CN109065659A - 氮掺杂氧化钨异质结太阳能电池及其制备方法 - Google Patents

氮掺杂氧化钨异质结太阳能电池及其制备方法 Download PDF

Info

Publication number
CN109065659A
CN109065659A CN201810895723.0A CN201810895723A CN109065659A CN 109065659 A CN109065659 A CN 109065659A CN 201810895723 A CN201810895723 A CN 201810895723A CN 109065659 A CN109065659 A CN 109065659A
Authority
CN
China
Prior art keywords
tungsten oxide
doping
silicon
sio
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810895723.0A
Other languages
English (en)
Inventor
黄仕华
张美影
池丹
陆肖励
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN201810895723.0A priority Critical patent/CN109065659A/zh
Publication of CN109065659A publication Critical patent/CN109065659A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种氮掺杂氧化钨异质结太阳能电池及其制备方法,对单晶硅片进行表面化学处理,清除表面污染杂质;利用硝酸氧化法在硅片前后表面各生长一层超薄SiO2层;在硅片正面的SiO2薄膜上面,利用反应磁控溅射的方法制备氮掺杂的氧化钨薄膜,然后再溅射ITO导电薄膜;在硅片背面的SiO2薄膜上面,利用热蒸镀的方法生长LiF;生长前后Ag电极。本发明利用反应磁控溅射方法生长氮掺杂的氧化钨薄膜,作为晶体硅异质结太阳能电池的空穴传输层,可以同时获得高电导率的氧化钨以及较大的氧化钨/单晶硅能带弯曲度。

Description

氮掺杂氧化钨异质结太阳能电池及其制备方法
技术领域
本发明属于太阳能电池技术领域,涉及一种氮掺杂氧化钨异质结太阳能电池及其制备方法。
背景技术
晶体硅太阳能电池占据全球光伏市场份额的95%以上,是目前太阳能电池的主流技术。非晶硅/单晶硅异质结(HIT)太阳能电池的光电转换效率目前已经达到了26.6%,因此被认为是未来高效太阳能电池的发展方向。然而,HIT电池中存在寄生吸收损失以及非晶硅薄膜的掺杂效率比较低,在HIT电池的制备过程中需要使用剧毒的磷烷和硼烷等特种气体,而且非晶硅薄膜的低温制备工艺与目前晶体硅的丝网印刷电极的高温制备工艺不兼容,这些不利因素制约了HIT电池的产业化。因此,近年来一种被称为选择性接触电池引起了人们的极大兴趣,这种电池通过外加材料或结构来弯曲能带,而非电池吸收层本身掺杂,从而实现对载流子选择性通过的表面接触设计,这与通过扩散形成p-n结的传统电池有本质的不同。
过渡金属氧化物(氧化钼、氧化钨、氧化钒等)具有高功函数、宽带隙等特点,作为空穴传输层已经被成功应用于有机光伏器件中。当氧化钨与晶体硅接触时,在p型硅表面可以期望形成一个空穴堆积层,而在n型硅表面形成空穴反型层,这有利于空穴从晶体硅中输运到外部电极,从而可以降低接触电阻,提高了载流子的收集效率。目前研究最多的、电池效率最高的过渡金属氧化物/单晶硅异质结电池是氧化钼,氧化钼作为单晶硅异质结电池的空穴传输层,在电池的后续高温工艺中存在热稳定性较差的缺点,然而,氧化钨的热稳定比氧化钼要好得多。与HIT电池中高掺杂的非晶硅相比,氧化钨存在大量的本征氧空位,利用氧化钨取代HIT电池中的p型非晶硅层作为空穴传输层,从而可以避免由于掺杂对电池性能造成的不利影响。同时,氧化钨比非晶硅具有更大的带隙宽度,可以减少HIT电池存在的寄生吸收损失。
目前在制备氧化钨/单晶硅异质结电池工艺中,氧化钨薄膜都是采用热蒸发的方法,然而热蒸发不能调控氧化物中的氧空位浓度。如果采用反应磁控溅射的方法制备氧化钨薄膜,则可以调控氧化钨中的氧空位浓度,从而达到改变氧化钨薄膜的电导率、带隙宽度、功函数等,透光率以及氧化钨/单晶硅的能带弯曲度的目的。但是,氧化钨薄膜的高电导率与大的能带弯曲很难兼顾。如果在反应溅射过程中,增加氮气,就可以制备氮掺杂的氧化钨薄膜,获得光电性能更优化的空穴传输层,例如在获得较大的电导率的同时,可以获得较大的氧化钨/单晶硅的能带弯曲度,使得氧化钨/单晶硅异质结电池具有较大的开路电压(VOC)和填充因子(FF)。反应磁控溅射沉积技术,通过调节沉积工艺参数,实现对氧化钨薄膜的光电特性的调控,在目前工业化规模生产中具有明显的成本优势。
发明内容
为了解决上述现有技术中存在的不足和问题,本发明提出了一种氮掺杂氧化钨异质结太阳能电池及其制备方法。
本发明采用的技术方案是这样的:氮掺杂氧化钨异质结太阳能电池,其特征在于:具有如下的结构:Ag/ITO/N-WOx/SiO2/n-c-Si/SiO2/LiF/Ag,其中Ag为金属银,ITO为掺锡的氧化铟透明导电薄膜,N-WOx为氮掺杂的氧化钨,x=2.5~3.0,SiO2为二氧化硅,n-c-Si为n型单晶硅衬底,LiF为氟化锂。
本发明的另一技术方案是这样的:氮掺杂氧化钨异质结太阳能电池的制备方法,包括如下步骤:
1)对单晶硅片进行表面化学处理,清除表面污染杂质;
2)利用硝酸氧化法在硅片前后表面各生长一层厚度为1.2~1.5nm的超薄SiO2层;
3)在硅片正面的SiO2薄膜上面,利用反应磁控溅射的方法制备厚度为10nm的氮掺杂的氧化钨薄膜,然后再溅射厚度为80nm的ITO导电薄膜;
4)在硅片背面的SiO2薄膜上面,利用热蒸镀的方法生长厚度为2nm的LiF;
5)生长前后Ag电极。
本发明利用反应磁控溅射方法生长氮掺杂的氧化钨薄膜,作为晶体硅异质结太阳能电池的空穴传输层,可以同时获得高电导率的氧化钨以及较大的氧化钨/单晶硅能带弯曲度。制备了氮掺杂氧化钨/单晶硅异质结太阳能电池,与未掺杂氧化钨(热蒸镀法制备)/单晶硅异质结电池相比,开路电压和填充因子获得了明显的提高。
附图说明
以下结合附图和本发明的实施方式来作进一步详细说明
图1为本发明的电池结构示意图。
具体实施方式
参见附图。本实施例的电池具有如下的结构:
正面Ag电极1、ITO(80nm)层2、N-WOx(10nm)层3、第一SiO2(1.2~1.5nm)层4、n-c-Si层5、第二SiO2(1.2~1.5nm)层6、LiF(2nm)层7、背面Ag电极8;
其中Ag为金属银,ITO为掺锡的氧化铟透明导电薄膜,N-WOx为氮掺杂的氧化钨,x=2.5~3.0,SiO2为二氧化硅,n-c-Si为n型单晶硅衬底,LiF为氟化锂。电池的制备过程如下:
第1步:硅片的清洗
衬底为n型双面抛光的直拉单晶硅片,厚度为200μm,电阻率为2~5Ω·cm少子寿命大于0.5ms。首先,采用RCA标准清洗法对硅片进行表面清洗,清除表面污染杂质。RCA是一种目前普遍使用的湿式化学清洗法,是1965年由美国新泽西州普林斯顿RCA实验室Kern和Puotinen等人提出的。其次,把硅片放入浓度为3~5%的HF溶液中浸泡3min,去除硅片表面的自然氧化层。
第2步:硝酸氧化法在硅片的前后表面生长超薄SiO2层
把清洗好的硅片浸泡到61~68wt%(重量百分比)的HNO3溶液中,利用然后加热到120~125℃,反应时间为20min。利用X射线光电子能谱(XPS)测试分析,估算SiO2层的厚度为1.2~1.5nm。
第3步:反应磁控溅射法制备氮掺杂的WOx薄膜
在已经生长SiO2薄膜的硅片正面溅射氮掺杂WOx薄膜,溅射靶材为金属钨(纯度99.99%)。溅射腔体的本底真空度优于8×10-4Pa,工作气压为1.0Pa,溅射功率为20W,衬底温度为200℃。工作气体为氩气(99.999%)、氧气(99.999%)和氮气(99.999%)的混合气体,混合气体的总流量为50sccm,其中氧气的流量3~5sccm,氮气的流量为0.5~1.5sccm。沉积速率为1.35~1.50nm/min,沉积时间为7min,厚度为9.5~10.5nm。利用XPS测试分析可知,氮掺杂WOx薄膜中的x为2.5~3.0,氮的浓度为2~5×1018cm-3
第4步:磁控溅射法生长ITO薄膜
在氮掺杂的WOx薄膜上面,利用磁控溅射法生长ITO薄膜,溅射靶材为ITO(纯度99.999%,电阻率1.2~1.6mΩ·cm)。溅射腔体的本底真空度优于8×10-4Pa,工作气压为1.0Pa,溅射功率为35W,衬底温度为250℃。工作气体为氩气(99.999%)和氧气(99.999%)混合气体,混合气体的总流量为30sccm,其中氧气的流量0.1sccm。沉积速率为10nm/min,沉积时间为8min,薄膜厚度为80nm。
第5步:热蒸镀法生长LiF薄膜
在上面第2步已经生长SiO2薄膜的硅片背面,利用热蒸镀法生长LiF薄膜,衬底温度为常温。蒸镀腔体的真空度优于1×10-3Pa,硅片的正面用掩膜板盖住,并用锡箔包裹,在硅片的背面蒸镀LiF薄膜,速率为0.07~0.9nm/s,时间为25s,厚度为1.8~2.2nm。
第6步:磁控溅射法制备银电极
溅射靶材为金属银(纯度99.99%),溅射腔体的本底真空度优于1×10-3Pa,工作气体为氩气(99.999%),工作气压为1.0Pa,溅射功率为70W,衬底温度为室温。利用掩膜板在ITO薄膜上面溅射一层指叉状的银前面电极,在LiF薄膜上面溅射一层银背电极,前面和背面银电极厚度都是500nm。
第7步:氮掺杂WOx/单晶硅异质结电池的光电性能测试
标准测试条件(AM1.5,100mW/cm2,25℃)下,在不同条件下制备的电池的光电性能总结如下:(1)在没有氮掺杂的情况下,当WOx中的x为2.65时,电池的最高转换效率为6.5%;(2)当氮掺杂的浓度为4×1018cm-3,WOx中的x为2.87时,电池的最高转换效率为7.8%。分析其原因,随着WOx中氧组分的减少,WOx薄膜电导率增加,但是氧化钨/单晶硅能带弯曲度减少,因此在没有氮掺杂的情况下,WOx中的x为2.87时,电池的效率是最高的。但是,对WOx薄膜进行氮掺杂时,随着WOx中氧组分的减少和氮浓度增加时,WOx薄膜电导率增加,氧化钨/单晶硅能带弯曲度不但没有减少反而可能会增加,因此导致掺氮的电池效率比没有掺氮的要明显提高。目前制备的氮掺杂氧化钨/单晶硅异质结电池效率还是比较低,是因为电池的各部分参数还有待优化,比如掺氮氧化钨薄膜的氮掺杂浓度、氧空位浓度、厚度等参数需要进一步优化设计。

Claims (2)

1.氮掺杂氧化钨异质结太阳能电池,其特征在于:具有如下的结构:Ag/ITO/N-WOx/SiO2/n-c-Si/SiO2/LiF/Ag,其中Ag为金属银,ITO为掺锡的氧化铟透明导电薄膜,N-WOx为氮掺杂的氧化钨,x=2.5~3.0,SiO2为二氧化硅,n-c-Si为n型单晶硅衬底,LiF为氟化锂。
2.权利要求1所述太阳能电池的制备方法,其特征在于:包括如下步骤:
1)对单晶硅片进行表面化学处理,清除表面污染杂质;
2)利用硝酸氧化法在硅片前后表面各生长一层厚度为1.2~1.5nm的超薄SiO2层;
3)在硅片正面的SiO2薄膜上面,利用反应磁控溅射的方法制备厚度为10nm的氮掺杂的氧化钨薄膜,然后再溅射厚度为80nm的ITO导电薄膜;
4)在硅片背面的SiO2薄膜上面,利用热蒸镀的方法生长厚度为2nm的LiF;
5)生长前后Ag电极。
CN201810895723.0A 2018-08-08 2018-08-08 氮掺杂氧化钨异质结太阳能电池及其制备方法 Pending CN109065659A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810895723.0A CN109065659A (zh) 2018-08-08 2018-08-08 氮掺杂氧化钨异质结太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810895723.0A CN109065659A (zh) 2018-08-08 2018-08-08 氮掺杂氧化钨异质结太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN109065659A true CN109065659A (zh) 2018-12-21

Family

ID=64678607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810895723.0A Pending CN109065659A (zh) 2018-08-08 2018-08-08 氮掺杂氧化钨异质结太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN109065659A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085683A (zh) * 2019-04-04 2019-08-02 浙江师范大学 无掺杂晶体硅异质结太阳能电池及其制备方法
CN111403495A (zh) * 2018-12-28 2020-07-10 成都珠峰永明科技有限公司 太阳能电池及其制备方法
WO2023087310A1 (zh) * 2021-11-22 2023-05-25 宁德时代新能源科技股份有限公司 用于在衬底表面形成空穴传输层的方法、空穴传输层、太阳能电池及其制备方法、光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878714A (ja) * 1994-09-07 1996-03-22 Sanyo Electric Co Ltd 光起電力装置及び光起電力装置の製造方法
CN105449018A (zh) * 2014-08-22 2016-03-30 中国科学院物理研究所 一种太阳能电池及其制备方法
CN105981181A (zh) * 2013-10-10 2016-09-28 汉阳大学校产学协力团 太阳能电池和其制造方法
CN106024927A (zh) * 2016-05-26 2016-10-12 中国科学院宁波材料技术与工程研究所 硅基太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878714A (ja) * 1994-09-07 1996-03-22 Sanyo Electric Co Ltd 光起電力装置及び光起電力装置の製造方法
CN105981181A (zh) * 2013-10-10 2016-09-28 汉阳大学校产学协力团 太阳能电池和其制造方法
CN105449018A (zh) * 2014-08-22 2016-03-30 中国科学院物理研究所 一种太阳能电池及其制备方法
CN106024927A (zh) * 2016-05-26 2016-10-12 中国科学院宁波材料技术与工程研究所 硅基太阳能电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRIAN COLE等: "Evaluation of Nitrogen Doping of Tungsten Oxide for Photoelectrochemical Water Splitting", 《J. PHYS. CHEM.》 *
R.S. VEMURI等: "Nitrogen-incorporation induced changes in the microstructure of nanocrystalline WO3 thin films", 《THIN SOLID FILMS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403495A (zh) * 2018-12-28 2020-07-10 成都珠峰永明科技有限公司 太阳能电池及其制备方法
CN110085683A (zh) * 2019-04-04 2019-08-02 浙江师范大学 无掺杂晶体硅异质结太阳能电池及其制备方法
WO2023087310A1 (zh) * 2021-11-22 2023-05-25 宁德时代新能源科技股份有限公司 用于在衬底表面形成空穴传输层的方法、空穴传输层、太阳能电池及其制备方法、光伏组件

Similar Documents

Publication Publication Date Title
CN106057919B (zh) 具有通过电镀制造的金属栅的太阳能电池
EP3503210A1 (en) Heterojunction solar cell and fabrication method thereof
CN108987488B (zh) 硅异质结太阳电池及其制备方法
CN110444611A (zh) 一种氧化物钝化接触的太阳能电池及其制备方法
JPH07297421A (ja) 薄膜半導体太陽電池の製造方法
CN109065659A (zh) 氮掺杂氧化钨异质结太阳能电池及其制备方法
CN104900727A (zh) 一种用于晶体硅异质结太阳电池的透明导电氧化物薄膜及其制备方法
CN207529942U (zh) 一种太阳能异质结电池
CN110112226A (zh) 一种新型全钝化接触晶体硅太阳能电池及其制备方法
WO2023123814A1 (zh) 一种ibc太阳能电池及其制备方法
CN109075218A (zh) 一种太阳能异质结电池及其制备方法
CN108735828A (zh) 一种异质结背接触太阳能电池及其制备方法
CN111540791A (zh) 太阳电池及其制作方法
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
CN113410334B (zh) 多层薄膜钝化接触结构的制备方法及全钝化接触晶硅太阳电池
WO2019119869A1 (zh) 一种太阳能异质结电池及其制备方法
CN111987183B (zh) 一种基于双极性SnOX的晶硅太阳电池
JP2002009312A (ja) 非単結晶薄膜太陽電池の製造方法
JP4314716B2 (ja) 結晶シリコン薄膜光起電力素子
CN103219398A (zh) 光电转换装置
CN115000194A (zh) 一种简易低成本的p型晶硅ibc太阳能电池及其制备方法
CN102339874A (zh) 一种降低串联电阻损失的太阳能电池结构及其实现方法
CN104576801B (zh) 具有过渡层的晶硅及硅薄膜复合型单结pin太阳能电池及其制备方法
CN208521944U (zh) 一种异质结背接触太阳能电池
CN109768102A (zh) 一种晶体硅异质结太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181221

WD01 Invention patent application deemed withdrawn after publication