 浙江师范大学 一种选择性接触晶体硅异质结太阳能电池及其制备方法
CN109065659A (zh) * 2018-08-08 2018-12-21 浙江师范大学 氮掺杂氧化钨异质结太阳能电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959484A (zh) * 2011-10-21 2014-07-30 应用材料公司 制造硅异质结太阳能电池的方法与设备
CN108074989A (zh) * 2016-11-14 2018-05-25 Lg电子株式会社 太阳能电池及其制造方法
CN108091711A (zh) * 2017-11-10 2018-05-29 中国科学院微电子研究所 晶体硅太阳能电池
CN108389929A (zh) * 2018-04-11 2018-08-10 浙江师范大学 一种选择性接触晶体硅异质结太阳能电池及其制备方法
CN109065659A (zh) * 2018-08-08 2018-12-21 浙江师范大学 氮掺杂氧化钨异质结太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
US10084107B2 (en) Transparent conducting oxide for photovoltaic devices
CN102074599B (zh) 太阳能电池及其制造方法
CN108987488B (zh) 硅异质结太阳电池及其制备方法
EP4106021A1 (en) Tandem photovoltaic device and production method
CN104600157A (zh) 一种异质结太阳能电池的制造方法及异质结太阳能电池
WO2023093604A1 (zh) 太阳能电池以及太阳能电池的制备方法
CN113410328A (zh) 一种晶硅异质结太阳能电池
WO2024045917A1 (zh) 背接触太阳能电池及其制备方法
JP2023155871A (ja) 太陽電池、光起電力モジュールおよび太陽電池の製造方法
CN108615775B (zh) 一种叉指背接触异质结单晶硅电池
CN112103366A (zh) 硅基异质结太阳电池、光伏组件及制备方法
KR20180018895A (ko) 양면 수광형 실리콘 태양전지
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
CN111403538A (zh) 太阳能电池及其制备方法
CN211238272U (zh) 一种晶硅/非晶硅异质结电池
CN112768549A (zh) 一种高光电转换效率的hjt电池及其制备方法
CN115172602B (zh) 一种掺杂金属氧化物复合层结构
CN114744052B (zh) 太阳能电池及光伏组件
CN110600577A (zh) 一种异质结太阳能电池及其制备方法
CN111403495A (zh) 太阳能电池及其制备方法
CN113451446A (zh) 切片硅异质结太阳能电池及制备方法、太阳能电池组件
CN113437161A (zh) 太阳能电池片及其制备方法和光伏组件
CN214588873U (zh) 一种异质结太阳能电池
US8852982B2 (en) Photoelectric device and manufacturing method thereof
KR101303594B1 (ko) 표면 텍스처가 형성된 유리기판을 이용한 박막형 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right

Effective date of registration: 20210119

Address after: 101102 102-lq307, 1-3 / F, building 26, 17 huanke Middle Road, Jinqiao Science and technology industrial base, Tongzhou Park, Zhongguancun Science and Technology Park, Tongzhou District, Beijing

Applicant after: Deyun Chuangxin (Beijing) Technology Co.,Ltd.

Address before: No. 2002, airport 4th Road, Southwest Airport Economic Development Zone, Shuangliu District, Chengdu 610200 China (Sichuan) pilot Free Trade Zone, Sichuan Province

Applicant before: Chengdu Everest Yongming Technology Co.,Ltd.

TA01 Transfer of patent application right
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination