WO2018198619A1 - セルスタック装置、モジュールおよびモジュール収容装置 - Google Patents

セルスタック装置、モジュールおよびモジュール収容装置 Download PDF

Info

Publication number
WO2018198619A1
WO2018198619A1 PCT/JP2018/011783 JP2018011783W WO2018198619A1 WO 2018198619 A1 WO2018198619 A1 WO 2018198619A1 JP 2018011783 W JP2018011783 W JP 2018011783W WO 2018198619 A1 WO2018198619 A1 WO 2018198619A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas supply
supply pipe
manifold
cell stack
thickness
Prior art date
Application number
PCT/JP2018/011783
Other languages
English (en)
French (fr)
Inventor
一成 杉原
真 兒井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US16/608,219 priority Critical patent/US11239486B2/en
Priority to JP2018541368A priority patent/JP6438179B1/ja
Priority to CN202210447773.9A priority patent/CN114824401A/zh
Priority to CN201880025037.6A priority patent/CN110521043B/zh
Priority to EP18790819.9A priority patent/EP3618158B1/en
Publication of WO2018198619A1 publication Critical patent/WO2018198619A1/ja
Priority to US17/553,861 priority patent/US11658327B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a cell stack device, a module, and a module housing device.
  • Patent Document 1 electric power can be obtained using a fuel gas (hydrogen-containing gas) and an oxygen-containing gas (air).
  • a cell stack device in which a plurality of fuel cells which are one type of cells are arranged in a manifold.
  • Patent Document 2 Japanese Patent No. 5873949 (hereinafter referred to as Patent Document 2), the manifold is provided with an introduction pipe for introducing gas into the internal space, and one end portion of the introduction pipe is provided. It has been proposed to be inserted into a through-hole provided in the manifold, and the introduction pipe and the manifold are joined via a joint portion.
  • the cell stack device includes a cell stack in which a plurality of columnar cells each having a gas flow path are arranged in an upright state and are electrically connected to each other, and fixes the lower end of the cell and A manifold for supplying a gas to the gas flow path of the cell, and a gas supply pipe for supplying the gas to the manifold, the gas supply pipe having one end connected to a gas supply section; The other end is inserted into a first through-hole provided in the manifold and joined to the manifold via a first joint, and the gas supply in any cross section along the insertion direction of the gas supply pipe
  • the tube has a first protrusion that protrudes toward the inside of the gas supply tube at a position corresponding to the first joint.
  • the module of the present disclosure is obtained by storing the cell stack device in a storage container.
  • the module housing apparatus of the present disclosure is configured by housing a module and an auxiliary machine for operating the module in an outer case.
  • FIG. 2A is an enlarged vertical sectional view showing an example of a portion A in FIG. 1
  • FIG. 2B is a horizontal sectional view taken along line XX in FIG. 2A. It is horizontal sectional drawing which shows the other example of FIG. 2B. It is horizontal sectional drawing which shows the other example of FIG. 2B. It is horizontal sectional drawing which shows the other example of FIG. 2B. It is horizontal sectional drawing which shows the other example of FIG. 2B. It is sectional drawing of the enlarged vertical direction which shows the other example of the A section of FIG. It is sectional drawing of the enlarged vertical direction which shows the other example of the A section of FIG. It is an external appearance perspective view which shows the other example of the cell stack apparatus of this embodiment.
  • FIG. 6B is a cross-sectional view taken along the line YY in FIG. 8A is an enlarged vertical sectional view showing an example of a B portion in FIG. 7, and FIG. 8B is a horizontal sectional view taken along the line ZZ in FIG. 8A. It is sectional drawing of the horizontal direction which shows the other example of FIG. 8B. It is sectional drawing of the horizontal direction which shows the other example of FIG. 8B. It is sectional drawing of the horizontal direction which shows the other example of FIG. 8B.
  • FIG. 8 is an enlarged vertical sectional view showing another example of the B part in FIG. 7.
  • FIG. 8 is an enlarged vertical sectional view showing another example of the B part in FIG. 7. It is an external appearance perspective view which shows an example of the module of this embodiment. It is a perspective view which abbreviate
  • FIGS. 1-10 An example of a cell stack device, a module, and a module housing device according to the present disclosure will be described with reference to FIGS.
  • FIG. 1 is a side view showing an example of the cell stack device of this embodiment, and a part thereof is a partial sectional view for easy understanding.
  • 2A is an enlarged vertical sectional view showing an example of the A portion of FIG. 1
  • FIG. 2B is a horizontal sectional view taken along line XX of FIG. 2A.
  • the same numbers are assigned to the same members.
  • the cell stack apparatus 1 shown in FIG. 1 is arranged in a row in a state where cells 3 having gas flow paths (not shown) through which gas flows from one end to the other end are arranged in a row, and between adjacent cells 3. Are electrically connected in series via a conductive member (not shown). Further, the cell stack apparatus 1 shown in FIG. 1 includes one cell stack 5 in which the lower end of the cell 3 is fixed to the manifold 4 with an insulating adhesive (not shown) such as a glass seal material.
  • a reformer 6 as a gas supply unit for generating a gas to be supplied to the cell 3 is disposed above the cell stack 5.
  • the gas supply unit will be described as the reformer 6 unless otherwise specified.
  • an end conductive member 11 having a conductive portion 12 for collecting the electricity generated by the power generation of the cell stack 5 (cell 3) and drawing it out to the outside is disposed at the end of the cell stack 5. .
  • the cell stack apparatus 1 can include the reformer 6.
  • the cell 3 is a hollow plate type having a plurality of gas flow paths through which gas flows in the longitudinal direction, and an inner electrode layer, a solid electrolyte layer, and a surface of a support having the gas flow paths.
  • the solid oxide type cell 3 is formed by sequentially laminating the outer electrode layers.
  • the inner electrode layer is a fuel electrode layer and the outer electrode layer is an oxygen electrode layer.
  • a portion where the fuel electrode layer and the oxygen electrode layer face each other through the solid electrolyte layer functions as a power generation element portion. That is, electricity is generated by flowing an oxygen-containing gas such as air outside the oxygen electrode layer and flowing a fuel gas (hydrogen-containing gas) through a gas passage in the support body and heating it to a predetermined operating temperature. And the electric current produced
  • raw gas such as natural gas and kerosene supplied through the raw fuel supply pipe 10 is reformed to generate gas.
  • the reformer 6 can have a structure capable of performing steam reforming, which is an efficient reforming reaction, and reforms the vaporizer 7 for vaporizing water and the raw fuel into gas. And a reforming section 8 in which a reforming catalyst (not shown) is disposed.
  • the gas generated by the reformer 6 is supplied to the manifold 4 via the gas supply pipe 9 and supplied from the manifold 4 to the gas flow path provided inside the cell 3.
  • FIG. 1 the gas supply pipe 9 and the manifold 4 are shown in a sectional view, and the other parts are shown in a side view.
  • the gas supply pipe 9 has one end connected to the reformer 6 and the other end inserted into the first through hole 14 provided in the manifold 4 to be first joined to the manifold 4. It is joined via the part 17.
  • the gas supply pipe 9 has a first protrusion 19 that protrudes toward the inside of the gas supply pipe 9 at a position corresponding to the first joint portion 17. .
  • the thickness t1 of the gas supply pipe 9 in the first convex portion 19 is increased by the first convex portion 19 at a position corresponding to the first joint portion 17.
  • the cross-sectional area of the gas supply pipe 9 increases, and it is possible to suppress the occurrence of cracks or cracks due to fatigue failure or the like in the first joint portion 17 to which the gas supply pipe 9 is joined.
  • the gas supply pipe 9 and the manifold 4 can be firmly joined, and as a result, the joining reliability between the gas supply pipe 9 and the manifold 4 can be improved.
  • the thickness t1 of the gas supply pipe 9 in the first convex portion 19 is obtained by adding the thickest thickness t12 of the first convex portion 19 to the thickness t11 of the gas supply pipe 9 itself as shown in FIGS. 2A and 2B. Thickness.
  • the first convex portion 19 can be provided over the entire circumference of the inner surface of the gas supply pipe 9 from the viewpoint of increasing the cross-sectional area of the gas supply pipe 9. Thereby, it can suppress that the crack and crack by fatigue fracture etc. generate
  • 3A, 3B, and 3C are cross-sectional views in the horizontal direction showing another example of FIG. 2B.
  • 3A and 3B show an example in which the thickness of the gas supply pipe 9 in the first convex portion 19 is not uniform over the entire circumference.
  • the thin part and the thick part may be axisymmetric, and the thin part and the thick part may be biased as shown in FIG. 3B.
  • the gas supply pipe 9 in the first convex portion 19 is not uniform over the entire circumference, the gas supply pipe 9 is still thick, and cracks and cracks are generated in that portion. Can be suppressed.
  • the 1st convex part 19 does not necessarily need to be provided over the perimeter, and the 1st convex part 19 may be provided only in a part like FIG. 3C. As described above, even when the first convex portion 19 is provided only in part, it is possible to suppress the occurrence of cracks and cracks in the portion where the gas supply pipe 9 is thick.
  • the thickness of the gas supply pipe 9 is 0.5 mm to 1.0 mm, for example, and the thickness of the first protrusion 19 can be 0.1 mm to 0.5 mm, for example.
  • FIG. 4 and 5 are enlarged vertical sectional views showing another example of the A part in FIG.
  • the first bent portion 4 c extending toward the reformer 6 along the gas supply pipe 9 is provided on the outer peripheral portion of the first through hole 14 in the manifold 4.
  • the upper end of 4 c and the gas supply pipe 9 are joined via the first joint 17. Since the manifold 4 has the first bent portion 4 c, the manifold 4 and the gas supply pipe 9 are easily joined, and the gas supply pipe 9 is easily inserted into the first through hole 14.
  • the height H1 of the first bent portion 4c can be set to 2 mm to 5 mm, for example.
  • the thickness t3 of the upper end portion of the first bent portion 4c is thicker than the thickness t4 of the center portion of the first bent portion 4c and is smaller than the thickness t5 of the lower end portion of the first bent portion 4c. thin.
  • the 1st bending part 4c is a shape where the center part is dented with respect to the upper end part, and the lower end part is expanding. As a result, the cross-sectional area of the upper end portion of the first bent portion 4 c is increased, so that the upper end portion of the first bent portion 4 c and the gas supply pipe 9 are firmly bonded via the first bonding portion 17.
  • the thickness t4 of the central portion is the smallest among the thickness t3, the thickness t4, and the thickness t5.
  • the stress generated when the tube 9 is deformed or moves can be relaxed at the thin central portion. Thereby, the gas supply pipe 9 and the manifold 4 can be firmly joined.
  • the gap between the first bent portion 4c and the manifold 4 becomes an obtuse angle and becomes a gentle shape, so that the gas supply pipe 9 is deformed or moved.
  • the stress generated at the time can be relieved. As a result, it is possible to suppress the occurrence of cracks or cracks between the first bent portion 4 c and the manifold 4.
  • the thickness t3 can be 0.6 mm to 0.8 mm
  • the thickness t4 can be 0.5 mm to 0.6 mm
  • the thickness t5 can be 0.9 mm to 1.2 mm, for example.
  • FIG. 6A is an external perspective view showing another example of the cell stack device of the present embodiment
  • FIG. 6B is a plan view in which a part of the cell stack device shown in FIG. 6A is omitted.
  • 7 is a cross-sectional view of the gas supply pipe 9, the manifold 4 and the rectifying plate 16 in the cross-sectional view taken along the line YY of FIG. 6B, and the other side views are shown in side views.
  • the manifold 4 in the cell stack device 111 shown in FIGS. 6A, 6B, and 7 has a main body portion 4a having a space communicating with the gas flow path and a flange portion 4b protruding from the main body portion 4a. Gas is supplied to the cell 3 through the space of the main body 4a.
  • the other end of the gas supply pipe 9 is inserted into the first through hole 14 provided through the flange 4b from the first surface n1 side and joined to the manifold 4, and further provided through the main body 4a.
  • the second through hole 15 is inserted from the second surface n2 side and joined to the manifold 4.
  • the manifold 4 has a rectifying plate 16 that is separated from the other end of the gas supply pipe 9 and covers the other end.
  • the rectifying plate 16 is provided perpendicular to the outflow direction of the gas flowing out from the second through hole 15 in order to improve the flow distribution rate.
  • the rectifying plate 16 has an opening. The opening may be provided so that gas flows out toward the cell 3 at the end of the cell stack 5 away from the rectifying plate 16.
  • the first surface n1 and the second surface n2 are the first surface n1 on the side of the manifold 4 where the cell stack 5 is joined and mounted, and the surface opposite to the first surface is the second surface. Let n2.
  • FIG. 8A is an enlarged vertical sectional view showing an example of a portion B in FIG. 7, and FIG. 8B is a horizontal sectional view cut along line ZZ in FIG. 8A.
  • the other end of the gas supply pipe 9 and the manifold 4 are joined via the second joint 18.
  • the gas supply pipe 9 has a second protrusion 20 protruding toward the inside of the gas supply pipe 9 at a position corresponding to the second joint 18.
  • the cross-sectional area of the gas supply pipe 9 increases, and it is possible to suppress the occurrence of cracks and cracks due to fatigue failure or the like in the second joint portion 18 to which the gas supply pipe 9 is joined. Thereby, the gas supply pipe 9 and the manifold 4 can be firmly joined, and as a result, the joining reliability between the gas supply pipe 9 and the manifold 4 can be improved.
  • the thickness t2 of the gas supply pipe 9 in the second convex part 20 is obtained by adding the thickest thickness t22 of the second convex part 20 to the thickness t21 of the gas supply pipe 9 itself as shown in FIGS. 8A and 8B. Thickness.
  • the second convex portion 20 can be provided over the entire circumference of the inner surface of the gas supply pipe 9 from the viewpoint of increasing the cross-sectional area of the gas supply pipe 9. Thereby, it can suppress that the crack and crack by fatigue fracture etc. generate
  • 9A, 9B, and 9C are horizontal cross-sectional views showing other examples of FIG. 8B.
  • 9A and 9B show an example in which the thickness of the gas supply pipe 9 in the second convex portion 20 is not uniform over the entire circumference.
  • the thin part and the thick part may be axisymmetric, and the thin part and the thick part may be biased as shown in FIG. 9B.
  • the gas supply pipe 9 in the second convex portion 20 is not uniform over the entire circumference, the gas supply pipe 9 is still thick, and cracks and cracks are generated in that portion. Can be suppressed.
  • the 2nd convex part 20 does not necessarily need to be provided over the perimeter, and the 2nd convex part 20 may be provided only in a part like FIG. 9C. As described above, even when the second convex portion 20 is provided only in part, it is possible to suppress the occurrence of cracks and cracks in the portion where the gas supply pipe 9 is thick.
  • the thickness of the gas supply pipe 9 is, for example, 0.5 mm to 1.0 mm, and the thickness of the second protrusion 20 can be, for example, 0.1 mm to 0.5 mm.
  • a second bent portion 4 d extending toward the reformer 6 along the gas supply pipe 9 is provided on the outer peripheral portion of the second through hole 15 in the manifold 4, and the second bent portion The upper end of 4d and the gas supply pipe 9 are joined via the second joint 18. Since the manifold 4 has the second bent portion 4 d, the manifold 4 and the gas supply pipe 9 are easily joined, and the gas supply pipe 9 is easily inserted into the second through hole 15.
  • the height H2 of the second bent portion 4d can be set to 2 mm to 5 mm, for example.
  • the thickness t6 of the upper end portion of the second bent portion 4d is thicker than the thickness t7 of the center portion of the second bent portion 4d and is smaller than the thickness t8 of the lower end portion of the second bent portion 4d. thin.
  • the 2nd bending part 4d is a shape where the center part is dented with respect to the upper end part, and the lower end part has spread. Thereby, since the cross-sectional area of the upper end part of the second bent part 4d is increased, the upper end part of the second bent part 4d and the gas supply pipe 9 are firmly joined via the second joint part 18.
  • the thickness t7 of the central portion is the smallest among the thickness t6, the thickness t7, and the thickness t8, and the gas supply pipe 9 is deformed.
  • the stress generated when moving can be relaxed in the thin central portion.
  • the gas supply pipe 9 and the manifold 4 can be firmly joined.
  • the gap between the second bent portion 4d and the manifold 4 becomes an obtuse angle and becomes a gentle shape, so that the gas supply pipe 9 is deformed or moved.
  • the stress generated at the time can be relieved. As a result, the occurrence of cracks or breaks between the second bent portion 4d and the manifold 4 can be suppressed.
  • the thickness t6 can be set to 0.6 mm to 0.8 mm
  • the thickness t7 can be set to 0.5 mm to 0.6 mm
  • the thickness t8 can be set to 0.9 mm to 1.2 mm, for example.
  • the first through hole 14 is formed by penetrating the collar portion 4b by a processing method such as punching.
  • the second through hole 15 is formed by penetrating the main body 4a by a processing method such as punching.
  • the first joint 17 and the second joint 18 in which the gas supply pipe 9 and the manifold 4 are joined are provided by joining the outer surface of the manifold 4 and the gas supply pipe 9 using a metallurgical joining method.
  • the metallurgical joining method is a method of joining by fusion welding, pressure welding or brazing. Examples of fusion welding include laser welding, plasma arc welding, inert gas arc welding, mag welding, or gas welding. Examples of the pressure welding include ultrasonic welding, friction welding, and explosion welding.
  • the first bent portion 4 c and the second bent portion 4 d are provided.
  • a mold having the shape of the portion 4d it can be manufactured by a processing method such as press processing.
  • the first bent portion 4c and the second bent portion 4d are separately provided on the outer peripheral portions of the first through hole 14 and the second through hole 15, respectively, the first bent portion 4c and the second bent portion 4d
  • a member having a shape may be prepared, and the respective members may be joined to the outer peripheral portions of the first through hole 14 and the second through hole 15 by the metallurgical joining method described above.
  • FIG. 12 is an external perspective view showing an example of a fuel cell module that is a module in which the cell stack device 111 is stored in a storage container.
  • the cell stack shown in FIG. 6A is placed inside a rectangular parallelepiped storage container 22.
  • the device 111 is accommodated.
  • the reformer 6 for reforming raw fuel such as natural gas or kerosene to generate the fuel gas is disposed above the cell stack 5. .
  • the fuel gas generated by the reformer 6 is supplied to the manifold 4 through the gas supply pipe 9 and supplied to the gas passage provided inside the cell 3 through the manifold 4.
  • FIG. 12 shows a state where a part (front and rear surfaces) of the storage container 22 is removed and the cell stack device 111 and the reformer 6 housed inside are taken out rearward.
  • the cell stack device 111 can be slid and stored in the storage container 22.
  • the cell stack device 111 may include the reformer 6.
  • the module 30 of the present embodiment since the cell stack device 111 described above is stored in the storage container 22, the module 30 with improved durability can be obtained.
  • FIG. 13 is a perspective view showing an example of a fuel cell device which is a module storage device in which the module 30 shown in FIG. 12 and an auxiliary device for operating the cell stack device 111 are stored in an outer case. .
  • a part of the configuration is omitted.
  • the module storage device 40 shown in FIG. 13 divides the inside of an exterior case composed of a column 41 and an exterior plate 42 by a partition plate 43, and the upper side serves as a module storage chamber 44 that houses the module 30 described above.
  • the lower side is configured as an auxiliary equipment storage chamber 45 for storing auxiliary equipment for operating the module 30.
  • auxiliary machines stored in the auxiliary machine storage chamber 45 are not shown.
  • the partition plate 43 is provided with an air circulation port 46 for allowing the air in the auxiliary machine storage chamber 45 to flow toward the module storage chamber 44, and a part of the exterior plate 42 constituting the module storage chamber 44, An exhaust port 47 for exhausting air in the module storage chamber 44 is provided.
  • the module storage device 40 with improved durability is configured by storing the module 30 with improved durability in the module storage chamber 44. it can.
  • the so-called vertical-striped cell is used for explanation, but a horizontal-striped cell or a so-called cylindrical cell in which a plurality of power generation element portions generally called a horizontal-striped type are provided on a support substrate is used. You can also.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

内部にガス流路を有する柱状のセル3を複数個立設させた状態で配列して電気的に接続してなるセルスタック5と、セル3の下端を固定するとともにセル3のガス流路にガスを供給するためのマニホールド4と、ガスをマニホールド4に供給するためのガス供給管9とを備え、該ガス供給管9は、一端がガス供給部6に接続されるとともに、他端がマニホールド4に設けられた第1貫通孔14に挿入されてマニホールド4に第1接合部17を介して接合されており、ガス供給管9の挿入方向に沿った任意の断面において、ガス供給管9は、第1接合部17に対応する位置において、ガス供給管9の内側に向けて突出する第1凸部19を有する。

Description

セルスタック装置、モジュールおよびモジュール収容装置
 本開示は、セルスタック装置、モジュールおよびモジュール収容装置に関する。
 近年、次世代エネルギーとして、例えば、特許第5766132号公報(以下、特許文献1という。)には、燃料ガス(水素含有ガス)と酸素含有ガス(空気)とを用いて電力を得ることができるセルの1種である燃料電池セルがマニホールドに複数配列されてなるセルスタック装置が提案されている。
 また、例えば、特許第5873949号公報(以下、特許文献2という。)には、マニホールドには、その内部空間にガスを導入するための導入管が設けられており、該導入管の一端部が、マニホールドに設けられた貫通孔に挿入され、導入管とマニホールドとが接合部を介して接合されているものが提案されている。
 本開示のセルスタック装置は、内部にガス流路を有する柱状のセルを複数個立設させた状態で配列して電気的に接続してなるセルスタックと、前記セルの下端を固定するとともに前記セルの前記ガス流路にガスを供給するためのマニホールドと、前記ガスを前記マニホールドに供給するためのガス供給管とを備え、該ガス供給管は、一端がガス供給部に接続されるとともに、他端が前記マニホールドに設けられた第1貫通孔に挿入されて前記マニホールドに第1接合部を介して接合されており、前記ガス供給管の挿入方向に沿った任意の断面において、前記ガス供給管は、前記第1接合部に対応する位置において、前記ガス供給管の内側に向けて突出する第1凸部を有する。
 本開示のモジュールは、収納容器内に上記セルスタック装置を収納してなる。
 本開示のモジュール収容装置は、モジュールと、該モジュールを作動させるための補機とを、外装ケース内に収納してなる。
本実施形態のセルスタック装置の一例を示す側面図および部分断面図である。 図2Aは図1のA部の一例を示す拡大した垂直方向の断面図であり、図2Bは、図2AのX-X線で切断した水平方向の断面図である。 図2Bの他の例を示す水平方向の断面図である。 図2Bの他の例を示す水平方向の断面図である。 図2Bの他の例を示す水平方向の断面図である。 図1のA部の他の例を示す拡大した垂直方向の断面図である。 図1のA部の他の例を示す拡大した垂直方向の断面図である。 本実施形態のセルスタック装置の他の例を示す外観斜視図である。 図6Aで示したセルスタック装置の一部を省略した平面図である。 図6BのY-Y断面図で一部は側面図である。 図8Aは、図7のB部の一例を示す拡大した垂直方向の断面部であり、図8Bは、図8AのZ-Z線で切断した水平方向の断面図である。 図8Bの他の例を示す水平方向の断面図である。 図8Bの他の例を示す水平方向の断面図である。 図8Bの他の例を示す水平方向の断面図である。 図7のB部の他の例を示す拡大した垂直方向の断面図である。 図7のB部の他の例を示す拡大した垂直方向の断面図である。 本実施形態のモジュールの一例を示す外観斜視図である。 本実施形態のモジュール収納装置の一例を、一部を省略して示す斜視図である。
 図1~図13を用いて、本開示のセルスタック装置、モジュールおよびモジュール収容装置の一例について説明する。
 図1は本実施形態のセルスタック装置の一例を示す側面図であり、一部は分かりやすくするために部分断面図としている。また図2Aは図1のA部の一例を示す拡大した垂直方向の断面図であり、図2Bは図2AのX-X線で切断した水平方向の断面図である。なお、以降の図において同一の部材については同一の番号を付するものとする。
 図1で示すセルスタック装置1は、内部をガスが一端から他端に流通するガス流路(図示せず)を有するセル3を立設させた状態で一列に配列し、隣接するセル3間が導電部材(図示せず)を介して電気的に直列に接続されている。さらに、図1で示すセルスタック装置1は、セル3の下端をガラスシール材等の絶縁性接着材(図示せず)でマニホールド4に固定してなるセルスタック5を1つ備えている。
 また、セルスタック5の上方には、セル3に供給するガスを生成するためのガス供給部としての改質器6が配置されている。なお、以降の説明において、特に断りのない限り、ガス供給部を改質器6として説明する。
 また、セルスタック5の端部には、セルスタック5(セル3)の発電により生じた電気を集電して外部に引き出すための、導電部12を有する端部導電部材11が配置されている。
 なお、セルスタック装置1を、改質器6を含むものとすることもできる。
 また、図1においては、セル3として、内部をガスが長手方向に流通するガス流路を複数有する中空平板型で、ガス流路を有する支持体の表面に、内側電極層、固体電解質層及び外側電極層を順に積層してなる固体酸化物形のセル3を例示している。なお、以降の説明において、特に断りのない限り、内側電極層を燃料極層とし、外側電極層を酸素極層として説明する。
 ここで、セル3は、燃料極層と酸素極層とが固体電解質層を介して対面している部分が発電の素子部として機能する。即ち、酸素極層の外側に空気等の酸素含有ガスを流し、且つ支持体内のガス通路に燃料ガス(水素含有ガス)を流し、所定の作動温度まで加熱することにより発電する。そして、かかる発電によって生成した電流は、上述した端部導電部材11を介して集電される。
 また、図1に示す改質器6においては、原燃料供給管10を介して供給される天然ガスや灯油等の原燃料を改質してガスを生成する。なお、改質器6は、効率のよい改質反応である水蒸気改質を行うことができる構造とすることができ、水を気化させるための気化部7と、原燃料をガスに改質するための改質触媒(図示せず)が配置された改質部8とを備えている。そして、改質器6で生成されたガスは、ガス供給管9を介してマニホールド4に供給され、マニホールド4よりセル3の内部に設けられたガス流路に供給される。
 なお、図1においてガス供給管9およびマニホールド4は断面図で示し、それ以外は側面図で示している。
 また、本実施形態においては、ガス供給管9は、一端が改質器6に接続されるとともに、他端がマニホールド4に設けられた第1貫通孔14に挿入されてマニホールド4に第1接合部17を介して接合されている。
 ところで、セルスタック装置1において、燃料電池の発電時に発生する熱によりガス供給管9が変形したり動いたりする場合に、ガス供給管9の形状によっては、ガス供給管9とマニホールド4との第1接合部17に疲労破壊等によるクラックや割れが発生するおそれがある。それゆえ、ガス供給管9とマニホールド4との接合を強固なものとするにあたり、改善の余地があった。
 そこで、本実施形態においては、図2Aに示すように、ガス供給管9は、第1接合部17に対応する位置において、ガス供給管9の内側に向けて突出する第1凸部19を有する。それにより、ガス供給管9が変形したり動いたりしても、第1凸部19により、第1接合部17に対応する位置において、第1凸部19におけるガス供給管9の厚みt1が肉厚になることで、ガス供給管9の断面積が増加し、このガス供給管9が接合する第1接合部17に、疲労破壊等によるクラックや割れが発生することを抑制できる。それにより、ガス供給管9とマニホールド4とを強固に接合することができ、その結果、ガス供給管9とマニホールド4との接合信頼性を向上することができる。
 ここで、第1凸部19におけるガス供給管9の厚みt1は、図2A、図2Bに示すように、ガス供給管9そのものの厚みt11に、第1凸部19の最も厚い厚みt12を加えた厚みである。
 図2Bに示すように、第1凸部19は、ガス供給管9の断面積を増加させる観点から、ガス供給管9の内面の全周にわたって設けることができる。これにより、ガス供給管9が接合する第1接合部17に、疲労破壊等によるクラックや割れが発生することを抑制できる。
 図3A、図3B、図3Cは、図2Bの他の例を示す水平方向の断面図である。
 図3A、図3Bには、第1凸部19におけるガス供給管9の厚みが全周にわたって不均一である例を示している。
 図3Aのように、厚みの薄い部分と厚みの厚い部分が線対称になっていてもよいし、また図3Bのように、厚みの薄い部分と厚みの厚い部分とが偏っていてもよい。このように、第1凸部19におけるガス供給管9の厚みが全周にわたって不均一であっても、ガス供給管9が肉厚になることに変わりなく、その部分でもってクラックや割れが発生することを抑制できる。
 一方、第1凸部19は必ずしも全周に渡って設けられている必要はなく、図3Cのように、第1凸部19が一部のみに設けられていてもよい。このように、第1凸部19が一部のみに設けられている場合であっても、ガス供給管9が肉厚になる部分でもってクラックや割れが発生することを抑制できる。
 ガス供給管9の厚みは例えば0.5mm~1.0mmであり、第1凸部19の厚みは例えば0.1mm~0.5mmとすることができる。
 図4および図5は、図1のA部の他の例を示す拡大した垂直方向の断面図である。
 図4に示す例においては、マニホールド4における第1貫通孔14の外周部に、ガス供給管9に沿って改質器6側に延びた第1折り曲げ部4cを有し、該第1折り曲げ部4cの上端部とガス供給管9とが第1接合部17を介して接合されている。マニホールド4が第1折り曲げ部4cを有することで、マニホールド4とガス供給管9とが接合しやすくなり、また第1貫通孔14にガス供給管9を挿入しやすくなる。なお、第1の折り曲げ部4cの高さH1は、例えば2mm~5mmとすることができる。
 図5に示す例においては、第1折り曲げ部4cの上端部の厚みt3は、第1折り曲げ部4cの中央部の厚みt4よりも厚く、かつ第1折り曲げ部4cの下端部の厚みt5よりも薄い。言い換えれば、第1折り曲げ部4cは、上端部に対して中央部が凹み、下端部が広がっている形状である。これにより、第1折り曲げ部4cの上端部の断面積が大きくなるので、第1折り曲げ部4cの上端部とガス供給管9とが第1接合部17を介して強固に接合される。さらに、第1折り曲げ部4cの上端部に対して中央部が凹んでいることで、中央部の厚みt4は、厚みt3、厚みt4、厚みt5の内で、いちばん厚みが薄いものとなり、ガス供給管9が変形したり動いたりした際に発生する応力を、この厚みの薄い中央部で緩和することができる。これにより、ガス供給管9とマニホールド4とを強固に接合することができる。またさらに、第1折り曲げ部4cの下端部が広がっていることにより、第1折り曲げ部4cとマニホールド4との間が鈍角となりなだらかな形状となるので、ガス供給管9が変形したり動いたりした際に発生する応力を緩和できる。その結果、第1折り曲げ部4cとマニホールド4との間にクラックや割れが発生することを抑制できる。
 第1折り曲げ部4cにおいて、厚みt3は例えば0.6mm~0.8mmで、厚みt4は例えば0.5mm~0.6mmで、厚みt5は例えば0.9mm~1.2mmとすることができる。
 図6Aは本実施形態のセルスタック装置の他の例を示す外観斜視図であり、図6Bは図6Aで示したセルスタック装置の一部を省略した平面図である。また、図7は、図6BのY-Y線断面図でガス供給管9、マニホールド4および整流板16を断面図で示しており、それ以外は側面図で示している。
 図6A、図6Bおよび図7で示すセルスタック装置111におけるマニホールド4は、ガス流路と連通している空間を有する本体部4aと本体部4aから突出した鍔部4bとを有しており、本体部4aの空間を介して、セル3にガスを供給する。ガス供給管9の他端は、鍔部4bを貫通して設けられた第1貫通孔14に第1面n1側より挿入されてマニホールド4に接合され、さらに本体部4aを貫通して設けられた第2貫通孔15に第2面n2側より挿入されてマニホールド4に接合されている。そして、マニホールド4は、ガス供給管9の他端と離間してかつ該他端を覆う整流板16を有している。言い換えれば、整流板16は、流配分率向上のため、第2貫通孔15から流出するガスの流出方向に対し垂直に設けられている。また、整流板16は開口部を有している。該開口部は、セルスタック5のうち整流板16から離れた端部のセル3に向かってガスが流出するように設けられていてもよい。なお、第1面n1および第2面n2とは、マニホールド4において、セルスタック5が接合され搭載される側の面を第1面n1とし、該第1面と反対側の面を第2面n2とする。
 図8Aは図7のB部の一例を示す拡大した垂直方向の断面図であり、図8Bは図8AのZ-Z線で切断した水平方向の断面図である。本実施形態においては、ガス供給管9の他端とマニホールド4とは第2接合部18を介して接合されている。ここで、本実施形態においては、図8Aに示すように、ガス供給管9は、第2接合部18に対応する位置において、ガス供給管9の内側に向けて突出する第2凸部20を有する。それにより、ガス供給管9が変形したり動いたりしても、第2凸部20により、第2接合部18に対応する位置において、第2凸部20におけるガス供給管9の厚みt2が肉厚になることで、ガス供給管9の断面積が増加し、このガス供給管9が接合する第2接合部18に疲労破壊等によるクラックや割れが発生することを抑制できる。それにより、ガス供給管9とマニホールド4とを強固に接合することができ、その結果、ガス供給管9とマニホールド4との接合信頼性を向上することができる。
 ここで、第2凸部20におけるガス供給管9の厚みt2は、図8A、図8Bに示すように、ガス供給管9そのものの厚みt21に、第2凸部20の最も厚い厚みt22を加えた厚みである。
 図8Bに示すように、第2凸部20は、ガス供給管9の断面積を増加させる観点から、ガス供給管9の内面の全周にわたって設けることができる。これにより、ガス供給管9が接合する第1接合部17に、疲労破壊等によるクラックや割れが発生することを抑制できる。
 図9A、図9B、図9Cは、図8Bの他の例を示す水平方向の断面図である。
 図9A、図9Bには、第2凸部20におけるガス供給管9の厚みが全周にわたって不均一である例を示している。
 図9Aのように、厚みの薄い部分と厚みの厚い部分が線対称になっていてもよいし、また図9Bのように、厚みの薄い部分と厚みの厚い部分とが偏っていてもよい。このように、第2凸部20におけるガス供給管9の厚みが全周にわたって不均一であっても、ガス供給管9が肉厚になることに変わりなく、その部分でもってクラックや割れが発生することを抑制できる。
 一方、第2凸部20は必ずしも全周に渡って設けられている必要はなく、図9Cのように、第2凸部20が一部のみに設けられていてもよい。このように、第2凸部20が一部のみに設けられている場合であっても、ガス供給管9が肉厚になる部分でもってクラックや割れが発生することを抑制できる。
 ガス供給管9の厚みは例えば0.5mm~1.0mmであり、第2凸部20の厚みは例えば0.1mm~0.5mmとすることができる。
 図10および図11は、図7のB部の他の例を示す拡大した垂直方向の断面図である。
 図10に示す例においては、マニホールド4における第2貫通孔15の外周部に、ガス供給管9に沿って改質器6側に延びた第2折り曲げ部4dを有し、該第2折り曲げ部4dの上端部とガス供給管9とが第2接合部18を介して接合されている。マニホールド4が第2折り曲げ部4dを有することで、マニホールド4とガス供給管9とが接合しやすくなり、また第2貫通孔15にガス供給管9を挿入しやすくなる。なお、第2の折り曲げ部4dの高さH2は、例えば2mm~5mmとすることができる。
 図11に示す例においては、第2折り曲げ部4dの上端部の厚みt6は、第2折り曲げ部4dの中央部の厚みt7よりも厚く、かつ第2折り曲げ部4dの下端部の厚みt8よりも薄い。言い換えれば、第2折り曲げ部4dは、上端部に対して中央部が凹み、下端部が広がっている形状である。これにより、第2折り曲げ部4dの上端部の断面積が大きくなるので、第2折り曲げ部4dの上端部とガス供給管9とが第2接合部18を介して強固に接合される。さらに、上端部に対して中央部が凹んでいることで、中央部の厚みt7は、厚みt6、厚みt7、厚みt8の内で、いちばん厚みが薄いものとなり、ガス供給管9が変形したり動いたりした際に発生する応力を、この厚みの薄い中央部で緩和することができる。これにより、ガス供給管9とマニホールド4とを強固に接合することができる。またさらに、第2折り曲げ部4dの下端部が広がっていることにより、第2折り曲げ部4dとマニホールド4との間が鈍角となりなだらかな形状となるので、ガス供給管9が変形したり動いたりした際に発生する応力を緩和できる。その結果、第2折り曲げ部4dとマニホールド4との間にクラックや割れが発生することを抑制できる。
 第2折り曲げ部4dにおいて、厚みt6は例えば0.6mm~0.8mmで、厚みt7は例えば0.5mm~0.6mmで、厚みt8は例えば0.9mm~1.2mmとすることができる。
 以上説明した本実施形態のマニホールド4の作製方法の一例について説明する。例えば図7に示すような、第1貫通孔14が鍔部4bに形成され、第2貫通孔15が本体部4aに形成されているマニホールド4の作製方法について以下に詳述する。
 第1貫通孔14は、パンチング加工等の加工法にて鍔部4bを貫通させて形成される。第2貫通孔15も同様に、パンチング加工等の加工法にて本体部4aを貫通させて形成される。
 ガス供給管9とマニホールド4とが接合された第1接合部17および第2接合部18は、冶金的接合法を用いてマニホールド4の外側表面とガス供給管9とを接合することにより設けることができる。冶金的接合法とは、融接、圧接又はろう接によって接合する方法である。融接の例としては、レーザー溶接、プラズマアーク溶接、イナートガスアーク溶接、マグ溶接又はガス溶接などが挙げられる。また、圧接の例としては、超音波溶接、摩擦溶接又は爆発溶接などが挙げられる。
 また、マニホールド4において、第1折り曲げ部4c、第2折り曲げ部4dをそれぞれ第1貫通孔14および第2貫通孔15の外周部に一体的に設けるには、第1折り曲げ部4c、第2折り曲げ部4dの形状の金型を用い、プレス加工等の加工法で作製することができる。また、第1折り曲げ部4c、第2折り曲げ部4dをそれぞれ第1貫通孔14および第2貫通孔15の外周部に別体で設ける場合には、第1折り曲げ部4c、第2折り曲げ部4dの形状の部材を準備し、第1貫通孔14および第2貫通孔15の外周部に、それぞれの部材を上記した冶金的接合法で接合すればよい。
 図12は、セルスタック装置111を収納容器内に収納してなるモジュールである燃料電池モジュールの一例を示す外観斜視図であり、直方体状の収納容器22の内部に、図6Aに示したセルスタック装置111を収納して構成されている。
 なお、セル3にて使用する燃料ガスを得るために、天然ガスや灯油等の原燃料を改質して燃料ガスを生成するための改質器6をセルスタック5の上方に配置している。そして、改質器6で生成された燃料ガスは、ガス供給管9を介してマニホールド4に供給され、マニホールド4を介してセル3の内部に設けられたガス通路に供給される。
 なお、図12においては、収納容器22の一部(前後面)を取り外し、内部に収納されているセルスタック装置111および改質器6を後方に取り出した状態を示している。図12に示したモジュール30においては、セルスタック装置111を、収納容器22内にスライドして収納することが可能である。なお、セルスタック装置111は、改質器6を含むものとしても良い。
 さらに、本実施形態のモジュール30では、上述したセルスタック装置111を収納容器22内に収納してなることから、耐久性が向上したモジュール30とすることができる。
 図13は、外装ケース内に図12で示したモジュール30と、セルスタック装置111を動作させるための補機とを収納してなるモジュール収納装置である燃料電池装置の一例を示す斜視図である。なお、図13においては一部構成を省略して示している。
 図13に示すモジュール収納装置40は、支柱41と外装板42とから構成される外装ケース内を仕切板43により上下に区画し、その上方側を上述したモジュール30を収納するモジュール収納室44とし、下方側をモジュール30を動作させるための補機類を収納する補機収納室45として構成されている。なお、補機収納室45に収納する補機類は省略して示している。
 また、仕切板43には、補機収納室45の空気をモジュール収納室44側に流すための空気流通口46が設けられており、モジュール収納室44を構成する外装板42の一部に、モジュール収納室44内の空気を排気するための排気口47が設けられている。
 このようなモジュール収納装置40においては、上述したように、耐久性が向上したモジュール30をモジュール収納室44に収納して構成されることにより、耐久性が向上したモジュール収納装置40とすることができる。
 なお、例えば、上記形態ではいわゆる縦縞型と呼ばれるセルを用いて説明したが、一般に横縞型と呼ばれる複数の発電素子部を支持基板上に設けてなる横縞型のセル又はいわゆる円筒型のセルを用いることもできる。
1、111:セルスタック装置
3:セル
4:マニホールド
 4a:本体部
 4b:鍔部
 4c:第1折り曲げ部
 4d:第2折り曲げ部
5:セルスタック
6:ガス供給部(改質器)
9:ガス供給管
14:第1貫通孔
15:第2貫通孔
17:第1接合部
18:第2接合部
19:第1凸部
20:第2凸部
30:モジュール(燃料電池モジュール)
40:モジュール収納装置(燃料電池装置)
t1:第1凸部におけるガス供給管の厚み
 t11:ガス供給管そのものの厚み
 t12:第1凸部の最も厚い厚み
t2:第2凸部におけるガス供給管の厚み
 t21:ガス供給管そのものの厚み
 t22:第2凸部の最も厚い厚み

Claims (12)

  1.  内部にガス流路を有する柱状のセルを複数個立設させた状態で配列して電気的に接続してなるセルスタックと、
    前記セルの下端を固定するとともに前記セルの前記ガス流路にガスを供給するためのマニホールドと、
    前記ガスを前記マニホールドに供給するためのガス供給管とを備え、
    該ガス供給管は、一端がガス供給部に接続されるとともに、他端が前記マニホールドに設けられた第1貫通孔に挿入されて前記マニホールドに第1接合部を介して接合されており、
     前記ガス供給管の挿入方向に沿った任意の断面において、
     前記ガス供給管は、前記第1接合部に対応する位置において、前記ガス供給管の内側に向けて突出する第1凸部を有するセルスタック装置。
  2.  前記第1凸部は、前記ガス供給管の内面の全周にわたって設けられている請求項1に記載のセルスタック装置。
  3.  前記第1凸部における前記ガス供給管の厚みが全周にわたって不均一である請求項2に記載のセルスタック装置。
  4.  前記マニホールドにおける前記第1貫通孔の外周部に、前記ガス供給管に沿ってガス供給部側に延びた第1折り曲げ部を有し、
    該第1折り曲げ部の上端部と前記ガス供給管とが前記第1接合部を介して接合されている請求項1乃至請求項3のいずれかに記載のセルスタック装置。
  5.  前記第1折り曲げ部の上端部の厚みは、前記第1折り曲げ部の中央部の厚みよりも厚く、かつ前記第1折り曲げ部の下端部の厚みよりも薄い請求項4に記載のセルスタック装置。
  6.  前記マニホールドは、前記ガス流路と連通している空間を有する本体部と本体部から突出した鍔部とを有しており、
    該鍔部が前記第1貫通孔を有し、前記本体部は第2貫通孔を有しており、
    該第2貫通孔に前記ガス供給管の他端が挿入されて、該他端と前記マニホールドとが第2接合部を介して接合されており、
     前記ガス供給管の挿入方向に沿った任意の断面において、
     前記ガス供給管は、前記第2接合部に対応する位置において、前記ガス供給管の内側に向けて突出する第2凸部を有する請求項1乃至請求項5のいずれかに記載のセルスタック装置。
  7.  前記第2凸部は、前記ガス供給管の前記内面の全周にわたって設けられている請求項6に記載のセルスタック装置。
  8.  前記第2凸部における前記ガス供給管の厚みが全周にわたって不均一である請求項7に記載のセルスタック装置。
  9.  前記マニホールドにおける前記第2貫通孔の外周部に、前記ガス供給管に沿って前記ガス供給部側に延びた第2折り曲げ部を有し、
    該第2折り曲げ部の上端部と前記ガス供給管とが接合されている請求項6乃至請求項8のいずれかに記載のセルスタック装置。
  10.  前記第2折り曲げ部の上端部の厚みは、前記第2折り曲げ部の中央部の厚みよりも厚く、かつ前記第2折り曲げ部の下端部の厚みよりも薄い請求項9に記載のセルスタック装置。
  11.  収納容器内に請求項1乃至請求項10のいずれかに記載のセルスタック装置を収納してなるモジュール。
  12.  請求項11に記載のモジュールと、該モジュールを作動させるための補機とを、外装ケース内に収納してなるモジュール収容装置。
PCT/JP2018/011783 2017-04-25 2018-03-23 セルスタック装置、モジュールおよびモジュール収容装置 WO2018198619A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/608,219 US11239486B2 (en) 2017-04-25 2018-03-23 Cell stack device, module, and module housing device
JP2018541368A JP6438179B1 (ja) 2017-04-25 2018-03-23 セルスタック装置、モジュールおよびモジュール収容装置
CN202210447773.9A CN114824401A (zh) 2017-04-25 2018-03-23 单电池堆装置、单电池堆模块及单电池堆模块的容纳装置
CN201880025037.6A CN110521043B (zh) 2017-04-25 2018-03-23 单电池堆装置、模块以及模块容纳装置
EP18790819.9A EP3618158B1 (en) 2017-04-25 2018-03-23 Cell stack device, module and module housing device
US17/553,861 US11658327B2 (en) 2017-04-25 2021-12-17 Cell stack device, module, and module housing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017086310 2017-04-25
JP2017-086310 2017-04-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/608,219 A-371-Of-International US11239486B2 (en) 2017-04-25 2018-03-23 Cell stack device, module, and module housing device
US17/553,861 Continuation US11658327B2 (en) 2017-04-25 2021-12-17 Cell stack device, module, and module housing device

Publications (1)

Publication Number Publication Date
WO2018198619A1 true WO2018198619A1 (ja) 2018-11-01

Family

ID=63919035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011783 WO2018198619A1 (ja) 2017-04-25 2018-03-23 セルスタック装置、モジュールおよびモジュール収容装置

Country Status (5)

Country Link
US (2) US11239486B2 (ja)
EP (1) EP3618158B1 (ja)
JP (1) JP6438179B1 (ja)
CN (2) CN114824401A (ja)
WO (1) WO2018198619A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158531A (ja) * 2003-11-26 2005-06-16 Kyocera Corp 燃料電池スタック及びその製法並びに燃料電池
JP2006179302A (ja) * 2004-12-22 2006-07-06 Kyocera Corp 燃料改質器収納用容器および燃料改質装置
JP2007157351A (ja) * 2005-11-30 2007-06-21 Kyocera Corp 燃料電池スタック及び燃料電池
JP2014056737A (ja) * 2012-09-13 2014-03-27 Jx Nippon Oil & Energy Corp 燃料電池モジュール
JP5766132B2 (ja) 2012-01-30 2015-08-19 京セラ株式会社 セルスタック装置および燃料電池装置
JP5873949B1 (ja) 2014-10-21 2016-03-01 日本碍子株式会社 燃料マニホールド
JP2017037837A (ja) * 2015-08-11 2017-02-16 日本碍子株式会社 燃料電池のスタック構造体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032383B2 (ja) * 2002-09-25 2008-01-16 臼井国際産業株式会社 燃料レール及び燃料レール用主管並びにこれらの製造方法
US20060204826A1 (en) * 2005-03-09 2006-09-14 Ion America Corporation Geometric feature driven flow equalization in fuel cell stack gas flow separator
JP5334456B2 (ja) * 2008-05-28 2013-11-06 京セラ株式会社 セルスタック装置および燃料電池モジュールならびに燃料電池装置
JP5334732B2 (ja) * 2009-07-29 2013-11-06 京セラ株式会社 セルスタック装置および燃料電池モジュールならびに燃料電池装置
CN201875308U (zh) * 2010-12-13 2011-06-22 张宇 一种管接头
WO2013183598A1 (ja) * 2012-06-04 2013-12-12 本田技研工業株式会社 燃料電池スタックにおけるガス出口領域の水切り構造
DE102012219014A1 (de) * 2012-10-18 2014-04-24 Tyco Electronics Austria Gmbh Elektrische Schaltvorrichtung
DE102012219104A1 (de) 2012-10-19 2014-05-08 Robert Bosch Gmbh Elektrochemische Zelle mit tubularem Trägergitter
CN103996868B (zh) * 2013-02-18 2016-06-15 本田技研工业株式会社 燃料电池堆
CN103363245A (zh) * 2013-06-25 2013-10-23 洛阳凯诺知识产权咨询服务有限公司 一种管道薄弱处的增强结构
US9963793B2 (en) * 2013-06-28 2018-05-08 Kyocera Corporation Cell unit, cell stack device, cell unit device and module
WO2015030215A1 (ja) * 2013-08-31 2015-03-05 京セラ株式会社 セル、セルスタック装置、モジュールおよびモジュール収容装置
WO2015080207A1 (ja) * 2013-11-28 2015-06-04 京セラ株式会社 セルスタック装置、モジュールおよびモジュール収容装置
WO2015163277A1 (ja) * 2014-04-21 2015-10-29 京セラ株式会社 セルスタック装置、モジュールおよびモジュール収容装置
JP6893308B2 (ja) * 2016-04-26 2021-06-23 パナソニックIpマネジメント株式会社 燃料電池装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158531A (ja) * 2003-11-26 2005-06-16 Kyocera Corp 燃料電池スタック及びその製法並びに燃料電池
JP2006179302A (ja) * 2004-12-22 2006-07-06 Kyocera Corp 燃料改質器収納用容器および燃料改質装置
JP2007157351A (ja) * 2005-11-30 2007-06-21 Kyocera Corp 燃料電池スタック及び燃料電池
JP5766132B2 (ja) 2012-01-30 2015-08-19 京セラ株式会社 セルスタック装置および燃料電池装置
JP2014056737A (ja) * 2012-09-13 2014-03-27 Jx Nippon Oil & Energy Corp 燃料電池モジュール
JP5873949B1 (ja) 2014-10-21 2016-03-01 日本碍子株式会社 燃料マニホールド
JP2016081912A (ja) * 2014-10-21 2016-05-16 日本碍子株式会社 燃料マニホールド
JP2017037837A (ja) * 2015-08-11 2017-02-16 日本碍子株式会社 燃料電池のスタック構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618158A4

Also Published As

Publication number Publication date
US20220109176A1 (en) 2022-04-07
CN114824401A (zh) 2022-07-29
EP3618158A4 (en) 2021-01-06
CN110521043A (zh) 2019-11-29
CN110521043B (zh) 2022-05-24
JP6438179B1 (ja) 2018-12-12
JPWO2018198619A1 (ja) 2019-06-27
EP3618158A1 (en) 2020-03-04
US11239486B2 (en) 2022-02-01
EP3618158B1 (en) 2021-08-11
US20200052321A1 (en) 2020-02-13
US11658327B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
JP6419310B2 (ja) セルスタック装置、モジュール及びモジュール収容装置
JP4854237B2 (ja) 固体電解質型燃料電池及びスタック構造体
US11742510B2 (en) Cell stack device, module, and module housing device
US7348093B2 (en) Fuel cell stack
JP6868051B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP5495544B2 (ja) 燃料電池モジュールおよび燃料電池装置
JP5334732B2 (ja) セルスタック装置および燃料電池モジュールならびに燃料電池装置
WO2010125946A1 (ja) 燃料電池モジュール
JP5042588B2 (ja) 燃料電池
JP6438179B1 (ja) セルスタック装置、モジュールおよびモジュール収容装置
JP6749051B2 (ja) セルスタック装置、燃料電池モジュール及び燃料電池装置
US20060225347A1 (en) Reformer for fuel cell system
JP2018006035A (ja) セルスタック装置、モジュールおよびモジュール収容装置
WO2010125945A1 (ja) 燃料電池モジュール
JP2008123710A (ja) 燃料電池
JP4897301B2 (ja) 固体酸化物形燃料電池
JP2008059957A (ja) スタック構造体及び燃料電池
JP4963590B2 (ja) 燃料電池
JP2016058212A (ja) 燃料電池モジュール
JP2018206543A (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
WO2019004267A1 (ja) 燃料電池モジュールおよび燃料電池装置
JP2017022023A (ja) 燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541368

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018790819

Country of ref document: EP

Effective date: 20191125