JP5899911B2 - 印刷装置 - Google Patents

印刷装置 Download PDF

Info

Publication number
JP5899911B2
JP5899911B2 JP2011284057A JP2011284057A JP5899911B2 JP 5899911 B2 JP5899911 B2 JP 5899911B2 JP 2011284057 A JP2011284057 A JP 2011284057A JP 2011284057 A JP2011284057 A JP 2011284057A JP 5899911 B2 JP5899911 B2 JP 5899911B2
Authority
JP
Japan
Prior art keywords
battery
voltage value
dot
voltage
dots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011284057A
Other languages
English (en)
Other versions
JP2013132802A (ja
Inventor
将司 谷崎
将司 谷崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2011284057A priority Critical patent/JP5899911B2/ja
Publication of JP2013132802A publication Critical patent/JP2013132802A/ja
Application granted granted Critical
Publication of JP5899911B2 publication Critical patent/JP5899911B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Printers Characterized By Their Purpose (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Electronic Switches (AREA)

Description

本発明は、電池により駆動される印刷装置に関する。
従来、例えば使用者が手軽に使用できるように、電池を用いて動作する電子機器(例えば印刷装置等)が既に提唱されている。このような電子機器において、複数種類の電池が適宜交換して用いられる場合がある。その場合、電池の種別によって公称電圧が異なるので、電子機器の円滑な動作のためには、使用される電池に応じた動作設定を行う必要がある。操作者がその都度手動にて電池種別を入力する場合、操作負担が煩わしく、また誤入力の可能性もある。また、電池は、使用が繰り返されることによって消耗し、内部抵抗が大きくなる。したがって、電子機器側で自動的に電池の状態(電池の種別や電池が消耗したかどうか)等を見分けることが好ましい。
上記の点に着目した従来技術として、例えば特許文献1に記載の技術がある。この従来技術はカメラに関する技術であり、無負荷時と、いわゆる半押し操作によって測光等の動作が行われる小負荷時との、両方の状態での電池電圧が検出される。そしてそれら2つの電池電圧の偏差(電圧降下値)と、所定のしきい値との比較により、そのとき装着されている電池の状態(この例では種別)が判定される。
特開平11−194157号公報
しかしながら、上記従来技術においては、無負荷時の電池の出力電圧値と小負荷時の電池の出力電圧値との2つの電圧値のみによって電圧降下量を算出し、この電圧降下量によって電池の状態の判定を行っている。したがって、電池の状態を高精度に判定することができなかった。
本発明の目的は、高精度に電池状態の判定を行える、印刷装置を提供することにある。
上記目的を達成するために、本願発明は、被印刷物を搬送する搬送手段と、前記被印刷物を前記搬送方向に印字解像度に区分してなる各印字ライン上にドットをそれぞれ形成する複数の発熱素子を備えるサーマルヘッドと、を有し、前記搬送手段が搬送する前記被印刷物に対し、前記サーマルヘッドが印字データに対応した印字を形成し、印刷物を生成する印刷装置であって、前記印字データに応じて、前記サーマルヘッドの前記複数の発熱素子を選択的に通電する通電手段と、前記搬送手段の駆動を制御する駆動手段と、前記通電手段及び前記駆動手段に電力を供給する電池を収納する電池収納部と、前記電池の出力電圧値を検出可能な電圧検出手段と、前記搬送手段及び前記サーマルヘッドの協働による1つの前記印刷物の生成動作中の所望のタイミングにおける、前記通電手段により同時に通電される前記複数の発熱素子の数であるドット数を特定するドット数特定手段と、前記所望のタイミングにおいて前記電圧検出手段が検出した前記出力電圧値と、当該所望のタイミングにおいて前記ドット数特定手段により特定された前記ドット数とを用いた除算処理により、ドットあたりの電圧変動値を算出するドット電圧変動値算出手段と、前記ドット電圧変動値算出手段により算出された前記ドットあたりの電圧変動値に基づき、前記電池の状態を判定する電池状態判定手段と、を有し、前記ドット数特定手段は、前記1つの印刷物の生成動作中の所定の時間範囲において、相対的に多いドット数を与える第1タイミングと相対的に少ないドット数を与える第2タイミングにおける、前記ドット数をそれぞれ特定し、前記ドット電圧変動値算出手段は、前記第1タイミングにおける前記出力電圧値と前記第2タイミングにおける前記出力電圧値との偏差を、前記第1タイミングにおける前記ドット数と前記第2タイミングにおける前記ドット数との偏差で除算することにより、前記ドットあたりの電圧変動値を算出し、前記印刷装置は、さらに、前記ドット電圧変動値算出手段により算出された前記ドットあたりの電圧変動値に基づき、前記通電手段及び前記駆動手段への電力供給のない無負荷相当時における、当該電池の電圧値を推定する無負荷電圧推定手段を有し、前記電池状態判定手段は、前記無負荷電圧推定手段で推定された前記無負荷相当時における電圧値と予め定められた種別判定用しきい値との比較結果により、当該電池の種別を判定する種別判定手段を含むことを特徴とする。
本願発明においては、搬送手段により搬送される被印刷物に対して、サーマルヘッドの複数の発熱素子によりドットが形成されることで、印字データに対応した印字が形成され、これによって印刷物が生成される。発熱素子は通電手段によって通電されることで上記印字形成を行い、搬送手段は駆動手段によって駆動されることで上記搬送を行う。それら通電手段及び駆動手段への電力供給は、電池収納部に収納された電池によって行われる。
ここで、本願発明においては、電圧検出手段が設けられ、上記電池の出力端子の電圧値が検出される。上述のようにして1つの印刷物が生成されるとき、その生成動作中において、出力端子の電圧値は変化する。すなわち、搬送手段により搬送されつつサーマルヘッドの複数の発熱素子が通電されて被印刷物に印字が行われるとき、印字データに対応し通電される発熱素子の数が多いタイミング(言い換えれば形成されるドット数が多い)では負荷が比較的大きくなるので、電池の出力電圧値は低くなる。逆に通電される発熱素子の数が少ない(言い換えれば形成されるドット数が少ない)タイミングでは負荷が小さくなるので、電池の出力電圧値は高くなる。このドット数の大小による出力電圧値の変動の度合い(すなわちドットあたりの出力電圧変動値)は、電池の種別や電池の消耗度によってそれぞれ異なる。
そこで、本願発明においては、ドット数特定手段と、ドット電圧変動値算出手段と、電池状態判定手段と、を設ける。ドット数特定手段が1つの印刷物の生成動作中の所望のタイミングにおける上記ドット数を特定すると、ドット電圧変動値算出手段がそのタイミングにおける上記出力電圧値に対し上記ドット数を用いた除算処理を行い、これによってドットあたりの電圧変動値が算出される。そして、この算出されたドットあたりの電圧変動値に基づき、電池状態判定手段が、電池の状態、すなわち種別や消耗度等を判定する。
以上のようにして、本願発明においては、比較的大きな負荷が加わる実際の印刷物生成時における出力電圧値の変動の度合い(ドットあたりの出力電圧変動値)を用いて、電池の状態を判定する。これにより、小負荷時の出力電圧値と無負荷時の出力電圧値との2つの電圧値のみによって電池の状態を判定する場合に比べ、高精度に判定を行うことができる。
本発明によれば、高精度に電池状態の判定を行うことができる。
本発明の一実施形態による印字ラベル作成装置を斜め上方向から見た外観を表す斜視図である。 下カバーを開放した状態の印字ラベル作成装置を斜め下方向から見た外観を表す斜視図である。 カートリッジの内部構造を模式的に表す拡大平面図である。 印字ラベル作成装置の制御系を表す機能ブロック図である。 1枚の印字ラベルを作成するときの電池電圧の変動例を説明する概念的説明図である。 アルカリマンガン電池及びニッケル水素電池における、通電ドット数に対する出力電圧値の変動挙動を示す図である。 アルカリマンガン電池における、通電ドット数に対する出力電圧値の変動挙動を示す図である。 ニッケル水素電池における、通電ドット数に対する出力電圧値の変動挙動を示す図である。 液晶表示部による充電式電池の消耗状況の表示例を表す図である。 CPUによって実行される制御手順を表すフローチャートである。 CPUによって実行される制御手順を表すフローチャートである。 アルカリマンガン電池及びニッケル水素電池における、最大限電圧値、最小限電圧値、及び2つの消耗度判定用しきい値、の各数値例を表す表である。
以下、本発明の一実施の形態を図面を参照しつつ説明する。本実施形態は、本発明を、印刷装置としての印字ラベル作成装置に適用したものである。この印字ラベル作成装置は、所望の印字を行った印字済みラベル用テープを所定の長さに切断することにより、印刷物としての印字ラベル(後述の図5参照)を作成する。
<印字ラベル作成装置の概略構成>
まず、この印字ラベル作成装置の概略構成について図1〜図3を用いて説明する。なお、本実施形態において印字ラベル作成装置の前・後・左・右・上・下というときは、図1及び図2等に示す方向を指す。
図1及び図2に示すように、印字ラベル作成装置1の筐体2は、装置下面を構成する下カバー15と、装置側面を構成する横カバー16と、装置上面を構成する上カバー17とにより構成されている。上カバー17には、前方側から後方側に向けて、文字入力等の種々の操作が行われるキーボード3と、電源スイッチや印刷キー等の印字ラベル作成装置1の各種機能を実行させるための機能キー群4と、入力した文字や記号等を表示するための液晶ディスプレイ5(表示手段)と、が設けられている。また横カバー16の右側後方には、印刷された印刷済ラベル用テープ109(図3参照)をカットするためのカッターレバー7が設けられている。
印字ラベル作成装置1の下側後方には、カートリッジ8を着脱可能なカートリッジホルダ9が設けられている。このカートリッジホルダ9は、印字ラベル作成装置1の前端部を回転軸として開閉可能に構成された上記下カバー15を閉じると覆われ、下カバー15を開放すると露出する。
カートリッジ8は、図3に示すように、筐体8Aと、この筐体8A内に配置され帯状の基材テープ101が巻回された第1ロール102(実際は渦巻き状であるが、図では簡略的に同心円状に示す)と、上記基材テープ101と略同じ幅である透明なカバーフィルム103(被印刷物)が巻回された第2ロール104(実際は渦巻き状であるが、図では簡略的に同心円状に示す)と、インクリボン105(熱転写リボン、但し被印字テープが感熱テープの場合は不要)を繰り出すリボン供給側ロール111と、印字後のリボン105を巻取るリボン巻取りローラ106と、カートリッジ8のテープ排出部の近傍に回転可能に支持されたテープ送りローラ27とを有する。
テープ送りローラ27は、上記基材テープ101と上記カバーフィルム103とを押圧し接着させ上記印字済みラベル用テープ109としつつ、図3中矢印Aで示す方向にテープ送りを行う(圧着ローラとしても機能する)。
第1ロール102は、リール部材102aの周りに上記基材テープ101を巻回している。基材テープ101はこの例では4層構造となっており、詳細な図示を省略するが、第1ロール102の内側に巻かれる側よりその反対側へ向かって、適宜の粘着剤からなる貼り合わせ用粘着層、PET(ポリエチレンテレフタラート)等から成る色付きのベースフィルム、適宜の粘着剤からなる貼り付け用粘着層、剥離紙の順序で積層され構成されている。
第2ロール104は、リール部材104aの周りに上記カバーフィルム103を巻回している。第2ロール104より繰り出されるカバーフィルム103の裏面に、インクリボン105がサーマルヘッド23に押圧されて当接させられる。
このとき、上記のカートリッジ8の構成に対応して、カートリッジホルダ9には、上記使用済みのインクリボン105を巻き取るためのリボン巻き取り軸107と、印字済みラベル用テープ109を搬送するためのテープ送りローラ27(図3参照)を駆動するためのテープ送りローラ駆動軸108(搬送手段)と、が設けられている。またカートリッジホルダ9には、カバーフィルム103に所望の印刷を行うサーマルヘッド23が、カートリッジ8の装着時にその開口部14に位置するように設けられている。
リボン巻取りローラ106及びテープ送りローラ27は、それぞれカートリッジ8外に設けた例えばパルスモータである駆動モータ211(後述の図4参照)の駆動力が、図示しないギヤ機構を介し上記リボン巻取りローラ駆動軸107及び上記テープ送りローラ駆動軸108に伝達されることによって連動して回転駆動される。
上記構成において、カートリッジ8が上記カートリッジホルダ9に装着されロールホルダがリリース位置から印字位置に移動されると、カバーフィルム103及びインクリボン105が、上記サーマルヘッド23と、このサーマルヘッド23に対向して設けたプラテンローラ26との間に狭持される。これとともに、基材テープ101及びカバーフィルム103が、テープ送りローラ27と、テープ送りローラ27に対向して設けた圧着ローラ28との間に狭持される。そして、上記駆動モータの駆動力によってリボン巻取りローラ106及びテープ送りローラ27が図3中矢印B及び矢印Cで示す方向にそれぞれ同期して回転駆動される。このとき、前述のテープ送りローラ駆動軸108と上記圧着ローラ28及びプラテンローラ26はギヤ機構(図示せず)にて連結されており、テープ送りローラ駆動軸108の駆動に伴いテープ送りローラ27、圧着ローラ28及びプラテンローラ26が回転し、第1ロール102から基材テープ101が繰り出され、上述のようにテープ送りローラ27へ供給される。一方、第2ロール104からはカバーフィルム103が繰り出されるとともに、サーマルヘッド制御回路217(後述の図4参照)によりサーマルヘッド23に設けられた複数の発熱素子が所望の印字内容の印字データに対応して選択的に通電され、発熱する。このとき、カバーフィルム103の裏面側(すなわち上記基材テープと接着される側)には、リボン巻取りローラ106により駆動されるインクリボン105が、上記印字ヘッド23に押圧されて当接させられる。これにより、カバーフィルム103の裏面において、当該カバーフィルム103を搬送方向に印字解像度に区分してなる各印字ライン上にドットがそれぞれ形成され、上記印字データに対応した印字が印刷される。そして、上記基材テープ101と上記印刷が終了したカバーフィルム103とが、上記テープ送りローラ27及び圧着ローラ28の押圧により上記貼り合わせ用粘着層により接着されて一体化される。この貼り合わせにより形成された印字済みラベル用テープ109は、カートリッジ8外へと排出される。カバーフィルム103への印字が終了したインクリボン105は、リボン巻取りローラ駆動軸107の駆動によりリボン巻取りローラ106に巻き取られる。
カートリッジ8外へ排出された印字済みラベル用テープ109の搬送経路の下流側には、固定刃40と可動刃41を備えた切断機構42が設けられている。上記カッターレバー7が操作されることにより可動刃41が動作し、上記印字済みラベル用テープ109が切断され、印字ラベルL(後述の図5参照)が生成される。
なお、図3中に二点鎖線で示すように、上記切断機構42に加え、上記印字済みラベル用テープを厚さ方向に部分的に切断するハーフカッタ43を設けてもよい。ハーフカッタ43は、例えば、前述の例でカバーフィルム103、貼り合わせ用粘着層、ベースフィルム、貼り付け用粘着層、剥離紙の5層構造の印字済みラベル用テープ109のうち、剥離紙以外のすべての層、すなわち、カバーフィルム103、貼り合わせ用粘着層、ベースフィルム、貼り付け用粘着層を切断する。
なお、図2に示すように、印字ラベル作成装置1の下側後方には、カートリッジホルダ9に隣接して、例えばアルカリマンガン電池またはニッケル水素電池等の、外形が同一で公称電圧が異なる各種の電池BT(後述の図4参照)を複数個収納可能な電池収納部70が設けられている。なお、図2中、符号60は、外部電源としてのACアダプタ220(後述の図4参照)の出力プラグが接続されるDCジャックである。
<制御系>
次に、図4を用いて、印字ラベル作成装置1の制御系について説明する。
図4において、印字ラベル作成装置1は、所定の演算を行う演算部を構成するCPU212を有している。
CPU212は、ACアダプタ220に接続され印字ラベル作成装置1の電源のオン・オフ処理を行う電源回路215と、上記テープ送りローラ駆動軸108を駆動する駆動モータ211の駆動制御を行うモータ駆動回路216(駆動手段)と、上記サーマルヘッド23の発熱素子の通電制御を行うサーマルヘッド制御回路217(通電手段)とに接続されている。
このとき、CPU212には、電池BTの出力電圧値を測定(検出)するためのA/D入力回路219(電圧検出手段)が設けられている。このA/D入力回路219には、上記電池収納部70に収納された電池BTのプラス側出力端子が接続されている。電池BTのマイナス側出力端子は電位の基準となるアース(0V)に接続されている。
さらに、CPU212には、上記液晶ディスプレイ5と、ROM214(記憶手段)と、RAM213とが接続されている。また、ROM214には、電池BTの種別や消耗状況の判定手順(後述の図10、図11に示す各手順)を実行するための制御プログラムが記憶されている。なお、RAM213(又はROM214でも良い)は、電池BTの種別を判定するために予め定められた少なくとも1つの種別判定用しきい値(詳細は後述)や、電池BTの消耗状況を判定するために使用する消耗度判定用しきい値(詳細は後述)等が記憶されている。CPU212は、上記RAM213の一時記憶機能を利用しつつ、上記ROM214に予め記憶されたプログラムに従って信号処理を行い、それによって印字ラベル作成装置1全体の制御を行う。
<本実施形態の特徴>
以上の基本構成において、本実施形態の特徴は、電池BTの出力電圧値の挙動により、電池BTの種類や消耗度を検出することにある。以下、順を追って本実施形態の上記検出手法について説明する。
<電池の種別及び消耗度判定の必要性>
すなわち、前述の電池収納部70において複数種類の電池BTが適宜交換して用いられる場合がある。その場合、電池BTの種別によって公称電圧と放電特性が異なるので、印字ラベル作成装置1の円滑な動作のためには、使用される電池BTに応じた動作設定を行う必要がある。操作者がその都度手動にて電池BTの種別を入力する場合、操作負担が煩わしく、また誤入力の可能性もある。また、電池BTは、使用が繰り返されることによって消耗し、内部抵抗が大きくなる。したがって、印字ラベル作成装置1側で自動的に電池BTの種別や電池BTが消耗したかどうかを見分けることが好ましい。
ここで、電池BTを駆動源として動作する本実施形態の印字ラベル作成装置1においては、1つの印字ラベルLの生成動作中において、電池BTの出力電圧値が変化する。本実施形態においては、電池BTの出力端子の電圧値Vは、上記A/D入力回路219によって検出される。そして、この電池BTの出力電圧値の変動を利用して、上記電池BTの種別及び消耗度)の判定が行われる。その手法原理を図5〜図8を用いて説明する。
<本実施形態の手法原理>
図5に、前述のようにしてカバーフィルム103に印字が形成されて印字ラベルLが作成される場合の上記出力電圧値の変動の一例を示す。図5において、上記テープ送りローラ駆動軸108によるテープ搬送もサーマルヘッド23による印字も行われない状態(スタンバイ状態)では、電池BTの出力電圧は比較的高い電圧Vstとなる。印字ラベルLの作成が開始されると、まずテープ送りローラ駆動軸108が駆動されてカバーフィルム103等のテープ搬送が行われる(フィード状態)。この搬送負荷によって、電池BTの出力電圧はやや下がった電圧Vfとなる。この状態は、印字ラベルL作成時に所望の印字R(この例では「CAT」)を形成する領域として設定される印字領域Sのうち、実際にサーマルヘッド23の複数の発熱素子が通電され印字が開始されるより前の領域(前余白)に当該サーマルヘッド23が対向している間は、継続される。
そして、さらに搬送が進むと、サーマルヘッド23の複数の発熱素子が通電され、ドットが形成されることで印字データに対応した所望の図像や文字の印字が開始される。この例では、上述のように、まずテキストのアルファベット文字「C」が印字され、文字間余白を経てからテキストのアルファベット文字「A」が印字され、さらに文字間余白を経てからテキストのアルファベット文字「T」が印字される。このように図像や文字の印字が行われるときの印字時の電池BTの出力電圧値Vは、印字する文字の態様に対応して変動する。すなわち、搬送方向に直交する方向(図5中上下方向)に沿って複数配列された発熱素子のうち通電される発熱素子に相当するドット数Dが多いタイミングでは比較的に負荷が大きくなるので、印字時の電池BTの出力電圧値Vは比較的低くなる。逆に、ドット数Dが少ないタイミングでは負荷が小さくなるので、印字時の電池BTの出力電圧値Vは比較的高くなる。このドット数Dの大小による出力電圧値Vの変動の度合い、すなわちドットあたりの出力電圧値Vの変動値は、電池BTの種類や電池BTの消耗度によってそれぞれ異なる。このことを図6〜図8により説明する。
<出力電圧値変動の例>
ここで、上記ドットあたりの電圧変動値は、サーマルヘッド23で通電されるドット数Dと、電池BTの出力電圧値Vとの、線形的な相関により表すことができる。
<アルカリマンガン電池の挙動例>
例えば、横軸(D軸)に上記ドット数D、縦軸(V軸)に上記出力電圧値Vをとって表す図6において、1個の公称電圧が1.5[V]であるアルカリマンガン電池(新品)を6個使用(=合計9.0[V])した場合の上記電圧変動特性は、上記線形相関をV=aD+bで表したときにおけるa=−0.0175、b=8.875、すなわち、
V=−0.0175D+8.875 ・・直線(1)
によって表すことができる。
一方、新品(未使用品)において上記のような特性を示すアルカリマンガン電池が使用によって消耗すると、内部抵抗の増大によって出力電圧値Vが急激に低下する(言い換えれば上記aの値の絶対値が増大し、右下がり度合いが増大する)特性となる。図6に示す、消耗したアルカリマンガン電池の例では、a=−0.0525、b=8.725、すなわち、
V=−0.0525D+8.725 ・・直線(2)
となる。
このとき、図6において上記2つの直線(1)(2)が交わる点の電圧値Vsが、アルカリマンガン電池の起電力E1である、上記公称電圧1.5×6=9[V]に相当している。なお、この交点の横軸上の位置は、上記通電ドット数D=0となる位置から、上記CPU212等の制御回路のために消費する電力や上記駆動モータ211のために消費する電力分(この例ではサーマルヘッド23の発熱素子に換算して6ドット相当)を差し引いた、D=−αとなる位置となる。言い換えれば、この位置は、モータ駆動回路216やサーマルヘッド制御回路217への電力供給がない無負荷相当時(後述)に相当している。
したがって、上記印字ラベル作成装置1の電池収納部70に収納された電池BTの種別が不明であった場合に、当該電池BTを用いて印字ラベルLを作成するとき、上記ドット数D及び出力電圧値Vの組み合わせを実際に2点取得し、その2点をプロットして結んで得られる直線を左側に延ばして、上記交点(D=−α)近くの電圧値Vが9.0[V]近傍であれば、当該電池BTはアルカリマンガン電池である、と判定することができる。
<ニッケル水素電池の挙動例>
また、図6において、1個の公称電圧が1.2[V]であるニッケル水素電池(満充電品)を6個使用(=合計7.2[V])した場合の上記電圧変動特性は、上記同様に線形相関をV=aD+bで表したときにおけるa=−0.01、b=7.200、すなわち、
V=−0.01D+7.200 ・・直線(3)
によって表すことができる。
一方、満充電品において上記のような特性を示すニッケル水素電池が使用によって消耗すると、上記同様に内部抵抗の増大によって出力電圧値Vが急激に低下する特性となる。図6に示す、消耗したニッケル水素電池の例では、a=−0.0175、b=7.075、すなわち、
V=−0.0175D+7.075 ・・直線(4)
となる。
そしてこのとき、上記同様、図6において上記2つの直線(3)(4)が交わる点の電圧値Vsが、ニッケル水素電池の起電力E2である、上記公称電圧1.2×6=7.2[V]に相当している。
したがって、前述と同様、電池収納部70に収納された電池BTの種別が不明であった場合に、当該電池BTを用いて印字ラベルLを作成するとき、上記ドット数D及び出力電圧値Vの組み合わせの2点をプロットして結んで得られる直線を左側に延ばし、上記交点近くのV座標の値が7.2[V]近傍であれば、当該電池BTはニッケル水素電池である、と判定することができる。
<2点プロットによる直線の画定>
図5に戻り、上記図6において直線生成のためにプロットする2点(ドット数D及び出力電圧値Vの2つの組み合わせ)を得るために、本実施形態では、1つの印字ラベルLの生成動作中において、所定の時間範囲(この例ではテキスト1文字の半分に相当する32ラインの範囲)内における出力電圧値Vの最大変動幅△V=Vmax−Vminが順次検出される。すなわち、図5に示す例では、印字ラベルLの生成動作に伴い、上記32ラインの範囲LSが経時的に図示右方向に向かって移動しつつ設定され、各タイミングにおいて、当該範囲LS内のドット数Dの大小に対応した出力電圧値Vの最大電圧値Vmax及び最小電圧値Vminが検出される。それら最大電圧値Vmax及び最小電圧値Vminを用いて、上記最大変動幅△V=Vmax−Vminが常時算出される。
そして、本実施形態においては、1つの印字ラベルLの生成が完了したとき、それまでに上記範囲LSの移動により順次算出された上記最大変動幅△Vの最大値が得られたときの、ドット数D及び出力電圧値Vの組み合わせが用いられる。この例では、テキストのアルファベット文字「T」を印字形成するタイミングの前後の上記範囲LSにおいて検出された上記△Vが採用される。すなわち、上記範囲LSにおける、相対的に少ないドット数Dmin=10[ドット]を与えるとき(第2タイミング)の最大電圧値Vmax=8.2[V]と、相対的に多いドット数Dmax=50[ドット]を与えるとき(第1タイミング)における最小電圧値Vmin=6.1[V]と、の差である、上記最大変動幅△V=Vmax−Vmin=2.1[V]が、上記最大変動幅△Vの最大値として特定される。
<種別判定>
そして、このときの上記最大変動幅△Vを与える、ドット数Dmax=50[ドット]及び最大電圧値Vmax=8.2[V]と、ドット数Dmin=10[ドット]及び最小電圧値Vmin=6.1[V]とが、RAM213に保存される。図6において、上記Dmin=10及びVmax=8.2となる位置は点Pであり、上記Dmax=50及びVmin=6.1となる位置は点Qであり、これらを結んだ直線PQは、上記直線(1)及び直線(2)の交点付近を通る。したがって、図5に示す挙動を示す電池BTの種別は、アルカリマンガン電池である、と判定される。
上記の判定の実際の演算としては、CPU212が、1つの印字ラベルLの生成動作中の上記第1タイミング及び上記第2タイミングにおける出力電圧値Vの偏差△V=2.1[V]を上記2つのタイミングにおけるドット数Dの偏差D(Dmax−Dmin=40ドット)で除算し、ドットあたりの電圧変動値(−0.0525[V/ドット])を算出する。これにより、上記V=aD+bにおけるa=−0.0525と決まり、線形相関が
V=−0.0525D+b
となることから、D=−αを代入することで、対応する出力電圧値Vの値を得ることができ、このVが9[V]近くの所定範囲となるかどうかで、アルカリマンガン電池であるか否かを判定することができる。
なお、前述のようにしてプロットした2点が例えば図6中の点U及び点Wであった場合、これらを結んだ直線UWは、上記直線(3)及び直線(4)の交点付近を通る。したがって、このような挙動を示す電池BTの種別は、ニッケル水素電池である、と判定される。実際の演算としては、上記同様、CPU212が、1つの印字ラベルLの生成動作中の上記第1タイミング及び上記第2タイミングにおける出力電圧値Vの偏差△Vを上記2つのタイミングにおけるドット数Dの偏差Dで除算し、ドットあたりの電圧変動値を算出し上記V=aD+bにおけるaを決める。そして、D=−αを代入することで得た出力電圧値Vの値が7.2[V]近くの所定範囲となるかどうかで、ニッケル水素電池であるか否かを判定することができる。
本実施形態では、上記に基づき、電池BTがアルカリマンガン電池であるかニッケル水素電池であるかを判定するために、上記出力電圧値9[V]及び7.2[V]に関連して3つのしきい値Th1,Th2,Th3(種別判定用しきい値)を設けている。具体的には、この例では、上記しきい値Th1=9.5[V]、上記しきい値Th2=8[V]、上記しきい値Th3=6.5[V]に設定されている。これらの値は、いずれもROM214(又は別途設けたEEPROM等でも良い)に記憶されている。
<消耗度判定>
上記したように、電池BTは、新品(満充電品)の状態から消耗が進むにつれて、上記線形相関V=aD+bにおけるa(負の値)の絶対値が増大し、右下がり度合いが増大していく。本実施形態では、上述のようにして電池BTの種別を判定した後(あるいは、もともと電池BTの種別はわかっている場合でも適用できる)、このような挙動を利用して、当該電池BTの消耗度を判定することができる。
<アルカリマンガン電池の消耗判定>
すなわち、上記アルカリマンガン電池の場合、図7に示すように、上記
V=−0.0175D+8.875 ・・直線(1)
で表される新品(未使用品)の最大負荷相当時(本実施形態では一例として前述のドット数D=64[ドット]の場合を想定)における電圧値Vtは、図7中のVA(最大限電圧値)となる。一方、上記
V=−0.0525D+8.725 ・・直線(2)
で表される消耗品の上記最大負荷相当時における電圧値Vtは、図7中のVB(最小限電圧値)となる。
前述したように、電池BTは、消耗が進むにつれて右下がり度合いが増大する挙動となる。したがって、上記印字ラベル作成装置1の電池収納部70に収納された電池BTを用いて印字ラベルLを作成するとき、上記ドット数D及び出力電圧値Vの組み合わせを実際に2点取得し、その2点をプロットして結んで得られる直線を右側に延ばして、上記最大負荷相当時(D=64)の出力電圧値Vtが、上記VA近傍であれば、当該電池BTの消耗度は低い(新品に近い)と判定することができ、上記VB近傍であれば、当該電池BTの消耗度が高いと判定することができる。本実施形態では、消耗度を後述のように3段階に評価して表示するために、上記VAとVBとの間の区間を3等分するように2つのしきい値Th4,Th5(消耗度判定用しきい値)を設け、当該区間を
VA ≧ Vt > Th4 ・・ アルカリ第1区間
Th4≧ Vt ≧ Th5 ・・ アルカリ第2区間
Th5> Vt ≧ VB ・・ アルカリ第3区間
の3つに区分している。具体的には、この例では、上記電圧値VAは、例えば7.75[V]に設定されており、上記電圧値VBは、少なくとも所定の印字品質で1つの印字ラベルLを生成可能なように、例えば5.50[V]に設定されている。また、上記しきい値Th4=7.00[V]、上記しきい値Th5=6.25[V]に設定されている。これらVA,VB,Th4,Th5の値は、いずれもROM214(又は別途設けたEEPROM等でも良い)に記憶されている。
<ニッケル水素電池の消耗判定>
一方、上記ニッケル水素電池の場合、図8に示すように、上記
V=−0.01D+7.200 ・・直線(3)
で表される満充電品の最大負荷相当時(上記同様、ドット数D=64[ドット]の場合を想定)における電圧値Vtは、図8中のVA(最大限電圧値)となる。一方、上記
V=−0.0175D+7.075 ・・直線(4)
で表される消耗品の上記最大負荷相当時における電圧値Vtは、図8中のVB(最小限電圧値)となる。
前述と同様、電池BTを用いて印字ラベルLを作成するとき、上記ドット数D及び出力電圧値Vの組み合わせ2点をプロットして結んで得られる直線を右側に延ばして、上記最大負荷相当時(D=64)の出力電圧値Vtが、上記VA近傍であれば、当該電池BTの消耗度は低い(満充電品に近い)と判定することができ、上記VB近傍であれば、当該電池BTの消耗度が高いと判定することができる。ニッケル水素電池の場合も、上記同様、消耗度を後述のように3段階に評価して表示するために、上記VAとVBとの間の区間を3等分するように2つのしきい値Th4,Th5(消耗度判定用しきい値)を設け、当該区間を
VA ≧ Vt > Th4 ・・ ニッケル水素第1区間
Th4≧ Vt ≧ Th5 ・・ ニッケル水素第2区間
Th5> Vt ≧ VB ・・ ニッケル水素第3区間
の3つに区分している。具体的には、この例では、上記電圧値VAは、例えば6.55[V]に設定されており、上記電圧値VBは、少なくとも所定の印字品質で1つの印字ラベルLを生成可能なように、例えば5.95[V]に設定されている。また、上記しきい値Th4=6.35[V]、上記しきい値Th5=6.15[V]に設定されている。これらの値は、いずれもROM214(又は別途設けたEEPROM等でも良い)に記憶されている。
<消耗度の表示>
そして、本実施形態では、電池BTがアルカリマンガン電池であった場合、上記最大負荷相当時(D=64)の出力電圧値Vtが、上記アルカリ第1区間、アルカリ第2区間、アルカリ第3区間のうちいずれに該当するかに応じて電池BTの消耗度が判定され、対応する表示(この例では消耗度を段階的に表す3段階表示)が行われる。同様に、電池BTの種類がニッケル水素電池であった場合、上記最大負荷相当時(D=64)の出力電圧値Vtが、上記ニッケル水素第1区間、ニッケル水素第2区間、ニッケル水素第3区間のうちいずれに該当するかにより電池BTの消耗度を判定し、対応する表示(この例では消耗度を段階的に表す3段階表示)が行われる。
図9(a)〜(c)は、上記液晶ディスプレイ5による電池BTの消耗状況の表示例を表す図である。これら図9(a)〜(c)において、液晶ディスプレイ5は、電池形状を模擬した全体図像61と、この全体図像61中に占める割合(数)で電池BTの電力残量を表す残量図像62とを表示する。残量図像62は、全体図像の外形の中に存在する複数の矩形領域で表され、表示される矩形領域の数が多いほど、電池BTの電力残量が多いことを表す。
図9(a)の表示例では、電池BTの消耗度が十分に低い(上記図7に示すアルカリ第1区間もしくは上記図8に示すニッケル水素第1区間に該当する)場合であり、電力残量が多い(ほぼ満量)状態が表示されている。
図9(b)の表示例では、電池BTの消耗度が中程度である(上記図7に示すアルカリ第2区間もしくは上記図8に示すニッケル水素第2区間に該当する)場合であり、電力残量が中程度である状態が表示されている。
図9(c)の表示例では、電池BTの消耗度が高い(上記図7に示すアルカリ第3区間もしくは上記図8に示すニッケル水素第3区間に該当する)場合であり、電力残量が少ない状態が表示されている。
このように充電式の電池BTの消耗状況を図像化して表すことにより、ユーザに対し、当該電池BTの消耗状態を直感的に分かりやすく報知すると共に、その消耗状態の電池BTにおける電力残量も併せて報知することができる。
<制御フロー>
以上説明した手法を実現するために、CPU212によって実行される制御内容を図10及び図11により説明する。図10は、印字ラベルLの作成処理を表すフローであり、図11は電池BTの種別・消耗度判定処理を表すフローである。なお、これら図10に示すフローの手順と、図11に示すフローの手順とは、印字ラベルLの生成動作中において時分割方式で同時に実行される。このような同時並行処理は、例えば、コンピュータのOS等でしばしば行われる、「マルチタスク処理」と同様の公知の方式により、1つのCPU212に行わせることができる。
<印字ラベル作成処理>
図10において、例えば操作者が機能キー群4を適宜に操作して印字ラベルLに印字したい文字や記号等を入力し、さらに機能キー群4に備えられた上記印刷キーを操作して印字ラベルLの作成を指示することにより、このフローが開始される。
まず、ステップS1で、CPU212は、モータ駆動回路216に制御信号を出力し、駆動モータ211によりテープ送りローラ駆動軸108及びリボン巻取りローラ駆動軸107を駆動開始する。これにより、カバーフィルム103、基材テープ101、及び印字済みラベル用テープ109(以下適宜、単にカバーフィルム103等」という)が搬送開始される。
その後、ステップS2で、CPU212は、搬送されるカバーフィルム103等が印字領域Sの開始位置まで搬送されたかどうか(印字領域Sの前端に印字ヘッド23が正対する搬送方向位置になるまでカバーフィルム103等が搬送されたかどうか)、を判定する。この判定は、例えばステッピングモータからなる駆動モータ211のパルス数をカウントする等、公知の適宜の手法により行えば足りる。カバーフィルム103等が印字領域Sの開始位置まで搬送されるまでステップS2の判定が満たされず(S2:NO)、ループ待機する。カバーフィルム103等が印字領域Sの開始位置まで搬送されたらステップS2の判定が満たされ(S2:YES)、ステップS3へ移る。
ステップS3では、前述の操作者の文字や記号等の入力によりCPU212が生成した印字データに基づき、CPU212は、この時点でのタイミングが、サーマルヘッド23の発熱素子の通電タイミングであるかどうかを判定する。すなわち、搬送されているカバーフィルム103の搬送方向位置が、印字領域Sのうちテキスト文字や図像を印字すべき位置に上記サーマルヘッド23が位置しているタイミングであれば上記通電タイミングに該当し、それ以外のタイミングは通電タイミングに該当しない。通電タイミングに該当していない場合にはステップS3の判定が満たされず(S3:NO)、後述のステップS8に移る。通電タイミングに該当している場合にはステップS3の判定が満たされ(S3:YES)、ステップS4に移る。
ステップS4では、CPU212は、サーマルヘッド制御回路217に制御信号を出力し、上記印字データに応じてこのタイミングにおいて発熱すべきサーマルヘッド23の発熱素子を選択して通電を行う。これにより、カバーフィルム103に、上記通電された発熱素子によりインクリボン105のインクが転写され、対応した印字が形成される。その後、ステップS20に移る。
ステップS20では、CPU212は、A/D入力回路219により検出された出力電圧値Vとこのときの上記発熱素子によるドット数Dとを、例えばRAM213に記憶する。なお、この出力電圧値Vは、1枚の印字ラベルLを作成する際にこのステップS20が繰り返されるたびに検出される。すなわち、印字ラベルLの生成動作に伴って前述した32ライン分の範囲LSが移動する際、ライン上の各位置におけるドット数Dに対応付けられた形で出力電圧値Vが常時検出され、RAM213に蓄積されていく。その後、ステップS21に移る。
ステップS21では、CPU212は、上記のようにしてステップS20において既にRAM213に蓄積されている、直前の所定ドット数D区間(この例では上記32ライン分)の全データ(ドット数Dにそれぞれ対応付けられた全出力電圧値V)を、RAM213より読み出す。
その後、ステップS22で、CPU212は、上記ステップS21で読み出された上記所定ドット数D区間の全データにおける、上記最大電圧値Vmaxと最小電圧値Vminを決定する。なお、決定された上記最大電圧値Vmax及び最小電圧値Vminはその都度RAM213に記憶される。
その後、ステップS23で、CPU212は、ステップS22で決定された最大電圧値Vmaxと最小電圧値Vminとを使って、これらの差の最大変動幅△V=Vmax−Vminを算出する。算出された上記最大変動幅△VmaxはRAM213に記憶される。その後、ステップS24に移る。
ステップS24では、CPU212は、ステップS23で算出された最大変動幅△Vが過去の最大変動幅△Vよりも大きいか否かを判定する。過去の最大変動幅△V以下であった場合には、ステップS24の判定が満たされず(S24:NO)、後述のステップS9に移る。過去の最大変動幅△Vよりも大きかった場合には、ステップS24の判定が満たされ(S24:YES)、ステップS25に移る。
ステップS25では、CPU212は、過去の最大変動幅△Vを、上記ステップS23で算出された最大変動幅△Vを用いて上書き更新する。なお、このように上書き更新することで過去履歴の中でもっとも大きな最大変動幅△Vを使用するのは、上述のように2点のプロットに基づき直線を引いて電圧Vsや電圧Vtを算出する場合に、当該2点相互の距離が大きいほど高精度な算出を行えるからである。更新された上記最大変動幅△Vmaxは上記同様にRAM213に記憶される。その後、後述のステップS9に移る。
一方、上記ステップS3での判定が満たされず移行したステップS8では、CPU212は、サーマルヘッド制御回路217に制御信号を出力し、サーマルヘッド23のすべての発熱素子を通電停止状態とする。その後、ステップS9に移る。
ステップS9では、CPU212は、搬送されるカバーフィルム103等が印字領域Sの終了位置まで搬送されたかどうか(印字領域Sの後端に印字ヘッド23が正対する搬送方向位置になるまでカバーフィルム103等が搬送されたかどうか)、を判定する。この判定も上記同様の公知の手法により行えば足りる。カバーフィルム103等が印字領域Sの終了位置まで搬送されるまではステップS9の判定が満たされず(S9:NO)、ステップS3に戻って同様の手順を繰り返す。カバーフィルム103等が印字領域Sの終了位置まで搬送されると、ステップS9の判定が満たされ(S9:YES)、ステップS11に移る。
ステップS11では、CPU212は、搬送されるカバーフィルム103等が、上記印字データに基づき印字領域Sよりラベル後端側に設定される切断位置まで搬送されたかどうか(上記切断位置に上記可動刃41が正対する搬送方向位置になるまで、印字済みラベル用テープ109が搬送されたかどうか)、を判定する。この判定も、前述と同様の公知の手法により行えば足りる。切断位置まで搬送されていなければ、ステップS11の判定が満たされず(S11:NO)、ループ待機する。カバーフィルム103等が切断位置まで搬送されたらステップS11の判定が満たされ(S11:YES)、ステップS12に移る。
ステップS12では、CPU212は、モータ駆動回路216に制御信号を出力し、駆動モータ211によるテープ送りローラ駆動軸108及びリボン巻取りローラ駆動軸107の駆動を停止する。これにより、カバーフィルム103、基材テープ101、及び印字済みラベル用テープ109の搬送が停止する。その後、ステップS13に移る。
ステップS13では、CPU212は、液晶ディスプレイ5に表示信号を出力する。これにより、操作者に対し、カッターレバー7を操作し切断機構15を動作させ印字済みラベル用テープ109を切断するよう促す、適宜の表示が行われる。
その後、上記ステップS13での表示に対応した上記印字済みラベル用テープ109の切断が行われたら(=印字ラベルLが生成されたら)、ステップS14に移り、CPU212は、モータ駆動回路216に制御信号を出力する。これにより、駆動モータ211により、テープ送りローラ駆動軸108及びリボン巻取りローラ駆動軸107が再び駆動開始され、カバーフィルム103、基材テープ101、及び印字済みラベル用テープ109の搬送が再開される。
そして、ステップS15で、CPU212は、上記ステップS14の搬送再開後、予め定めた所定の搬送量(上記生成された印字ラベルLを装置外へ排出するのに十分な距離)だけカバーフィルム103等の搬送が行われたかどうかを判定する。この判定も、前述と同様、公知の手法により行えば足りる。所定の搬送量だけ搬送されていなければステップS15の判定が満たされず(S15:NO)、ループ待機する。所定の搬送量だけ搬送されたらステップS15の判定が満たされ(S15:YES)、ステップS16に移る。
ステップS16では、ステップS12と同様、CPU212は、モータ駆動回路216に制御信号を出力し、駆動モータ211によるテープ送りローラ駆動軸108及びリボン巻取りローラ駆動軸107の駆動を停止する。これにより、カバーフィルム103、基材テープ101、及び印字済みラベル用テープ109の搬送が停止する。この後、このフローを終了する。
<電池種別・消耗度判定処理>
図11において、まず、ステップS121で、CPU212は、この時点で最新の電圧変動値△Vを与える上記最大電圧値Vmax及び最小電圧値Vmin(上記ステップS22〜ステップS25参照)を、RAM213から読み出す。その後、ステップS122に移る。
ステップS122では、CPU212は、上記ステップS121で読み出された最大電圧値Vmax及び最小電圧値Vminにそれぞれ対応したドット数DをRAM213から読み出す(上記ステップS20参照)。これにより、相対的に少ないドット数Dminを与える最大電圧値Vmaxと当該ドット数Dminとが対応付けられ、相対的に多いドット数Dmaxを与える最小電圧値Vminと当該ドット数Dmaxとが対応付けられる。なお、このステップS122が各請求項記載のドット数特定手段として機能する。
ステップS123では、CPU212は、上記ステップS121で取得された上記Vmax及びVminと、上記ステップS122で取得された、当該Vmaxに対応するDmin、当該Vminに対応するDmaxとを用いて、ドット数Dと出力電圧値Vの線形相関を算出する。すなわち、上記図6のD−V座標上において、上記第1タイミングにおける最大ドット数時の(Dmax,Vmin)と、上記第2タイミングにおける最小ドット数時の(Dmin,Vmax)を、上記V=aD+bのDとVに各代入することで、これら2点を通る直線の傾きであるaの値と、当該直線のV切片であるbの値とが算出される。なお、このステップS123が各請求項記載のドット電圧変動値算出手段として機能する。その後、ステップS124に移る。
ステップS124では、CPU212は、上記ステップS123で算出した直線の式V=aD+bのDに対し、完全無負荷に相当する上記D=−α(図6、図7、図8参照)を代入することで、完全無負荷に相当する前述の電圧Vsを算出する。なお、このステップS124が各請求項記載の無負荷電圧推定手段として機能する。その後、ステップS125に移る。
ステップS125では、CPU212は、上記ステップS124で取得された電圧Vsと、ROM214に記憶されている種別判定用しきい値Th1とを比較し、Vs>Th1であるかどうかを判定する。電圧Vsが種別判定用しきい値Th1よりも大きい場合には、ステップS125の判定が満たされ(S125:YES)、ステップS126に移る。
ステップS126では、CPU212は、液晶ディスプレイ5に表示信号を出力し、電圧Vsが種別判定用しきい値Th1よりも大きく、正常な値ではないことを示すエラー表示を行う。その後、後述のステップS132に移る。
一方、上記ステップS125において、電圧Vsが種別判定用しきい値Th1よりも小さい場合には、ステップS125の判定が満たされず(S125:NO)、ステップS127に移る。
ステップS127では、CPU212は、上記ステップS124で取得された電圧Vsを、ROM214に記憶されている種別判定用しきい値Th2とさらに比較し、Th1≧Vs≧Th2であるかどうかを判定する。電圧VsがTh2以上でTh1以下の場合には、ステップS127の判定が満たされ(S127:YES)、ステップS128に移る。
ステップS128では、CPU212は、液晶ディスプレイ5に表示信号を出力し、使用されている電池BTがアルカリマンガン電池であることを示す表示を行う。その後、後述のステップS132に移る。
一方、上記ステップS127において、電圧VsがTh2よりも小さい場合には判定が満たされず(S127:NO)、ステップS129に移る。
ステップS129では、CPU212は、上記ステップS124で取得された電圧Vsを、ROM214に記憶されている種別判定用しきい値Th3とさらに比較し、Th2>Vs≧Th3であるかどうかを判定する。なお、上記ステップS125、ステップS127、ステップS129が各請求項記載の種別判定手段として機能するとともに電池状態判定手段としても機能する。電圧VsがTh3以上であった場合には、ステップS129の判定が満たされ(S129:YES)、ステップS130に移る。
ステップS130では、CPU212は、液晶ディスプレイ5に表示信号を出力し、使用されている電池BTがニッケル水素電池であることを示す表示を行う。その後、後述のステップS132に移る。
一方、上記ステップS129において、電圧VsがTh3よりも小さかった場合には、ステップS129の判定が満たされず(S129:NO)、ステップS131に移る。
ステップS131では、CPU212は、液晶ディスプレイ5に表示信号を出力し、使用されている電池BTがアルカリマンガン電池でもニッケル水素電池でもないことを示すエラー表示を行う。その後、ステップS132に移る。
ステップS132では、CPU212は、上記ステップS123で算出した直線の式V=aD+bのDに対し、サーマルヘッド制御回路217及びモータ駆動回路216に対する最大負荷相当時における所定値β(本実施形態ではβ=64ドット(図6、図7、図8参照))を代入することで、最大負荷に相当する前述の電圧Vtを算出する。なお、このステップS132が各請求項記載の最大負荷電圧推定手段として機能する。その後、ステップS133に移る。
ステップS133では、CPU212は、上記ステップS132で取得された電圧Vtと、ROMA214に記憶されている上記最大限電圧値VAとを比較し、Vt>VAであるかどうかの判定を行う。Vt>VAである場合には、ステップS133の判定が満たされ(S133:YES)、ステップS134に移る。
ステップS134では、CPU212は、液晶ディスプレイ5に表示信号を出力し、電圧Vtが最大限電圧値VAよりも大きく、正常な値ではないことを示すエラー表示を行う。その後、このフローを終了する。
一方、上記ステップS133において、Vt>VAでない場合には、ステップS133の判定が満たされず(S133:NO)、ステップS135に移る。
ステップS135では、CPU212は、上記ステップS132で算出された電圧Vtを、ROM214に記憶されている消耗度判定用しきい値Th4とさらに比較し、VA≧Vt>Th4であるかどうか(言い換えれば第1区間に属するか否か)を判定する。VA≧Vt>Th4である場合には、ステップS135の判定が満たされ(S135:YES)、ステップS136に移る。
ステップS136では、CPU212は、液晶ディスプレイ5に表示信号を出力し、使用されている電池BTの電池残量が大きいことを示す表示を行う(前述の図9(a)参照)。その後、このフローを終了する。
一方、上記ステップS135において、電圧Vtが消耗度判定用しきい値Th4よりも小さい場合には、ステップS135の判定が満たされず(S135:NO)、ステップS137に移る。
ステップS137では、CPU212は、上記ステップS132で算出された電圧Vtを、ROM214に記憶されている消耗度判定用しきい値Th5とさらに比較し、Th4≧Vt≧Th5であるかどうか(言い換えれば第2区間に属するか否か)を判定する。Th4≧Vt≧Th5である場合には、ステップS137の判定が満たされ(S137:YES)、ステップS138に移る。
ステップS138では、CPU212は、液晶ディスプレイ5に表示信号を出力し、使用されている電池BTの残量が中程度(いわゆるバッテリーウィーク状態)であることを示す表示を行う(前述の図9(b)参照)。その後、このフローを終了する。
一方、上記ステップS137において、電圧Vtが消耗度判定用しきい値Th5よりも小さい場合には、ステップS137の判定が満たされず(S137:NO)、ステップS139に移る。
ステップS139では、CPU212は、上記ステップS132で算出された電圧Vtを、RROM214に記憶されている最小限電圧値VBとを比較し、Th5>Vt≧VBであるかどうか(言い換えれば第3区間に属するか否か)を判定する。Th5>Vt≧VBである場合には、ステップS139の判定が満たされ(S139:YES)、ステップS140に移る。
ステップS140では、CPU212は、液晶ディスプレイ5に表示信号を出力し、使用されている電池BTの残量が小(いわゆるバッテリーエンプティ状態)であることを示す表示を行う(前述の図9(c)参照)。その後、このフローを終了する。
一方、上記ステップS139において、電圧Vtが最小限電圧値VBよりも小さい場合には、ステップS139の判定が満たされず(S139:NO)、ステップS141に移る。なお、上記ステップS135、ステップS137、ステップS139が各請求項記載の消耗度判定手段として機能するとともに電池状態判定手段としても機能する。
ステップS141では、CPU212は、液晶ディスプレイ5に表示信号を出力し、使用されている電池BTがアルカリマンガン電池でもニッケル水素電池でもないことを示すエラー表示を行う。その後、このフローを終了する。
なお、上記ステップS133、ステップS135、ステップS137、ステップS139、ステップS141において用いられる、最大限電圧値VA、最小限電圧値VB、消耗度判定用しきい値Th4,Th5,Th6の具体的な値の例を、図12に示す。これらの値はすべて上記ROM214に記憶されている。
図示のように、この例では、電池BTがアルカリマンガン電池である場合には、最大限電圧値VA=7.75[V]、最小限電圧値VB=5.50[V]、消耗度判定用しきい値Th4=7.00[V]及びTh5=6.25[V]となっている。また、電池BTがニッケル水素電池である場合には、最大限電圧値VA=6.55[V]、最小限電圧値VB=5.95[V]、消耗度判定用しきい値Th4=6.35[V]及びTh5=6.15[V]となっている。
以上説明したように、本実施形態においては、ドットあたりの電圧変動値△VがCPU212により算出されることで、サーマルヘッド23でのドット数Dと電池BTの出力電圧値Vとの線形相関が求められる。そして、CPU212が、上記相関を用いて、当該電池BTの、電力供給のない無負荷相当時における電圧値Vsや最大負荷相当時の電圧値Vtを推定し、当該電圧値Vsと種別判定用しきい値Th1,Th2,Th3とを比較したり、当該電圧値Vtと消耗度判定用しきい値Th4,Th5とを比較する。これにより、電池収納部70に収納された電池BTの種別や消耗度が不明である場合であっても、当該電池BTの種別や消耗度を精度よく判定することができる。すなわち、比較的大きな負荷が加わる実際の印字ラベルLの生成時における出力電圧値Vの変動の度合い(ドットあたりの出力電圧変動値△V)を用いて、電池BTの状態(種別や消耗度)を判定することにより、小負荷時(又は通常負荷時)の出力電圧値Vと無負荷時の出力電圧値Vとの2つの電圧値のみによって電池BTの状態を判定する従来手法に比べ、高精度に判定を行うことができる。さらに、電池BTの消耗度を高精度に判定し、当該消耗度の表示を高精度に行うことができる。これにより、現状の電池残量を操作者に対し正確かつ確実に認識させることができ、また消耗度が高い場合に、電池交換が必要となるタイミングを操作者に正確かつ確実に認識させることができる。
また、本実施形態では特に、液晶ディスプレイ5が、上記消耗度判定に基づき、最大負荷相当時における電圧値Vtが属する区間(第1区間、第2区間、第3区間)に対応した所定の表示を行う。これにより、電池BTの消耗度(言い換えれば電池残量)をきめ細かく複数段階(この例で図9に示したように3段階)に分け、操作者にとってわかりやすいように表示することができる。この結果、操作者の利便性を向上することができる。
なお、以上においては、基材テープ101とは別のカバーフィルム103に印字を行ってこれらを貼り合わせる方式であったが、これに限られず、印字テープに備えられた被印字テープ層に印字を行う方式(貼りあわせを行わないタイプ)に本発明を適用してもよい。この場合、基材テープ自体がラベル用被印字テープを構成するとともに、被印刷物をも構成する。
さらに、以上では、印刷装置の一例として印字ラベル作成装置1に本発明を適用した場合を説明したが、その他にも、例えばA4、A3、B4、B5サイズ等の通常の被印刷用紙(被印刷物)に画像を形成したり文字を印刷する印刷装置に本発明を適用してもよい。この場合も同様の効果を得る。
その他、一々例示はしないが、本発明は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
1 印字ラベル作成装置(印刷装置)
5 液晶ディスプレイ(表示手段)
23 サーマルヘッド
70 電池収納部
103 カバーフィルム
108 テープ送りローラ駆動軸(搬送手段)
212 CPU
213 RAM
214 ROM(記憶手段)
216 モータ駆動回路(駆動手段)
217 サーマルヘッド制御回路(通電手段)
219 A/D入力回路(電圧検出手段)
BT 電池
D ドット数
L 印字ラベル(印刷物)
Th1〜3 種別判定用しきい値
Th4〜5 消耗度判定用しきい値
V 出力電圧値
△V 電圧変動値
VA 最大限電圧値
VB 最小限電圧値

Claims (2)

  1. 被印刷物を搬送する搬送手段と、
    前記被印刷物を前記搬送方向に印字解像度に区分してなる各印字ライン上にドットをそれぞれ形成する複数の発熱素子を備えるサーマルヘッドと、
    を有し、
    前記搬送手段が搬送する前記被印刷物に対し、前記サーマルヘッドが印字データに対応した印字を形成し、印刷物を生成する印刷装置であって、
    前記印字データに応じて、前記サーマルヘッドの前記複数の発熱素子を選択的に通電する通電手段と、
    前記搬送手段の駆動を制御する駆動手段と、
    前記通電手段及び前記駆動手段に電力を供給する電池を収納する電池収納部と、
    前記電池の出力電圧値を検出可能な電圧検出手段と、
    前記搬送手段及び前記サーマルヘッドの協働による1つの前記印刷物の生成動作中の所望のタイミングにおける、前記通電手段により同時に通電される前記複数の発熱素子の数であるドット数を特定するドット数特定手段と、
    前記所望のタイミングにおいて前記電圧検出手段が検出した前記出力電圧値と、当該所望のタイミングにおいて前記ドット数特定手段により特定された前記ドット数とを用いた除算処理により、ドットあたりの電圧変動値を算出するドット電圧変動値算出手段と、
    前記ドット電圧変動値算出手段により算出された前記ドットあたりの電圧変動値に基づき、前記電池の状態を判定する電池状態判定手段と、
    を有し、
    前記ドット数特定手段は、
    前記1つの印刷物の生成動作中の所定の時間範囲において、相対的に多いドット数を与える第1タイミングと相対的に少ないドット数を与える第2タイミングにおける、前記ドット数をそれぞれ特定し、
    前記ドット電圧変動値算出手段は、
    前記第1タイミングにおける前記出力電圧値と前記第2タイミングにおける前記出力電圧値との偏差を、前記第1タイミングにおける前記ドット数と前記第2タイミングにおける前記ドット数との偏差で除算することにより、前記ドットあたりの電圧変動値を算出し、
    前記印刷装置は、さらに、
    前記ドット電圧変動値算出手段により算出された前記ドットあたりの電圧変動値に基づき、前記通電手段及び前記駆動手段への電力供給のない無負荷相当時における、当該電池の電圧値を推定する無負荷電圧推定手段を有し、
    前記電池状態判定手段は、
    前記無負荷電圧推定手段で推定された前記無負荷相当時における電圧値と予め定められた種別判定用しきい値との比較結果により、当該電池の種別を判定する種別判定手段を含む
    ことを特徴とする印刷装置。
  2. 請求項記載の印刷装置において、
    前記ドット電圧変動値算出手段により算出された前記ドットあたりの電圧変動値と、前記第1タイミングにおける前記出力電圧値と、前記第2タイミングにおける前記出力電圧値とに基づき、前記通電手段及び前記駆動手段に対する最大負荷相当時における、当該電池の電圧値を推定する最大負荷電圧推定手段を有し、
    前記電池状態判定手段は、
    前記最大負荷電圧推定手段で推定された前記最大負荷相当時における電圧値と予め定められた消耗度判定用しきい値との比較結果と、前記種別判定手段による前記電池の種別判定結果とに基づき、当該電池の消耗度を判定する消耗度判定手段を含む
    ことを特徴とする印刷装置。
JP2011284057A 2011-12-26 2011-12-26 印刷装置 Active JP5899911B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284057A JP5899911B2 (ja) 2011-12-26 2011-12-26 印刷装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284057A JP5899911B2 (ja) 2011-12-26 2011-12-26 印刷装置

Publications (2)

Publication Number Publication Date
JP2013132802A JP2013132802A (ja) 2013-07-08
JP5899911B2 true JP5899911B2 (ja) 2016-04-06

Family

ID=48909852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284057A Active JP5899911B2 (ja) 2011-12-26 2011-12-26 印刷装置

Country Status (1)

Country Link
JP (1) JP5899911B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995285B2 (ja) 2017-03-30 2022-01-14 株式会社コナミデジタルエンタテインメント ゲーム装置、及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257480A (ja) * 1991-02-13 1992-09-11 Seiko Epson Corp サーマルプリンタ
JPH10153647A (ja) * 1996-11-26 1998-06-09 Casio Comput Co Ltd 電池残量検知方法
JPH11191437A (ja) * 1997-12-26 1999-07-13 Fuji Photo Film Co Ltd 電池識別装置およびその識別方法
JP4001520B2 (ja) * 2002-07-31 2007-10-31 アルプス電気株式会社 電池駆動機器の電池残量判別方法
JP4670333B2 (ja) * 2004-12-10 2011-04-13 ブラザー工業株式会社 印刷装置

Also Published As

Publication number Publication date
JP2013132802A (ja) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5773270B2 (ja) 印刷装置
US8754917B2 (en) Printer
US8967892B2 (en) Tape printer which prints purchase support information for a tape cartridge
US9487023B2 (en) Tape printer and recording medium configured to reduce print object size when specified size is impossible to print
US11345165B2 (en) Electronic device
EP2767402A1 (en) Printer and print control program
JP6283948B2 (ja) 印刷装置
US10773528B2 (en) Printing apparatus, printing control terminal, printing apparatus controlling method, printing control terminal controlling method, and recording media
US20170184684A1 (en) Judgment device, program, judgment method in judgment device, and printer
JP5387890B2 (ja) 印刷装置、印刷制御方法、印刷制御プログラムが記憶された記憶媒体
JP5899911B2 (ja) 印刷装置
JP5737494B2 (ja) 印刷装置
JP5999575B2 (ja) テープ印字装置
JP5601530B2 (ja) 印刷装置
JP5652653B2 (ja) 印刷装置
JP2012236384A (ja) 記録装置、切断装置の情報提示装置および切断装置の情報提示方法
JP6327526B2 (ja) 印刷装置
JP2016182708A (ja) 印刷装置
JP2016182707A (ja) 印刷装置
JP2012179726A (ja) テープ印刷装置およびテープ印刷装置の制御方法
JP5743079B2 (ja) 印刷装置
JP2006159824A (ja) 印刷装置
JP6455345B2 (ja) 印刷装置
JP2002254777A (ja) 長尺印刷媒体印刷装置
JP2005280100A (ja) サーマルプリンタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5899911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150