JP5891921B2 - 変位計測装置、変位計測方法及び変位計測プログラム - Google Patents

変位計測装置、変位計測方法及び変位計測プログラム Download PDF

Info

Publication number
JP5891921B2
JP5891921B2 JP2012092979A JP2012092979A JP5891921B2 JP 5891921 B2 JP5891921 B2 JP 5891921B2 JP 2012092979 A JP2012092979 A JP 2012092979A JP 2012092979 A JP2012092979 A JP 2012092979A JP 5891921 B2 JP5891921 B2 JP 5891921B2
Authority
JP
Japan
Prior art keywords
signal
signals
phase
interference fringes
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012092979A
Other languages
English (en)
Other versions
JP2013221829A (ja
Inventor
克樹 白井
克樹 白井
小林 泰山
泰山 小林
光司 上坂
光司 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012092979A priority Critical patent/JP5891921B2/ja
Priority to US13/849,657 priority patent/US8941841B2/en
Publication of JP2013221829A publication Critical patent/JP2013221829A/ja
Application granted granted Critical
Publication of JP5891921B2 publication Critical patent/JP5891921B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34746Linear encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Description

開示する技術は、変位計測装置、変位計測方法及び変位計測プログラムに関する。
光電式エンコーダを用いた技術としては、干渉縞の変位を計測することで、対象物の移動距離などを計測する技術がある。この技術を用いた計測装置では、干渉縞が移動したときの明暗の変化に応じて光検出センサが出力するパルスをカウントすることで、干渉縞の変位量を判定し、干渉縞の変位量と1周期あたりの距離に基づいて、対象物の移動距離を得る。
また、光電式エンコーダとしては、干渉縞の移動に応じて光検出センサが出力する電気信号から、位相が90°ずれた2つの擬似正弦波形(以下、sin波形及びcos波形とする)を生成するものがある。この光電式エンコーダでは、干渉縞の移動により変化するsin波形及びcos波形の位相の変化から、干渉縞の移動量を計測する。
ところで、干渉縞には、必要とする次数の縞と共に高次数の縞が形成されることがある。この高次数の干渉縞は、光検出センサが出力する信号のS/N比を悪化させ、sin波形及びcos波形を崩してしまう。これにより、変位量の計測精度が悪化してしまう。
特開昭63−277926号公報 特開2011−75581号公報
開示の技術は、S/N比の悪化を招くことなく、変位の計測精度の向上を図ることが目的である。
開示の技術は、複数の受光素子が、明部の照度が交互に変化するように形成されると共に変位に応じて形成位置が移動する2次以上の次数の干渉縞に対し、前記干渉縞の2周期の範囲に前記干渉縞の周期に基づいた間隔で前記干渉縞の移動方向に沿って配置される。受光部では、複数の受光素子の各々が、前記干渉縞による照度に応じた信号を出力する。差分処理部は、前記複数の受光素子からの出力信号に対して予め設定した組み合わせで差分処理を行なうことで、位相又は波形が互いに異なる4個の信号を生成する差分処理部また、位相算出部は、前記受光素子が出力する信号に基づいて前記干渉縞の位相を算出する。さらに、出力信号選択部は、前記干渉縞の位相に基づいて前記4個の信号から2個の信号を選択すると共に、選択した前記2個の信号から絶対値の大きい信号を、前記変位に応じた出力信号として選択する。
開示の技術は、明部の照度が交互に変化するように形成されると共に変位に応じて形成位置が移動する2次以上の次数の干渉縞の変位を、S/N比の悪化を招くことなく、高精度計測することができる、という効果を有する。
本実施の形態に係る光電式エンコーダの要部の斜視図である。 (A)及び(B)は、回折格子の一例を示す要部の平面図である。 受光素子の配列を示す受光部の要部の平面図である。 本実施の形態に係る反射部のデューティ比75%における干渉縞の照度を示す線図である。 (A)、(B)は、反射部のデューティ比に応じた干渉縞の照度を示す線図であり、(A)はデューティ比50%、(B)はデューティ比12.5%である。 信号処理部の一例を示す機能ブロック図である。 差分処理部の一例を示す機能ブロック図である。 減算器ごとの入力信号に対する出力信号の設定を示す図表である。 位相算出部の一例を示す機能ブロック図である。 位相情報に応じて選択される信号の組み合わせを示す図表である。 エンコーダとして機能するコンピュータの機能ブロック図である。 エンコーダにおける信号処理の一例を示す流れ図である。 (A)〜(H)は干渉縞の移動により8個の受光素子上のそれぞれにおける照度の変化の一例を示す線図である。 (A)〜(H)は、干渉縞の移動により8個の加算器のそれぞれで得られる信号に応じた照度の変化の一例を示す線図である。 (A)〜(D)は、干渉縞の移動量に応じた信号レベルの変化の一例を示す線図であり、(A)は信号sinA、(B)は信号sinB、(C)は信号sinC、(D)は信号sinDを示す。 (A)〜(D)は、干渉縞の移動量に応じた信号レベルの変化の一例を示す線図であり、(A)は信号cosA、(B)は信号cosB、(C)は信号cosC、(D)は信号cosDを示す。 (A)は信号sinAと信号sinBを加算することで得られるsin側の波形を線図であり、(B)は信号cosAと信号cosBを加算することで得られるcos側の波形を線図である。 (A)は、信号sinA、sinB、sinC、sinDの干渉縞の位相に対する信号レベルの変化の一例を示す線図、(B)は図(A)から得られる波形信号の一例を示す線図である。 (A)は、信号cosA、cosB、cosC、cosDの干渉縞の位相に対する信号レベルの変化の一例を示す線図、(B)は図(A)から得られる波形信号の一例を示す線図である。 比較例における信号処理の一例を示す機能ブロック図である。
〔比較例〕
以下、開示の技術の実施形態の説明に先立ち、開示の技術の比較例を説明する。
光電式エンコーダは、予め設定したピッチで回折格子を形成したスケールへ、光源から光を照射し、回折格子で反射された光を、複数の受光素子が配列されたセンサアレイへ照射させ、センサアレイ上に干渉縞を形成する。センサアレイには、干渉縞の周期に基づいて4個の受光素子が配列されている。例えば、干渉縞の明部から暗部を経て次の明部に達するまでを1周期とした場合に、センサアレイ上の受光素子は、干渉縞の1周期に対して位相が0°、90°、180°、270°となる間隔で配置され、照度に応じた電気信号を出力する。
光電式エンコーダでは、センサアレイに対してスケールが相対移動することで、干渉縞の形成位置が移動することから、干渉縞の形成位置の移動に応じた照度の変化を電気信号に変換し、この電気信号からスケールの移動方向及び移動量を計測する。
図20には、本比較例に係る光電式エンコーダの一例を示している。この光電式エンコーダ200は、複数のセンサアレイ202A、202B、202C、202Dが干渉縞の移動方向に沿って配置される。センサアレイ202A〜202Dは、干渉縞における位相に合わせた間隔で4個ずつの受光素子204a、204b、204c、204dを各々備え、受光素子204a〜204dが、干渉縞の移動によって変化する照度に応じた電気信号を出力する。
光電式エンコーダ200は、加算器206A、206B、206C、206Dを備える。センサアレイ202A〜202Dの各受光素子204aの出力が、加算器206Aに入力され、各受光素子204bの出力が加算器206に入力される。また、光電式エンコーダ200では、センサアレイ202A〜202Dの各受光素子204cの出力が、加算器206Cに入力され、各受光素子204dの出力が、加算器206Dに入力される。光電式エンコーダ200では、加算器206A〜206Dが入力された信号を加算して出力する。
また、光電式エンコーダ200は、減算器208A、208Bを備える。加算器206Aの出力信号及び加算器206Cの出力信号は、減算器208Aに入力される。減算器208Aは、加算器206Aの出力信号から加算器206Cの出力信号を差し引く差分処理を行なうことで、干渉縞の移動に応じた波形(以下、sin波形とする)の信号を出力する。加算器206Bの出力信号及び加算器206Dの出力信号は、減算器208Bに入力される。減算器208Bは、加算器206Bの出力信号から加算器206Dの出力信号を差し引く差分処理を行なうことで、干渉縞の移動に応じた波形(以下、cos波形とする)の信号を出力する。
光電式エンコーダ200は、sin波形の信号とcos波形の信号に基づき、干渉縞の移動方向及び移動量を算出する。この干渉縞の移動方向は、回折格子に形成されたスケールの相対移動方向に対応し、干渉縞の形成位置の移動量は、スケールの相対移動量に対応する。
ところで、光電式エンコーダにおいては、回折格子に形成する反射部ピッチであるスケールピッチにより分解能が定まる。また、光電式エンコーダにおいては、スケールピッチに対して、反射面の幅がデューティ比で50%とすることが一般的である。
したがって、光電式エンコーダにおいて、スケールピッチを狭くすれば、分解能を向上させることができる。また、光電式エンコーダにおいて分解能を向上させる方法としては、2次以上の干渉縞を形成することで、干渉縞の周期を短くする方法もある。
スケールピッチを狭くした場合及び2次以上の干渉縞を形成する場合には、回折格子における光の反射部の幅が狭くなる。このために、センサアレイ上では、干渉縞の明部の照度が低下する。この照度の低下は、受光素子から出力する信号を低下させ、受光素子から出力する信号のS/N比の悪化を生じさせる。
例えば、sin波形及びcos波形に基づいてリサージュ円を形成する場合、信号レベルの低下は、リサージュ円を小さくさせ、S/N比の悪化は、リサージュ円の形を崩してしまう。
光源から発する光を強くすれば、干渉縞による照度の低下を防止することができるが、この場合、光源に設ける発光素子の発熱の増加、短寿命化を生じさせる。
また、回折格子に形成する反射部のデューティ比を高くすれば、照度の低下を抑えることができるが、反射部のデューティ比を高くすると、干渉縞の1周期ごとに明部の照度が低くなり、sin波形、cos波形の生成が困難となる。この場合、図20に示す光電式エンコーダ200において、干渉縞の2周期分の受光素子204を用い、明度の低い領域の信号と明度の高い領域の信号とを重ね合わせることで、明度の照度の平均化を図ることができる。
しかしながら、複数の受光素子の信号を加算すると、個々の信号に含まれるノイズ成分も重畳されてしまい、sin波形及びcos波形の信号にS/N比の悪化が生じてしまう。
〔実施形態〕
続いて、図面を参照して開示の技術の実施の形態の一例を詳細に説明する。
図1には、本実施の形態に係る光電式エンコーダ(以下、エンコーダ10とする)の要部を示す。なお、エンコーダ10は、開示の技術に係る変位計測装置の一例である。エンコーダ10は、エンコーダヘッド12及びスケール部14を備える。エンコーダ10は、エンコーダヘッド12とスケール部14とが互いに対向されている。また、エンコーダ10は、エンコーダヘッド12に対してスケール部14が相対移動する。なお、図1では、相対移動方向の一例を矢印Xで示している。
エンコーダヘッド12は、スケール部14に対向する面に光源部16及び受光部18を備える。光源部16は、例えば、VCSEL(Vertical Cavity Surface Emitting LASER:垂直共振器面発光レーザ)などを用い、予め設定した波長の光を、スケール部14へ向けて照射する。
スケール部14は、回折格子20を備える。回折格子20は、スケール部14のエンコーダヘッド12に対向する面に形成され、エンコーダヘッド12の光源部16から照射された光を、エンコーダヘッド12の受光部18へ向けて反射する。エンコーダ10は、回折格子20の反射光により、受光部18上に干渉縞が形成される。また、エンコーダ10は、スケール部14が相対移動することで、受光部18上の干渉縞の形成位置が移動する。
開示の技術において、光源部16は、VCSELに限らず、受光部18に所定の干渉縞が形成される構成であれば良い。また、回折格子20は、光を反射する形態に限らず、光を通過させるスリットを形成し、スリットを通過した光により干渉縞を形成しても良い。
図2(A)に示すように、スケール部14の回折格子20は、相対移動方向に沿って所定のスケールピッチPで配置された複数の反射部22、及び反射部22の間に配置された非反射部24により形成される。反射部22は、相対移動方向(図2(A)の矢印X方向)に沿った幅がWとされ、光源部16から照射された光をエンコーダヘッド12の受光部18へ向けて反射する。また、非反射部24は、相対移動方向に沿った幅がWuとされ、エンコーダヘッド14へ向けた光の反射が抑えられている。
このような回折格子20は、図2(A)に示すように、スケール部14のベース14Aに反射部22が形成されて構成されても良い。また、図2(B)に示すように、回折格子20は、光を反射する面を形成したベース14Bに、スケールピッチPで非反射部24が形成されて構成されても良い。
図1に示すように、エンコーダ10は、エンコーダヘッド12の受光部18に設けられたセンサアレイ26を備える。図3には、受光部18に設けられたセンサアレイ26を示す。受光部18には、複数のセンサアレイ26がスケール部14の相対移動方向(図3の矢印X方向)に沿って配列されている。このスケール部14の相対移動方向は、受光部18上における干渉縞の形成位置の移動方向となる。
各センサアレイ26は、4個の受光素子28が所定のセンサピッチDで相対移動方向に配列され、互いに隣接するセンサアレイ26の間においても、隣合う受光素子28の配列周期がセンサピッチDとなっている。
各受光素子28は、照射された光の強度(照度とも表記する)に応じた電気信号を出力する。このとき、各受光素子28は、干渉縞の形成位置の移動に応じて照射される光の照度が変化することで、出力する電気信号が変化する。
本実施の形態においては、スケール部14の相対移動に応じて干渉縞が移動するときの干渉縞の1周期分の移動量に一つのセンサアレイ26が対応される。また、センサアレイ26の受光素子28の位置は、干渉縞の1周期分の移動量に対応する位相を2π(360°)としたときに、π/2(90°)ずつずれた位置となる(例えば、0(0°)、π/2(90°)、π(180°)、3π/2(270°)に対応する位置)。
エンコーダ10は、上記位相で配列された受光素子28が出力する電気信号の変化から、位相が90°ずれた2相の波形信号を生成する。以下の説明では、2相の波形信号の一方を波形信号SinQ、他方を波形信号CosQと表記する。また、以下においては、波形信号SinQの生成に寄与する構成をsin側とし、波形信号CosQの生成に寄与する構成をcos側と表記する。波形信号SinQ、CosQの一方が開示の技術における第1の相の一例である、他方が開示の技術における第2の相の一例である。
エンコーダ10は、波形信号SinQ及び波形信号CosQから、干渉縞の形成位置の移動方向及び移動量、すなわち、スケール部14の相対移動方向及び相対移動量を算出する。
干渉縞は、スケール部14の回折格子20とエンコーダヘッド12(受光部18)の距離L、光の波長λ、回折格子20の反射部22のスケールピッチPに応じて、次数が定まる。干渉縞の次数に応じた定数nから、距離Lは、L=(2nP)/λとなる。
この場合、90°の位相差で配置する受光素子28の間隔(センサピッチD)は、干渉縞の次数に応じて広くなり、このためにエンコーダ10の分解能が低下する。エンコーダ10の分解能が低下しないように、干渉縞の次数をm(mは1以上の整数)としたときに、スケールピッチPに代えてmPを適用し、反射部22の幅Wと非反射部24の幅Wuの比を、反射部1に対して非反射部(2m−1)、次数に応じた定数n=1/mとする。このときの距離Lは、L=2P/mλとなる。
しかし、反射部22の幅Wと非反射部24の幅Wuとの比を1:(2m−1)とすると、干渉縞の次数mが高くなることで反射部22の幅Wが狭くなり、干渉縞の照度が低下する。この照度の低下は、受光素子28で受光される信号レベルの低下として表れ、受光素子28から出力する電気信号にS/N比の悪化を生じさせる。信号レベルの低下、S/N比の悪化は、sin側の波形信号及びcos側の波形信号に基づいて形成するリサージュ円を小さくすると共に、円の形を崩す。
照度の低下を防止する方法としては、光源部16に設ける発光素子が発する光量を増加させることが考えられるが、発光素子の光量の増加は、発光素子の温度上昇、発光素子の寿命の短縮を生じさせる。
本実施形態においては、スケールピッチPに対する反射部22の幅Wの比とするデューティ比Drを、干渉縞の次数mに応じて設定する。また、本実施形態においては、センサアレイ26の間隔であるアレイピッチDaをスケールピッチPに対してP=Daとすることで、センサピッチDをD=P/4として、分解能の低下を抑える。このとき、本実施形態においては、2次以上の干渉縞について、反射部22の幅Wを、干渉縞の次数m(mは2以上の整数)に応じて広げる。
本実施形態においては、反射部22の幅Wと非反射部24の幅Wuとの比率を、非反射部24を1としたときに反射部22を(m−1)とする。また、本実施形態においては、次数mにより定まる定数nを、n=(m−1)/mとする。
これにより、次数mの干渉縞を形成するための距離Lは、
L=(2np)/λ
=2(m−1)P/mλ
となる。
また、本実施形態において、スケールピッチPに対する反射部22の幅Wの比率(デューティ比)Drは、Dr=((m−1)/m)×100(%)となる。このデューティ比Drは、2次の干渉縞を用いる場合、Dr=50%、3次の干渉縞を用いる場合、Dr=60%、4次の干渉縞を用いる場合、Dr=75%、5次の干渉縞を用いる場合、Dr=80%となる。したがって、スケールピッチPが同じであれば、干渉縞の次数が高くなるほど反射部22の幅Wが広くなる。
本実施形態に係るエンコーダ10においては、一例として4次の干渉縞を用い、反射部22の幅WをスケールピッチPの75%(Dr=75%)、非反射部24の幅WuをスケールピッチPの25%としている。また、本実施の形態に係るエンコーダ10においては、センサピッチDとスケールピッチPとを、D=P/4としている。
図4には、デューティ比Dr=75%としたときの、干渉縞による照度変化を示している。また、図5(A)には、デューティ比Dr=50%とした場合の照度変化を示し、図5(B)には、デューティ比Dr=12.5%とした場合の照度変化を示している。なお、図4、図5(A)、図5(B)は、横軸が相対移動方向に沿う位置であり、スケールピッチPをP=0.08mm、センサピッチDをD=0.02mmとしている。また、図4、図5(A)、図5(B)には、受光素子28の位置の一例を、照度の波形上に太線で示している。
図5(B)に示すように、デューティ比Dr=12.5%と低くした場合は、スケールピッチPの1/2の間隔で干渉縞の明部が現れ、これにより、この明部に対応する受光素子28が出力する信号レベルも高くなる。ただし、デューティ比Dr=12.5%では、明部の照度が低く、明部と暗部との照度差も小さい。
図5(A)に示すように、光電式エンコーダにおいて一般的なデューティ比Dr=50%とした場合は、デューティ比Dr=12.5%の場合に比べれば、照度が高く、明部と暗部との照度差も大きくなる。
一方、図4に示すように、デューティ比Dr=75%の場合は、デューティ比Dr=50%(図5(A)参照)の場合より照度の高い領域が現れる。したがって、デューティ比=75%において、この明部に対応する照度に応じた受光素子28の出力を用いることで、次数の高い干渉縞を用いた場合でも、デューティ比Dr=50%の場合と比較してS/N比を高くすることができる。
本実施形態では、次数の高い干渉縞を用いるときに、大きな照度が得られるように、干渉縞の次数に応じてデューティ比Drを高くすることで、干渉縞の照度の減少を抑える。
しかし、デューティ比Dr=75%の場合は、干渉縞の明部において照度の高い明部と照度の低い明部が交互に現れる。すなわち、干渉縞の次数に応じてデューティ比Drを大きく設定した場合、干渉縞には、高い照度の明部と低い照度の明部とが交互に現れる。
本実施形態は、干渉縞の明・暗を1周期としたときに、明部の照度が交互に変化する干渉縞から、波形信号SinQ及び波形信号CosQを得る。なお、本実施形態は、明部の照度が交互に変化する干渉縞に限らず、明部の変化の少ない干渉縞に対しても適用し得る。
また、図5(A)に示すように、一般的なデューティ比Dr=50%の場合、干渉縞の1周期が、スケールピッチPの倍の0.16mmとなっている。これに対して、図4に示すデューティ比Dr=75%の場合、干渉縞の1周期が、デューティ比Dr=50%の場合の1周期の半分となっている。
したがって、本実施形態においては、デューティ比Drを一般的なデューティ比Dr=50%より高くすることで、デューティ比Dr=50%の場合と比較して、エンコーダ10の分解能を高くすることができる。
図6に示すように、エンコーダ10は、波形信号SinQ及び波形信号CosQを生成する信号処理部30を備える。信号処理部30は、加算処理部32、差分処理部34、位相算出部36、出力信号選択部38を含む。
エンコーダ10では、1つのセンサアレイ26について、受光素子28を、干渉縞の位相角が360°(2π)となる1周期分の相対移動量に対して、位相角が90°(π/2)となる間隔で配置している。図6は、一組の波形信号SinQ、CosQの生成に用いる1ブロック分を示している。本実施形態においては、相対移動方向に連続して多数のセンサアレイ26を配置することで、多数組の波形信号SinQ、CosQを生成する。
本実施形態においては、干渉縞の2周期分のセンサアレイ26A、26Bを1セットとして、2セット分のセンサアレイ26A、26Bを用いて1組の波形信号SinQ、波形信号CosQを生成する。以下では、センサアレイ26Aの個々の受光素子28を、受光素子28a、28b、28c、28dと表記して区別し、センサアレイ26Bの個々の受光素子28を、受光素子28e、28f、28g、28hと表記して区別する。
本実施形態においては、センサアレイ26A、26Bに加え、センサアレイ26Aの受光素子28c、28d及びセンサアレイ26Bの受光素子28e、28fを一つのセンサアレイとして扱う(以下、センサアレイ26Cとする)。また、本実施形態においては、センサアレイ26Bの受光素子28g、28h及びセンサアレイ26Aの受光素子28a、28bを他の一つのセンサアレイとして扱う(以下、センサアレイ26Dとする)。
本実施形態においては、センサアレイ26C、26Dを設けることで、センサアレイ26A、26Bから得られる信号に対して位相が180°ずれた信号を得る。なお、本実施の形態では、説明の簡略化を図るために、センサアレイ26Aの受光素子28a、28bに代えて、センサアレイ26Bに隣接するセンサアレイ26Aの受光素子28a、28bを用いて、センサアレイ26Dを形成している。
図6及び図7に示すように、加算処理部32は、受光素子28a〜28hのそれぞれに対応する加算器40(加算器40A〜40H)を備える。加算器40Aは、2つのセンサアレイ26Aの受光素子28aから照度に応じた信号a、aが入力されることで、信号a、aを加算した信号aを出力する。加算器40Bは、2つのセンサアレイ26Aの受光素子28bから信号b、bが入力されることで、信号b、bを加算した信号bを出力する。
また、加算器40Cは、2つのセンサアレイ26Aの受光素子28cから信号c、cが入力されることで、信号cを出力する。加算器40Dは、2つのセンサアレイ26Aの受光素子28dから信号d、dが入力されることで、信号dを出力する。さらに、加算器40Eは、2つのセンサアレイ26Bの受光素子28eから信号e、eが入力されることで信号eを出力し、加算器40Fは、2つのセンサアレイ26Bの受光素子28fから信号f、fが入力されることで信号fを出力する。また、加算器40Gは、2つのセンサアレイ26Bの受光素子28gから信号g、gが入力されることで信号gを出力し、加算器40Hは、2つのセンサアレイ26Bの受光素子28hから信号h、hが入力されることで信号hを出力する。
加算処理部32は、加算器40A〜40Hにより干渉縞の2周期分の信号a〜hを得る。また、加算処理部32は、信号a〜hを差分処理部34へ出力する。
図6及び図7に示すように、差分処理部34は、複数の減算器42を備える。本実施形態においては、減算器42として、波形信号SinQの生成に用いるsin側の減算器42A〜42D、及び波形信号CosQの生成に用いるcos側の減算器42E〜42Hを備える。
減算器42A〜42Hには、信号a〜hが予め設定された組み合わせで入力される。図8には、減算器42A〜42Hに入力される信号の組み合わせ、及び出力する信号を示している。なお、図8では、減算器42A〜42Hを、A〜Hとして表記している。
減算器42Aには、信号a、cが入力され、信号aから信号cを減算する。これにより、減算器42Aは、波形信号SinQの生成に適用する信号sinAを出力する。減算器42Bには、信号e、gが入力され、信号eから信号gを減算する。これにより、減算器42Bは、信号sinBを出力する。
また、減算器42Eは、信号b、dが入力されることで、信号bから信号dを減算する。これにより、減算器42Eは、波形信号CosQの生成に適用する信号cosAを出力する。さらに、減算器42Fは、信号f、hが入力されることで、信号fから信号hを減算し、信号cosBを出力する。
差分処理部34は、減算器42C、42D、42G、42Hのそれぞれが、信号の正負を反転するインバータ44を備える。減算器42Cは、信号c、eが入力されることで、信号cから信号eを減算し、減算結果を反転した信号を出力する。これにより、減算器42Cは、波形信号SinQの生成に適用する信号sinCを出力する。減算器42Dは、信号g、aが入力されることで、信号gから信号aを減算し、減算結果を反転した信号sinDを出力する。
また、減算器42Gは、信号d、fが入力されることで、信号dから信号fを減算し、減算結果を反転した信号cosCを出力する。さらに、減算器42Hは、信号h、bが入力されることで、信号hから信号bを減算し、減算結果を反転した信号cosDを出力する。
本実施形態においては、減算器42A、42B、42E、42Fにより、センサアレイ26A、26Bの受光素子28a〜28hから得られる電気信号に基づき、信号sinA、sinB及び信号cosA、cosBを出力する。また、本実施形態においては、減算器42C、42D、42G、42Hにより、センサアレイ26C、26Dの受光素子28a〜28hから得られる電気信号に基づき、信号sinC、sinD及び信号cosC、cosDを出力する。
本実施形態では、センサアレイ26A、26Bに対してセンサアレイ26C、26Dを設定し、センサアレイ26A、26Bから得られる信号sinA、sinB、cosA、cosBに対して、逆相となる信号sinC、sinD、cosC、cosDを生成する。
本実施形態において、信号を逆相とすることで、信号sinC(一例を図15(C)に示す)は、信号sinA(一例を図15(A)に示す)の波形に対し、移動量に相当する軸に直交する軸に関し、線対称の波形となる。また、信号sinD(一例を図15(D)に示す)は、信号sinB(一例を図15(B)に示す)の波形に対し、移動量に相当する軸に直交する軸に関し、線対称の波形となる。さらに、信号cosC(一例を図16(C)に示す)は、信号cosA(一例を図16(A)に示す)の波形に対し、移動量に相当する軸に直交する軸に関し、線対称の波形となる。また、信号cosD(一例を図16(D)に示す)は、信号cosB(一例を図16(B)に示す)の波形に対し、移動量に相当する軸に直交する軸に関し、線対称の波形となる。
図6に示すように、位相算出部36には、信号sinA、sinB、cosA、cosBが入力される。位相算出部36は、信号sinA、sinB、cosA、cosBに基づき、予め設定した位置を基準とした干渉縞の位置(例えば、明部の位置)の位相を判定し、位相情報θを出力する。なお、信号sinC、sinD、cosC、cosDを用いて位相情報θを算出しても良い。
開示の技術において、位相算出部36は、干渉縞の位相情報θを算出し得る構成であれば良い。図9には、本実施形態に係る位相算出部36の一例を示す。位相算出部36は、加算器46A、46B、AD変換器(ADC)48A、48B、位相判定部50及び記憶部52を備える。
加算器46Aは、減算器42Aの信号sinAと減算器42Bの信号sinBとを加算する。AD変換器48Aは、加算器46Aの出力信号をデジタル信号に変換することで、所定の信号(以下、位相信号θsとする)を出力する。加算器46Bは、減算器42Eの信号cosAと減算器42Fの信号cosBとを加算する。AD変換器48Bは、加算器46Bの出力信号をデジタル信号に変換することで、所定の信号(以下、位相信号θcとする)を出力する。なお、本実施形態において、受光素子28が出力するアナログ信号を予めデジタル信号に変換してもよく、この場合、位相算出部36は、AD変換器48A、48Bが省略された構成となる。
エンコーダ10においては、位相信号θs及び位相信号θcに対応する位相情報θが予め取得され、位相信号θs及び位相信号θcと対応する位相情報θを対応付けたテーブル(LUT:Look−Up Table)が予め設けられている。記憶部52には、このLUTが記憶されている。
位相判定部50は、記憶部52に記憶されたLUTを参照することで、位相信号θs、θcに対応する位相情報θを読み出して出力する。本実施形態において、位相情報θは、干渉縞の移動量に対応する位相(位相情報θ)が、0°〜90°、90°〜180°、180°〜270°、270°〜0°(360°)の何れの範囲に対応するか判定し得るものであれば良い。
図6に示す信号処理部30において、出力信号選択部38は、第1信号選択部54、切替設定部56、及び第2信号選択部58を備える。第1信号選択部54は、sin側のセレクタ60A及びcos側のセレクタ60Bを含む。セレクタ60Aには、信号sinA、sinB、sinC、sinDが入力され、セレクタ60Bには、信号cosA、cosB、cosC、cosDが入力される。また、セレクタ60A、60Bのそれぞれには、位相算出部36が出力する位相情報θが入力される。
セレクタ60Aは、位相情報θに応じて、信号sinA、sinB又は信号sinC、sinDを出力する。また、セレクタ60Bは、位相情報θに応じて、信号cosA、cosB又は信号cosC、cosDを出力する。
図10には、開示の技術における位相情報θに対応するsin側のセレクタ60Aの出力信号、及びcos側のセレクタ60Bの出力信号の組み合わせを示す。
出力信号選択部38は、位相情報θが、0°〜90°及び270°〜0°(360°)の範囲において、セレクタ60Aが信号sinC及び信号sinDを出力する。また、出力信号選択部38は、位相情報θが、90°〜180°及び180°〜270°(90°〜270°)の範囲において、セレクタ60Aが信号sinA及び信号sinBを出力する。
また、出力信号選択部38は、位相情報θが0°〜90°及び90°〜180°(0°〜180°)の範囲において、セレクタ60Bが信号cosA及び信号cosBを出力する、また、出力信号選択部38は、位相情報θが、180°〜270°及び270°〜0°(180°〜360°)の範囲において、セレクタ60Bが信号cosC及び信号cosDを出力する。なお、位相情報θ=90°、270°の場合、セレクタ60Aは、信号sinA、sinB又は信号sinC、sinDのうち予め設定された一方を出力する。また、位相情報θ=0°、180°の場合、セレクタ60Bは、信号cosA、cosB又は信号cosC、cosDのうち予め設定された一方を出力する。
図6に示すように、出力信号選択部38の切替設定部56は、sin側に絶対値抽出部62A、62B及び比較器64Aを備え、cos側に絶対値抽出部62C、62D及び比較器64Bを備える。
絶対値抽出部62Aは、セレクタ60Aが出力する信号sinA又は信号sinCが入力されることで、入力された信号の絶対値を比較器64Aへ出力する。絶対値抽出部62Bは、セレクタ60Aが出力する信号sinB又は信号sinDが入力されることで、入力された信号の絶対値を比較器64Aへ出力する。比較器64Aは、絶対値抽出部62Aの出力信号と絶対値抽出部62Bの出力信号の比較結果を出力する。
絶対値抽出部62Cは、セレクタ60Bが出力する信号cosA又は信号cosCが入力されることで、入力された信号の絶対値を比較器64Bへ出力する。絶対値抽出部62Dは、セレクタ60Bが出力する信号cosB又は信号cosDが入力されることで、入力された信号の絶対値を比較器64Bへ出力する。比較器64Bは、絶対値抽出部62Cの出力信号と絶対値抽出部62Dの出力信号の比較結果を出力する。
第2信号選択部58は、Sin側のセレクタ66A及びCos側のセレクタ66Bを含む。セレクタ66Aには、セレクタ60Aが出力する信号sinAと信号sinB又は信号sinCと信号sinDが入力されると共に、比較器64Aの比較結果に応じた信号が入力される。
比較器64Aは、セレクタ60Aが信号sinAと信号sinBを出力したときに、絶対値が大きく信号レベルが高い方の信号を波形信号SinQとしてセレクタ66Aから出力させる。また、比較器64Aは、セレクタ60Aが信号sinCと信号sinDを出力したときに、絶対値が大きく信号レベルの高い方の信号を波形信号SinQとしてセレクタ66Aから出力させる。
セレクタ66Bには、セレクタ60Bが出力する信号cosAと信号cosB又は信号cosCと信号cosDが入力されると共に、比較器64Bの比較結果に応じた信号が入力される。
比較器64Bは、セレクタ60Bが信号cosAと信号cosBを出力したときに、絶対値が大きく信号レベルの高い方の信号を波形信号CosQとしてセレクタ66Bから出力させる。また、比較器64Bは、セレクタ60Bが信号cosCと信号cosDを出力したときに、絶対値が大きく信号レベルの高い方の信号を波形信号CosQとしてセレクタ66Bから出力させる。
エンコーダ10は、信号処理部30から出力される波形信号SinQ及び波形信号CosQに基づき、スケール部14の相対移動方向及び相対移動量を算出する。本実施形態においては、波形信号SinQ及び波形信号CosQの位相の変化量を干渉縞の移動量に変換することで、スケール部14の相対移動量を算出する。
エンコーダ10は、例えば、図11に示すコンピュータ70で実現することができる。コンピュータ70は、CPU72A、メモリ72B、不揮発性の記憶部72C、キーボード72D、マウス72E、ディスプレイ72Fを備え、これらが、バス72Gにより接続されている。また、コンピュータ70には、エンコーダヘッド12が接続される。なお、エンコーダヘッド12は、不図示の入出力インターフェイスを介して、コンピュータ70のバス72Gに接続される。
コンピュータ70の記憶部72Cは、HDD(Hard Disk Drive)、フラッシュメモリ等の不揮発性の記憶媒体により実現できる。記憶部72Cには、コンピュータ70を加算処理部32として機能させるための加算処理プログラム74、差分処理部34として機能させるための差分処理プログラム76が記憶されている。また、記憶部72Cには、コンピュータ70を位相算出部36として機能させるための位相算出プログラム78、出力信号選択部38として機能させる信号選択プログラム80が記憶されている。
CPU72Aは、各プログラムを記憶部72Cから読み出してメモリ72Bに展開し、各プログラム74〜80が有するプロセスを順次実行する。CPU72Aは、加算処理プログラム74を実行することで、加算処理部32として動作し、差分処理プログラムを実行することで、差分処理部34として動作し、位相算出プログラム76を実行することで、位相算出部36として動作する。
また、出力信号選択プログラム80は、第1信号選択プロセス82、切替設定プロセス84、第2信号選択プロセス86を有する。CPU72Aは、第1信号選択プロセス82を実行することで、第1信号選択部54として動作し、切替設定プロセス84を実行することで、切替設定部56として動作し、第2信号選択プロセス86を実行することで、第2信号選択部58として動作する。
コンピュータ70によりエンコーダ10の信号処理部30が実現される場合、記憶部72Cは、LUTを記憶する記憶部52として用いることができる。
なお、エンコーダ10の信号処理部30は、例えば半導体集積回路、より詳しくは、ASIC(Application Specific Integrated Circuit)等で実現することも可能である。
以下に、本実施の形態の作用を説明する。
エンコーダ10は、エンコーダヘッド12に設けた光源部16が発する光をスケール部14へ照射し、スケール部14の回折格子20で反射させた光で、エンコーダヘッド12の受光部18上に干渉縞を形成させる。このとき、エンコーダ10は、干渉縞の次数mに基づき、回折格子20に形成されている反射部22のデューティ比Drが設定されている。
エンコーダ10は、回折格子20のデューティ比Dr=75%とされ、図4に示す干渉縞をエンコーダヘッド12の受光部18上に形成させる。これにより、エンコーダ10では、4次の干渉縞として、照度の低下が抑制された明部が干渉縞の1周期毎に出現する縞が受光部18上に形成されることになる。
図12には、エンコーダ10の信号処理部30において、波形信号SinQ及び波形信号CosQを出力するための信号処理の流れを示している。
エンコーダ10では、最初のステップ100で干渉縞の2周期分に相当するセンサアレイ28A、28Bの受光素子28a〜28の信号a、a、b、・・・、g、h、hを読み込む。
図13(A)〜図13(H)には、図4に示す干渉縞が移動することに伴う、受光部18の受光素子28a〜28h上における照度の変化を示している。図13では、受光素子28a〜受光素子28hを受光素子a〜hとして表記し、図13(A)〜図13(H)が受光素子28a〜28hに順に対応している。また、図13(A)〜図13(H)において、横軸は干渉縞の移動量であり、干渉縞の移動量がスケール部14の相対移動量に対応する。
2セット分の受光素子28a〜28hは、照度に応じた信号レベル(電圧)の信号a、a、b、・・・g、h、hを出力する。エンコーダ10は、この信号a、a、b、・・・g、h、hを読み込む。
図12に示すように、エンコーダ10は、次のステップ102において、2セット分の受光素子28a〜28hから読み込んだ信号a、a、b、・・・g、h、hを加算する。すなわち、1セット分の受光素子28a〜28hの出力信号a〜hに、次の1セット分の受光素子28a〜28hの出力信号a〜hを加算することで、信号a〜hを出力する。
図14(A)〜図14(H)には、加算器40A〜Hが出力する信号a〜hを示している。なお、図14(A)〜図14(H)では、加算器40A〜加算器40Hを、加算器A〜加算器Hと表記し、図14(A)〜図14(H)が順に加算器40A〜40Hに対応している。また、図14(A)〜図14(H)では、縦軸が信号レベルに対応する照度を表している。
図13(A)〜図13(H)及び図14(A)〜図14(H)に示すように、加算器40Aが出力する信号aは、2個の受光素子28aが受ける照度を加算した照度の信号となる。また、加算器40B〜40Hが出力する信号b〜hは、受光素子b〜hが2個ずつで受ける照度に応じた信号となる。
図12のステップ104では、出力信号a〜hについて、センサアレイ28A、28B(図12ではアレイA、Bと表記、以下同じとする)に対応させて差分処理を行い、センサアレイ28A、28Bから信号sinA、sinB、cosA、cosBを算出する。また、ステップ106では、センサアレイ26A、26B上で設定したセンサアレイ28C、28Dに対応させて差分処理を行なうことで、センサアレイ28C、28Dの組み合わせより信号sinC、sinD、cosC、cosDを算出する。本実施形態において、差分処理は、公知の手法を適用し得る。
図15(A)〜図15(D)には、sin側の減算器42A〜42Dが出力する信号sinA〜sinDを示している。また、図16(A)〜図16(D)には、cos側の減算器42E〜42Hが出力する信号cosA〜cosDを示している。減算器42E〜42Hが出力する信号cosA〜cosDは、減算器42A〜42Dが出力する信号sinA〜sinDに対して、位相が180°ずれた波形となる。
図15(A)に示す信号sinAは、信号a(図14(A)参照)から、信号aに対して位相が180°ずれた位置における信号c(図14(C)参照)を差し引いたものとなる。また、図15(B)に示す信号sinBは、信号e(図14(E)参照)から、信号eに対して位相が180°ずれた位置における信号g(図14(G)参照)を差し引いたものとなっている。
これに対して、図15(C)に示す信号sinCは、信号cから、信号cに対して位相が180°ずれた位置における信号eを差し引き、さらに、反転させたものとなる。また、図15(D)に示す信号sinDは、信号gから、信号gに対して位相が180°ずれた位置における信号aを差し引き、さらに、反転させたものとなる。
ここで、信号sinBの信号レベルの変化の波形(以下、単に波形とする)は、信号sinAに対して位相が干渉縞の1周期分だけずれた信号の波形となる。また、信号sinDの波形は、信号sinCに対して位相が干渉縞の1周期分だけずれた信号の波形となる。
また、信号sinC、sinDは、干渉縞上の位相でセンサアレイ26A、26Bに対して180°ずれた位相となるセンサアレイ26C、26Dから得られる信号となっている。また、減算器42C、42Dは、インバータ44により符号を反転している。
図16(A)に示す信号cosAは、信号b(図14(B)参照)から、信号bに対して位相が180°ずれた位置における信号d(図14(D)参照)を差し引いたものとなる。また、図16(B)に示す信号cosBは、信号f(図14(F)参照)から、信号fに対して位相が180°ずれた位置における信号h(図14(H)参照)を差し引いたものとなっている。
さらに、図16(C)に示す信号cosCは、信号dから、信号dに対して位相が180°ずれた位置における信号fを差し引き、反転させたものとなる。また、図16(D)に示す信号cosDは、信号hから、信号hに対して位相が180°ずれた位置における信号bを差し引き、反転させたものとなる。
したがって、信号sinCの波形は、信号sinAの波形に対し、移動量に相当する軸に直交する軸に関し、線対称の波形となり、信号sinDの波形は、信号sinBの波形に対し、移動量に相当する軸に直交する軸に関し、線対称の波形となる。また、信号cosCの波形は、信号cosAの波形に対し、移動量に相当する軸に直交する軸に関し、線対称の波形となり、信号cosDの波形は、信号cosBの波形に対し、移動量に相当する軸に直交する軸に関し、線対称の波形となる。
図12のステップ108では、センサアレイ28A、28Bの組み合わせから得られる信号sinA、sinB、cosA、cosBの位相情報θを算出する。この位相情報θは、例えば、sinA+sinB=0を原点とする干渉縞の位相を表す情報となる。
位相算出部36は、信号sinAと信号sinBを加算して位相信号θsを算出し(sinA+sinB=θs)、信号cosAと信号cosBを加算して位相信号θcを算出する(cosA+cosB=θc)。
図17(A)には、信号sinA(図15(A)参照)と信号sinB(図15(B)参照)とを加算することで得られる信号レベルの変化を示している。また、図17(B)には、同様にして信号cosA(図16(A)参照)と信号cosB(図16(B)参照)とを加算することで得られる信号レベルの変化を示している。
図17(A)に示すように、明暗が干渉縞の2周期で変化する場合、360°の位相差を持つ信号sinA、sinBを加算することで正弦波形(sin波形)が得られる。また、図17(B)に示すように、360°の位相差を持つ信号cosA、cosBを加算することで余弦波形(cos波形)が得られる。
図17(A)において、位相情報θを移動量に換算した点xθに対応する信号レベルが位相信号θsとなる。また、図17(B)において、点xθに対応する信号レベルが位相信号θcとなる。エンコーダ10は、記憶部52に格納しているLUTを参照して、位相信号θs、θcに対応する位相情報θを読み出す。
図12におけるステップ110では、位相情報θに基づき信号sinAと信号sinC又は信号sinBと信号sinDの一方の組み合わせを選択する。また、ステップ112では、位相情報θに基づき信号cosAと信号cosC又は信号cosBと信号cosDの一方の組み合わせを選択する。このとき、エンコーダ10では、図10に示すように、位相情報θが、0°〜90°及び270°〜0°(360°)の範囲では、信号sinC、sinD及び信号cosC、cosDを出力する。また、位相情報θが、90°〜270°(90°〜180°及び180°〜270)の範囲では、信号sinA、sinB及び信号cosA、cosBを出力する。
図12において、次のステップ114では、信号sinAと信号sinB又は信号sinCと信号sinDの絶対値を比較する。また、ステップ116では、信号cosAと信号cosB又は信号cosCと信号cosDの絶対値を比較する。すなわち、信号sinA、sinB及び信号cosA、cosBが選択されている場合、信号sinAと信号sinBの絶対値を比較すると共に、信号cosAと信号cosBの絶対値を比較する。また、信号sinC、sinD及び信号cosC、cosDが選択されている場合、信号sinCと信号sinDの絶対値を比較すると共に、信号cosCと信号cosDの絶対値を比較する。
次のステップ118では、信号sinAと信号sinB又は信号sinCと信号sinDとの比較結果に基づき、絶対値の大きい方の信号を波形信号SinQとして出力する。また、ステップ120では、信号cosAと信号cosB又は信号cosCと信号cosDとの比較結果に基づき、絶対値の大きい方の信号を波形信号CosQとして出力する。
図18(A)は、信号sinA、sinB、sinC、sinD(図15(A)〜図15(D)参照)を重ねて示し、図18(B)は、信号処理部30から出力される波形信号SinQを示している。また、図19(A)は、信号cosA、cosB、cosC、cosD(図16(A)〜図16(D)参照)を重ねて示し、図19(B)は、信号処理部30から出力される波形信号CosQを示している。なお、図18(A)、図18(B)、図19(A)、図19(B)では、横軸を干渉縞の位相θとしている。干渉縞は、この位相θが0°〜360°まで変化することで、受光部18上の形成位置の1周期分の移動量となる。
sinA+sinB=0となる点をθ=0°とすると、信号sinC、sinDは、θ=0°、360°(2周期目の0°)でゼロクロスし、信号sinA、sinBは、θ=180°、540°(2周期目の180°)でゼロクロスする(図18(A)参照)。また、θ=90°、270°において、sinA=sinC、sinB=sinDとなる。
また、図19(A)に示すように、信号cosA、cosBは、θ=90°、450°(2周期目の90°)でゼロクロスし、信号cosC、cosDは、θ=270°、630°(2周期目の270°)でゼロクロスする。また、θ=0°、180°において、cosA=cosC、cosB=cosDとなる。
ここから、エンコーダ10では、位相θ=0°、90°、180°、270°において、信号sinA〜sinD及び信号cosA〜cosDの切り替えを行なう。
これにより、図18(B)に示すように、波形信号SinQは、位相θの0°〜90°の範囲において、信号sinC、sinDのうちの信号sinDとなり、位相θの90°〜180°の範囲において、信号sinA、sinBのうちの信号sinAとなる。また、波形信号SinQは、位相θの180°〜270°の範囲において、信号sinA、sinBのうちの信号sinAとなり、位相θの270°〜360°の範囲において、信号sinC、sinDのうちの信号sinCとなる。
さらに、干渉縞の次の周期において、波形信号SinQは、位相θの0°〜90°(360°〜450°)の範囲が、信号sinC、sinDのうちの信号sinCとなる。また、波形信号SinQは、位相θの90°〜180°(450°〜540°)の範囲において、信号sinA、sinBのうちの信号sinBとなる。波形信号SinQは、位相θの180°〜270°(540°〜630°)の範囲が、信号sinA、sinBのうちの信号sinBとなり、位相θの270°〜0°(630°〜720°)の範囲において、信号sinC、sinDのうちの信号sinDとなる。
また、図19(B)に示すように、波形信号CosQは、位相θの0°〜90°の範囲において、信号cosA、cosBのうちの信号cosAとなり、位相θの90°〜180°の範囲において、信号cosA、cosBのうちの信号cosとなる。また、波形信号CosQは、位相θの180°〜270°の範囲において、信号cosC、cosDのうちの信号cosCとなり、位相θの270°〜360°の範囲において、信号cosC、cosDのうちの信号cosCとなる。
さらに、干渉縞の次の周期において、波形信号CosQは、位相θの0°〜90°(360°〜450°)の範囲が、信号cosA、cosBのうちの信号cosBとなる。また、波形信号CosQは、位相θの90°〜180°(450°〜540°)の範囲において、信号cosA、cosBのうちの信号cosBとなる。波形信号CosQは、位相θの180°〜270°(540°〜630°)の範囲が、信号cosC、cosDのうちの信号cosDとなり、位相θの270°〜0°(630°〜720°)の範囲において、信号cosC、cosDのうちの信号cosDとなる。
本実施形態においては、信号sinA〜sinD及び信号cosA〜cosDの間で、互いに関連する位相θで選択する信号の切り替えを行なうことで、波形信号SinQ、CosQの連続性を損なうことがない。
2周期で明暗変化の1周期が生じる干渉縞に対し、2周期分の信号ついて差分処理を行なって一つのsin波形及び一つのcos波形を生成しようとした場合、得られる波形は、図15(A)に示す波形及び図16(A)に示す波形となる。この場合は、sin波形及びcos波形とならないので、リサージュ図形の形成は困難であり、スケール部の相対移動量の検出は困難となる。
一方、センサアレイ28A、28Bから得られる信号sinA(図15(A)参照)と信号sinB(図15(B)参照)とを加算することで、sin波形が得られる。また、センサアレイ28A、28Bから得られる信号cosA(図16(A)参照)と信号cosB(図16(B)参照)とを加算することで、cos波形が得られる。この場合、sin波形は、図17(A)に示す波形となり、cos波形は、図17(B)に示す波形となる。また、また、センサアレイ26C、26Dから得られる信号sinCとsinDとを加算した場合、及び信号cosCとcosDとを加算した場合においても同様の波形が得られる。
このようにして得られるsin波形及びcos波形は、干渉縞の位相情報θを取得するのに用いることはできるが、ノイズ成分が重畳されるため、S/N比が悪化している。
これに対して、本実施形態においては、センサアレイ26A、26Bから信号sinA、sinB及び信号cosA、cosBを得ると共に、センサアレイ26C、26Dから、信号sinC、sinD及び信号cosC、cosDを得る。また、本実施形態においては、位相情報θに基づき、センサアレイ26A、26Bから得られる信号又はセンサアレイ26C、26Dから得られる信号の一方を選択する。
本実施形態においては、干渉縞の2周期で明暗変化の1周期が形成される場合に、センサアレイ26A、26Bを1セットとして干渉縞の2周期分の照度に対応する信号sinA、sinB及び信号cosA、cosBを得る。また、本実施形態においては、センサアレイ26A、26B上で干渉縞の周期の1/2だけずらした1セット分のセンサアレイ26C、26Dとして用い、信号sinC、sinD及び信号cosC、cosDを得る。
また、本実施形態においては、信号sinA〜sinDから干渉縞の位相情報θ基づいて選択した波形を組み合わせて波形信号SinQを出力し、信号cos A〜cosDから干渉縞の位相θ基づいて選択した波形を組み合わせて波形信号CosQを出力する。
このように、本実施形態では、信号レベルの大きい信号を選択して、波形信号SinQ及び波形信号CosQを得るので、波形信号SinQ、CosQは、信号レベルが高く、かつ、ノイズ成分が重畳してしまうことがない。
したがって、本実施形態においては、信号レベルが高く、かつ、S/N比の大きい波形信号SinQ及び波形信号CosQを得ることができる。このような波形信号SinQ及び波形信号CosQを用いることで、リサージュ円を形成した場合に、リサージュ円を大きくし、かつ真円に近づけることができる。
これにより、本実施形態に係るエンコーダ10は、スケール部14の相対移動の移動量をエンコーダヘッド12によって高精度で計測することができる。また、エンコーダ10は、反射部22のデューティ比Drを75%とすることで、図5(A)に示す一般的なデューティ比Dr=50%の場合より、分解能が高くなる。
また、本実施の形態に係るエンコーダ10は、反射部22のデューティ比Drを高くすることで、干渉縞の明部の照度を高くできるので、デューティ比Dr=50%の場合と同等の照度を得る場合に、光源部16の発する光の強度を低くすることができる。また、本実施形態に係るエンコーダ10においては、回折格子20のスケールピッチPを狭めた場合でも、反射部22のデューティ比Drを高くすることで、干渉縞の照度低下を抑えることができる。したがって、本実施形態に係るエンコーダ10においては、分解能を落とさずに光源部16の消費電力の抑制、発光素子の超寿命化を図ることができる。
開示の技術においては、スケール部14の直線的な相対移動に限らず、円筒形状又は円柱形状のスケール部を用い、円筒の内面又は円柱の外面に回折格子を形成し、干渉縞の移動方向及び相対移動量をスケール部の回転方向及び回転角として検出することを含む。
さらに、本明細書に記載された全ての特許出願及び特許出願に開示される技術文献は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に、参照により取り込まれる。
10 光電式エンコーダ
12 エンコーダヘッド
14 スケール部
16 光源部
18 受光部
20 回折格子
22 反射部
26(26A〜26D) センサアレイ
28(28a〜28h) 受光素子
30 信号処理部
32 加算処理部
34 差分処理部
36 位相算出部
38 出力信号選択部
40(40A〜40H) 加算器
42(42A〜42H) 減算器
54 第1信号選択部
56 絶対値抽出部
58 第2信号選択部
70 コンピュータ

Claims (7)

  1. 明部の照度が交互に変化するように形成されると共に変位に応じて形成位置が移動する2次以上の次数の干渉縞に対し、前記干渉縞の2周期の範囲に前記干渉縞の周期に基づいた間隔で前記干渉縞の移動方向に沿って配置された複数の受光素子の各々が、前記干渉縞による照度に応じた信号を出力する受光部と、
    前記複数の受光素子からの出力信号に対して予め設定した組み合わせで差分処理を行なうことで、位相又は波形が互いに異なる4個の信号を生成する差分処理部と、
    前記受光素子が出力する信号に基づいて前記干渉縞の位相を算出する位相算出部と、
    前記干渉縞の位相に基づいて前記4個の信号から2個の信号を選択すると共に、選択した前記2個の信号から絶対値の大きい信号を、前記変位に応じた出力信号として選択する出力信号選択部と、
    を含む変位計測装置。
  2. スケールピッチに対する反射面の幅の比率が50%以上の回折格子を含む請求項1記載の変位計測装置。
  3. 前記差分処理部が、前記4個の信号の各々の形成する波形の間で、前記干渉縞の1周期分の位相差を持つ2個ずつの信号による2組の信号を生成し、
    前記出力信号選択部が、前記干渉縞の位相情報に基づいて前記2組の信号のうちの一方を選択する第1選択部、及び選択された前記2個の信号から前記絶対値大きい信号を前記出力信号として選択する第2選択部を含む、
    請求項1又は請求項2記載の変位計測装置。
  4. 前記2組の信号のうちの一方形成する波形に対して、前記2組の信号のうちの他方形成する波形が、変位量に相当する軸に直交する軸に関し、線対称の波形である、請求項3記載の変位計測装置。
  5. 前記変位に応じた出力信号として所定の位相差を持つ第1の相の出力信号及び第2の相の出力信号を出力する場合において、
    前記差分処理部が、前記第1の相について4個の信号を生成すると共に、前記第2の相について4個の信号を生成し、
    前記出力信号選択が、前記第1の相について4個の信号から前記第1の相の出力信号とする信号を選択すると共に、前記第2の相について4個の信号から前記第2の相の出力信号とする信号を選択する、
    請求項1から請求項4の何れか1項記載の変位計測装置。
  6. 明部の照度が交互に変化するように形成されると共に変位に応じて形成位置が移動する2次以上の次数の干渉縞に対し、前記干渉縞の2周期の範囲に前記干渉縞の周期に基づいた間隔で前記干渉縞の移動方向に沿って配置された複数の受光素子の各々が、前記干渉縞による照度に応じて出力する信号を読み込む受光ステップと、
    前記複数の受光素子からの出力信号に対して予め設定した組み合わせで差分処理を行なうことで、位相又は波形が互いに異なる4個の信号を生成する差分処理ステップと、
    前記受光素子が出力する信号に基づいて前記干渉縞の位相を算出する位相算出ステップと、
    前記干渉縞の位相に基づいて前記4個の信号から2個の信号を選択すると共に、選択した前記2個の信号から絶対値の大きい信号を、前記変位に応じた出力信号として選択する出力信号選択ステップと、
    を含む変位計測方法。
  7. コンピュータに、
    明部の照度が交互に変化するように形成されると共に変位に応じて形成位置が移動する2次以上の次数の干渉縞に対し、前記干渉縞の2周期の範囲に前記干渉縞の周期に基づいた間隔で前記干渉縞の移動方向に沿って配置された複数の受光素子の各々が、前記干渉縞による照度に応じて出力する信号を読み込む受光ステップと、
    前記複数の受光素子からの出力信号に対して予め設定した組み合わせで差分処理を行なうことで、位相又は波形が互いに異なる4個の信号を生成する差分処理ステップと、
    前記受光素子が出力する信号に基づいて前記干渉縞の位相を算出する位相算出ステップと、
    前記干渉縞の位相に基づいて前記4個の信号から2個の信号を選択すると共に、選択した前記2個の信号から絶対値の大きい信号を、前記変位に応じた出力信号として選択する出力信号選択ステップと、
    を含む処理を実行させるための変位計測プログラム。
JP2012092979A 2012-04-16 2012-04-16 変位計測装置、変位計測方法及び変位計測プログラム Expired - Fee Related JP5891921B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012092979A JP5891921B2 (ja) 2012-04-16 2012-04-16 変位計測装置、変位計測方法及び変位計測プログラム
US13/849,657 US8941841B2 (en) 2012-04-16 2013-03-25 Displacement measurement device, displacement measurement method, and displacement measurement program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092979A JP5891921B2 (ja) 2012-04-16 2012-04-16 変位計測装置、変位計測方法及び変位計測プログラム

Publications (2)

Publication Number Publication Date
JP2013221829A JP2013221829A (ja) 2013-10-28
JP5891921B2 true JP5891921B2 (ja) 2016-03-23

Family

ID=49324799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092979A Expired - Fee Related JP5891921B2 (ja) 2012-04-16 2012-04-16 変位計測装置、変位計測方法及び変位計測プログラム

Country Status (2)

Country Link
US (1) US8941841B2 (ja)
JP (1) JP5891921B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6138664B2 (ja) * 2013-10-30 2017-05-31 オークマ株式会社 光学式エンコーダ
CN105608881A (zh) * 2015-08-06 2016-05-25 深圳浩宁达仪表股份有限公司 直读仪表字轮组示值的光电编码器及其抑制干扰方法
JP7063743B2 (ja) * 2018-06-19 2022-05-09 株式会社ミツトヨ エンコーダ
JP7210103B2 (ja) * 2019-01-28 2023-01-23 株式会社ミツトヨ エンコーダの寿命検出装置
CN111336928A (zh) * 2020-03-13 2020-06-26 中国科学院长春光学精密机械与物理研究所 一种基于图像探测器的金属反射式绝对光栅尺
TWI733526B (zh) * 2020-07-17 2021-07-11 致茂電子股份有限公司 表面形貌量測系統與方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2615281B1 (fr) 1987-05-11 1996-08-23 Canon Kk Dispositif de mesure d'une distance en mouvement relatif de deux objets mobiles l'un par rapport a l'autre
JPH068726B2 (ja) 1987-05-11 1994-02-02 キヤノン株式会社 測長装置
US5064290A (en) * 1987-12-12 1991-11-12 Renishaw Plc Opto-electronic scale-reading apparatus wherein phase-separated secondary orders of diffraction are generated
JPH0212017A (ja) * 1988-06-30 1990-01-17 Okuma Mach Works Ltd 平均化回折モアレ位置検出器
JP2688988B2 (ja) * 1989-06-22 1997-12-10 株式会社ソキア 光学式測定装置
JP3247791B2 (ja) * 1993-04-19 2002-01-21 株式会社リコー エンコーダ装置
JP2604986Y2 (ja) * 1993-08-01 2000-06-12 アジレント・テクノロジー株式会社 光学式位置エンコーダ
JP3327718B2 (ja) * 1995-01-23 2002-09-24 オークマ株式会社 光学式エンコーダ
JP2002090184A (ja) * 2000-09-13 2002-03-27 Citizen Watch Co Ltd 光学スケールを用いた寸法測定装置
JP5479255B2 (ja) * 2010-07-20 2014-04-23 キヤノン株式会社 光学式エンコーダ
JP2011075581A (ja) 2011-01-17 2011-04-14 Canon Inc 光学式エンコーダ

Also Published As

Publication number Publication date
US20130271773A1 (en) 2013-10-17
US8941841B2 (en) 2015-01-27
JP2013221829A (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5891921B2 (ja) 変位計測装置、変位計測方法及び変位計測プログラム
JP5882590B2 (ja) 光学式エンコーダおよび光学式エンコーダを有する装置
US8110792B2 (en) Absolute position length measurement type encoder
JP5779012B2 (ja) 2次元アブソリュートエンコーダ及びそのスケール
JP6437802B2 (ja) 光学式エンコーダ
JP2010071830A (ja) 光電式エンコーダ
JP5479255B2 (ja) 光学式エンコーダ
JP6465950B2 (ja) 光学式エンコーダ
US9557193B2 (en) Optical encoder
JP6099908B2 (ja) 2次元アブソリュートエンコーダおよびスケール
JP2017067768A (ja) 光学式エンコーダ
JP5391115B2 (ja) 光電式エンコーダ
JP5560873B2 (ja) エンコーダ及びエンコーダの位置検出方法
JP5128364B2 (ja) 位置測定装置
JP2011107106A (ja) 光学式信号出力装置の信号処理装置及び光学式変位検出装置
JP2011226986A (ja) エンコーダ
JP4445498B2 (ja) 透過型光学エンコーダ
US9250103B2 (en) Optical rotary encoder with correction method reducing variation of a distance between a rotation body and a light receiving unit
JP5693502B2 (ja) 光学式エンコーダ
JP5747342B2 (ja) 光学式エンコーダ
JP6087722B2 (ja) 原点信号発生装置及び原点信号発生システム
JP2017111068A (ja) 光エンコーダ
JP2014106210A (ja) アブソリュートエンコーダ及び絶対位置を求める方法
CN110864713B (zh) 绝对位置检测装置和方法以及存储介质
JP2013108911A5 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5891921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees