WO2010125945A1 - 燃料電池モジュール - Google Patents

燃料電池モジュール Download PDF

Info

Publication number
WO2010125945A1
WO2010125945A1 PCT/JP2010/056991 JP2010056991W WO2010125945A1 WO 2010125945 A1 WO2010125945 A1 WO 2010125945A1 JP 2010056991 W JP2010056991 W JP 2010056991W WO 2010125945 A1 WO2010125945 A1 WO 2010125945A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
separator
fuel
cell module
cell stack
Prior art date
Application number
PCT/JP2010/056991
Other languages
English (en)
French (fr)
Inventor
南郷あや香
小川哲矢
清弘幸彦
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US13/266,716 priority Critical patent/US9379407B2/en
Priority to EP10769644.5A priority patent/EP2426771B1/en
Publication of WO2010125945A1 publication Critical patent/WO2010125945A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell module including a fuel cell stack in which an electrolyte electrode assembly in which an electrolyte is sandwiched between an anode electrode and a cathode electrode and a separator are alternately stacked.
  • a solid electrolyte fuel cell uses an oxide ion conductor, for example, stabilized zirconia as an electrolyte, and an electrolyte electrode assembly (an anode electrode and a cathode electrode are disposed on both sides of the electrolyte).
  • MEA electrolyte electrode assembly
  • separator bipolar plate
  • the electrolyte electrode assembly and the separator are alternately stacked in the vertical direction, so in particular, the fuel cell (electrolyte electrode assembly or separator) disposed at the bottom of the fuel cell stack
  • the fuel cell electrolyte electrode assembly or separator
  • JP-A-2002-280052 As shown in FIG. 13, a fuel cell 1 is provided, and in the fuel cell 1, power generation cells 2 and separators 3 are alternately stacked in the vertical direction. A single fuel end plate 4 is stacked at the lowermost end of the fuel cell 1, while a single air end plate 5 is stacked at the top of the fuel cell 1.
  • the fuel cell 1 is mounted on the base plate 6 and the connecting members 7 are inserted in the four corner portions.
  • Screw holes 8 are formed in the four corners of the separator 3, the four corners of the air end plate 5, and the four corners of the fuel end plate 4.
  • the screw 9 is screwed into the screw hole 8 so that the tip of the screw 9 is in surface contact with the connecting member 7.
  • the load applied to the power generation cell 2 can be maintained substantially equally to the load applied to the other power generation cells 2. Accordingly, it is possible to prevent the power generation cell 2 from being damaged by preventing the generation load from being applied to the power generation cell 2 excessively.
  • screw holes 8 are respectively formed at the four corners of the separator 3, the air end plate 5 and the fuel end plate 4, and a screw 9 is screwed into the screw holes 8. For this reason, the structure of the entire fuel cell 1 is considerably complicated.
  • the present invention solves this kind of problem, and has a simple and economical configuration that reliably prevents damage and the like of the MEA placed at its end due to its own weight, and wastes fuel gas that is exhausted wastefully.
  • An object of the present invention is to provide a fuel cell module which can be reduced as much as possible and its efficiency can be improved.
  • an electrolyte electrode assembly having an electrolyte sandwiched between an anode electrode and a cathode electrode, and a fuel gas passage for supplying a fuel gas along the electrode surface of the anode electrode on one side.
  • a separator provided with an oxidant gas passage for supplying oxidant gas along the electrode surface of the cathode electrode on the other surface side, and a fuel cell stack in which the electrolyte electrode assembly and the separator are alternately laminated
  • the present invention relates to a fuel cell module comprising
  • the electrolyte electrode assembly is disposed at one end in the stacking direction, the separator is disposed at the other end in the stacking direction, and the electrolyte is disposed at one end in the stacking direction.
  • An end separator is disposed adjacent to the electrode assembly, for restricting the supply of fuel gas to the fuel gas passage and permitting the supply of oxidant gas to the oxidant gas passage.
  • a load relaxation member having a shape similar to that of the electrolyte electrode assembly is disposed adjacent to the separator.
  • the end separator that restricts the supply of the fuel gas to the fuel gas passage is disposed at one end of the fuel cell stack in the stacking direction, it is possible to wastefully supply the fuel gas. Absent. As a result, the consumption of fuel gas is reduced, and the fuel gas can be efficiently supplied.
  • the load relieving member is disposed at the other end of the fuel cell stack in the stacking direction, the load in the stacking direction is favorably mitigated, and damage to the electrolyte electrode assembly can be prevented. become.
  • a load relaxation member is disposed instead of the electrolyte electrode assembly, so that the electrolyte electrode assembly can be prevented from being damaged without increasing the number of lamination steps. In addition, wasteful consumption of fuel gas can be favorably reduced.
  • FIG. 3 is a cross-sectional view of the fuel cell stack taken along line III-III in FIG.
  • FIG. 2 is an exploded perspective view of a fuel cell.
  • FIG. 5 is a partial exploded perspective view showing a gas flow state of the fuel cell.
  • FIG. 5 is a schematic cross-sectional explanatory view for explaining the operation of the fuel cell.
  • FIG. 4 is a partial exploded perspective view of the fuel cell stack. It is explanatory drawing of the assembly operation
  • the fuel cell module 10 according to the first embodiment of the present invention is used in various applications such as in-vehicle use as well as stationary.
  • the fuel cell module 10 includes a fuel cell stack 12, a heat exchanger 14 that heats the fuel cell stack 12 before supplying the oxidant gas, and water to generate a mixed fuel of raw fuel and water vapor.
  • the reformer 16 contains higher hydrocarbons (C 2+ ) such as ethane (C 2 H 6 ), propane (C 3 H 8 ) and butane (C 4 H 10 ) contained in city gas (raw fuel) It is a pre-reformer for steam reforming to a fuel gas containing mainly methane (CH 4 ), hydrogen and CO, and is set to an operating temperature of several hundred degrees Celsius.
  • the fluid unit 18 including at least the heat exchanger 14, the evaporator 15 and the reformer 16 is disposed on one side of the fuel cell stack 12, and the other side of the fuel cell stack 12 is disposed.
  • the load applying mechanism 19 is provided to apply a tightening load in the stacking direction (arrow A direction).
  • the load applying mechanism 19 and the fluid unit 18 are disposed in axial symmetry with respect to the fuel cell stack 12.
  • the fuel cell stack 12 includes a plurality of solid electrolyte fuel cells 12a stacked in the arrow A direction.
  • a cathode electrode 22 and an anode electrode 24 are provided on both sides of an electrolyte (electrolyte plate) 20 made of an oxide ion conductor such as stabilized zirconia.
  • the electrolyte-electrode assembly (MEA) 26 is provided.
  • the electrolyte electrode assembly 26 is formed in a disk shape, and a barrier layer (not shown) is provided at least on the outer peripheral end face portion to prevent the inflow and the discharge of the oxidant gas and the fuel gas. There is. Between each separator 28, four electrolyte electrode assemblies 26 are arranged concentrically with the fuel gas supply passage 30 which is the center of the separator 28.
  • the separator 28 is formed of, for example, a single metal plate, a carbon plate, or the like made of a sheet metal such as a stainless steel alloy.
  • the separator 28 has a fuel gas supply unit (reaction gas supply unit) 32 in which a fuel gas supply passage 30 is formed at the center.
  • a relatively large diameter sandwiching portion 36 is integrally formed via four first bridge portions 34 radially extending away from the fuel gas supply portion 32 at equal angular intervals (90 ° intervals) outward.
  • the center-to-center distance between the fuel gas supply unit 32 and each sandwiching unit 36 is set to the same distance.
  • Each sandwiching portion 36 is set in a disc shape having substantially the same size as the electrolyte electrode assembly 26 and is configured separately from each other.
  • a fuel gas supply hole 38 for supplying a fuel gas is set at a position eccentric to the center of the sandwiching portion 36 or to the upstream side in the flow direction of the oxidant gas.
  • a fuel gas passage 40 for supplying a fuel gas is formed along the electrode surface of the anode electrode 24 on the surface 36 a of each sandwiching portion 36 in contact with the anode electrode 24.
  • the surface 36a is in contact with the fuel gas discharge passage 42 for discharging the fuel gas used through the fuel gas passage 40, and the anode electrode 24, and the fuel gas is supplied from the fuel gas supply hole 38 to the fuel gas discharge passage.
  • An arc-shaped wall portion 44 for forming a detour path is provided, which prevents the straight flow at 42.
  • the arc-shaped wall portion 44 has a substantially horseshoe shape, and the fuel gas supply hole 38 is disposed therein, while the fuel gas is discharged to the base end side (the first bridge portion 34 side) of the sandwiching portion 36 A passage 42 is provided.
  • the surface 36 a is provided with an outer peripheral portion protruding portion 46 which protrudes to the fuel gas passage 40 side and contacts the outer peripheral edge portion of the anode electrode 24 and a plurality of protruding portions 48 which contact the anode electrode 24.
  • the protrusion 46 has a substantially ring shape in which a portion is cut away corresponding to the fuel gas discharge passage 42, and the protrusion 48 is a solid portion formed by etching, for example, on the surface 36a, or a press It is comprised by the hollow part formed by this.
  • the surface 36b of each sandwiching portion 36 in contact with the cathode electrode 22 is formed to be a substantially flat surface, and the disk-like plate 50 may be formed on the surface 36b, for example. It is fixed by brazing, diffusion bonding, laser welding or the like.
  • the plate 50 is provided with a plurality of protrusions 52 by a press or the like.
  • the oxidant gas passage 54 for supplying oxidant gas along the electrode surface of the cathode electrode 22 is formed by the projection 52 on the surface 36 b side of the sandwiching portion 36, and the projection 52 is a current collector Make up the department.
  • each sandwiching portion 36 a projected portion 56 which can be used for positioning, detection of the number of sheets, etc. is formed on the separator 28 while taking out and measuring the generated power of the electrolyte electrode assembly 26 (FIG. See Figure 5).
  • the passage member 60 is fixed to the surface of the separator 28 facing the cathode electrode 22 by, for example, brazing, diffusion bonding, laser welding or the like.
  • the passage member 60 is configured in a flat plate shape, and includes a fuel gas supply unit 62 that forms the fuel gas supply passage 30 at the central portion.
  • a predetermined number of reinforcing bosses 63 are provided in the fuel gas supply unit 62.
  • each second bridge portion 64 extends from the first bridge portion 34 of the separator 28 to the surface 36b of the sandwiching portion 36. It is fixed by covering 38 (see FIG. 6).
  • a fuel gas supply passage 66 communicating with the fuel gas supply hole 38 from the fuel gas supply passage 30 is formed.
  • the fuel gas supply passage 66 is formed, for example, by etching.
  • the oxidant gas passage 54 supplies an oxidant gas in the direction of arrow B from between the inner circumferential end of the electrolyte electrode assembly 26 and the inner circumferential end of the sandwiching portion 36. It communicates with the gas supply passage 68.
  • the oxidant gas supply passage 68 is located between the inward side of each sandwiching portion 36 and the first bridge portion 34 and extends in the stacking direction (arrow A direction).
  • Insulating seals 70 for sealing the fuel gas supply passage 30 are provided between the separators 28.
  • the insulating seal 70 is formed of, for example, a crustal component-based material, a glass-based material, a composite material of clay and plastic, such as a mica material or a ceramic material.
  • the insulating seal 70 has a function of sealing the fuel gas supply passage 30 with the electrolyte electrode assembly 26.
  • an exhaust gas passage 72 is formed outside the sandwiching portion 36.
  • a straightening member 74 for straightening the fuel gas flowing through the gas and fuel gas passage 40 is disposed.
  • the straightening member 74 is formed of a substantially fan-shaped plate material and is stacked in a predetermined number in the direction of the arrow A, and four of the straightening members 74 are disposed in plan view corresponding to the respective sandwiching portions 36.
  • the rectifying member 74 is configured by bonding an insulating member, for example, mica with a silicone resin.
  • the flow straightening member 74 is disposed along a portion of the peripheral portion of the sandwiching portion 36 and a portion of the circumscribed circle of the separator 28.
  • One end of the flow straightening member 74 along a portion of the sandwiching portion 36 is disposed in the vicinity of the connection portion between the sandwiching portion 36 and the first bridge portion 34, and an outer peripheral portion which is the other end of the flow straightening member 74.
  • Reference numeral 78 constitutes a part of the circumscribed circle of the separator 28.
  • a recess 80 having a concave shape in a direction away from the oxidant gas supply passage 68 and the fuel gas supply passage 30 is provided at one end of the rectifying member 74.
  • Arc-shaped portions 82 corresponding to the outer peripheral shape of the sandwiching portion 36 are provided on both sides of the flow straightening member 74.
  • the fuel cell stack 12 is disposed at one end in the stacking direction of the electrolyte electrode assembly 26 and the separator 28 (while it is disposed at the upper side at the time of assembly shown in FIG.
  • An end separator 84 is disposed adjacent to the electrolyte electrode assembly 26 at the end disposed at the bottom of the power generation mode shown in FIG.
  • the end separator 84 is configured substantially the same as the separator 28, and is manufactured by eliminating the step of forming the fuel gas supply holes 38 in the process of manufacturing the separator 28.
  • the fuel cell stack 12 is adjacent to the separator 28 at the other end in the stacking direction (the end disposed at the time of assembly shown in FIG. 8 at the lower part, and at the time of power generation use shown in FIG. A load relief member 86 is provided.
  • the load relaxation member 86 has a shape equivalent to that of the electrolyte electrode assembly 26, that is, a disk shape, and is constituted by a metal laminate in which a plurality of flat metal plates 86a are laminated and integrated. .
  • a substantially disc-shaped end plate 88 a is disposed adjacent to the load relaxation member 86 at the other end of the fuel cell stack 12.
  • a partition (terminal plate) 90 is disposed adjacent to the end separator 84 at one end of the fuel cell stack 12, and a plurality of small-diameter, substantially disc-shaped end plates 88 b are disposed adjacent to the partition 90.
  • a fixed ring 88c having a large diameter and a substantially ring shape.
  • the partition wall 90 also has a function of preventing the exhaust gas from diffusing to the outside of the separator 28, while four end plates 88 b are provided corresponding to the stacking positions of the electrolyte electrode assemblies 26.
  • the end plate 88a and the fixing ring 88c have a plurality of holes 92, and a bolt insertion collar member 94 is integrally inserted into the flow straightening member 74 in the stacking direction.
  • the end plate 88a and the fixing ring 88c are clamped and fixed via the bolt 96 inserted into the hole 92 and the bolt insertion collar member 94 and the nut 98 screwed to the bolt 96.
  • the end plate 88a is connected to a single fuel gas supply pipe 100 communicating with the fuel gas supply communication hole 30, a casing 102 having a cavity 102a communicating with each oxidant gas supply communication hole 68, and the casing 102 A single oxidant gas supply pipe 104 communicating with the cavity 102a is provided.
  • the fixed plate member 110 is fixed to the end plate 88a via the plurality of bolts 96, the nuts 106a and 106b, and the plate-like collar member 108. Between the fixed plate member 110 and the end plate 88a, the first tightening portion 112 for applying a first tightening load to the fuel gas supply portions 32 and 62 (gas sealing portion), and the electrolyte electrode assembly 26 described above. A second tightening portion 114 for applying a second tightening load smaller than the first tightening load is provided, and a load applying mechanism 19 is configured by these.
  • the load applying mechanism 19 is disposed on the end plate 88 b side, and the first tightening portion 112 and the second tightening portion 114 hold the load in the stacking direction via the end plate 88 a.
  • the first tightening portion 112 is a pressing member disposed at a central portion of the fuel cell stack 12 (central portion of the fuel gas supply portions 32 and 62) in order to prevent the fuel gas from leaking from the fuel gas supply passage 30.
  • the pressing member 116 is positioned near the center of the arrangement of the four end plates 88 b to press the fuel cell stack 12.
  • the first spring 120 is disposed on the pressing member 116 via the first receiving member 118 a and the second receiving member 118 b.
  • the tip of the first pressing bolt 122 abuts on the second receiving member 118 b.
  • the first pressing bolt 122 is screwed into the first screw hole 124 formed in the fixed plate member 110 and is fixed in position adjustable via the first nut 126.
  • the second tightening portion 114 includes a third receiving member 128 a disposed corresponding to each electrolyte electrode assembly 26 on the end plate 88 b.
  • the third receiving member 128 a is positioned and supported on the end plate 88 b via the pin 130.
  • One end of the second spring 132 abuts on the third receiving member 128a, while the other end of the second spring 132 abuts on the fourth receiving member 128b.
  • the tip of the second pressing bolt 134 abuts on the fourth receiving member 128 b.
  • the second pressing bolt 134 is screwed into the second screw hole 136 formed in the fixed plate member 110 and is fixed in position adjustable via the second nut 138.
  • the housing 17 vertically arranges a first housing portion 160 a for housing the load applying mechanism 19 and a second housing portion 160 b for housing the fuel cell stack 12.
  • the partition wall 90 is interposed between the first and second housing parts 160 a and 160 b and tightened with a screw 162 and a nut 164.
  • the partition wall 90 constitutes a gas shielding portion that prevents high temperature exhaust gas and air from flowing into the load applying mechanism 19 from the fluid portion 18.
  • One end of a ring-shaped wall plate 166 is joined to the second housing portion 160b, and a head plate 168 is fixed to the other end of the wall plate 166.
  • a fuel gas supply pipe 170 connected to a raw fuel supply unit (not shown) for supplying a raw fuel (methane, ethane, propane or the like).
  • the outlet of the evaporator 15 is in communication with the inlet of the reformer 16.
  • An exhaust gas pipe 172 is disposed adjacent to the fuel gas supply pipe 170.
  • An oxidant gas supply pipe 174 communicates with the head plate 168, and the oxidant gas supply pipe 174 communicates with the oxidant gas supply passage 68 from the heat exchanger 14 through the passage 176 in the housing 17. Do.
  • air which is an oxygen-containing gas discharged by an air pump (not shown) is supplied from an oxidant gas supply pipe 174 to a passage 176 in the housing 17.
  • the air is heated by the heat exchanger 14 and then supplied from the oxidant gas supply pipe 104 to the respective oxidant gas supply communication holes 68 via the cavities 102 a.
  • raw fuel (methane, ethane, propane or the like) is supplied from the fuel gas supply pipe 170 to the reformer 16, and water is supplied from the fuel gas supply pipe 170 to the reformer 16.
  • the raw fuel is reformed through the reformer 16 to obtain a fuel gas (hydrogen-containing gas), and the fuel gas is communicated from the fuel gas supply pipe 100 connected to the end plate 88a.
  • the holes 30 are supplied.
  • the fuel gas moves along the fuel gas supply passage 30 of the fuel cell stack 12 in the stacking direction (arrow A direction) while the surface direction of the separator 28 along the fuel gas supply passage 66.
  • the fuel gas is introduced from the fuel gas supply passage 66 into the fuel gas passage 40 through the fuel gas supply holes 38 formed in the sandwiching portion 36.
  • the fuel gas supply hole 38 is set at a substantially central position of the anode 24 of each of the electrolyte electrode assemblies 26. Therefore, the fuel gas is supplied from the fuel gas supply hole 38 to the approximate center of the anode electrode 24 and then moves along the fuel gas passage 40 toward the outer peripheral portion of the anode electrode 24.
  • the air supplied to the oxidant gas supply through hole 68 is an arrow from between the inner peripheral end of the electrolyte electrode assembly 26 and the inner peripheral end of the sandwiching portion 36 under the rectifying action of the rectifying member 74. It flows in the B direction and is sent to the oxidant gas passage 54. In the oxidant gas passage 54, air flows from the inner peripheral end (center of the separator 28) side of the cathode electrode 22 of the electrolyte electrode assembly 26 toward the outer peripheral end (outer peripheral end of the separator 28). It flows.
  • fuel gas is supplied from the center side to the peripheral end side of the electrode surface of the anode electrode 24, and in one direction (arrow B direction) of the electrode surface of the cathode electrode 22. Air is supplied towards. At that time, oxide ions move to the anode electrode 24 through the electrolyte 20, and power generation is performed by a chemical reaction.
  • the exhaust gas mainly containing air after the power generation reaction discharged to the outer peripheral portion of each electrolyte electrode assembly 26 is discharged from the fuel cell stack 12 through the exhaust gas passage 72 as an off gas (see FIG. 1).
  • the end plate 88a provided with the fluid portion 18 is disposed at the lowermost position.
  • four load relieving members 86 are disposed on the end plate 88a.
  • the separator 28 is placed on the load relieving member 86 with the oxidant gas passage 54 side facing the load relieving member 86, the four electrolyte electrode assemblies 26 are placed on the separator 28. It is placed corresponding to the load relieving member 86.
  • the separators 28 and the electrolyte electrode assemblies 26 are alternately arranged vertically upward in the following order.
  • the end separator 84 is disposed on the electrolyte electrode assembly 26.
  • the load applying mechanism 19 is stacked on the end separator 84 via the end plate 88 b.
  • the end separator 84 that restricts the supply of the fuel gas to the fuel gas passage 40 is disposed at one end (the upper end when assembled) of the fuel cell stack 12 in the stacking direction. Therefore, the fuel gas is not supplied from the fuel gas passage 40 to the end plate 88b, the consumption of the fuel gas is reduced, and the fuel gas can be supplied efficiently.
  • a load relieving member 86 is disposed at the other end (lower end when assembled) of the fuel cell stack 12 in the stacking direction. Accordingly, when assembling the fuel cell stack 12, the load relieving member 86 disposed at the lowermost position relieves well the load in the stacking direction (the weight of the separator 28 and the electrolyte electrode assembly 26), and the electrolyte electrode It is possible to prevent damage or the like of the bonded body 26.
  • the load relieving member 86 disposed at the lowermost position at the time of assembly is actually used in place of the electrolyte electrode assembly 26.
  • the fuel cell stack 12 can prevent damage to the electrolyte electrode assembly 26 without increasing the number of stacking stages, and can favorably reduce wasteful consumption of fuel gas.
  • the end separator 84 and the separator 28 are provided with a fuel gas supply hole 38 for the separator 28 to introduce the fuel gas into the fuel gas passage 40, while the end separator 84 has the fuel gas supply hole 38 is not provided. Therefore, the end separator 84 can be manufactured in the same manner as the separator 28 only by eliminating the step of forming the fuel gas supply holes 38, and the manufacturing cost can be favorably reduced.
  • the end separator 84 not used for power generation does not unnecessarily discharge the fuel gas, and wasteful consumption of the fuel gas can be effectively prevented.
  • the end separator 84 is disposed on the fuel gas passage 40 side at the end in the stacking direction of the fuel cell stack 12, that is, toward the end plate 88b. Therefore, the electrolyte electrode assembly 26 is not disposed outward in the stacking direction of the end separator 84, and the end separator 84 is disposed downward, such as at the time of assembly or operation. -It becomes possible to avoid the buckling and damage of the electrode assembly 26.
  • the fuel gas is not unnecessarily supplied to the end of the fuel cell stack 12, the consumption of the fuel gas is reduced, and efficient power generation operation is performed.
  • the load relieving member 86 is formed of a metal laminate in which a plurality of flat plate-like metal plates 86a are laminated and integrated. Therefore, the fuel cell stack 12 can efficiently transmit the electric power generated by the power generation, and can reduce the load in the stacking direction and prevent the buckling and damage of the electrolyte electrode assembly 26. become.
  • the load relieving member 86 is disposed downward (see FIG. 8), and when the fuel cell stack 12 generates power, as shown in FIG. It is arranged.
  • deformation and buckling of the electrolyte electrode assembly 26 and the separator 28 can be prevented at both ends of the fuel cell stack 12, and the durability of the fuel cell stack 12 is favorably improved.
  • a load application mechanism 19 for applying a load to the fuel cell stack 12 in the stacking direction is disposed adjacent to the end separator 84 side, while the load relieving member 86 side is provided. Adjacent to the fuel cell stack 12 is disposed a reformer 16 that generates a fuel gas to be supplied to the fuel cell stack 12 and a fluid unit 18 having a heat exchanger 14. Therefore, the entire fuel cell module 10 can be easily miniaturized, the load in the stacking direction can be efficiently transmitted, and moreover, the thermal distortion can be favorably suppressed.
  • the load applying mechanism 19 and the fluid unit 18 are arranged in axial symmetry. Therefore, the occurrence of thermal distortion is reduced as much as possible.
  • FIG. 9 is a cross-sectional view of a load reducing member 180 of a fuel cell module according to a second embodiment of the present invention.
  • the load relieving member 180 is a metal laminate in which a pair of flat metal plates 182a and 182b and a corrugated metal plate 184 sandwiched between the metal plates 182a and 182b are laminated and integrated.
  • the second embodiment power generated by power generation can be efficiently transmitted, and in particular, the load in the stacking direction can be further alleviated by the spring function of the corrugated metal plate 184 itself. For this reason, it is possible to prevent the buckling and damage of the electrolyte electrode assembly 26, and to obtain the same effect as that of the first embodiment.
  • FIG. 10 is a cross-sectional view of a load reducing member 190 of a fuel cell module according to a third embodiment of the present invention.
  • the load relieving member 190 is made of foam metal.
  • FIG. 11 is a cross-sectional view of a load reducing member 200 of a fuel cell module according to a fourth embodiment of the present invention.
  • the load relieving member 200 is a mesh metal.
  • the load relieving members 190 and 200 can efficiently transmit the power generated by the power generation, and relieve the load in the stacking direction to prevent the buckling and damage of the electrolyte electrode assembly 26.
  • the same effects as those of the first and second embodiments described above can be obtained.
  • FIG. 12 is a cross-sectional view of the load reducing member 210 of the fuel cell module according to the fifth embodiment of the present invention.
  • the load relieving member 210 is a laminate of a ceramic felt 212 and a conductive metal plate 214.
  • the metal plate 214 is folded at the end of the felt 212 and protrudes on both sides of the felt 212.
  • the ceramic felt 212 has an advantage that the heat insulating property can be easily improved.
  • the load in the stacking direction is relieved. It is necessary to ensure rigidity so as not to buffer until the load in the stacking direction is not sufficiently applied.

Abstract

 燃料電池モジュール(10)を構成する燃料電池スタック(12)は、電解質・電極接合体(26)とセパレータ(28)とを交互に積層する。燃料電池スタック(12)は、積層方向一方の端部に電解質・電極接合体(26)を配置するとともに、積層方向の他方の端部にセパレータ(28)を配置する。電解質・電極接合体(26)に隣接して端部セパレータ(84)が配設される一方、セパレータ(28)に隣接して荷重緩和部材(86)が配設される。端部セパレータ(84)は、燃料ガス通路(40)への燃料ガスの供給を規制するとともに、荷重緩和部材(86)は、複数枚の平板状金属板(86a)の積層体で構成される。

Description

燃料電池モジュール
 本発明は、電解質をアノード電極とカソード電極とで挟んだ電解質・電極接合体と、セパレータとを交互に積層する燃料電池スタックを備える燃料電池モジュールに関する。
 通常、固体電解質形燃料電池(SOFC)は、電解質に酸化物イオン導電体、例えば、安定化ジルコニアを用いており、この電解質の両側にアノード電極及びカソード電極を配設した電解質・電極接合体(MEA)を、セパレータ(バイポーラ板)によって挟持している。この燃料電池は、通常、電解質・電極接合体とセパレータとが所定の数だけ積層された燃料電池スタックとして使用されている。
 上記の燃料電池スタックでは、電解質・電極接合体とセパレータとが交互に鉛直方向に積層されるため、特に、燃料電池スタックの最下段に配置される燃料電池(電解質・電極接合体やセパレータ)は、前記燃料電池スタック全体の重量を直接受けてしまう。このため、燃料電池スタックの最下段では、燃料電池が破損し易くなる。
 そこで、例えば、特開2002-280052号公報に開示されている構造が知られている。この特開2002-280052号公報では、図13に示すように、燃料電池1を備えており、前記燃料電池1は、発電セル2とセパレータ3とが鉛直方向に交互に積層されている。燃料電池1の最下端には、単一の燃料用端板4が積層される一方、前記燃料電池1の最上段には、単一の空気用端板5が積層されている。
 この燃料電池1は、ベース板6上に載置されるとともに、4つのコーナ部に連結部材7が挿入されている。セパレータ3の4つのコーナ部、空気用端板5の4つのコーナ部及び燃料用端板4の4つのコーナ部には、ねじ孔8が形成されている。ねじ孔8には、ねじ9が螺合されることにより、前記ねじ9の先端が連結部材7に対して面接触している。
 これにより、燃料電池1の下部に位置する発電セル2であっても、前記発電セル2にかかる荷重は、他の発電セル2にかかる荷重と略均等に維持することができる。従って、前記発電セル2に過大な荷重がかかることを阻止して、前記発電セル2が破損することを防止することができる、としている。
 ところで、セパレータ3、空気用端板5及び燃料用端板4の4隅には、それぞれねじ孔8が形成されるとともに、前記ねじ孔8にねじ9を螺合する構造を有している。このため、燃料電池1全体の構造が相当に複雑化する。
 本発明はこの種の問題を解決するものであり、簡単且つ経済的な構成で、端部に配置されているMEAの自重による損傷等を確実に阻止するとともに、無駄に排気される燃料ガスを可及的に削減し、効率を向上させることが可能な燃料電池モジュールを提供することを目的とする。
 本発明は、電解質をアノード電極とカソード電極とで挟んだ電解質・電極接合体と、一方の面側に前記アノード電極の電極面に沿って燃料ガスを供給するための燃料ガス通路を設け、且つ他方の面側に前記カソード電極の電極面に沿って酸化剤ガスを供給するための酸化剤ガス通路を設けるセパレータと、前記電解質・電極接合体と前記セパレータとを交互に積層する燃料電池スタックとを備える燃料電池モジュールに関するものである。
 燃料電池スタックは、積層方向の一方の端部に電解質・電極接合体を配置するとともに、前記積層方向の他方の端部にセパレータを配置し、前記積層方向の一方の端部には、前記電解質・電極接合体に隣接して、燃料ガス通路への燃料ガスの供給を規制し且つ酸化剤ガス通路への酸化剤ガスの供給を許容する端部セパレータが配設されている。そして、燃料電池スタックの積層方向の他方の端部には、セパレータに隣接して、電解質・電極接合体と同等の形状を有する荷重緩和部材が配設されている。
 本発明によれば、燃料電池スタックの積層方向の一方の端部には、燃料ガス通路への燃料ガスの供給を規制した端部セパレータが配置されるため、燃料ガスを無駄に供給することがない。これにより、燃料ガスの消費が削減され、前記燃料ガスを効率的に供給することができる。
 さらに、燃料電池スタックの積層方向の他方の端部には、荷重緩和部材が配設されるため、前記積層方向の荷重が良好に緩和され、電解質・電極接合体の損傷を防止することが可能になる。しかも、電解質・電極接合体に代えて荷重緩和部材が配置されており、積層段数を増加させることがなく、前記電解質・電極接合体の損傷を阻止することができる。その上、無駄な燃料ガスの消費を良好に削減させることが可能になる。
本発明の第1の実施形態に係る燃料電池モジュールの断面説明図である。 前記燃料電池モジュールを構成する燃料電池スタックの概略斜視説明図である。 前記燃料電池スタックの、図2中、III-III線断面図である。 燃料電池の分解斜視説明図である。 前記燃料電池のガス流れ状態を示す一部分解斜視説明図である。 前記燃料電池の動作を説明する概略断面説明図である。 前記燃料電池スタックの一部分解斜視説明図である。 前記燃料電池スタックの組み立て作業の説明図である。 本発明の第2の実施形態に係る燃料電池モジュールを構成する荷重緩和部材の断面説明図である。 本発明の第3の実施形態に係る燃料電池モジュールを構成する荷重緩和部材の断面説明図である。 本発明の第4の実施形態に係る燃料電池モジュールを構成する荷重緩和部材の断面説明図である。 本発明の第5の実施形態に係る燃料電池モジュールを構成する荷重緩和部材の断面説明図である。 特開2002-280052号公報の燃料電池の断面説明図である。
 図1~図3に示すように、本発明の第1の実施形態に係る燃料電池モジュール10は、定置用の他、車載用等の種々の用途に用いられている。
 燃料電池モジュール10は、燃料電池スタック12と、酸化剤ガスを前記燃料電池スタック12に供給する前に加熱する熱交換器14と、原燃料と水蒸気との混合燃料を生成するために、水を蒸発させる蒸発器15と、前記混合燃料を改質して改質ガスを生成する改質器16と、前記燃料電池スタック12、前記熱交換器14、前記蒸発器15、前記改質器16及び後述する荷重付与機構19を収容する筐体17とを備える。
 改質器16は、都市ガス(原燃料)中に含まれるエタン(C)、プロパン(C)及びブタン(C10)等の高級炭化水素(C2+)を、主としてメタン(CH)、水素、COを含む燃料ガスに水蒸気改質するための予備改質器であり、数百℃の作動温度に設定される。
 筐体17内では、燃料電池スタック12の一方の側に、少なくとも熱交換器14、蒸発器15及び改質器16を含む流体部18が配置されるとともに、前記燃料電池スタック12の他方の側に、積層方向(矢印A方向)に締め付け荷重を付与する荷重付与機構19が配設される。荷重付与機構19及び流体部18は、燃料電池スタック12に対して軸対称に配置される。
 燃料電池スタック12は、矢印A方向に積層される複数の固体電解質形燃料電池12aを備える。燃料電池12aは、図4及び図5に示すように、例えば、安定化ジルコニア等の酸化物イオン導電体で構成される電解質(電解質板)20の両面に、カソード電極22及びアノード電極24が設けられた電解質・電極接合体(MEA)26を備える。
 電解質・電極接合体26は、円板状に形成されるとともに、少なくとも外周端面部には、酸化剤ガス及び燃料ガスの進入や排出を阻止するためにバリアー層(図示せず)が設けられている。各セパレータ28間には、4個の電解質・電極接合体26が、このセパレータ28の中心部である燃料ガス供給連通孔30と同心円上に配列される。
 セパレータ28は、図4に示すように、例えば、ステンレス合金等の板金で構成される1枚の金属プレートやカーボンプレート等で構成される。セパレータ28は、中央部に燃料ガス供給連通孔30を形成する燃料ガス供給部(反応ガス供給部)32を有する。この燃料ガス供給部32から外方に等角度間隔(90゜間隔)ずつ離間して放射状に延在する4本の第1橋架部34を介して比較的大径な挟持部36が一体的に設けられる。燃料ガス供給部32と各挟持部36との中心間距離は、同一距離に設定される。
 各挟持部36は、電解質・電極接合体26と略同一寸法の円板形状に設定されており、互いに分離して構成される。挟持部36には、燃料ガスを供給するための燃料ガス供給孔38が、例えば、前記挟持部36の中心又は中心に対して酸化剤ガスの流れ方向上流側に偏心した位置に設定される。
 各挟持部36のアノード電極24に接触する面36aには、前記アノード電極24の電極面に沿って燃料ガスを供給するための燃料ガス通路40が形成される。面36aには、燃料ガス通路40を通って使用された燃料ガスを排出する燃料ガス排出通路42と、アノード電極24に接触するとともに、前記燃料ガスが燃料ガス供給孔38から前記燃料ガス排出通路42に直線状に流れることを阻止する迂回路形成用の円弧状壁部44とが設けられる。
 円弧状壁部44は、略馬蹄形状を有し、その内部に燃料ガス供給孔38が配置される一方、挟持部36の基端部側(第1橋架部34側)には、燃料ガス排出通路42が設けられる。面36aには、燃料ガス通路40側に突出してアノード電極24の外周縁部に接触する外縁周回用凸部46と、前記アノード電極24に接触する複数の突起部48とが設けられる。
 凸部46は、燃料ガス排出通路42に対応して一部が切り欠かれた略リング状を有するとともに、突起部48は、面36aに、例えば、エッチングにより形成される中実部、又はプレスにより形成される中空部で構成される。
 図6及び図7に示すように、各挟持部36のカソード電極22に接触する面36bは、略平坦面に形成されており、この面36bには、円板状のプレート50が、例えば、ろう付け、拡散接合やレーザ溶接等により固着される。このプレート50には、プレス等により複数の突起部52が設けられる。挟持部36の面36b側には、突起部52によりカソード電極22の電極面に沿って酸化剤ガスを供給するための酸化剤ガス通路54が形成されるとともに、前記突起部52は、集電部を構成する。
 各挟持部36の外周部には、電解質・電極接合体26の発電電力の取り出し及び計測を行うとともに、セパレータ28に位置決めや枚数検出等に利用可能な突出部56が形成される(図4及び図5参照)。
 図4に示すように、セパレータ28のカソード電極22に対向する面には、通路部材60が、例えば、ろう付け、拡散接合やレーザ溶接等により固着される。通路部材60は、平板状に構成されるとともに、中央部に燃料ガス供給連通孔30を形成する燃料ガス供給部62を備える。燃料ガス供給部62には、補強用のボス部63が所定数だけ設けられる。
 燃料ガス供給部62から放射状に4本の第2橋架部64が延在するとともに、各第2橋架部64は、セパレータ28の第1橋架部34から挟持部36の面36bに燃料ガス供給孔38を覆って固着される(図6参照)。
 燃料ガス供給部62から第2橋架部64には、燃料ガス供給連通孔30から燃料ガス供給孔38に連通する燃料ガス供給通路66が形成される。燃料ガス供給通路66は、例えば、エッチングにより形成される。
 図6に示すように、酸化剤ガス通路54は、電解質・電極接合体26の内側周端部と挟持部36の内側周端部との間から矢印B方向に酸化剤ガスを供給する酸化剤ガス供給連通孔68に連通する。この酸化剤ガス供給連通孔68は、各挟持部36の内方と第1橋架部34との間に位置して積層方向(矢印A方向)に延在している。
 各セパレータ28間には、燃料ガス供給連通孔30をシールするための絶縁シール70が設けられる。絶縁シール70は、例えば、マイカ材やセラミック材等、地殻成分系素材、硝子系素材、粘土とプラスチックの複合素材で形成されている。絶縁シール70は、燃料ガス供給連通孔30を電解質・電極接合体26に対してシールする機能を有する。燃料電池スタック12には、挟持部36の外方に位置して排ガス通路72が形成される。
 図4に示すように、隣り合う各挟持部36間には、酸化剤ガス供給連通孔68を介して各電解質・電極接合体26の面方向に沿って酸化剤ガス通路54を流通する酸化剤ガス及び燃料ガス通路40を流通する燃料ガスを整流するための整流部材74が配置される。整流部材74は、略扇方形状の板材で構成されており、矢印A方向に所定枚数だけ積層されるとともに、各挟持部36間に対応して平面視で4つ配設される。
 整流部材74は、絶縁部材、例えば、マイカをシリコーン樹脂で結合して構成される。整流部材74は、挟持部36の周縁部の一部及びセパレータ28の外接円の一部に沿って配置される。整流部材74の挟持部36の一部に沿う一端部は、前記挟持部36と第1橋架部34との連結部位の近傍に配置されるとともに、前記整流部材74の他端部である外周部78は、セパレータ28の外接円の一部を構成する。
 整流部材74の一端部には、酸化剤ガス供給連通孔68及び燃料ガス供給連通孔30から離間する方向に凹形状を有する凹部80が設けられる。整流部材74の両側部には、それぞれ挟持部36の外周形状に対応する円弧状部82が設けられる。
 図7及び図8に示すように、燃料電池スタック12は、電解質・電極接合体26とセパレータ28との積層方向の一方の端部(図8に示す組み立て時に上方に配置される一方、図7に示す発電使用時に下方に配置される端部)に、電解質・電極接合体26に隣接して、端部セパレータ84が配置される。この端部セパレータ84は、セパレータ28と略同様に構成されており、前記セパレータ28の製造工程の途上で、燃料ガス供給孔38の形成工程を削除することにより製造される。
 燃料電池スタック12は、積層方向の他方の端部(図8に示す組み立て時に下方に配置される一方、図7に示す発電使用時に上方に配置される端部)に、セパレータ28に隣接して荷重緩和部材86が配設される。
 荷重緩和部材86は、電解質・電極接合体26と同等の形状、すなわち、円盤形状を有しており、複数枚の平板状金属板86aが積層されて一体化された金属積層体で構成される。
 図2及び図3に示すように、燃料電池スタック12の他方の端部には、荷重緩和部材86に隣接して略円板状のエンドプレート88aが配置される。燃料電池スタック12の一方の端部には、端部セパレータ84に隣接して隔壁(ターミナルプレート)90が配置され、前記隔壁90に隣接して小径且つ略円板状の複数のエンドプレート88bと、大径且つ略リング状の固定リング88cとが配置される。隔壁90は、排ガスがセパレータ28の外部に拡散することを阻止する機能をも有する一方、エンドプレート88bは、各電解質・電極接合体26の積層位置に対応して4つ配設される。
 エンドプレート88a及び固定リング88cは、複数の孔部92を有するとともに、整流部材74には、積層方向にボルト挿入用カラー部材94が一体に挿入される。孔部92及びボルト挿入用カラー部材94に挿入されるボルト96及び前記ボルト96に螺合するナット98を介し、エンドプレート88aと固定リング88cとが締め付け固定される。
 エンドプレート88aには、燃料ガス供給連通孔30に連通する単一の燃料ガス供給パイプ100と、各酸化剤ガス供給連通孔68に連通するキャビティ102aを設けるケーシング102と、前記ケーシング102に接続されて前記キャビティ102aに連通する単一の酸化剤ガス供給パイプ104とが設けられる。
 エンドプレート88aには、複数のボルト96、ナット106a、106b及び板状カラー部材108を介して固定プレート部材110が固定される。固定プレート部材110とエンドプレート88aとの間には、燃料ガス供給部32、62(ガスシール部位)に第1締め付け荷重を付与する第1締め付け部112と、各電解質・電極接合体26に前記第1締め付け荷重よりも小さな第2締め付け荷重を付与する第2締め付け部114とが設けられ、これらにより荷重付与機構19が構成される。
 荷重付与機構19は、エンドプレート88b側に配置されるととともに、第1締め付け部112及び第2締め付け部114は、エンドプレート88aを介して積層方向の荷重を保持する。
 第1締め付け部112は、燃料ガス供給連通孔30から燃料ガスが漏れることを阻止するために、燃料電池スタック12の中央部(燃料ガス供給部32、62の中央部)に配置される押圧部材116を備え、この押圧部材116は、4つのエンドプレート88bの配列中心近傍に位置して前記燃料電池スタック12を押圧する。
 押圧部材116には、第1受け部材118a及び第2受け部材118bを介して第1スプリング120が配置される。第2受け部材118bには、第1押圧ボルト122の先端が当接する。第1押圧ボルト122は、固定プレート部材110に形成された第1ねじ孔124に螺合するとともに、第1ナット126を介して位置調整可能に固定される。
 第2締め付け部114は、エンドプレート88bに各電解質・電極接合体26に対応して配置される第3受け部材128aを備える。第3受け部材128aは、ピン130を介してエンドプレート88bに位置決め支持される。第3受け部材128aに第2スプリング132の一端が当接する一方、前記第2スプリング132の他端が第4受け部材128bに当接する。第4受け部材128bには、第2押圧ボルト134の先端が当接する。第2押圧ボルト134は、固定プレート部材110に形成された第2ねじ孔136に螺合するとともに、第2ナット138を介して位置調整可能に固定される。
 図1の発電使用時の姿勢に示すように、筐体17は、荷重付与機構19を収容する第1筐体部160aと、燃料電池スタック12を収容する第2筐体部160bとを上下に備える。第1及び第2筐体部160a、160b間は、隔壁90を介装してねじ162及びナット164により締め付けられる。隔壁90は、流体部18から荷重付与機構19に高温の排ガスや空気が流入することを阻止するガス遮蔽部を構成する。第2筐体部160bには、リング状壁板166の一端部が接合されるとともに、前記壁板166の他端部には、ヘッド板168が固着される。
 蒸発器15には、原燃料(メタン、エタン又はプロパン等)を供給する原燃料供給部(図示せず)に連結される燃料ガス供給管170が接続される。蒸発器15の出口は、改質器16の入口に連通する。燃料ガス供給管170に近接して、排ガス管172が配置される。
 ヘッド板168には、酸化剤ガス供給管174が連通するとともに、前記酸化剤ガス供給管174は、筐体17内の通路176を通って熱交換器14から酸化剤ガス供給連通孔68に連通する。
 この燃料電池モジュール10の動作について、以下に説明する。
 図1に示すように、エアポンプ(図示せず)により吐出された酸素含有ガスである空気は、酸化剤ガス供給管174から筐体17内の通路176に供給される。この空気は、熱交換器14により加熱された後、酸化剤ガス供給パイプ104からキャビティ102aを介して各酸化剤ガス供給連通孔68に供給される。
 一方、燃料ガス供給管170から改質器16に原燃料(メタン、エタン又はプロパン等)が供給されるとともに、前記燃料ガス供給管170から前記改質器16に水が供給される。原燃料が改質器16を通って改質されることにより燃料ガス(水素含有ガス)が得られ、この燃料ガスは、エンドプレート88aに接続されている燃料ガス供給パイプ100から燃料ガス供給連通孔30に供給される。
 図6に示すように、燃料ガスは、燃料電池スタック12の燃料ガス供給連通孔30に沿って積層方向(矢印A方向)に移動しながら、燃料ガス供給通路66に沿ってセパレータ28の面方向に移動する。
 燃料ガスは、燃料ガス供給通路66から挟持部36に形成された燃料ガス供給孔38を通って燃料ガス通路40に導入される。燃料ガス供給孔38は、各電解質・電極接合体26のアノード電極24の略中心位置に設定されている。このため、燃料ガスは、燃料ガス供給孔38からアノード電極24の略中心に供給された後、燃料ガス通路40に沿って前記アノード電極24の外周部に向かって移動する。
 一方、酸化剤ガス供給連通孔68に供給された空気は、整流部材74の整流作用下に、電解質・電極接合体26の内側周端部と挟持部36の内側周端部との間から矢印B方向に流入し、酸化剤ガス通路54に送られる。酸化剤ガス通路54では、電解質・電極接合体26のカソード電極22の内側周端部(セパレータ28の中央部)側から外側周端部(セパレータ28の外側周端部側)に向かって空気が流動する。
 従って、電解質・電極接合体26では、アノード電極24の電極面の中心側から周端部側に向かって燃料ガスが供給されるとともに、カソード電極22の電極面の一方向(矢印B方向)に向かって空気が供給される。その際、酸化物イオンが電解質20を通ってアノード電極24に移動し、化学反応により発電が行われる。
 なお、各電解質・電極接合体26の外周部に排出される主に発電反応後の空気を含む排ガスは、オフガスとして排ガス通路72を介して燃料電池スタック12から排出される(図1参照)。
 この場合、第1の実施形態では、燃料電池スタック12を組み立てる際には、図8に示すように、流体部18が設けられるエンドプレート88aが最下位に配置される。このエンドプレート88a上には、先ず、4つの荷重緩和部材86が配置される。
 次いで、荷重緩和部材86上には、セパレータ28が、酸化剤ガス通路54側を前記荷重緩和部材86に向けて載置された後、前記セパレータ28上に、4つの電解質・電極接合体26が荷重緩和部材86に対応して載置される。以下、順に、セパレータ28と電解質・電極接合体26とは、交互に鉛直方向上方に向かって配置される。
 そして、組み立て時の鉛直方向最上位に、電解質・電極接合体26が配置された後、この電解質・電極接合体26上には、端部セパレータ84が配置される。端部セパレータ84には、エンドプレート88bを介して荷重付与機構19が積層される。
 このように、燃料電池スタック12の積層方向の一方の端部(組み立て時の上端部)には、燃料ガス通路40への燃料ガスの供給を規制した端部セパレータ84が配設されている。このため、燃料ガス通路40からエンドプレート88bに燃料ガスを無駄に供給することがなく、前記燃料ガスの消費が削減されるとともに、該燃料ガスを効率的に供給することができる。
 一方、燃料電池スタック12の積層方向の他方の端部(組み立て時の下端部)には、荷重緩和部材86が配設されている。従って、燃料電池スタック12の組み立て時に、最下端位置に配置される荷重緩和部材86により、積層方向の荷重(セパレータ28及び電解質・電極接合体26の自重)が良好に緩和され、前記電解質・電極接合体26の損傷等を防止することが可能になる。
 しかも、組み立て時に最下端位置に配置される荷重緩和部材86は、実際上、電解質・電極接合体26に代えて用いられている。これにより、燃料電池スタック12は、積層段数が増加することがなく、電解質・電極接合体26の損傷を阻止するとともに、無駄な燃料ガスの消費を良好に削減させることが可能になる。
 また、端部セパレータ84とセパレータ28とは、前記セパレータ28が燃料ガス通路40に燃料ガスを導入するための燃料ガス供給孔38を設ける一方、前記端部セパレータ84には、前記燃料ガス供給孔38が設けられていない。このため、端部セパレータ84は、燃料ガス供給孔38の形成工程を削除するだけで、セパレータ28と同様に製造することができ、製造コストを良好に削減させることが可能になる。
 しかも、発電に供しない端部セパレータ84は、燃料ガスを不要に排気することがなく、前記燃料ガスの無駄な消費が有効に防止できる。
 さらに、端部セパレータ84は、燃料ガス通路40側を燃料電池スタック12の積層方向最端部に、すなわち、エンドプレート88bに向かって配置させている。従って、端部セパレータ84の積層方向外方には、電解質・電極接合体26が配置されておらず、組み立て時や運転時等、前記端部セパレータ84が下方に配置されることにより、前記電解質・電極接合体26の座屈や損傷を回避することが可能になる。その上、燃料電池スタック12の最端部には、燃料ガスを無駄に供給することがなく、前記燃料ガスの消費が削減されて効率的な発電作業が遂行される。
 さらにまた、荷重緩和部材86は、複数枚の平板状金属板86aが積層されて一体化された金属積層体で構成されている。このため、燃料電池スタック12では、発電によって発生した電力を効率的に伝達することができるとともに、積層方向の荷重を緩和し、電解質・電極接合体26の座屈や損傷を防止することが可能になる。
 さらに、燃料電池スタック12の積層時には、荷重緩和部材86が下方に配置される一方(図8参照)、前記燃料電池スタック12の発電時には、図1に示すように、端部セパレータ84側が下方に配置されている。これにより、燃料電池スタック12の両端部において、電解質・電極接合体26やセパレータ28の変形、座屈等を防止することができ、前記燃料電池スタック12の耐久性が良好に向上する。
 さらにまた、燃料電池スタック12には、端部セパレータ84側に隣接して、前記燃料電池スタック12に積層方向に荷重を付与するための荷重付与機構19が配置される一方、荷重緩和部材86側に隣接して、前記燃料電池スタック12に供給される燃料ガスを生成する改質器16、熱交換器14を有する流体部18が配置されている。このため、燃料電池モジュール10全体の小型化が容易に図られるとともに、積層方向の荷重を効率的に伝達することができ、しかも、熱歪みを良好に抑制することが可能になる。
 また、燃料電池スタック12には、荷重付与機構19及び流体部18が軸対称に配置されている。従って、熱歪みの発生が可及的に削減される。
 図9は、本発明の第2の実施形態に係る燃料電池モジュールを構成する荷重緩和部材180の断面説明図である。
 なお、第1の実施形態に係る荷重緩和部材86と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第3~第5の実施形態においても同様に、その詳細な説明は省略する。
 荷重緩和部材180は、一対の平板状金属板182a、182bと、前記金属板182a、182b間に挟持される波状金属板184とが積層されて一体化された金属積層体である。
 従って、第2の実施形態では、発電により発生した電力を効率的に伝達することができるとともに、特に、波状金属板184自体のばね機能により積層方向の荷重をより一層緩和することができる。このため、電解質・電極接合体26の座屈や損傷を防止することが可能になる等、上記の第1の実施形態と同様の効果が得られる。
 図10は、本発明の第3の実施形態に係る燃料電池モジュールを構成する荷重緩和部材190の断面説明図である。この荷重緩和部材190は、発泡金属により構成される。
 図11は、本発明の第4の実施形態に係る燃料電池モジュールを構成する荷重緩和部材200の断面説明図である。この荷重緩和部材200は、メッシュ状金属である。
 従って、荷重緩和部材190、200では、発電によって発生した電力を効率的に伝達することができるとともに、積層方向の荷重を緩和し、電解質・電極接合体26の座屈や損傷を防止することが可能になる等、上記の第1及び第2の実施形態と同様の効果が得られる。
 図12は、本発明の第5の実施形態に係る燃料電池モジュールを構成する荷重緩和部材210の断面説明図である。
 荷重緩和部材210は、セラミックス製フェルト212と、通電用金属板214との積層体である。金属板214は、フェルト212の端部で折り返してこのフェルト212の両面に突出している。
 この荷重緩和部材210では、上記の第1~第4の実施形態と同様の効果が得られる他、セラミックス製のフェルト212により、断熱性の向上が容易に図られるという利点がある。
 なお、第1~第5の実施形態では、電解質・電極接合体26の座屈等を防止するために、積層方向の荷重を緩和する機能を有するものであるが、燃料電池スタック12に対して積層方向の荷重が十分に付与されない状態まで緩衝することがないように、剛性を確保することが必要である。

Claims (11)

  1.  電解質(20)をアノード電極(24)とカソード電極(22)とで挟んだ電解質・電極接合体(26)と、
     一方の面側に前記アノード電極(24)の電極面に沿って燃料ガスを供給するための燃料ガス通路(40)を設け、且つ他方の面側に前記カソード電極(22)の電極面に沿って酸化剤ガスを供給するための酸化剤ガス通路(54)を設けるセパレータ(28)と、
     前記電解質・電極接合体(26)と前記セパレータ(28)とを交互に積層する燃料電池スタック(12)と、
     を備える燃料電池モジュールであって、
     前記燃料電池スタック(12)は、積層方向の一方の端部に前記電解質・電極接合体(26)を配置するとともに、前記積層方向の他方の端部に前記セパレータ(28)を配置し、
     前記積層方向の一方の端部には、前記電解質・電極接合体(26)に隣接して、前記燃料ガス通路(40)への前記燃料ガスの供給を規制し且つ前記酸化剤ガス通路(54)への前記酸化剤ガスの供給を許容する端部セパレータ(84)が配設され、
     前記積層方向の他方の端部には、前記セパレータ(28)に隣接して、前記電解質・電極接合体(26)と同等の形状を有する荷重緩和部材(86)が配設されることを特徴とする燃料電池モジュール。
  2.  請求項1記載の燃料電池モジュールにおいて、前記セパレータ(28)は、前記燃料ガス通路(40)に前記燃料ガスを導入するための燃料ガス供給孔(38)を設ける一方、
     前記端部セパレータ(84)は、前記燃料ガス供給孔(38)を設けないことを特徴とする燃料電池モジュール。
  3.  請求項1記載の燃料電池モジュールにおいて、前記端部セパレータ(84)は、前記燃料ガス通路(40)側を前記燃料電池スタック(12)の積層方向最端部に配置することを特徴とする燃料電池モジュール。
  4.  請求項1~3のいずれか1項に記載の燃料電池モジュールにおいて、前記荷重緩和部材(86)は、複数枚の平板状金属板(86a)が積層された金属積層体であることを特徴とする燃料電池モジュール。
  5.  請求項1~3のいずれか1項に記載の燃料電池モジュールにおいて、前記荷重緩和部材(180)は、平板状金属板(182a)と波状金属板(184)とが積層された金属積層体であることを特徴とする燃料電池モジュール。
  6.  請求項1~3のいずれか1項に記載の燃料電池モジュールにおいて、前記荷重緩和部材(190)は、発泡金属であることを特徴とする燃料電池モジュール。
  7.  請求項1~3のいずれか1項に記載の燃料電池モジュールにおいて、前記荷重緩和部材(200)は、メッシュ状金属であることを特徴とする燃料電池モジュール。
  8.  請求項1~3のいずれか1項に記載の燃料電池モジュールにおいて、前記荷重緩和部材(210)は、セラミックス製フェルト(212)と通電用金属板(214)との積層体であることを特徴とする燃料電池モジュール。
  9.  請求項1記載の燃料電池モジュールにおいて、前記燃料電池スタック(12)の積層時には、前記荷重緩和部材(86)側が下方に配置される一方、
     前記燃料電池スタック(12)の発電時には、前記端部セパレータ(84)側が下方に配置されることを特徴とする燃料電池モジュール。
  10.  請求項1記載の燃料電池モジュールにおいて、前記燃料電池スタック(12)には、前記端部セパレータ(84)側に隣接して、前記燃料電池スタック(12)に前記積層方向に荷重を付与するための荷重付与機構(19)が配置される一方、
     前記荷重緩和部材(86)側に隣接して、前記燃料電池スタック(12)に供給される前記燃料ガスを生成する改質器(16)、及び前記燃料電池スタック(12)からの排ガスと前記酸化剤ガスとを熱交換するための熱交換器(14)とを有する流体部(18)が配置されることを特徴とする燃料電池モジュール。
  11.  請求項10記載の燃料電池モジュールにおいて、前記燃料電池スタック(12)には、前記荷重付与機構(19)及び前記流体部(18)が軸対称に配置されることを特徴とする燃料電池モジュール。
PCT/JP2010/056991 2009-04-27 2010-04-20 燃料電池モジュール WO2010125945A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/266,716 US9379407B2 (en) 2009-04-27 2010-04-20 Fuel cell module
EP10769644.5A EP2426771B1 (en) 2009-04-27 2010-04-20 Fuel cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-108042 2009-04-27
JP2009108042A JP5415140B2 (ja) 2009-04-27 2009-04-27 燃料電池モジュール

Publications (1)

Publication Number Publication Date
WO2010125945A1 true WO2010125945A1 (ja) 2010-11-04

Family

ID=43032099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056991 WO2010125945A1 (ja) 2009-04-27 2010-04-20 燃料電池モジュール

Country Status (4)

Country Link
US (1) US9379407B2 (ja)
EP (1) EP2426771B1 (ja)
JP (1) JP5415140B2 (ja)
WO (1) WO2010125945A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2675006A1 (en) * 2012-06-11 2013-12-18 HTceramix S.A. Gas distribution element with a supporting layer
EP2675007A1 (en) 2012-06-11 2013-12-18 HTceramix S.A. A gas flow dividing element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280052A (ja) 2001-03-16 2002-09-27 Mitsubishi Materials Corp 燃料電池の各発電セルに均等に荷重をかける構造
JP2005209621A (ja) * 2003-12-26 2005-08-04 Honda Motor Co Ltd 燃料電池
JP2006085981A (ja) * 2004-09-15 2006-03-30 Yanmar Co Ltd 固体酸化物型燃料電池
JP2007311160A (ja) * 2006-05-18 2007-11-29 Honda Motor Co Ltd 燃料電池システム
JP2008004299A (ja) * 2006-06-20 2008-01-10 Toyota Motor Corp 燃料電池
JP2008108656A (ja) * 2006-10-27 2008-05-08 Honda Motor Co Ltd 燃料電池
JP2008257965A (ja) * 2007-04-04 2008-10-23 Toyota Motor Corp 燃料電池システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203588A (ja) 2000-12-28 2002-07-19 Mitsubishi Materials Corp 固体酸化物型燃料電池
JP2004164969A (ja) 2002-11-12 2004-06-10 Nissan Motor Co Ltd 燃料電池スタック
JP4572062B2 (ja) * 2003-06-26 2010-10-27 本田技研工業株式会社 燃料電池スタック
US7442463B2 (en) 2003-12-26 2008-10-28 Honda Motor Co., Ltd. Fuel cell
JP5079994B2 (ja) 2004-11-25 2012-11-21 本田技研工業株式会社 燃料電池スタック
JP4727972B2 (ja) 2004-11-25 2011-07-20 本田技研工業株式会社 燃料電池スタック
JP4603870B2 (ja) * 2004-12-22 2010-12-22 本田技研工業株式会社 燃料電池システム
JP2007227059A (ja) 2006-02-22 2007-09-06 Toyota Motor Corp 燃料電池およびその製造方法
JP4894311B2 (ja) * 2006-03-15 2012-03-14 トヨタ自動車株式会社 断熱性ダミーセルと燃料電池スタック
JP5021229B2 (ja) 2006-04-14 2012-09-05 本田技研工業株式会社 燃料電池システム
JP5045880B2 (ja) 2006-06-20 2012-10-10 トヨタ自動車株式会社 燃料電池
JP5026017B2 (ja) 2006-08-02 2012-09-12 日本電信電話株式会社 平板型固体酸化物形燃料電池のセパレータ
US20080152957A1 (en) 2006-12-21 2008-06-26 Gm Global Technology Operations, Inc. Non-functional fuel cell for fuel cell stack
JP5060143B2 (ja) 2007-03-14 2012-10-31 本田技研工業株式会社 燃料電池スタック

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280052A (ja) 2001-03-16 2002-09-27 Mitsubishi Materials Corp 燃料電池の各発電セルに均等に荷重をかける構造
JP2005209621A (ja) * 2003-12-26 2005-08-04 Honda Motor Co Ltd 燃料電池
JP2006085981A (ja) * 2004-09-15 2006-03-30 Yanmar Co Ltd 固体酸化物型燃料電池
JP2007311160A (ja) * 2006-05-18 2007-11-29 Honda Motor Co Ltd 燃料電池システム
JP2008004299A (ja) * 2006-06-20 2008-01-10 Toyota Motor Corp 燃料電池
JP2008108656A (ja) * 2006-10-27 2008-05-08 Honda Motor Co Ltd 燃料電池
JP2008257965A (ja) * 2007-04-04 2008-10-23 Toyota Motor Corp 燃料電池システム

Also Published As

Publication number Publication date
JP5415140B2 (ja) 2014-02-12
US20120045703A1 (en) 2012-02-23
US9379407B2 (en) 2016-06-28
EP2426771B1 (en) 2018-12-12
EP2426771A1 (en) 2012-03-07
EP2426771A4 (en) 2017-05-17
JP2010257834A (ja) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5383051B2 (ja) 燃料電池及び燃料電池スタック
AU2005320012B2 (en) Fuel cell system
JP2004527872A (ja) 電気化学的なセルスタック
US8129068B2 (en) Fuel cell and fuel cell stack
JP5127389B2 (ja) 燃料電池及び燃料電池スタック
WO2010125946A1 (ja) 燃料電池モジュール
JP4611194B2 (ja) 燃料電池及び燃料電池スタック
JP2008078071A (ja) 燃料電池スタック
JP5186124B2 (ja) 燃料電池用セパレータ
JP5042588B2 (ja) 燃料電池
JP5881594B2 (ja) 燃料電池スタック及びその製造方法
WO2010119817A1 (ja) 燃料電池モジュール
WO2010125945A1 (ja) 燃料電池モジュール
JP2015060716A (ja) 燃料電池スタック
JP4598509B2 (ja) 燃料電池システム
JP2006269159A (ja) 燃料電池スタック
JP5366626B2 (ja) 燃料電池モジュール
JP4494187B2 (ja) 燃料電池システム
JP2006179284A (ja) 燃料電池システム
JP2012204124A (ja) 燃料電池モジュール及びその組立方法
JP2008103213A (ja) 燃料電池
JP2007005185A (ja) 燃料電池及び燃料電池スタック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010769644

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13266716

Country of ref document: US