CN110112226A - 一种新型全钝化接触晶体硅太阳能电池及其制备方法 - Google Patents

一种新型全钝化接触晶体硅太阳能电池及其制备方法 Download PDF

Info

Publication number
CN110112226A
CN110112226A CN201910269192.9A CN201910269192A CN110112226A CN 110112226 A CN110112226 A CN 110112226A CN 201910269192 A CN201910269192 A CN 201910269192A CN 110112226 A CN110112226 A CN 110112226A
Authority
CN
China
Prior art keywords
silicon
layer
passivation
contact
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910269192.9A
Other languages
English (en)
Inventor
黄仕华
周理想
池丹
丁月珂
芮哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN201910269192.9A priority Critical patent/CN110112226A/zh
Publication of CN110112226A publication Critical patent/CN110112226A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种新型全钝化接触晶体硅太阳能电池及其制备方法,包括晶体硅层,两侧各有一层超薄氧化硅钝化层,在其正面还有混合相硅氧化物/纳米晶硅层,反面还有本征氢化非晶硅、p型氢化非晶硅层,其两侧外还均有ITO层和Ag电极。本发明利用mp‑SiOx/nc‑Si替代TOPCon电池的SiOx/poly‑Si钝化接触结构中的poly‑Si层作为电池正面钝化接触,采用本征氢化非晶硅(a‑Si:H(i))与掺杂的a‑Si:H叠层作为背面钝化接触,设计并制备了全钝化接触晶体硅太阳能电池,从而提高了钝化接触的晶体硅太阳能电池正面的电学和光学性能。

Description

一种新型全钝化接触晶体硅太阳能电池及其制备方法
技术领域
本发明属于太阳能电池技术领域,特别是涉及一种新型全钝化接触晶体硅太阳能电池及其制备方法。
背景技术
限制传统晶体硅(c-Si)太阳能电池效率进一步提升的关键因素,是金属电极与硅接触界面处的载流子复合损失。解决该问题的传统方法是采用局部接触,例如,发射极及背表面钝化电池(PERC)、发射极钝化及背面局部扩散电池(PERL) 等。然而,这些局部接触结构增加了电池工艺的复杂性,同时使得横向输运变成了电池设计的关键因素。具体地说,由于横向载流子输运引起的欧姆接触损失增加,开路电压和填充因子之间存在一种权衡取舍。另一种减少接触复合损失的方法是钝化接触,在c-Si与金属电极之间插入一层钝化接触材料,形成钝化接触并兼具钝化和接触功能,既可以有效抑制载流子在硅表面复合,同时又能从c-Si 有效地抽取载流子(电子或空穴)。理想的钝化接触可以被认为是一种半透膜,可以高效输运一种类型载流子(电子或空穴)并阻止另一种类型载流子,同时其寄生光学吸收损耗也最低。与局部接触相比,钝化接触可以使电池获得更高的转换效率,同时简化电池的制备工艺,从而降低电池的生产成本。
近年来已经有大量的研究工作集中在新的钝化接触材料上,它们在热稳定性或光学透明度方面比本征非晶硅薄层钝化(HIT)电池或隧穿氧化层钝化 (TOPCon)电池的钝化接触性能更具优势。这些新的钝化接触材料包括硅基材料、过渡金属氧化物、有机材料(如聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐, PEDOT:PSS)、碱金属氟化物(如氟化锂、氟化铯等)、碱土金属及其氧化物(如镁、钙、氧化镁等)等,近期发表的一些综述性论文对这些钝化材料进行了较为全面的分析和总结。在这些材料中,使用硅基材料作为钝化接触的HIT和TOPCon 电池性能最为突出,其最高转换效率已经分别达到了26.6%和25.7%,这足以证明钝化接触在晶体硅太阳能电池应用方面的巨大潜力。需要注意的是,为了减少电池正面的寄生光学损失,这些高效电池的钝化接触仅仅只是应用在电池的背面。因此,为了获得更高的电池转换效率,作为电池正面的钝化接触材料对太阳光来说应该是透明的。过渡金属氧化物由于具有较高的禁带宽度,光学吸收损失很低,比较适合作为电池的正面钝化接触材料,但是由于它对c-Si表面的钝化性能还有待进一步提高,使得目前基于过渡金属氧化物作正面的钝化接触材料的晶体硅太阳能电池的效率与HIT和TOPCon电池的效率还存在一定的差距。
由于氧化硅/多晶硅(SiOx/poly-Si)钝化接触的制备工艺与目前晶体硅电池的量产工艺兼容且具有高温稳定性等特点,因此,近年来TOPCon晶体硅太阳能电池已成为国内外大学、研究机构和企业的研究热点。但是,SiOx/poly-Si钝化接触的不足之处是多晶硅具有与晶体硅相似的带隙,当这种钝化结构应用于电池正面时,会产生较大的寄生光学吸收损耗。另外,为了产生良好的接触性能,多晶硅通常采用重掺杂,但这会产生相对较大的自由载流子吸收。
为了减少钝化接触材料在电池正面产生的寄生光学吸收和自由载流子吸收的损耗,氢化纳米晶硅(nc-Si:H)是替代非晶硅(a-Si:H)和多晶硅的候选材料。与它们相比,氢化纳米晶硅除了具有更高的透明度之外,还可以获得更高的掺杂效率和更低的接触电阻率,从而提高接触质量。为了进一步减少寄生光学吸收损失,氢化微晶氧化硅(μc-SiOx:H)比氢化纳米晶硅更具优势。氢化微晶氧化硅是一种宽带隙的两相材料,由非晶氧化硅和嵌入其中的硅纳米晶组成,可以在很宽的范围内调节其光学和电学性质。氢化微晶氧化硅可以取代高效薄膜硅太阳能电池中纯硅掺杂层,也可作为晶体硅异质结电池的窗口层。但是,氢化微晶氧化硅中的硅纳米晶是镶嵌在非晶氧化硅基质中,导致氢化微晶氧化硅具有较大的电阻率。如果把氢化微晶氧化硅中的部分非晶相的氧化硅经过高温退火变成纳米晶氧化硅,调控氧化硅基质的相分离以及硅纳米晶在其中的分布,从而达到改变其电导率的目的。
发明内容
本发明的目的是提供一种新型全钝化接触晶体硅太阳能电池及其制备方法。
为实现第一个发明目的,所采用的技术方案是这样的:一种新型全钝化接触晶体硅太阳能电池,包括晶体硅层,两侧各有一层超薄氧化硅钝化层,其特征在于:在其正面还有混合相硅氧化物/纳米晶硅层,反面还有本征氢化非晶硅、p 型氢化非晶硅层。
进一步地,其两侧外还均有ITO层和Ag电极。
为实现第二个发明目的,所采用的技术方案是这样的:一种新型全钝化接触晶体硅太阳能电池的制备方法,包括以下步骤:
1)硅片清洗及表面超薄氧化硅钝化层生长,将硅片浸泡在H2SiO4:H2O2=3:1 的溶液中,温度75℃,时间15min;
2)采用等离体子化学气相沉积(PECVD)法,在硅片的正面依次生长氢化微晶氧化硅、氢化纳米晶硅薄膜,再经过750~950℃高温退火处理,获得n型 mp-SiOx/nc-Si叠层钝化接触薄膜,即混合相硅氧化物/纳米晶硅层;
3)利用PECVD在硅片背面依次生长本征氢化非晶硅、p型氢化非晶硅;
4)利用磁控溅射法生长ITO透明导电薄膜和金属银电极。
本发明把低温生长的氢化微晶氧化硅/氢化纳米晶硅叠层经过高温退火处理,转变成混合相(mixed phases)硅氧化物/纳米晶硅(mp-SiOx/nc-Si)。mp-SiOx是一种三相材料,包含了非晶氧化硅、纳米晶氧化硅和硅纳米晶。这样,一方面可以抑制氢化纳米晶硅中氢化非晶硅孵化层的形成从而实现其高度晶化,提高掺杂效率以减少自由载流子吸收损失;另一方面可以增加氢化微晶氧化硅的电导率和光学透过率,以减少寄生光学吸收损失。本发明利用mp-SiOx/nc-Si替代TOPCon 电池的SiOx/poly-Si钝化接触结构中的poly-Si层作为电池正面钝化接触,采用本征氢化非晶硅(a-Si:H(i))与掺杂的a-Si:H叠层作为背面钝化接触,设计并制备了全钝化接触晶体硅太阳能电池,从而提高了钝化接触的晶体硅太阳能电池正面的电学和光学性能。
附图说明
以下结合附图和本发明的实施方式来作进一步详细说明
图1为本发明的电池结构示意图。
具体实施方式
参见附图。本实施例所述的太阳能电池,包括晶体硅层1,两侧各有一层超薄氧化硅钝化层2(1.4nm),在硅片的正面依次生长氢化微晶氧化硅层3(15nm)、氢化纳米晶硅层4(15nm),两者形成混合相硅氧化物/纳米晶硅层;反面还有本征氢化非晶硅5(10nm)、p型氢化非晶硅层6(10nm),其两侧外还均有ITO 层7和Ag电极8。
制备时:
1.硅片清洗及表面超薄氧化硅钝化层生长
首先对硅片进行清洗和超薄氧化层钝化,这可以降低硅片表面的杂质浓度,减少硅片表面与钝化层之间的界面缺陷态密度。硅片为双面抛光、(100)晶向、厚度为200μm、电阻率为1.0~2.0Ω.cm、磷掺杂的n型直拉单晶硅片。硅片清洗步骤如下:
a)利用水虎鱼溶液(H2SiO4:H2O2=3:1,温度75℃,时间15min)进行原生氧化层的去除和化学氧化层的生长;
b)氧化层去除(HF:HCl:H2O=1:1:15,2min);
c)氧化层生长(HCl:H2O2:H2O=1:1:4,15min);
d)氧化层去除(HF:H2O=1:50,30s);
e)为了减少氧化和污染,清洗后的硅片转移到真空盒中保存。
其次,利用湿法化学氧化法生长超薄氧化硅,对硅片正反两面进行钝化。为了与混合相硅氧化物(mp-SiOx)区别开来,标记为化学氧化硅(chem-SiOx)。利用把按上述步骤清洗好的硅片放入61~68wt%的HNO3溶液,温度为 110~120℃,时间为5~15min,生长厚度为1.4nm的chem-SiOx
2.mp-SiOx/nc-Si正面钝化接触薄膜制备
在正反两面已经生长了chem-SiOx的硅片上,采用等离体子化学气相沉积(PECVD)法,在硅片的正面依次生长氢化微晶氧化硅(15nm)、氢化纳米晶硅(15nm)薄膜,再经过750~950℃高温退火处理,获得n型mp-SiOx/nc-Si叠层钝化接触薄膜,具体工艺如下:
a)氢化微晶氧化硅薄膜生长:以SiH4、H2、CO2为生长气源,在混合气体中加入PH3作为n型掺杂剂。H2与SiH4质量流量比为100~200,CO2与 SiH4质量流量比0.5~2,PH3与SiH4质量流量比为0.001~0.01,生长温度200~250℃,生长气压200~500Pa,射频功率0.2~0.5W/cm2
b)氢化纳米晶硅薄膜生长:关闭CO2生长气源,其余的生长气源和工艺参数及其调节方法相同;
c)mp-SiOx/nc-Si薄膜形成:在氮气保护下进行高温退火,退火温度 750~950℃,时间60~120min。
3.非晶硅正面钝化接触薄膜制备
n型mp-SiOx/nc-Si叠层钝化接触薄膜生长完成以后,利用PECVD在硅片背面依次生长本征氢化非晶硅(a-Si:H(i),10nm)、p型氢化非晶硅(a-Si:H(p), 10nm),具体工艺如下:
a)本征氢化非晶硅薄膜生长:以SiH4、H2为生长气源,H2与SiH4质量流量比为4~6,生长温度200~230℃,生长气压50~90Pa,射频功率0.2~0.5 W/cm2
b)p型氢化非晶硅薄膜生长:以SiH4、H2为生长气源,在混合气体中加入三甲基硼烷(B(CH3)3,TMB)作为p型掺杂剂。H2与SiH4质量流量比为 8~16,TMB与SiH4质量流量比为10-4~10-3,生长温度200~230℃,生长气压50~90Pa,射频功率0.2~0.5W/cm2
4.ITO和Ag电极制备
利用磁控溅射法生长ITO透明导电薄膜和金属银电极,生长温度为200℃。首先,依次在硅片正反两面分别生长厚度80nm和150nm的ITO薄膜,然后利用掩膜板在正面ITO上溅射一层指叉状、厚度为500nm的Ag电极,随后在反面ITO上溅射厚度为500nm的Ag电极。
5.电池光电性能测试
标准测试条件(AM1.5,100mW/cm2,25℃)下,电池的开路电压为0.72 V,短路电流密度为32.5mA/cm2,填充因子为67.1%,光电转换效率为15.82%。目前制备的混合相硅氧化物/纳米晶硅正面钝化接触的新型晶体硅太阳能电池新的效率很低,是因为电池的各部分参数还有优化,比如混合相硅氧化物的光电性能、混合相硅氧化物/纳米晶硅的界面特性等需要进一步优化设计。尽管如此,本发明提出的全钝化接触晶体硅太阳能电池的设计思路,为实现制备工艺简单、生产成本低廉的高效晶体硅太阳能电池提供可借鉴的指导意义。

Claims (3)

1.一种新型全钝化接触晶体硅太阳能电池,包括晶体硅层,两侧各有一层超薄氧化硅钝化层,其特征在于:在其正面还有混合相硅氧化物/纳米晶硅层,反面还有本征氢化非晶硅、p型氢化非晶硅层。
2.如权利要求1所述的一种新型全钝化接触晶体硅太阳能电池,其特征在于:其两侧外还均有ITO层和Ag电极。
3.一种权利要求1或2所述太阳能电池的制备方法,其特征在于:包括以下步骤:
1)硅片清洗及表面超薄氧化硅钝化层生长,将硅片浸泡在H2SiO4:H2O2=3:1的溶液中,温度75℃,时间15min;
2)采用等离体子化学气相沉积(PECVD)法,在硅片的正面依次生长氢化微晶氧化硅、氢化纳米晶硅薄膜,再经过750~950℃高温退火处理,获得n型mp-SiOx/nc-Si叠层钝化接触薄膜,即混合相硅氧化物/纳米晶硅层;
3)利用PECVD在硅片背面依次生长本征氢化非晶硅、p型氢化非晶硅;
4)利用磁控溅射法生长ITO透明导电薄膜和金属银电极。
CN201910269192.9A 2019-04-04 2019-04-04 一种新型全钝化接触晶体硅太阳能电池及其制备方法 Pending CN110112226A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910269192.9A CN110112226A (zh) 2019-04-04 2019-04-04 一种新型全钝化接触晶体硅太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910269192.9A CN110112226A (zh) 2019-04-04 2019-04-04 一种新型全钝化接触晶体硅太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN110112226A true CN110112226A (zh) 2019-08-09

Family

ID=67484974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910269192.9A Pending CN110112226A (zh) 2019-04-04 2019-04-04 一种新型全钝化接触晶体硅太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN110112226A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257927A (zh) * 2021-05-18 2021-08-13 横店集团东磁股份有限公司 一种perc电池背钝化结构、perc电池及制备方法
CN113345969A (zh) * 2021-04-28 2021-09-03 中国科学院宁波材料技术与工程研究所 钝化接触结构及其制备方法和应用
CN113488555A (zh) * 2021-07-06 2021-10-08 安徽华晟新能源科技有限公司 异质结电池及制备方法、太阳能电池组件
CN114078987A (zh) * 2020-08-18 2022-02-22 泰州中来光电科技有限公司 钝化接触电池及制备方法和钝化接触结构制备方法及装置
CN114649425A (zh) * 2022-05-20 2022-06-21 正泰新能科技有限公司 一种TopCon晶硅太阳能电池及其制备方法
CN115101626A (zh) * 2022-06-29 2022-09-23 韩华新能源(启东)有限公司 Topcon太阳能电池背面结构制备方法及电池
WO2023274784A1 (de) * 2021-07-02 2023-01-05 Singulus Technologies Ag Verfahren zur herstellung eines ausgangsmaterials für eine siliziumsolarzelle mit passivierten kontakten

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364692A (zh) * 2011-06-30 2012-02-29 常州天合光能有限公司 双面受光的全钝化结构晶体硅太阳能电池及其制作方法
CN103383975A (zh) * 2013-06-20 2013-11-06 国电光伏有限公司 一种双面钝化高效异质结电池及其制作方法
CN104319306A (zh) * 2014-11-03 2015-01-28 云南师范大学 一种高效叠层薄膜太阳电池及其制备方法
CN107275418A (zh) * 2017-07-07 2017-10-20 常州亿晶光电科技有限公司 单面polo电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364692A (zh) * 2011-06-30 2012-02-29 常州天合光能有限公司 双面受光的全钝化结构晶体硅太阳能电池及其制作方法
CN103383975A (zh) * 2013-06-20 2013-11-06 国电光伏有限公司 一种双面钝化高效异质结电池及其制作方法
CN104319306A (zh) * 2014-11-03 2015-01-28 云南师范大学 一种高效叠层薄膜太阳电池及其制备方法
CN107275418A (zh) * 2017-07-07 2017-10-20 常州亿晶光电科技有限公司 单面polo电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STUCKELBERGER, JOSUA1等: "Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114078987A (zh) * 2020-08-18 2022-02-22 泰州中来光电科技有限公司 钝化接触电池及制备方法和钝化接触结构制备方法及装置
CN113345969A (zh) * 2021-04-28 2021-09-03 中国科学院宁波材料技术与工程研究所 钝化接触结构及其制备方法和应用
CN113345969B (zh) * 2021-04-28 2024-05-14 中科研和(宁波)科技有限公司 钝化接触结构及其制备方法和应用
CN113257927A (zh) * 2021-05-18 2021-08-13 横店集团东磁股份有限公司 一种perc电池背钝化结构、perc电池及制备方法
WO2023274784A1 (de) * 2021-07-02 2023-01-05 Singulus Technologies Ag Verfahren zur herstellung eines ausgangsmaterials für eine siliziumsolarzelle mit passivierten kontakten
CN113488555A (zh) * 2021-07-06 2021-10-08 安徽华晟新能源科技有限公司 异质结电池及制备方法、太阳能电池组件
CN114649425A (zh) * 2022-05-20 2022-06-21 正泰新能科技有限公司 一种TopCon晶硅太阳能电池及其制备方法
CN115101626A (zh) * 2022-06-29 2022-09-23 韩华新能源(启东)有限公司 Topcon太阳能电池背面结构制备方法及电池

Similar Documents

Publication Publication Date Title
CN110112226A (zh) 一种新型全钝化接触晶体硅太阳能电池及其制备方法
US7847180B2 (en) Nanostructure and photovoltaic cell implementing same
CN107564989A (zh) 一种钙钛矿/硅异质结叠层太阳电池中隧穿结的结构设计
CN108336154A (zh) 晶体硅太阳能电池及其制备方法
CN107369767A (zh) 一种钙钛矿/硅异质结两端叠层太阳电池
Liu et al. Recent progress in developing monolithic perovskite/Si tandem solar cells
CN103346214B (zh) 一种硅基径向同质异质结太阳电池及其制备方法
CN102064210A (zh) 具有同质结和异质结的硅基双结太阳电池及其制备方法
CN102148280A (zh) 一种新型硅基底异质结太阳电池
CN102110734A (zh) 一种纳米硅/晶体硅异质结光伏电池
CN104916785A (zh) 一种CH3NH3PbI3薄膜太阳能电池制备方法
CN104332522B (zh) 一种石墨烯双结太阳能电池及其制备方法
CN108922937A (zh) Hit太阳电池的硼掺杂发射极结构与制备方法
Chowdhury et al. Analysis of passivation property using thin Al2O3 layer and simulation for realization of high-efficiency TOPCon cell
CN103219413A (zh) 一种石墨烯径向异质结太阳能电池及其制备方法
Shen et al. Highlights of mainstream solar cell efficiencies in 2022
CN111987183B (zh) 一种基于双极性SnOX的晶硅太阳电池
CN208722902U (zh) 一种背接触异质结太阳能电池
CN201699034U (zh) 一种硅基异质结太阳电池
CN103367480B (zh) GaAs隧道结及其制备方法
CN102544184B (zh) 一种横向结构的pin太阳能电池及其制备方法
CN109037392A (zh) 一种石墨烯/硅结构太阳能电池的生产工艺
CN202111140U (zh) 具有同质结和异质结的硅基双结太阳电池
CN103066153A (zh) 硅基薄膜叠层太阳能电池及其制造方法
CN101656274B (zh) 提高非晶硅薄膜太阳能电池开路电压的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190809

WD01 Invention patent application deemed withdrawn after publication