JP5873949B1 - 燃料マニホールド - Google Patents

燃料マニホールド Download PDF

Info

Publication number
JP5873949B1
JP5873949B1 JP2015181668A JP2015181668A JP5873949B1 JP 5873949 B1 JP5873949 B1 JP 5873949B1 JP 2015181668 A JP2015181668 A JP 2015181668A JP 2015181668 A JP2015181668 A JP 2015181668A JP 5873949 B1 JP5873949 B1 JP 5873949B1
Authority
JP
Japan
Prior art keywords
fuel
introduction pipe
wall
fuel manifold
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015181668A
Other languages
English (en)
Other versions
JP2016081912A (ja
Inventor
誠 大森
誠 大森
永植 中村
永植 中村
中村 俊之
俊之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55362241&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5873949(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2015181668A priority Critical patent/JP5873949B1/ja
Application granted granted Critical
Publication of JP5873949B1 publication Critical patent/JP5873949B1/ja
Publication of JP2016081912A publication Critical patent/JP2016081912A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池のスタック構造体に使用される燃料マニホールドであって、燃料電池を長時間稼働した後においても、導入管が燃料マニホールドの壁に強固に接合・固定された状態が維持され得るものを提供すること。【解決手段】燃料マニホールド本体200は、その内部空間内の燃料ガスを複数の燃料電池セルのそれぞれの燃料ガス流路に供給する機能を果たす。燃料マニホールド本体200には、その内部空間に燃料ガスを導入するための導入管230が設けられる。導入管230の一端部が、支持板220(燃料マニホールドの上壁)に形成された貫通孔に挿入された状態にて支持板220に対して内部空間側で「溶接」されることによって、導入管230が支持板220に接合・固定される。【選択図】図9

Description

本発明は、燃料電池のスタック構造体に使用される燃料マニホールドに関する。
従来より、「それぞれの内部に燃料ガス流路が形成された複数の燃料電池セル」が設けられた「燃料マニホールド」が広く知られている(例えば、特許文献1を参照)。この燃料マニホールドは、その内部空間内の燃料ガスを前記複数の燃料電池セルのそれぞれの前記燃料ガス流路に供給する機能を果たす。
特許第5162724号公報
上記文献に記載の燃料マニホールドには、燃料マニホールドの内部空間に燃料ガスを導入するための導入管が設けられている。この導入管は、燃料マニホールドの壁(上記文献に記載の例では、上壁)に接合・固定されている。しかしながら、上記文献には、この導入管を燃料マニホールドの壁にどのように接合・固定するかについては何ら記載されていない。燃料電池を長時間稼働した後においても、導入管が燃料マニホールドの壁に強固に接合・固定された状態が維持され得る燃料マニホールドの到来が望まれているところである。
以上より、本発明は、燃料電池のスタック構造体に使用される燃料マニホールドであって、燃料電池を長時間稼働した後においても、導入管が燃料マニホールドの壁に強固に接合・固定された状態が維持され得るものを提供することを目的とする。
本発明に係る燃料マニホールドの特徴は、前記導入管が、前記燃料マニホールド本体の壁に形成された貫通孔に挿入され、燃料マニホールド本体の内部空間内に位置する「金属材料で構成された接合材」によって前記壁に接合・固定されたことにある。
ここにおいて、前記導入管は、前記壁に対して前記内部空間側での溶接によって、前記壁に接合・固定されることが好適である。この場合、前記接合材は、溶けた前記導入管及び/又は前記壁の材料で構成される。また、前記導入管は、前記接合材としての金属材料(合金、ろう、前記導入管及び前記壁より融点が低い材料)を用いたろう付けによって、前記壁に接合・固定されてもよい。
上記特徴によれば、導入管の接合に使用される「接合材」の材料として「金属材料」が使用される。従って、例えば、前記「接合材」の材料として「ガラス材料」等が使用される場合と比べて、導入管がより強固に接合・固定され得る。
加えて、上記特徴によれば、導入管の接合に使用される「接合材」が、燃料マニホールド本体の内部空間内に位置している。ここで、燃料電池の稼働中では、燃料マニホールド本体の内部空間にて燃料ガスが流通するので、燃料マニホールド本体の内部空間は還元雰囲気に維持される。従って、燃料電池の稼働中では、前記「接合材」を取り巻く雰囲気は、還元雰囲気に維持される。還元雰囲気では「金属材料」は酸化され難い。よって、上記特徴によれば、燃料電池を長時間稼働した後においても、前記「接合材」が酸化され難いので、酸化に起因する「接合材の接合強度の低下」が発生し難い。以上より、上記特徴によれば、燃料電池を長時間稼働した後においても、導入管が燃料マニホールド本体の壁に強固に接合・固定された状態が維持され得る。
本発明の実施形態に係る燃料マニホールドが使用された燃料電池のスタック構造体に使用される1つのセルを示す斜視図である。 図1に示すセルの作動状態を説明するための図である。 本発明の実施形態に係る燃料マニホールドが使用された燃料電池のスタック構造体の全体の斜視図である。 図3に示した燃料マニホールドの全体の斜視図である。 図4に示した支持板(上壁)に形成された挿入孔の拡大図である。 挿入孔とセルの一端部との接合部の様子を示した横断面図である。 挿入孔とセルの一端部との接合部の様子示した縦断面図である。 図3に示したスタック構造体に対して燃料ガス及び空気が供給・排出される様子を示した図である。 導入管が燃料マニホールドの壁に接合・固定された様子の一例を示した断面図である。 導入管が燃料マニホールドの壁に接合・固定された様子の他の例を示した断面図である。 導入管が燃料マニホールドの壁に接合・固定された様子の他の例を示した断面図である。 導入管が燃料マニホールドの壁に接合・固定された様子の他の例を示した断面図である。 本発明の実施形態の変形例に係る上蓋が使用された燃料電池のスタック構造体の全体の斜視図である。 図13に示すスタック構造体において、導入管が上蓋の壁に接合・固定された様子の一例を示した断面図である。 図13に示すスタック構造体において、導入管が上蓋の壁に接合・固定された様子の他の例を示した断面図である。
(スタック構造体に使用されるセルの構成の一例)
先ず、本発明の実施形態に係る燃料マニホールドが使用された、固体酸化物形燃料電池(SOFC)のスタック構造体に使用されるセル100の一例について、図1〜図2を参照しながら説明する。
図1に示すセル100は、長手方向(x軸方向)を有する平板状の支持基板10の上下面(互いに平行な両側の主面(平面))のそれぞれに、電気的に直列に接続された複数(本例では、4つ)の発電素子部Aが長手方向において所定の間隔をおいて配置された、所謂「横縞型」と呼ばれる構成を有する。
このセル100の全体を上方からみた形状は、例えば、長手方向(x軸方向)の辺の長さL1が50〜500mmで長手方向に直交する幅方向(y軸方向)の長さL2が10〜100mmの長方形である(L1>L2)。このセル100の厚さL3(z軸方向の距離)は、1〜5mmである(L2>L3)。
このセル100は支持基板10を備える。支持基板10は、電子伝導性を有さない多孔質の材料からなる平板状の焼成体である。支持基板10の内部には、長手方向に延びる複数(本例では、6本)の燃料ガス流路11(貫通孔)が幅方向において所定の間隔をおいて形成されている。支持基板10は、例えば、CSZ(カルシア安定化ジルコニア)で構成され得る。
支持基板10の上下面のそれぞれに配置された各発電素子部Aは、燃料極、固体電解質膜、及び空気極が少なくともこの順に積層された積層焼成体である。燃料極は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とで構成され得る。固体電解質膜は、例えば、YSZ(8YSZ)(イットリア安定化ジルコニア)で構成され得る。空気極は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)で構成され得る。
図1に示す「横縞型」のセル100に対して、図2に示すように、支持基板10の燃料ガス流路11内に燃料ガス(水素ガス等)を流すとともに、支持基板10の上下面に沿って酸素を含むガス(空気等)を流すことにより、各発電素子部Aにおいて、固体電解質膜の表裏面間に生じる酸素分圧差によって起電力が発生する。更に、セル100を外部の負荷に接続すると、下記(1)、(2)式に示す化学反応が起こり、セル100内にて電流が流れる(発電状態)。この発電状態にて、セル100から電力が取り出される。
(1/2)・O+2e→O (於:空気極) …(1)
+O →HO+2e (於:燃料極) …(2)
(スタック構造体の全体構成の一例)
次に、上述したセル100を用いた本発明の実施形態に係る固体酸化物形燃料電池(SOFC)のスタック構造体について説明する。図3に示すように、このスタック構造体は、多数のセル100と、多数のセル100のそれぞれに燃料ガスを供給するためのマニホールドである燃料マニホールド20と、を備えている。燃料マニホールド20は、長手方向(z軸方向)を有する直方体状の筐体である。
燃料マニホールド20は、それぞれの内部にガス流路11が形成された複数のセル100が設けられるように構成されている。そして、燃料マニホールド20は、燃料ガスを複数のセル100のそれぞれのガス流路11に供給するように構成されている。この燃料マニホールド20は、燃料マニホールド本体200と、導入管230と、接合材240(図9参照)と、を備えている。
燃料マニホールド本体200は、内部空間を画定する壁を有する。例えば、燃料マニホールド本体200は、基部210と、支持板220とを、上記壁として有している。基部210は、底壁と側壁とを備え、且つ上方に向けて開口する。支持板220は、基部210の上に配置され、且つ前記開口を塞ぐ。支持板220は、平板状である。この支持板220は、燃料マニホールド本体200の上壁を構成する。支持板220は、多数のセル100を支持する機能を備える。基部210及び支持板220は、例えば、ステンレス鋼等で構成されている。この基部210の底壁及び側壁と、支持基板220とによって、燃料マニホールド本体200の内部空間が画定される。
図3及び図4に示すように、導入管230は、燃料マニホールド本体200の内部空間に燃料ガスを導入するための部材である。図3及び図4に示す例では、導入管230は、支持板220の四隅部の1つから上方(x軸正方向)に向けて突出するように、支持板220に対して接合・固定されている。導入管230も、例えば、ステンレス鋼等で構成されている。なお、導入管230と燃料マニホールド本体200とでは、異なる種類のステンレス鋼を採用する。そして、導入管230の熱膨張率と、燃料マニホールド本体200の熱膨張率も互いに異なる。例えば、導入管230の熱膨張率は、燃料マニホールド本体200の熱膨張率よりも大きい。例えば、導入管230は、アルミナ形成ステンレス鋼で構成されており、燃料マニホールド本体200は、クロミア形成ステンレス鋼で構成されている。より詳細には、導入管230は、日新製鋼製のNCA−1、新日鉄住金ステンレス製のNSSC−21M、及びJFEスチール製のJFE18−3USRよりなる群から選ばれる少なくとも一種である。また、燃料マニホールド本体200は、日立金属製のZMG232L、ディッセンクルップ製(独)Crofer22APU、及び汎用フェライト系ステンレス鋼(例えばSUS440等)よりなる群から選ばれる少なくとも1種である。この導入管230の接合・固定については、後に詳述する。
各セル100が、支持板220から上方(x軸正方向)に向けてそれぞれ突出するように、且つ、複数のセル100が燃料マニホールド本体200の長手方向(z軸方向)に沿って互いに離れてスタック状に整列するように、各セル100における支持基板10の長手方向(x軸方向)の燃料ガス流入側の端部(一端部)が、支持板220に対して接合材を用いて接合・支持されている。各セル100における支持基板10の長手方向(x軸方向)の燃料ガス排出側の端部(他端部)は、自由端となっている。従って、このスタック構造は、「片持ちスタック構造」と表現することができる。
図4に示すように、支持板220(燃料マニホールド本体200の上壁)には、燃料マニホールド本体200の内部空間と連通する多数の挿入孔221が、z軸方向において間隔をおいて形成されている。各挿入孔221は、例えば等間隔で配置されている。各挿入孔221には、対応するセル100の前記一端部がそれぞれ挿入される。
図5に示すように、各挿入孔221の形状は、長さL4、幅L5のy軸方向に延在する長円形状(L4>L5)を呈している。挿入孔221の長さL4は、セル100の一端部の側面の長さL2(図1を参照)より0.2〜3mm大きい。同様に、挿入孔221の幅L5は、セル100の一端部の側面の幅L3(図1を参照)より0.2〜3mm大きい。即ち、図6、及び図7に示すように、セル100の前記一端部が挿入孔221に挿入された状態では、挿入孔221の内壁とセル100の前記一端部の外壁との間に隙間が形成される。なお、図6、及び図7(特に、図6)では、前記隙間が誇張して描かれている。
図6、及び図7に示すように、挿入孔221とセル100の前記一端部との接合部のそれぞれにおいて、固化された接合材300が前記隙間に充填されるように設けられている。これにより、各挿入孔221と対応するセル100の前記一端部とがそれぞれ接合・固定されている。図7に示すように、各セル100のガス流路11の前記一端部は、燃料マニホールド本体200の内部空間と連通している。
接合材300は、結晶化ガラスで構成される。結晶化ガラスとしては、例えば、SiO−B系、SiO−CaO系、MgO−B系が採用され得るが、SiO−MgO系のものが最も好ましい。なお、本明細書では、結晶化ガラスとは、全体積に対する「結晶相が占める体積」の割合(結晶化度)が60%以上であり、全体積に対する「非晶質相及び不純物が占める体積」の割合が40%未満のガラス(セラミックス)を指す。結晶化ガラスの結晶化度は、具体的には、例えば、「XRD等を用いて結晶相を同定し、SEM及びEDS、或いは、SEM及びEPMA等を用いて結晶化後のガラスの組織や組成分布を観察した結果に基づいて、結晶相領域の体積割合を算出する」ことによって得ることができる。接合材300の気孔率は、10%未満である。換言すれば、接合材300は、緻密質である。
また、図7に示すように、隣接するセル100、100の間には、隣接するセル100、100の間(より詳細には、一方のセル100の燃料極と他方のセル100の空気極)を電気的に直列に接続するための集電部材400が介在している。集電部材400は、例えば、金属メッシュ等で構成される。加えて、各セル100について表側と裏側とを電気的に直列に接続するための集電部材500も設けられている。
以上、説明した燃料電池の片持ちスタック構造を稼働させる際には、図8に示すように、高温(例えば、600〜800℃)の燃料ガス(水素等)及び「酸素を含むガス(空気等)」を流通させる。導入管230から導入された燃料ガスは、燃料マニホールド本体200の内部空間へと移動し、その後、各挿入孔221を介して対応するセル100のガス流路11にそれぞれ導入される。各ガス流路11を通過した燃料ガスは、その後、各ガス流路11の他端(自由端)から外部に排出される。空気は、スタック構造の内部における隣接するセル100間の空間を、セル100の幅方向(y軸方向)に沿って流される。この結果、各セル100が上述した発電状態となり、各セル100(従って、スタック構造体)から電力が取り出される。
上述した片持ちスタック構造は、例えば、以下の手順で組み立てられる。先ず、必要な枚数の完成したセル100、並びに、完成したマニホールド本体200が準備される。次いで、所定の治具等を用いて、複数のセル100がスタック状に整列・固定される。次に、複数のセル100がスタック状に整列・固定された状態が維持されながら、複数のセル100のそれぞれの一端部が、(上記ペースト膜が形成された)支持板220の対応する挿入孔221に一度に挿入される。次いで、接合材300用の非晶質材料(非晶質ガラス)のペーストが、挿入孔221とセル100の一端部との接合部のそれぞれの隙間に充填される。その際、図7に示すように、ペーストが支持板220の表面から上方に向けてはみ出す程度まで前記接合部に供給されてもよい。
次に、上記のように充填された接合材300用の非晶質材料ペーストに熱処理(結晶化処理)が加えられる。この熱処理によって前記非晶質材料の温度がその結晶化温度まで到達すると、結晶化温度下にて、材料の内部で結晶相が生成されて、結晶化が進行していく。この結果、非晶質材料が固化・セラミックス化されて、結晶化ガラスとなる。これにより、結晶化ガラスで構成される接合材300が機能を発揮し、各セルの一端部が対応する挿入孔221にそれぞれ接合・固定される。換言すれば、各セル100の一端部が接合材300を用いて支持板220にそれぞれ接合・支持される。その後、前記所定の治具が複数のセル100から取り外されて、上述した片持ちスタック構造体が完成する。
(導入管の接合)
以下、導入管230の燃料マニホールド本体200に対する接合・固定について述べる。導入管230は、例えば、図9に示すように、燃料マニホールド本体200の上壁(支持板220)に接合・固定される。図9に示す例では、直線状のパイプである導入管230の一端部が、支持板220に形成された貫通孔に挿入されている。
接合材240は、導入管230を燃料マニホールド本体200の上壁に接合する。この接合材240は、燃料マニホールド本体200の内部空間内に位置している。接合材240は、金属材料で構成されている。すなわち、導入管230は、燃料マニホールド本体200の内部空間内に位置する「金属材料で構成された接合材240」によって支持板220に接合・固定されている、といえる。具体的には、導入管230は、燃料マニホールド本体200の内部空間において、燃料マニホールド本体200の支持板220と溶接されている。この場合、接合材240は、溶けた導入管230及び/又は支持板220の材料で構成される。なお、導入管230は、「接合材240」としての「金属材料」(合金、ろう、導入管230及び支持板220より融点が低い材料)を用いた「ろう付け」によって、支持板220に接合・固定されてもよい。この金属材料(合金)としては、金系、銀系、パラジウム系、ニッケル系等が使用され得る。
導入管230は、図10に示すように、燃料マニホールド本体200の側壁に接合・固定されてもよい。即ち、導入管230の一端部が、燃料マニホールド本体200の側壁に形成された貫通孔に挿入された状態にて前記側壁に対して内部空間側で溶接されることによって、導入管230が前記側壁に接合・固定されてもよい。また、「溶接」に代えて、「金属材料」(合金、ろう)を用いた上記「ろう付け」によって、導入管230が前記側壁に接合・固定されてもよい。
上記構成によれば、導入管230の接合に使用される「接合材」の材料として「金属材料」が使用される。従って、例えば、前記「接合材」の材料として「ガラス材料」等が使用される場合と比べて、導入管230がより強固に接合・固定され得る。
加えて、上記構成によれば、導入管230の接合に使用される「接合材」が、燃料マニホールド本体200の内部空間内に位置している。ここで、燃料電池の稼働中では、燃料マニホールド本体200の内部空間にて燃料ガスが流通するので、燃料マニホールド本体200の内部空間は還元雰囲気に維持される。従って、燃料電池の稼働中では、前記「接合材」を取り巻く雰囲気は、還元雰囲気に維持される。還元雰囲気では「金属材料」は酸化され難い。よって、上記構成によれば、燃料電池を長時間稼働した後においても、前記「接合材」が酸化され難いので、酸化に起因する「接合材の接合強度の低下」が発生し難い。以上より、上記構成によれば、燃料電池を長時間稼働した後においても、導入管230が燃料マニホールド本体200の壁に強固に接合・固定された状態が維持され得る。
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、隣り合う発電素子部の間が電気的に接続された所謂「横縞型」のセルが採用されているが、支持基板の表面に発電素子部が1つのみ設けられたセルが採用されてもよい。
また、上記実施形態では、支持板に形成された1つの挿入孔に1つのセルの前記一端部が挿入されているが、支持板に形成された1つの挿入孔に2つ以上のセル100の前記一端部が挿入されていてもよい。更には、支持板に形成された1つの(唯一の)挿入孔に複数のセルの前記一端部の全てが挿入されていてもよい。
また、上記実施形態では、平板状の支持基板10の上下面のそれぞれに複数の発電素子部Aが設けられているが、支持基板の片側面のみに複数の発電素子部Aが設けられていてもよい。また、上記実施形態では、支持基板10が平板状を呈しているが、支持基板が円筒状を呈していても良い。この場合、円筒状の支持基板の内側空間がガス流路として機能する。
また、図9及び図10に示した上記実施形態では、マニホールド本体の壁に形成された貫通孔と、その貫通孔に挿入された導入管230と、の間に「隙間」が形成されていないが、図9及び図10にそれぞれ対応する図11及び図12に示すように、貫通孔と導入管230との間に「隙間」(環状隙間)が形成されていてもよい。この場合、図11及び図12に示すように、接合材240は、「隙間」の一部に進入していてもよい。
また、上記実施形態では、所謂「片持ちスタック構造」が採用されていたが、図13に示すように、平板状の燃料電池セル600と平板状のセパレータ700とが交互に複数回積層されたスタック構造体が採用されてもよい。このスタック構造体の詳細は、例えば、特許5284921号公報に記載されている。
図13に示すスタック構造体では、スタック方向(積層方向、セルの厚さ方向)の両端部に上蓋800及び下蓋900が設けられる。上蓋800には、外部からスタック構造体の内部に燃料ガスを導入するための導入管850が設けられている。この上蓋800が本発明の蓋本体に相当する。
導入管850は、例えば、図14に示すように、上蓋800の上壁に接合・固定される。図14に示す例では、直線状のパイプである導入管850の一端部が、上蓋800の上壁に形成された貫通孔に挿入された状態にて上壁に対して内部空間側で「溶接」されることによって、導入管850が上壁に接合・固定されている。
即ち、上記実施形態の導入管230と同様、導入管850は、上蓋800の内部空間内に位置する「金属材料で構成された接合材860」によって、上蓋800の上壁に接合・固定されている。ここで、接合材860は、溶けた導入管850及び/又は上蓋800の材料で構成される。なお、導入管850は、「接合材860」としての「金属材料」(合金、ろう、導入管850及び上蓋800より融点が低い材料)を用いた「ろう付け」によって、上蓋800の上壁に接合・固定されてもよい。この金属材料(合金)としては、金系、銀系、パラジウム系、ニッケル系等が使用され得る。
図14に示した例では、上蓋800の上壁に形成された貫通孔と、その貫通孔に挿入された導入管850と、の間に「隙間」が形成されていないが、図14に対応する図15に示すように、貫通孔と導入管850との間に「隙間」(環状隙間)が形成されていてもよい。この場合、図15に示すように、接合材860は、「隙間」の一部に進入していてもよい。
10…支持基板、11…燃料ガス流路、100…セル、200…マニホールド、210…基部、220…支持板、221…挿入孔、230、850…導入管、240、860…接合材、A…発電素子部

Claims (4)

  1. それぞれの内部に燃料ガス流路が形成された複数の燃料電池セルが設けられるように構成された燃料マニホールドであり、燃料ガスを前記複数の燃料電池セルのそれぞれの前記燃料ガス流路に供給する燃料マニホールドであって、
    内部空間を画定する壁を有する燃料マニホールド本体と、
    前記燃料マニホールド本体の壁に形成された貫通孔に挿入され、前記燃料マニホールド本体の内部空間に燃料ガスを導入するための導入管と、
    前記内部空間内に位置する金属材料で構成され、前記導入管を前記壁に溶融接合する接合材と、
    を備えた、燃料マニホールド。
  2. 請求項1に記載の燃料マニホールドにおいて、
    前記導入管は、前記壁に対して前記内部空間側での溶接、または、ろう付けによって、前記壁に接合・固定された、燃料マニホールド。
  3. 燃料電池セルとセパレータとが交互に複数回積層された燃料電池のスタック構造体の積層方向の端部に設けられた蓋部材であり、燃料ガスを前記複数の燃料電池セルに供給する蓋部材であって、
    内部空間を画定する壁を有する蓋本体と、
    前記蓋部材の壁に形成された貫通孔に挿入され、前記蓋本体の内部空間に燃料ガスを導入するための導入管と、
    前記内部空間内に位置する金属材料で構成され、前記導入管を前記壁に溶融固定する接合材と、
    を備えた、蓋部材。
  4. 請求項3に記載の蓋部材において、
    前記導入管は、前記壁に対して前記内部空間側での溶接、または、ろう付けによって、前記壁に接合・固定された、蓋部材。
JP2015181668A 2014-10-21 2015-09-15 燃料マニホールド Active JP5873949B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015181668A JP5873949B1 (ja) 2014-10-21 2015-09-15 燃料マニホールド

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014214719 2014-10-21
JP2014214719 2014-10-21
JP2015181668A JP5873949B1 (ja) 2014-10-21 2015-09-15 燃料マニホールド

Publications (2)

Publication Number Publication Date
JP5873949B1 true JP5873949B1 (ja) 2016-03-01
JP2016081912A JP2016081912A (ja) 2016-05-16

Family

ID=55362241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181668A Active JP5873949B1 (ja) 2014-10-21 2015-09-15 燃料マニホールド

Country Status (1)

Country Link
JP (1) JP5873949B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198619A1 (ja) 2017-04-25 2018-11-01 京セラ株式会社 セルスタック装置、モジュールおよびモジュール収容装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309573B2 (en) * 2016-10-27 2022-04-19 Kyocera Corporation Cell stack device, module, and module housing device
JP6348558B2 (ja) * 2016-11-08 2018-06-27 日本碍子株式会社 マニホールド
JP6324601B1 (ja) * 2016-11-24 2018-05-16 日本碍子株式会社 マニホールド
JP6421226B2 (ja) * 2016-12-27 2018-11-07 日本碍子株式会社 マニホールド
JP6821482B2 (ja) * 2017-03-17 2021-01-27 森村Sofcテクノロジー株式会社 固体酸化物形燃料電池装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157351A (ja) * 2005-11-30 2007-06-21 Kyocera Corp 燃料電池スタック及び燃料電池
JP2009259589A (ja) * 2008-04-16 2009-11-05 Mitsubishi Heavy Ind Ltd 燃料電池モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157351A (ja) * 2005-11-30 2007-06-21 Kyocera Corp 燃料電池スタック及び燃料電池
JP2009259589A (ja) * 2008-04-16 2009-11-05 Mitsubishi Heavy Ind Ltd 燃料電池モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198619A1 (ja) 2017-04-25 2018-11-01 京セラ株式会社 セルスタック装置、モジュールおよびモジュール収容装置
US11239486B2 (en) 2017-04-25 2022-02-01 Kyocera Corporation Cell stack device, module, and module housing device
US11658327B2 (en) 2017-04-25 2023-05-23 Kyocera Corporation Cell stack device, module, and module housing device

Also Published As

Publication number Publication date
JP2016081912A (ja) 2016-05-16

Similar Documents

Publication Publication Date Title
JP5873949B1 (ja) 燃料マニホールド
JP5877235B1 (ja) 燃料マニホールド
JP5883191B1 (ja) 燃料マニホールド
WO2018079665A1 (ja) セルスタック装置、モジュールおよびモジュール収納装置
JP2014132518A (ja) 燃料電池のスタック構造体
JP2012227104A (ja) 燃料電池セル装置
JP6178534B1 (ja) 燃料電池スタック
JP6154042B1 (ja) 燃料電池スタック
JP2005346988A (ja) 燃料電池組立体及び燃料電池
JP2014143162A (ja) セルスタック装置および燃料電池装置
JP5985770B2 (ja) 燃料電池のスタック構造体
JP6279139B1 (ja) マニホールド、及び燃料電池スタック
JP6207420B2 (ja) 燃料電池のスタック構造体、及び、燃料電池のスタック構造体の製造方法
JP6318283B2 (ja) 燃料電池スタック
JP2017069182A (ja) 燃料電池のスタック構造体
JP6421166B2 (ja) 燃料電池スタック
JP6378742B2 (ja) 燃料電池スタック
JP6684341B1 (ja) 接合体
JP2019016538A (ja) セルスタック装置
JP6466902B2 (ja) マニホールド、及び燃料電池スタック
JP6324601B1 (ja) マニホールド
JP6853063B2 (ja) セルスタック装置、モジュールおよびモジュール収容装置
JP6130578B1 (ja) 燃料電池スタック
JP6378741B2 (ja) 燃料電池スタック
JP6348558B2 (ja) マニホールド

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5873949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150