JP5875396B2 - ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法 - Google Patents

ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法 Download PDF

Info

Publication number
JP5875396B2
JP5875396B2 JP2012027415A JP2012027415A JP5875396B2 JP 5875396 B2 JP5875396 B2 JP 5875396B2 JP 2012027415 A JP2012027415 A JP 2012027415A JP 2012027415 A JP2012027415 A JP 2012027415A JP 5875396 B2 JP5875396 B2 JP 5875396B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat exchanger
expansion valve
refrigerant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012027415A
Other languages
English (en)
Other versions
JP2013164213A (ja
Inventor
松尾 実
実 松尾
紀行 松倉
紀行 松倉
潤 宮本
潤 宮本
福島 亮
亮 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012027415A priority Critical patent/JP5875396B2/ja
Publication of JP2013164213A publication Critical patent/JP2013164213A/ja
Application granted granted Critical
Publication of JP5875396B2 publication Critical patent/JP5875396B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、温熱を出力するヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法に関するものである。
従来より、ヒートポンプサイクルによって温水(温熱)を供給するヒートポンプが知られている。
ここで、特許文献1には、高圧冷媒と低圧冷媒とを熱交換する内部熱交換器を有する超臨界冷凍サイクルにおいて、成績係数及び冷凍能力の向上を図りつつ、冷媒配管の経路を単純化する超臨界冷凍サイクルが記載されている。
具体的には、超臨界冷凍サイクルは、冷媒を圧縮する圧縮機と、圧縮機から吐出する冷媒を冷却するとともに、内部の圧力が冷媒の臨界圧力以上となる放熱器(温熱生成熱交換器)と、放熱器から流出する冷媒を減圧するとともに、高圧側の冷媒圧力を制御する圧力制御弁と、圧力制御弁にて減圧された冷媒を蒸発させる蒸発器と、蒸発器から流出する低圧側の冷媒と圧力制御弁にて減圧される前の高圧側の冷媒との間で熱交換を行う内部熱交換器とを備える。そして、圧力制御弁が、内部熱交換器を流出した冷媒の温度に基づいて高圧側の冷媒圧力を制御する。
特開2001−108308号公報
ここで、ヒートポンプは、圧縮機によって圧縮された冷媒により、外部負荷へと提供する温熱媒体を加熱する温熱生成熱交換器の負荷率が低下すると、冷媒流量が減少し、圧縮機にサージングが発生する可能性がある。
ヒートポンプでは、内部熱交換器での交換熱量を圧縮機の吐出温度を制御するために変化させるので、内部熱交換器から流出した冷媒の温度が運転状態によって変化する。このため、特許文献1に記載されているように、内部熱交換器から流出した冷媒の温度を用いて冷媒圧力を制御することは困難である。温熱生成熱交換器の負荷率が減少した場合に、冷媒圧力を制御することによって、冷媒流量を制御して圧縮機のサージングを防止することは難しい。
本発明は、このような事情に鑑みてなされたものであって、温熱生成熱交換器の負荷率が低下しても、圧縮機のサージングを防止することができる、ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法を提供することを目的とする。
上記課題を解決するために、本発明のヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法は以下の手段を採用する。
本発明の第一態様に係るヒートポンプの制御装置は、冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒により外部負荷へと提供する温熱媒体を加熱する温熱生成熱交換器と、前記温熱生成熱交換器から導かれた冷媒を膨張させる膨張弁と、前記膨張弁から導かれた冷媒を熱源媒体との熱交換によって蒸発させる蒸発器と、備えたヒートポンプの制御装置であって、前記温熱生成熱交換器の出口冷媒温度の設定値である出口冷媒温度設定値を、前記温熱生成熱交換器における負荷率が上昇した場合に低下させ、該負荷率が低下した場合に上昇させ、該出口冷媒温度設定値に基づいて前記膨張弁の開度を制御することを特徴とする。
本構成によれば、ヒートポンプは、冷媒を圧縮する圧縮機と、圧縮機によって圧縮された冷媒により外部負荷へと提供する温熱媒体を加熱する温熱生成熱交換器と、温熱生成熱交換器から導かれた冷媒を膨張させる膨張弁と、膨張弁から導かれた冷媒を熱源媒体との熱交換によって蒸発させる蒸発器と、を備える。
ここで、温熱生成熱交換器の負荷率が低下すると、冷媒流量が減少し、圧縮機にサージングが発生する可能性がある。なお、温熱生成熱交換器における負荷率とは、すなわちヒートポンプの負荷率である。
そこで、温熱生成熱交換器の出口冷媒温度設定値が、温熱生成熱交換器における負荷率が上昇した場合に低下され、該負荷率が低下した場合に上昇され、該出口冷媒温度設定値に基づいて膨張弁の開度が制御される。
負荷率の低下に応じて出口冷媒温度設定値を上昇させると、温熱生成熱交換器における冷媒のエンタルピ落差が減少する。このため、熱量を確保するために膨張弁の開度を大きくし、冷媒流量を増加させる必要が生じる。すなわち、負荷率の低下に応じて冷媒流量が増加することとなり、圧縮機のサージングが発生し難くなる。
このように、本構成は、出口冷媒温度設定値を負荷率に反比例して変化させるので、温熱生成熱交換器の負荷率が低下しても、圧縮機のサージングを防止することができる。
上記第一態様では、前記出口冷媒温度設定値及び前記出口冷媒温度の計測値に基づいて、前記膨張弁の開度を制御することが好ましい。
本構成によれば、出口冷媒温度設定値を用いたフィードバック制御により膨張弁の開度を制御することとなり、温熱生成熱交換器の負荷率が低下しても、圧縮機のサージングを簡易な構成で防止することができる。
上記第一態様では、前記温熱生成熱交換器の入口冷媒温度から算出されるエンタルピと前記出口冷媒温度設定値から算出されるエンタルピとの差である前記温熱生成熱交換器における冷媒のエンタルピ落差で、前記温熱生成熱交換器による前記温熱媒体に対する交換熱量を除算して得られた冷媒流量を用いて、前記膨張弁の開度を制御することが好ましい。
本構成によれば、出口冷媒温度設定値を用いたフィードフォワード制御により膨張弁の開度を制御することとなり、温熱生成熱交換器の負荷率が低下しても、圧縮機のサージングを簡易な構成で防止することができる。
上記第一態様では、前記出口冷媒温度設定値と前記出口冷媒温度の計測値とに基づいて、前記膨張弁の開度を算出する第1開度演算手段と、前記温熱生成熱交換器の入口冷媒温度から算出されるエンタルピと前記出口冷媒温度設定値から算出されるエンタルピとの差である前記温熱生成熱交換器における冷媒のエンタルピ落差で、前記温熱生成熱交換器による前記温熱媒体に対する交換熱量を除算して得られた冷媒流量を用いて、前記膨張弁の開度を算出する第2開度演算手段とを備え、前記第1開度演算手段によって算出された開度と前記第2開度演算手段によって算出された開度とを合算した開度によって、前記膨張弁の開度を制御することが好ましい。
本構成によれば、出口冷媒温度設定値を用いたフィードバック制御とフィードフォワード制御との組み合わせによりにより膨張弁の開度を制御することとなり、出口冷媒温度を、より早く出口冷媒温度設定値とすることができる。
上記第一態様では、前記ヒートポンプは、前記温熱生成熱交換器から前記蒸発器へと向かう冷媒と、前記蒸発器から前記圧縮機へと向かう冷媒とを熱交換させるインタークーラと、前記インタークーラを流れる冷媒流量を調整する流量調整弁と、を備え、前記圧縮機の吐出冷媒温度の計測値と該吐出冷媒温度の設定値との差に基づいて、前記流量調整弁の開度を制御することが好ましい。
本構成によれば、流量調整弁でインタークーラへ向かう冷媒流量が制御されることとなるので、インタークーラにおける交換熱量を容易に制御することができ、圧縮機へと吸い込まれる冷媒の温度を調整し易くなる。その結果、温熱生成熱交換器の出口冷媒温度も出口冷媒温度設定値に制御され易くなり、圧縮機のサージングがより確実に防止されることとなる。
上記第一態様では、前記流量調整弁が、前記温熱生成熱交換器から前記インタークーラへ向かう冷媒流量を調整するインタークーラ流量調整弁、及び前記温熱生成熱交換器から前記インタークーラへ向かう冷媒をバイパスさせて前記蒸発器へと導くインタークーラバイパス流路に設けられたインタークーラバイパス弁であり、前記インタークーラ流量調整弁の開度及び前記インタークーラバイパス弁の開度の一方を変化させるときに他方を変化させないことが好ましい。
本構成によれば、インタークーラ流量調整弁の開度及びインタークーラバイパス弁の開度を同時に制御することはないので、インタークーラへ向かう冷媒流量が急変することを防止できる。
本発明の第二態様に係るヒートポンプは、上記記載の制御装置を備えたことを特徴とする。
本発明の第三態様に係るヒートポンプの制御方法は、冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒により外部負荷へと提供する温熱媒体を加熱する温熱生成熱交換器と、前記温熱生成熱交換器から導かれた冷媒を膨張させる膨張弁と、前記膨張弁から導かれた冷媒を熱源媒体との熱交換によって蒸発させる蒸発器と、を備えたヒートポンプの制御方法であって、前記温熱生成熱交換器の出口冷媒温度の設定値である出口冷媒温度設定値を、前記温熱生成熱交換器における負荷率が上昇した場合に低下させ、該負荷率が低下した場合に上昇させ、該出口冷媒温度設定値に基づいて前記膨張弁の開度を制御することを特徴とする。
本発明によれば、温熱生成熱交換器の負荷率が低下しても、圧縮機のサージングを防止することができる、という優れた効果を有する。
本発明の第1実施形態に係るターボヒートポンプの冷媒回路を示した概略構成図である。 本発明の第1実施形態に係る制御装置における膨張弁開度制御に関する機能ブロック図である。 本発明の第1実施形態に係る負荷率と温水熱交出口冷媒温度設定値との関係を示すグラフである。 本発明の第1実施形態に係る制御装置におけるベーン開度制御に係る機能ブロック図である。 本発明の第1実施形態に係る制御装置における圧縮機インバータ周波数制御及びHGBP弁開度制御に係る機能ブロック図である。 本発明の第1実施形態に係る圧縮機マップを示した図である。 本発明の第1実施形態に係る制御装置におけるインタークーラ流量制御に係る機能ブロック図である。 本発明の第1実施形態に係るPI演算部で算出されたPI演算値、インタークーラ流量調整弁開度、及びインタークーラバイパス弁開度の関係を示している。 本発明の第2実施形態に係る制御装置における膨張弁開度制御に関する機能ブロック図である。 本発明の第3実施形態に係る制御装置における膨張弁開度制御に関する機能ブロック図である。
以下に、本発明に係るヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
以下に、本発明にかかる第1実施形態について、図面を参照して説明する。
図1には、遠心式(ターボ式)の圧縮機を用いたターボヒートポンプ1の概略構成図が示されている。冷媒としては、例えば代替フロン冷媒(R134a)が用いられる。
ターボヒートポンプ1は、冷媒を圧縮する圧縮機3と、外部から供給される熱源水(熱源媒体)と冷媒とが熱交換する蒸発器5と、温水(温熱媒体)を出力する温熱生成熱交換器6と、蒸発器5と温熱生成熱交換器6との間に設けられた膨張弁9とを備えている。これら圧縮機3、蒸発器5、温熱生成熱交換器6及び膨張弁9によって、主系統の冷媒回路が構成されている。
圧縮機3は、高圧力比が得られる遠心圧縮機となっている。圧縮機3は、軸線周りに回転する羽根車19を二段備えている。羽根車19の冷媒流れ上流側には、流入する冷媒流量を調節するIGV(インレットガイドベーン;吸込冷媒流量調整手段)21が設けられている。IGV21の開度は、制御装置7によってIGV用電動モータMが駆動されることによって調整される。
圧縮機3は、増速機18を介して接続された電動機17によって駆動される。電動機17は、制御装置7によって制御され、インバータ20による周波数制御によって回転数が適宜変更され得るようになっている。
圧縮機3の吸込側には吸込冷媒圧力P0を計測する圧力センサおよび吸込冷媒温度T0を計測する温度センサが、圧縮機3の吐出側には吐出冷媒圧力P1を計測する圧力センサおよび吐出冷媒温度T1を計測する温度センサが、それぞれ設けられている。これらセンサの出力値は、それぞれ制御装置7へと送られる。なお、圧縮機3は、冷媒を超臨界圧力で吐出する。
蒸発器5は、例えば、シェル・アンド・チューブ式の熱交換器とされている。蒸発器5には、熱源水配管13が接続されており、この熱源水配管13内を流れる熱源水とシェル内の冷媒とが熱交換を行い、熱源水から与えられる熱によってシェル内の冷媒が蒸発する。
温熱生成熱交換器6は、例えば、シェル・アンド・チューブ式の熱交換器とされている。温熱生成熱交換器6には、温水配管11が接続されており、この温水配管11内を流れる水とシェル内の冷媒とが熱交換を行う。温水配管11は、空調用室内機等の外部負荷と接続されている。温水配管11には、熱媒入口温度Ta及び熱媒出口温度Tbを測定する温度センサがそれぞれ設けられている。また、図示しないが、温水配管11には温水流量を計測する流量センサが設けられている。これらセンサからの出力値は、制御装置7へと送られる。
温熱生成熱交換器6の冷媒出口には、温水熱交出口冷媒温度T2を計測する温度センサが設けられており、この温度センサの出力値は制御装置7へと送られる。
膨張弁9は、蒸発器5と温熱生成熱交換器6との間の冷媒配管に設けられており、温熱生成熱交換器6から導かれた液冷媒を絞ることによって等エンタルピ膨張させるものである。膨張弁9の開度は、制御装置7によって制御される。
温熱生成熱交換器6と膨張弁9との間には、インタークーラ10が設けられている。インタークーラ10は、温熱生成熱交換器6から導かれた冷媒と、蒸発器5にて蒸発した冷媒とを熱交換する熱交換器である。このインタークーラ10によって、圧縮機3へと吸い込まれる冷媒の温度が調整される。
インタークーラ10と膨張弁9とを接続するインタークーラ下流側冷媒配管23には、インタークーラ流量調整弁25が設けられている。温熱生成熱交換器6とインタークーラ10とを接続するインタークーラ上流側冷媒配管24と、インタークーラ下流側冷媒配管23との間には、インタークーラ10をバイパスして冷媒を流すインタークーラバイパス冷媒配管27が設けられており、このインタークーラバイパス冷媒配管27には冷媒流量を調整するインタークーラバイパス弁28が設けられている。インタークーラ流量調整弁25とインタークーラバイパス弁28の開度を制御装置7によって適宜調整することにより、インタークーラ10へと送り込む温熱生成熱交換器6からの高温冷媒流量を調整する。
インタークーラ下流側冷媒配管23には、インタークーラ流量調整弁25と膨張弁9との間から分岐して吸込冷媒配管29へと至るインジェクション配管30が設けられている。インジェクション配管30にはインジェクション弁31が設けられている。このインジェクション弁31の開度は、制御装置7によって制御される。インジェクション弁31にて所望量に調整された冷媒を吸込冷媒配管29へ吹き込むことにより、圧縮機3へと供給される吸込冷媒の温度を蒸発温度よりも低くできる。
また、蒸発器5とインタークーラ10との間には、冷媒を蓄えるためのアキュムレータ(不図示)が設けられている。
圧縮機3の吐出側と蒸発器5の下流側との間には、ホットガスバイパス(以下、「HGBP」という。)配管34が設けられている。HGBP配管34には、HGBP弁35が設けられており、制御装置7によってその開度が制御されるようになっている。HGBP弁35は、高負荷の場合には全閉とされており、低負荷となり所定値を下回った場合に開となり漸次開度が増大されるようになっている。これにより、圧縮機3のサージング又は旋回失速に陥ることを回避できる。
なお、HGBP弁35の開度については、外部負荷が増加してHGBP弁35を閉めていくときの開度のスケジュールと、外部負荷が減少してHGBP弁35を開けていくときの開度のスケジュールを異ならせてヒステリシスを持たせることが更に好ましい。これにより、システムに大きな影響を与えるHGBP弁35の開度変更の回数を少なくし、安定的にシステムを運転することができる。
次に、上記構成のターボヒートポンプ1の動作について説明する。
圧縮機3は、電動機17によって駆動され、制御装置7によるインバータ制御により所定周波数で回転させられる。
蒸発器5及びインタークーラ10から吸い込まれた低圧ガス冷媒は、圧縮機3によって超臨界状態まで圧縮される。このとき、IGV21は全開とされている。
圧縮機3から吐出された冷媒は、温熱生成熱交換器6へと導かれる。温熱生成熱交換器6において、高温高圧のガス冷媒は略等圧的に冷却され、高圧低温の冷媒となる。この際に得られる放出熱によって、温水配管11内を流れる温水が加熱される。制御装置7は、熱媒出口温度Tbが所望値となるように、圧縮機3の回転数を制御する。
温熱生成熱交換器6において高圧低温とされた冷媒は、インタークーラ上流側冷媒配管24を通過してインタークーラ10へと導かれる。インタークーラ10では、温熱生成熱交換器6からの高温冷媒と蒸発器5にて蒸発した冷媒との熱交換が行われる。インタークーラ10での交換熱量は、制御装置7によってインタークーラ流量調整弁25及びインタークーラバイパス弁28の開度を調整することによって制御される。
インタークーラ10にて熱交換を終えた高圧冷媒は、インタークーラ下流側冷媒配管23を通過して膨張弁9へと導かれ、この膨張弁9によって等エンタルピ的に膨張させられる。膨張弁9の開度は、制御装置7によって所望のヘッド差(ヒートポンプサイクルにおける冷媒の高低圧差)が得られるように制御される。
膨張弁9によって膨張された冷媒は、蒸発器5へと導かれ、蒸発器5にて熱源水と熱交換することによって蒸発させられる。蒸発器5において蒸発した低圧ガス冷媒は、インタークーラ10にて所定温度だけ上昇させられる。圧縮機3へと吸い込まれる冷媒の温度を低下させたい場合には、制御部によってインジェクション弁31の開度を調整することによって低温冷媒を吸込冷媒配管29へと吹き込む。その後、ガス冷媒は、圧縮機3へと導かれ、再び圧縮される。
制御装置7は、膨張弁9の開度(以下、「膨張弁開度」という。)を制御する膨張弁開度制御、IGV21のベーン開度を制御するベーン開度制御、インバータ20による周波数制御、HGBP弁35の開度(以下、「HGBP弁開度」という。)を制御するHGBP弁開度制御、並びにインタークーラ流量調整弁25の開度(以下、「インタークーラ流量調整弁開度」という。)及びインタークーラバイパス弁28の開度(以下、「インタークーラバイパス弁開度」という。)を制御するインタークーラ流量制御等を行う。
なお、制御装置7は、例えば、CPU(Central Processing Unit)、RAM(Random
Access Memory)、及びコンピュータ読み取り可能な記録媒体等から構成されている。そして、各種制御に係る機能を実現するための一連の処理は、一例として、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種制御が実現される。
図2は、本第1実施形態に係る制御装置7における膨張弁開度制御に係る機能ブロック図である。
制御装置7は、設定値演算部40、減算部41、及びPI演算部42を備え、温熱生成熱交換器6の出口冷媒温度の設定値である温水熱交出口冷媒温度設定値、及び温熱生成熱交換器6の出口冷媒温度の計測値である温水熱交出口冷媒温度T2に基づいて、膨張弁開度を制御する。
設定値演算部40は、負荷率に応じた温水熱交出口冷媒温度設定値を演算し、減算部41へ出力する。
減算部41は、設定値演算部40から入力された温水熱交出口冷媒温度設定値を温度センサから入力された温水熱交出口冷媒温度T2で減算し、PI演算部42へ出力する。
PI演算部42は、減算部41から入力された減算値に基づいて、温水熱交出口冷媒温度T2が温水熱交出口冷媒温度設定値となるように、PI制御等によって膨張弁開度を算出し、膨張弁9へ出力する。
ここで、ターボヒートポンプ1は、温熱生成熱交換器6の負荷率が低下すると、冷媒流量が減少し、圧縮機3にサージングが発生する可能性がある。なお、温熱生成熱交換器6における負荷率とは、すなわちターボヒートポンプ1の負荷率である。
このため、制御装置7が備える設定値演算部40は、温熱生成熱交換器6における負荷率が上昇した場合に低下し、該負荷率が低下した場合に上昇するように、温水熱交出口冷媒温度設定値を演算する。
図3は、負荷率と温水熱交出口冷媒温度設定値との関係を示すグラフである。設定値演算部40は、図3に示されるグラフに基づいたデータを用いて、負荷率に応じた温水熱交出口冷媒温度設定値を演算する。なお、このデータは、制御装置7に予め記憶されている。
図3に示されるように、温水熱交出口冷媒温度設定値は、負荷率に反比例している。温水熱交出口冷媒温度設定値は、下限が温水熱交入口冷媒温度(吐出冷媒温度T1)よりも高い値とされている。また、温水熱交出口冷媒温度設定値は、ターボヒートポンプ1を停止させることとなる負荷率に達するまで上昇する。なお、図3のグラフは一例であり、これに限られない。
そして、温熱生成熱交換器6の交換熱量Qcon[kW]、温熱生成熱交換器6を流通する冷媒流量Gcon[kg/s]、圧縮機3が吐出する冷媒のエンタルピ(以下、「温熱生成熱交入口エンタルピ」という。)hd[kJ/kg]、及び温熱生成熱交換器6の出口における冷媒のエンタルピ(以下、「温熱生成熱交出口エンタルピ」という。)hcon[kJ/kg]は、下記(1)式で表わされる関係を有している。
Figure 0005875396
負荷率の低下に応じて温水熱交出口冷媒温度設定値を上昇させると、温熱生成熱交出口エンタルピhconが増加するので、温熱生成熱交換器6における冷媒のエンタルピ落差(hd-hcon)が減少する。このため、制御装置7は、熱量を確保するために膨張弁開度を大きくし、冷媒流量Gconを増加させる必要が生じる。すなわち、負荷率の低下に応じて冷媒流量Gconが増加することとなり、圧縮機3のサージングが発生し難くなる。
このように、制御装置7は、温水熱交出口冷媒温度設定値を負荷率に反比例して変化させるので、温熱生成熱交換器6の負荷率が低下しても、圧縮機3のサージングを防止することができる。
また、本第1実施形態に係る制御装置7は、温水熱交出口冷媒温度設定値を用いたフィードバック制御により膨張弁開度を制御することとなり、温熱生成熱交換器6の負荷率が低下しても、圧縮機3のサージングを簡易な構成で防止することができる。
図4は、本第1実施形態に係る制御装置7におけるベーン開度制御に係る機能ブロック図である。
制御装置7は、減算部45、及びPI演算部46を備え、熱媒出口温度Tbの設定値である熱媒出口温度設定値と温度センサによって計測された熱媒出口温度Tbとに基づいて、膨張弁開度を制御する。
減算部45は、熱媒出口温度設定値を温度センサから入力された熱媒出口温度Tbで減算し、PI演算部46へ出力する。
PI演算部46は、減算部45から入力された減算値に基づいて、熱媒出口温度Tbが熱媒出口温度設定値となるように、PI制御等によってIGV21のベーン開度を算出し、IGV21へ出力する。
図5は、本第1実施形態に係る制御装置7における圧縮機インバータ周波数制御及びHGBP弁開度制御に係る機能ブロック図である。
制御装置7は、圧力変数演算部50、流量変数演算部51、及び決定部52を備え、圧縮機3の空力特性マップである圧縮機マップ53を用いて、インバータ20の周波数及びHGBP弁35の開度を制御する。圧縮機マップ53は、予め圧縮機3の運転試験を綿密に行い、圧力変数に対する流量変数のマップ上に、圧縮機3が旋回失速を起こす旋回失速線が示されたものである。例えば、図6に示すような圧縮機マップ53が得られる。この圧縮機マップ53において、旋回失速線Lよりも下側の領域は、旋回失速やサージングを起こさない安定領域Sとされ、旋回失速線Lよりも上側の領域は、旋回失速やサージングを起こす不安定領域NSとされる。本第1実施形態において、この圧縮機マップ53は、ベーン開度が最大開度である100%のものである(最大開度時マップ)。また圧縮機マップ53には、同一の機械マッハ数を示す等機械マッハ数線Mが複数示されており、上方に行くに従い機械マッハ数は大きくなる。なお、制御装置は、複数の異なるベーン開度毎の圧縮機マップ53を複数記憶している。
圧力変数演算部50は、吸込冷媒圧力P0及び吐出冷媒圧力P1が入力され、圧力変数を算出し、決定部52へ出力する。
圧力変数Ωは、圧縮機3のヘッドに基づく無次元数であり、吐出冷媒圧力P1、吸込冷媒圧力P0、及び吸込冷媒圧力P0から算出される飽和温度Teから得られる冷媒ガスのエンタルピ落差Δh1と、飽和温度Teにおける音速aとから、下記(2)式により得られる。
Figure 0005875396
流量変数演算部51は、ターボヒートポンプ1による交換熱量である温熱生成熱交換器6の交換熱量Qcon、冷媒密度、及び温熱生成熱交換器6における冷媒のエンタルピ落差(以下、「温熱生成熱交出入口エンタルピ落差」という。)が入力され、流量変数θを算出し、決定部52へ出力する。
温熱生成熱交換器6の交換熱量Qconは、下記(3)式に示されるように、熱媒出口温度Tbから熱媒入口温度Taを減算した値に、熱媒流量q及び熱媒の比熱Cを乗じて得られる。
Figure 0005875396
交換熱量Qconと、温熱生成熱交換出入口エンタルピ落差Δh2とに基づいて、下記(4)式により、冷媒流量Gcon(重量流量)が得られる。
Figure 0005875396
ここで、kは定数である。
そして、冷媒密度を用いて冷媒流量Gcon(質量流量)を体積流量に変換した冷媒流量Gvと、羽根車19の外径Dと、飽和温度Teにおける音速aとに基づいて、下記(5)式により、流量変数θが算出される。流量変数θは、圧縮機3の吸込風量に基づく無次元数である。
Figure 0005875396
決定部52は、入力された圧力変数Ωと流量変数θとから、圧縮機マップ53に基づいて圧縮機インバータ周波数及びHGBP弁開度を決定する。
まず、圧力変数Ωと圧縮機マップ53の旋回失速線Lから得られた関数に基づいて、設定値最小回転数が得られる。つまり、圧力変数Ω一定の線と圧縮機マップ53の旋回失速線Lとが交わる点は、その圧力変数Ωを得るための最小機械マッハ数を示す。従って、この最小機械マッハ数から、圧縮機3の設定値最小回転数が得られる。そして、決定部52は、設定値最小回転数とするための圧縮機インバータ周波数を決定する。
次に、決定部52は、安定領域の流量変数とするために不足している流量からHGBP弁開度を決定する。
図7は、本第1実施形態に係る制御装置7におけるインタークーラ流量制御に係る機能ブロック図である。インタークーラ流量制御は、インタークーラ10を流れる冷媒流量を調整する流量調整弁である、インタークーラ流量調整弁25及びインタークーラバイパス弁28の開度を制御することによって、インタークーラ10の交換熱量を調整する。
制御装置7は、減算部60、PI演算部61、及び開度変換部62A,62Bを用いて、吐出冷媒温度T1と吐出冷媒温度T1の設定値である吐出冷媒温度設定値との差に基づいて、インタークーラ流量調整弁開度及びインタークーラバイパス弁開度を制御する。
減算部60は、吐出冷媒温度設定値を温度センサから入力された吐出冷媒温度T1で減算し、PI演算部61へ出力する。
PI演算部61は、減算部60から入力された減算値に基づいて、吐出冷媒温度T1が吐出冷媒温度設定値となるように、PI制御等によってインタークーラに流す冷媒流量を示すPI演算値を算出し、開度変換部62A,62Bへ出力する。
開度変換部62Aは、PI演算部61から入力されたPI演算値に基づいて、インタークーラ流量調整弁開度を算出し、インタークーラ流量調整弁25へ出力する。
開度変換部62Bは、PI演算部61から入力されたPI演算値に基づいて、インタークーラバイパス弁開度を算出し、インタークーラバイパス弁28へ出力する。
図8は、PI演算部61で算出されたPI演算値、インタークーラ流量調整弁開度、及びインタークーラバイパス弁開度の関係を示している。PI演算部61から入力されるPI演算値は、例えばインタークーラ10に流すことができる最大の冷媒流量を100%とした場合に対する割合で示される。
そして、図8に示されるように、インタークーラ流量調整弁開度を示す開度指令値は、予め定められた所定値に達するまで比例して上昇する。これによって、インタークーラ10に流される冷媒流量は増加し、インタークーラ10による交換熱量は増加することとなる。しかし、開度指令値は、所定値に達するとそれ以上上昇しない。このように、インタークーラ流量調整弁開度が大きくなるとインタークーラ10による交換熱量は増加し、インタークーラ流量調整弁開度が小さくなるとインタークーラ10による交換熱量は減少する。
一方、インタークーラバイパス弁開度を示す開度指令値は、インタークーラ流量調整弁開度が上記所定値に達するまで変化しない。しかし、インタークーラバイパス弁開度を示す開度指令値は、インタークーラ流量調整弁開度が所定値に達すると減少する。これによって、インタークーラバイパス冷媒配管27を流れる冷媒流量は減少するので、インタークーラ上流側冷媒配管24を流れる冷媒流量、すなわちインタークーラ10に流れる冷媒流量は増加し、インタークーラ10による交換熱量は増加することとなる。このように、インタークーラバイパス弁開度が小さくなるとインタークーラ10による交換熱量は増加し、インタークーラバイパス弁開度が大きくなるとインタークーラ10による交換熱量は減少する。
上記のように、制御装置7は、インタークーラ流量調整弁25及びインタークーラバイパス弁28で温熱生成熱交換器6からインタークーラ10へ向かう冷媒流量を制御するので、インタークーラ10における交換熱量を容易に制御することができ、吸込冷媒温度T0を調整し易くなる。その結果、温水熱交入口冷媒温度である吐出冷媒温度T1が安定することとなるので、温水熱交出口冷媒温度T2も温水熱交出口冷媒温度設定値に達するように制御され易くなり、圧縮機3のサージングがより確実に防止されることとなる。
また、制御装置7は、インタークーラ流量調整弁開度及びインタークーラバイパス弁開度の一方を変化させるときに他方を変化させない。すなわち、インタークーラ流量調整弁の開度及びインタークーラバイパス弁の開度を同時に制御されることはないので、制御装置7は、インタークーラ10へ向かう冷媒流量が急変することを防止できる。
以上説明したように、本第1実施形態に係る制御装置7は、温水熱交出口冷媒温度設定値を、温熱生成熱交換器6における負荷率が上昇した場合に低下させ、該負荷率が低下した場合に上昇させ、温水熱交出口冷媒温度設定値に基づいて膨張弁開度を制御する。従って、制御装置7は、温熱生成熱交換器6の負荷率が低下しても、圧縮機3のサージングを防止することができる。
〔第2実施形態〕
以下、本発明の第2実施形態について説明する。
なお、本第2実施形態に係るターボヒートポンプ1の構成は、図1に示す第1実施形態に係るターボヒートポンプ1の構成と同様であるので説明を省略する。
図9は、本第2実施形態に係る制御装置7における膨張弁開度制御に関する機能ブロック図である。
本第2実施形態に係る制御装置7は、演算ブロック65A,65B、除算部66、開度変換部67を備え、温熱生成熱交出入口エンタルピ落差で温熱生成熱交換器6による温熱媒体に対する交換熱量を除算して得られた冷媒流量を用いて、膨張弁開度を制御する。
演算ブロック65Aは、上記(3)式を用いて交換熱量Qconを算出する。
ここで、温熱生成熱交出入口エンタルピ落差は、温熱生成熱交換器6の入口冷媒温度である吐出冷媒温度T1から算出される温熱生成熱交入口エンタルピhdと温水熱交出口冷媒温度設定値から算出される温熱生成熱交出口エンタルピhconとの差から算出される。温水熱交出口冷媒温度設定値は、設定値演算部40から出力される設定値が用いられる。
冷媒流量Gconは、上記(1)式に基づいた下記(6)式に表わされるように、温熱生成熱交出入口エンタルピ落差で交換熱量Qconを除算することによって算出される。冷媒流量Gconは、温熱生成熱交換器6及び膨張弁9を通過する冷媒流量である。
Figure 0005875396
また、膨張弁9のCv値(以下、「膨張弁Cv値」という。)をK、膨張弁9の前後差圧を吐出冷媒圧力P1と吸込冷媒圧力P0との差とし、膨張弁9の上流側の冷媒密度をρとすると、膨張弁9を通過することとなる冷媒流量Gconは下記(7)式で表される。
Figure 0005875396
そして、下記(8)式に示されるように、(6)式と(7)式から膨張弁Cv値Kが算出される。
Figure 0005875396
ここで、演算ブロック65Bは、(8)式における分母を算出する。
さらに、除算部66は、膨張弁Cv値Kを算出し、開度変換部67へ出力する。
開度変換部67は、除算部66から入力された膨張弁Cv値に基づいて、膨張弁開度を算出し、膨張弁9へ出力する。
以上説明したように、本第2実施形態に係る制御装置7は、温水熱交出口冷媒温度設定値を用いたフィードフォワード制御により膨張弁開度を制御することとなり、温熱生成熱交換器6の負荷率が低下しても、圧縮機3のサージングを簡易な構成で防止することができる。
〔第3実施形態〕
以下、本発明の第3実施形態について説明する。
なお、本第3実施形態に係るターボヒートポンプ1の構成は、図1に示す第1実施形態に係るターボヒートポンプ1の構成と同様であるので説明を省略する。
図10は、本第3実施形態に係る制御装置7における膨張弁開度制御に関する機能ブロック図である。なお、図10における図2,図9と同一の構成部分については図2,図9と同一の符号を付して、その説明を省略する。
本第3実施形態に係る制御装置7は、フィードバック開度演算部70A、フィードフォワード開度演算部70B、及び合算部71を備える。
フィードバック開度演算部70Aは、図2に示される第1実施形態に係る制御装置7における膨張弁開度制御に相当する機能を有する。すなわち、フィードバック開度演算部70Aは、温水熱交出口冷媒温度設定値を用いたフィードバック制御により膨張弁開度を算出する。
また、フィードフォワード開度演算部70Bは、図9に示される第2実施形態に係る制御装置7における膨張弁開度制御に相当する機能を有する。すなわち、フィードフォワード開度演算部70Bは、温水熱交出口冷媒温度設定値を用いたフィードフォワード制御により膨張弁開度を算出する。
そして、合算部71は、フィードバック開度演算部70Aによって算出された膨張弁開度とフィードフォワード開度演算部70Bによって算出された膨張弁開度とを合算し、膨張弁9へ出力する。
本第3実施形態に係る制御装置7は、まず、フィードフォワード開度演算部70Bによってフィードフォワード制御により膨張弁開度を算出する。そして、この開度の膨張弁9を通過した冷媒流量では、温水熱交出口冷媒温度設定値と温水熱交出口冷媒温度T2とに差が生じている場合、フィードバック開度演算部70Aによるフィードバック制御によって、該差に応じた膨張弁開度が算出され、合算部71によってフィードフォワード開度演算部70Bで算出された膨張弁開度に合算される。
これにより、例えば、負荷率が大きく変化する場合等にフィードバック制御のみで膨張弁9を制御すると、フィードバック制御が利き過ぎ、オーバーシュートしてしまい膨張弁9の制御が安定しない可能性がある。本第3実施形態に係る制御装置7は、フィードフォワード制御によって膨張弁9の開度を変化させ、冷媒流量を変化させた後にフィードフォワード制御によって膨張弁9の開度が制御されることとなるので、膨張弁9の開度を安定して制御することができる。
以上説明したように、本第3実施形態に係る制御装置7は、温水熱交出口冷媒温度設定値を用いたフィードバック制御とフィードフォワード制御との組み合わせによりにより膨張弁開度を制御することとなり、温水熱交出口冷媒温度T2を、より早く温水熱交出口冷媒温度設定値とすることができる。
以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。
例えば、上記各実施形態では、ターボヒートポンプ1が、インタークーラ流量調整弁25及びインタークーラバイパス弁28を備える形態について説明したが、本発明は、これに限定されるものではなく、インタークーラ流量調整弁25及びインタークーラバイパス弁28の何れか一方を備える形態としてもよい。
また、上記各実施形態では、インタークーラ流量調整弁25及びインタークーラバイパス弁28が冷媒の高温側に設けられる形態について説明したが、本発明は、これに限定されるものではなく、冷媒の低温側に設けられてもよい。この形態の場合、インタークーラ流量調整弁25が、蒸発器5からインタークーラ10へ向かう冷媒流量を調整する弁とされ、インタークーラバイパス弁28が、蒸発器5からインタークーラ10へ向かう冷媒をバイパスさせて圧縮機3へと導く流路に設けられた弁とされることとなる。
また、上記各実施形態では、制御装置7が、インタークーラ流量調整弁開度を大きくした後に、インタークーラバイパス弁開度を小さくする形態について説明したが、本発明は、これに限定されるものではなく、インタークーラ流量調整弁開度及びインタークーラバイパス弁開度を同時に制御しなければよく、インタークーラ流量調整弁開度及びインタークーラバイパス弁開度を交互に制御する形態としてもよい。
また、上記各実施形態では、圧縮機3は冷媒を超臨界圧力で吐出する形態について説明したが、本発明は、これに限定されるものではなく、圧縮機3は冷媒を超臨界圧力未満で吐出する形態としてもよい。
1 ターボヒートポンプ
3 圧縮機
5 蒸発器
6 温熱生成熱交換器
7 制御装置
9 膨張弁
10 インタークーラ
25 インタークーラ流量調整弁
28 インタークーラバイパス弁
40 設定値演算部
42 PI演算部
70A フィードバック開度演算部
70B フィードフォワード開度演算部
71 合算部

Claims (12)

  1. 冷媒を圧縮する圧縮機と、
    前記圧縮機によって圧縮された冷媒により外部負荷へと提供する温熱媒体を加熱する温熱生成熱交換器と、
    前記温熱生成熱交換器から導かれた冷媒を膨張させる膨張弁と、
    前記膨張弁から導かれた冷媒を熱源媒体との熱交換によって蒸発させる蒸発器と、
    を備えたヒートポンプの制御装置であって、
    前記温熱生成熱交換器の出口冷媒温度の設定値である出口冷媒温度設定値を、前記温熱生成熱交換器における負荷率が上昇した場合に低下させ、該負荷率が低下した場合に上昇させ、該出口冷媒温度設定値を上昇させた場合に前記膨張弁の開度を大きくして冷媒流量を増加させることを特徴とするヒートポンプの制御装置。
  2. 前記出口冷媒温度設定値及び前記出口冷媒温度の計測値に基づいて、前記膨張弁の開度を制御することを特徴とする請求項1記載のヒートポンプの制御装置。
  3. 前記温熱生成熱交換器の入口冷媒温度から算出されるエンタルピと前記出口冷媒温度設定値から算出されるエンタルピとの差である前記温熱生成熱交換器における冷媒のエンタルピ落差で、前記温熱生成熱交換器による前記温熱媒体に対する交換熱量を除算して得られた冷媒流量を用いて、前記膨張弁の開度を制御することを特徴とする請求項1記載のヒートポンプの制御装置。
  4. 前記出口冷媒温度設定値と前記出口冷媒温度の計測値とに基づいて、前記膨張弁の開度を算出する第1開度演算手段と、
    前記温熱生成熱交換器の入口冷媒温度から算出されるエンタルピと前記出口冷媒温度設定値から算出されるエンタルピとの差である前記温熱生成熱交換器における冷媒のエンタルピ落差で、前記温熱生成熱交換器による前記温熱媒体に対する交換熱量を除算して得られた冷媒流量を用いて、前記膨張弁の開度を算出する第2開度演算手段と、
    を備え、
    前記第1開度演算手段によって算出された開度と前記第2開度演算手段によって算出された開度とを合算した開度によって、前記膨張弁の開度を制御することを特徴とする請求項1記載のヒートポンプの制御装置。
  5. 冷媒を圧縮する圧縮機と、
    前記圧縮機によって圧縮された冷媒により外部負荷へと提供する温熱媒体を加熱する温熱生成熱交換器と、
    前記温熱生成熱交換器から導かれた冷媒を膨張させる膨張弁と、
    前記膨張弁から導かれた冷媒を熱源媒体との熱交換によって蒸発させる蒸発器と、
    を備え、前記温熱生成熱交換器の出口冷媒温度の設定値である出口冷媒温度設定値を、前記温熱生成熱交換器における負荷率が上昇した場合に低下させ、該負荷率が低下した場合に上昇させ、該出口冷媒温度設定値に基づいて前記膨張弁の開度を制御するヒートポンプの制御装置であって、
    前記温熱生成熱交換器の入口冷媒温度から算出されるエンタルピと前記出口冷媒温度設定値から算出されるエンタルピとの差である前記温熱生成熱交換器における冷媒のエンタルピ落差で、前記温熱生成熱交換器による前記温熱媒体に対する交換熱量を除算して得られた冷媒流量を用いて、前記膨張弁の開度を制御することを特徴とするヒートポンプの制御装置。
  6. 冷媒を圧縮する圧縮機と、
    前記圧縮機によって圧縮された冷媒により外部負荷へと提供する温熱媒体を加熱する温熱生成熱交換器と、
    前記温熱生成熱交換器から導かれた冷媒を膨張させる膨張弁と、
    前記膨張弁から導かれた冷媒を熱源媒体との熱交換によって蒸発させる蒸発器と、
    を備え、前記温熱生成熱交換器の出口冷媒温度の設定値である出口冷媒温度設定値を、前記温熱生成熱交換器における負荷率が上昇した場合に低下させ、該負荷率が低下した場合に上昇させ、該出口冷媒温度設定値に基づいて前記膨張弁の開度を制御するヒートポンプの制御装置であって、
    前記出口冷媒温度設定値と前記出口冷媒温度の計測値とに基づいて、前記膨張弁の開度を算出する第1開度演算手段と、
    前記温熱生成熱交換器の入口冷媒温度から算出されるエンタルピと前記出口冷媒温度設定値から算出されるエンタルピとの差である前記温熱生成熱交換器における冷媒のエンタルピ落差で、前記温熱生成熱交換器による前記温熱媒体に対する交換熱量を除算して得られた冷媒流量を用いて、前記膨張弁の開度を算出する第2開度演算手段と、
    を備え、
    前記第1開度演算手段によって算出された開度と前記第2開度演算手段によって算出された開度とを合算した開度によって、前記膨張弁の開度を制御することを特徴とするヒートポンプの制御装置。
  7. 前記ヒートポンプは、
    前記温熱生成熱交換器から前記蒸発器へと向かう冷媒と、前記蒸発器から前記圧縮機へと向かう冷媒とを熱交換させるインタークーラと、
    前記インタークーラを流れる冷媒流量を調整する流量調整弁と、
    を備え、
    前記圧縮機の吐出冷媒温度の計測値と該吐出冷媒温度の設定値との差に基づいて、前記流量調整弁の開度を制御することを特徴とする請求項1からの何れか1項記載のヒートポンプの制御装置。
  8. 前記流量調整弁は、前記温熱生成熱交換器から前記インタークーラへ向かう冷媒流量を調整するインタークーラ流量調整弁、及び前記温熱生成熱交換器から前記インタークーラへ向かう冷媒をバイパスさせて前記蒸発器へと導くインタークーラバイパス流路に設けられたインタークーラバイパス弁であり、
    前記インタークーラ流量調整弁の開度及び前記インタークーラバイパス弁の開度の一方を変化させるときに他方を変化させないことを特徴とする請求項記載のヒートポンプの制御装置。
  9. 請求項1から請求項の何れか1項記載の制御装置を備えたことを特徴とするヒートポンプ。
  10. 冷媒を圧縮する圧縮機と、
    前記圧縮機によって圧縮された冷媒により外部負荷へと提供する温熱媒体を加熱する温熱生成熱交換器と、
    前記温熱生成熱交換器から導かれた冷媒を膨張させる膨張弁と、
    前記膨張弁から導かれた冷媒を熱源媒体との熱交換によって蒸発させる蒸発器と、
    を備えたヒートポンプの制御方法であって、
    前記温熱生成熱交換器の出口冷媒温度の設定値である出口冷媒温度設定値を、前記温熱生成熱交換器における負荷率が上昇した場合に低下させ、該負荷率が低下した場合に上昇させ、該出口冷媒温度設定値を上昇させた場合に前記膨張弁の開度を大きくして冷媒流量を増加させることを特徴とするヒートポンプの制御方法。
  11. 冷媒を圧縮する圧縮機と、
    前記圧縮機によって圧縮された冷媒により外部負荷へと提供する温熱媒体を加熱する温熱生成熱交換器と、
    前記温熱生成熱交換器から導かれた冷媒を膨張させる膨張弁と、
    前記膨張弁から導かれた冷媒を熱源媒体との熱交換によって蒸発させる蒸発器と、
    を備え、前記温熱生成熱交換器の出口冷媒温度の設定値である出口冷媒温度設定値を、前記温熱生成熱交換器における負荷率が上昇した場合に低下させ、該負荷率が低下した場合に上昇させ、該出口冷媒温度設定値に基づいて前記膨張弁の開度を制御するヒートポンプの制御方法であって、
    前記温熱生成熱交換器の入口冷媒温度から算出されるエンタルピと前記出口冷媒温度設定値から算出されるエンタルピとの差である前記温熱生成熱交換器における冷媒のエンタルピ落差で、前記温熱生成熱交換器による前記温熱媒体に対する交換熱量を除算して得られた冷媒流量を用いて、前記膨張弁の開度を制御することを特徴とするヒートポンプの制御方法。
  12. 冷媒を圧縮する圧縮機と、
    前記圧縮機によって圧縮された冷媒により外部負荷へと提供する温熱媒体を加熱する温熱生成熱交換器と、
    前記温熱生成熱交換器から導かれた冷媒を膨張させる膨張弁と、
    前記膨張弁から導かれた冷媒を熱源媒体との熱交換によって蒸発させる蒸発器と、
    を備え、前記温熱生成熱交換器の出口冷媒温度の設定値である出口冷媒温度設定値を、前記温熱生成熱交換器における負荷率が上昇した場合に低下させ、該負荷率が低下した場合に上昇させ、該出口冷媒温度設定値に基づいて前記膨張弁の開度を制御するヒートポンプの制御方法であって、
    前記出口冷媒温度設定値と前記出口冷媒温度の計測値とに基づいて、前記膨張弁の開度を算出する第1工程と、
    前記温熱生成熱交換器の入口冷媒温度から算出されるエンタルピと前記出口冷媒温度設定値から算出されるエンタルピとの差である前記温熱生成熱交換器における冷媒のエンタルピ落差で、前記温熱生成熱交換器による前記温熱媒体に対する交換熱量を除算して得られた冷媒流量を用いて、前記膨張弁の開度を算出する第2工程と、
    前記第1工程によって算出された開度と前記第2工程によって算出された開度とを合算した開度によって、前記膨張弁の開度を制御する第3工程と、
    を有することを特徴とするヒートポンプの制御方法。
JP2012027415A 2012-02-10 2012-02-10 ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法 Active JP5875396B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012027415A JP5875396B2 (ja) 2012-02-10 2012-02-10 ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027415A JP5875396B2 (ja) 2012-02-10 2012-02-10 ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法

Publications (2)

Publication Number Publication Date
JP2013164213A JP2013164213A (ja) 2013-08-22
JP5875396B2 true JP5875396B2 (ja) 2016-03-02

Family

ID=49175671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027415A Active JP5875396B2 (ja) 2012-02-10 2012-02-10 ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法

Country Status (1)

Country Link
JP (1) JP5875396B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135259A (ja) * 2014-01-16 2015-07-27 トヨタ自動車株式会社 触媒コンバータ性能評価装置
JP6433709B2 (ja) * 2014-07-30 2018-12-05 三菱重工サーマルシステムズ株式会社 ターボ冷凍機及びその制御装置並びにその制御方法
CN113108509A (zh) * 2021-04-21 2021-07-13 荏原冷热系统(中国)有限公司 一种获得冷暖机组喘振曲线的方法和相关装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346347A (ja) * 1986-08-11 1988-02-27 株式会社日立製作所 冷媒流量制御装置
JPS63161362A (ja) * 1986-12-23 1988-07-05 大阪瓦斯株式会社 タ−ボ冷凍機の制御方法
JPH06185814A (ja) * 1992-12-16 1994-07-08 Zexel Corp 冷媒循環サイクルの膨張弁制御装置
JP2001235239A (ja) * 2000-02-23 2001-08-31 Seiko Seiki Co Ltd 超臨界蒸気圧縮サイクル装置
JP2003176957A (ja) * 2001-10-03 2003-06-27 Denso Corp 冷凍サイクル装置
JP2003214713A (ja) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP3972793B2 (ja) * 2002-10-28 2007-09-05 松下電器産業株式会社 給湯装置
JP2006284034A (ja) * 2005-03-31 2006-10-19 Mitsubishi Heavy Ind Ltd 空気調和装置およびその膨張弁制御方法
JP4930214B2 (ja) * 2007-06-21 2012-05-16 株式会社デンソー 冷凍サイクル装置
JP2009092258A (ja) * 2007-10-04 2009-04-30 Panasonic Corp 冷凍サイクル装置
JP4948374B2 (ja) * 2007-11-30 2012-06-06 三菱電機株式会社 冷凍サイクル装置
JP5153812B2 (ja) * 2010-04-06 2013-02-27 三菱電機株式会社 冷凍空調装置

Also Published As

Publication number Publication date
JP2013164213A (ja) 2013-08-22

Similar Documents

Publication Publication Date Title
JP6543405B2 (ja) 多段遠心圧縮機のための容量制御システム及び方法
KR101662468B1 (ko) 열원시스템 및 냉각수 공급장치의 제어장치 및 제어방법
JP5244420B2 (ja) ターボ冷凍機および熱源システムならびにこれらの制御方法
JP6324707B2 (ja) 熱源機及びその制御方法
CN103534534B (zh) 热源系统以及热源系统的台数控制方法
JP5812653B2 (ja) 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
JP5554277B2 (ja) 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
KR20130037730A (ko) 팽창 밸브 제어 장치, 열원기 및 팽창 밸브 제어 방법
JP5981180B2 (ja) ターボ冷凍機及びその制御方法
CN106662364A (zh) 用于变速驱动器的制冷剂冷却
JP4859480B2 (ja) ターボ冷凍機およびその制御装置ならびにターボ冷凍機の制御方法
JP5875396B2 (ja) ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法
JP5649388B2 (ja) 蒸気圧縮式ヒートポンプおよびその制御方法
JP6654190B2 (ja) 一連の極低温圧縮機における流体の圧力及び温度制御のための方法
EP2434232A2 (en) Control of a transcritical vapor compression system
JP6855160B2 (ja) 熱源システムの台数制御装置及びその方法並びに熱源システム
JP6987598B2 (ja) 冷凍サイクルの制御装置、熱源装置、及びその制御方法
JP2006284057A (ja) 空気調和装置およびその運転方法
JP6037637B2 (ja) ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法
JP2013194922A (ja) ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法
JP6021379B2 (ja) ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法
JP5144959B2 (ja) 熱源機およびその制御方法
JP6355901B2 (ja) 超臨界式ヒートポンプサイクル及びその制御方法
JP6716306B2 (ja) 熱源システムの設定温度制御装置、及びそれを備えた熱源システム、並びに熱源システムの設定温度制御方法
JP2017201218A (ja) ヒートポンプシステム及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R151 Written notification of patent or utility model registration

Ref document number: 5875396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350