JP5807600B2 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP5807600B2
JP5807600B2 JP2012072988A JP2012072988A JP5807600B2 JP 5807600 B2 JP5807600 B2 JP 5807600B2 JP 2012072988 A JP2012072988 A JP 2012072988A JP 2012072988 A JP2012072988 A JP 2012072988A JP 5807600 B2 JP5807600 B2 JP 5807600B2
Authority
JP
Japan
Prior art keywords
engine
fuel cut
vehicle speed
value
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012072988A
Other languages
English (en)
Other versions
JP2013203178A (ja
Inventor
仁己 杉本
仁己 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012072988A priority Critical patent/JP5807600B2/ja
Priority to US13/827,933 priority patent/US9145135B2/en
Publication of JP2013203178A publication Critical patent/JP2013203178A/ja
Application granted granted Critical
Publication of JP5807600B2 publication Critical patent/JP5807600B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0627Fuel flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/065Idle condition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、内燃機関と電動機とを駆動源として搭載したハイブリッド車両に関する。
ハイブリッド車両の一つは、内燃機関の運転を停止して電動機の出力のみを用いた走行(以下、「電動走行」と称呼する。)と、内燃機関及び電動機の両方の出力を用いた走行(以下、「ハイブリッド走行」と称呼する。)と、を行うことができる。
より具体的に述べると、ハイブリッド車両は、「アクセル操作量と車速とに応じて変化する車両要求パワー」が「機関始動パワー閾値」以上になると機関を始動させてハイブリッド走行を開始し、ハイブリッド走行中に車両要求パワーが機関停止パワー閾値以下になると機関の運転を停止して電動走行を行う。即ち、ハイブリッド車両は、機関を効率良く運転し得る場合及び/又は電動機のみでは十分な車両駆動力が得られない場合に機関の運転を行い、機関を効率良く運転し得ない場合及び/又は電動機のみで十分な車両駆動力が得られる場合には機関の運転を停止する(例えば、特許文献1を参照。)。このように、ハイブリッド車両は機関を間欠的に運転する。即ち、ハイブリッド車両は「機関の間欠運転」を実行する。
一方、ハイブリッド車両は、電動機に電力を供給可能であり且つ充電可能である蓄電装置(例えば、バッテリ)を搭載している。更に、近年において、蓄電装置を車両の外部から供給される電力により充電することができるハイブリッド車両(所謂「プラグイン・ハイブリッド車両」)が開発されて来ている。以下、車両の外部から供給される電力による蓄電装置の充電を「外部充電」とも称呼する。
外部充電が行われると、蓄電装置は満充電状態に近い状態となることが多いので、蓄電装置の残容量は大きい。そのため、ハイブリッド車両は、外部充電後において蓄電装置の残容量がモード切替閾値に低下するまで、電動走行をハイブリッド走行よりも優先するEVモード(CDモード)にて走行する。その後、蓄電装置の残容量がモード切替閾値以下になると、ハイブリッド車両はHVモード(CSモード)にて走行する。
例えば、EVモードでは、機関始動パワー閾値及び機関停止パワー閾値がHVモードでの機関始動パワー閾値及び機関停止パワー閾値のそれぞれよりも高く設定される。更に、例えば、EVモードでは、間欠運転を許可する車速である間欠運転許可車速がHVモードでの間欠運転許可車速よりも高い値に設定される。従って、EVモードにおいては、車速が相当に高い場合であっても、機関の運転が停止されることがある。
以上から理解されるように、ハイブリッド車両においては、機関が運転されない頻度が高い。また、例えば、特にEVモードにおいて機関の運転が開始されたとしても、車両要求パワーが小さく、従って、機関がアイドル運転されるような場合、機関の運転は車速が間欠運転許可車速以下となった時点にて停止される。他方、ハイブリッド車両においても、例えば、触媒の暖機促進或いは車室内の空調等を行うために、特定のアイドル運転条件が成立した場合に機関がアイドル運転されることがある。
特開2005−42561号公報
ところで、機関がアイドル運転されている場合に機関の回転速度が目標アイドル回転速度に維持されるように「機関の回転速度を調整する制御パラメータ(例えば、スロットル弁開度)」をフィードバック制御するアイドルスピードコントロール(ISC)システムが知られている。このISCシステムにおいては、機関がアイドル運転されているとき、前記制御パラメータに応じた値をアイドル運転制御学習値として学習するようになっている。
係るISCシステムを搭載した機関がハイブリッド車両に搭載された場合、車速が所定の学習許可車速よりも高いときには機関がアイドル運転されていたとしてもアイドル運転制御学習値の学習が禁止され、車速が所定の学習許可車速以下であるときに限りアイドル運転制御学習値の学習が許容される。これは、より安定したアイドル運転状態においてアイドル運転制御学習値の学習を実行するためである。この学習許可車速は前述した間欠許可車速よりも低い。
しかしながら、前述したように、ハイブリッド車両においては機関が始動される頻度が低く、仮に機関が始動されたとしても、機関がアイドル運転状態を継続しながら車速が学習許可車速以下にまで低下することは稀である。機関をアイドル運転させるような場合の車両要求パワーは機関停止パワー閾値未満であるから、車速が間欠運転許可車速以下となった時点にて機関の運転が停止されてしまうからである。この結果、ハイブリッド車両においては、アイドル運転制御学習値の学習の機会が極めて小さいという問題がある。
本発明は、上述した課題に対処するためになされた。即ち、本発明の目的は、排気性能に関与する部品の自己診断を行うために発生されるフューエルカット要求を活用することによって、アイドル運転制御学習値の学習の機会を増大することができるハイブリッド車両を提供することにある。
本発明のハイブリッド車両は、内燃機関と電動機とを駆動源として搭載したハイブリッド車両であって、駆動制御部と、自己診断部と、フューエルカット要求部と、アイドル運転制御部と、を有する。
前記駆動制御部は、
前記ハイブリッド車両の車速が所定の間欠運転許可車速以下である場合、所定の機関運転停止条件が成立すると前記機関の運転を停止し且つ所定の機関始動条件が成立すると前記機関の運転を開始する間欠運転を行うとともに、前記機関の発生するトルクと前記電動機の発生するトルクとを制御することにより前記ハイブリッド車両を走行させる。
前記自己診断部は、
前記機関の排気性能に関与する部品(例えば、EGR弁及び空燃比センサ等)の自己診断を前記機関のフューエルカット運転(燃料供給停止運転)中に実行する。
前記フューエルカット要求部は、
前記自己診断を実行するために前記機関をフューエルカット運転させるフューエルカット要求を前記駆動制御部に対して発生する。
前記アイドル運転制御部は、
前記機関が前記駆動制御部によってアイドル運転されている場合に前記機関の回転速度が目標アイドル回転速度に維持されるように前記機関の回転速度を調整する制御パラメータ(例えば、スロットル弁開度)をフィードバック制御する。
更に、前記アイドル運転制御部は、
前記車速が「前記間欠許可車速よりも低い所定の学習許可車速」以下であり、且つ、前記機関が燃料噴射を伴うアイドル運転がなされている状態において、前記スロットル弁開度に応じた値をアイドル運転制御学習値として学習する。このアイドル運転制御学習値は、例えば、前記フィードバック制御の開始時に前記スロットル弁開度を決定するために用いられる。
加えて、前記フューエルカット要求部は、
前記自己診断が終了した後であっても前記アイドル運転制御学習値の学習が完了するまで前記フューエルカット要求を発生し続けるように構成されており、
前記駆動制御部は、
前記フューエルカット要求が発生している場合には前記機関運転停止条件が成立したときであっても前記機関の運転を停止することなく継続し、更に、所定のフューエルカット条件が成立すると前記機関をフューエルカット運転させるように構成されている。
この結果、前記自己診断のためにフューエルカット運転が行われた場合、アイドル運転制御学習値の学習が行われるまで、機関運転停止条件が成立した場合であっても機関はフューエルカット運転され、機関の運転は停止されない。従って、フューエルカット運転が終了すると機関がアイドル運転されるので、アイドル制御学習値の学習を実行する機会を増大することができる。
本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の実施形態についての説明から容易に理解されるであろう。
図1は、本発明の実施形態に係るハイブリッド車両の概略図である。 図2は、図1に示したハイブリッド車両のパワーマネジメントECUのCPUが実行するルーチンを示したフローチャートである。 図3は、図1に示したエンジンECUのCPUが実行するルーチンを示したフローチャートである。 図4は、図1に示したパワーマネジメントECUのCPUが実行するルーチンを示したフローチャートである。 図5は、図1に示したハイブリッド車両のEVモード時における機関始動パワー閾値を示したグラフである。 図6は、図1に示したエンジンECUのCPUが実行するルーチンを示したフローチャートである。 図7は、図1に示したエンジンECUのCPUが実行するルーチンを示したフローチャートである。 図8は、図1に示したエンジンECUのCPUが実行するルーチンを示したフローチャートである。
以下、本発明の実施形態に係る車両について図面を参照しながら説明する。図1に示したように、本発明の実施形態に係る車両10はハイブリッド車両(プラグイン・ハイブリッド車両)である。車両10は、後述する「EVモード(CDモード、第1走行モード)及びHVモード(CSモード、第2走行モード)」の何れかのモードにて走行することができる。
(構成)
図1に示したように、本発明の実施形態に係るハイブリッド車両10は、第1発電電動機MG1、第2発電電動機MG2、内燃機関20、動力分配機構30、駆動力伝達機構50、第1インバータ61、第2インバータ62、昇圧コンバータ63、バッテリ64、パワーマネジメントECU70、バッテリECU71、モータECU72及びエンジンECU73等を備えている。
なお、ECUは、エレクトリックコントロールユニットの略称であり、CPU、ROM、RAM、バックアップRAM(又は不揮発性メモリ)及びインターフェース等を含むマイクロコンピュータを主要構成部品として有する電子制御回路である。バックアップRAMは車両10の図示しないイグニッション・キー・スイッチがオン状態にあるかオフ状態にあるかに関わらずデータを保持することができる。
第1発電電動機MG1(モータジェネレータ)は、発電機及び電動機の何れとしても機能することができる同期発電電動機である。第1発電電動機MG1は本例において主として発電機としての機能を発揮する。第1発電電動機MG1は、出力軸(以下、「第1シャフト」とも称呼する。)41を備えている。
第2発電電動機MG2(モータジェネレータ)は、第1発電電動機MG1と同様、発電機及び電動機の何れとしても機能することができる同期発電電動機である。第2発電電動機MG2は本例において主として電動機としての機能を発揮する。第2発電電動機MG2は、出力軸(以下、「第2シャフト」とも称呼する。)42を備えている。
機関20は、4サイクル・火花点火式・多気筒内燃機関である。機関20は、吸気管及びインテークマニホールドを含む吸気通路部21、スロットル弁22、スロットル弁アクチュエータ22a、複数の燃料噴射弁23、点火プラグを含む複数の点火装置24、機関20の出力軸であるクランクシャフト25、エキゾーストマニホールド26、排気管27及び上流側の三元触媒28、EGR通路部29及びEGR弁29aを含んでいる。なお、機関20は図示しない可変吸気弁制御装置(VVT)及び下流側の三元触媒を備えていてもよい。
スロットル弁22は吸気通路部21に回転可能に支持されている。
スロットル弁アクチュエータ22aはエンジンECU73からの指示信号に応答してスロットル弁22を回転し、吸気通路部21の通路断面積を変更できるようになっている。
複数の燃料噴射弁23のそれぞれは、その噴射孔が各燃焼室に連通した吸気ポートに露呈するように配置されている。燃料噴射弁23は、燃料噴射指示信号に応じ、その燃料噴射指示信号に含まれる指示燃料噴射量の燃料を吸気ポート内に噴射するようになっている。
複数の点火装置24のそれぞれは、エンジンECU73からの指示信号に応答して点火用火花を各気筒の燃焼室内において所定のタイミングにて発生するようになっている。
上流側の三元触媒28は、排気浄化用触媒であり、エキゾーストマニホールド26の排気集合部に配設されている。触媒28の下流は排気管27に接続されている。即ち、触媒28は機関20の排気通路に設けられている。触媒28は、機関20から排出される未燃物(HC,CO等)及びNOxを浄化するようになっている。
EGR通路部29は、エキゾーストマニホールド26と吸気通路部21とをスロットル弁22の下流位置にて接続している。EGR弁29aはEGR通路部29に配設されている。EGR弁29aはエンジンECU73からの指示信号に応答してEGR通路部29の流路断面積を変更するようになっている。
機関20は、スロットル弁アクチュエータ22aによりスロットル弁22の開度を変更することによって吸入空気量を変更するとともに燃料噴射量を変更すること等により、機関20の「出力トルク及び機関回転速度(従って、機関出力)」を変更することができる。
動力分配機構30は周知の遊星歯車装置31を備えている。遊星歯車装置31はサンギア32と、複数のプラネタリギア33と、リングギア34と、を含んでいる。
サンギア32は第1発電電動機MG1の第1シャフト41に接続されている。従って、第1発電電動機MG1はサンギア32にトルクを出力することができる。更に、第1発電電動機MG1は、サンギア32から第1発電電動機MG1(第1シャフト41)に入力されるトルクによって回転駆動され得る。第1発電電動機MG1は、サンギア32から第1発電電動機MG1に入力されるトルクによって回転駆動されることにより発電することができる。
複数のプラネタリギア33のそれぞれは、サンギア32と噛合するとともにリングギア34と噛合している。プラネタリギア33の回転軸(自転軸)はプラネタリキャリア35に設けられている。プラネタリキャリア35はサンギア32と同軸に回転可能となるように保持されている。従って、プラネタリギア33は、サンギア32の外周を自転しながら公転することができる。プラネタリキャリア35は機関20のクランクシャフト25に接続されている。よって、プラネタリギア33は、クランクシャフト25からプラネタリキャリア35に入力されるトルクによって回転駆動され得る。
リングギア34は、サンギア32と同軸に回転可能となるように保持されている。
上述したように、プラネタリギア33はサンギア32及びリングギア34と噛合している。従って、プラネタリギア33からサンギア32にトルクが入力されたときには、そのトルクによってサンギア32が回転駆動される。プラネタリギア33からリングギア34にトルクが入力されたときには、そのトルクによってリングギア34が回転駆動される。逆に、サンギア32からプラネタリギア33にトルクが入力されたときには、そのトルクによってプラネタリギア33が回転駆動される。リングギア34からプラネタリギア33にトルクが入力されたときには、そのトルクによってプラネタリギア33が回転駆動される。
リングギア34はリングギアキャリア36を介して第2発電電動機MG2の第2シャフト42に接続されている。従って、第2発電電動機MG2はリングギア34にトルクを出力することができる。更に、第2発電電動機MG2は、リングギア34から第2発電電動機MG2(第2シャフト42)に入力されるトルクによって回転駆動され得る。第2発電電動機MG2は、リングギア34から第2発電電動機MG2に入力されるトルクによって回転駆動されることにより、発電することができる。
更に、リングギア34はリングギアキャリア36を介して出力ギア37に接続されている。従って、出力ギア37は、リングギア34から出力ギア37に入力されるトルクによって回転駆動され得る。リングギア34は、出力ギア37からリングギア34に入力されるトルクによって回転駆動され得る。
駆動力伝達機構50は、ギア列51、ディファレンシャルギア52及び駆動軸(ドライブシャフト)53を含んでいる。
ギア列51は、出力ギア37とディファレンシャルギア52とを動力伝達可能に歯車機構により接続している。ディファレンシャルギア52は駆動軸53に取り付けられている。駆動軸53の両端には駆動輪54が取り付けられている。従って、出力ギア37からのトルクはギア列51、ディファレンシャルギア52、及び、駆動軸53を介して駆動輪54に伝達される。この駆動輪54に伝達されたトルクによりハイブリッド車両10は走行することができる。
第1インバータ61は、第1発電電動機MG1及び昇圧コンバータ63に電気的に接続されている。従って、第1発電電動機MG1が発電しているとき、第1発電電動機MG1が発生した電力は、第1インバータ61及び昇圧コンバータ63を介してバッテリ64に供給される。逆に、第1発電電動機MG1は昇圧コンバータ63及び第1インバータ61を介してバッテリ64から供給される電力によって回転駆動させられる。
第2インバータ62は、第2発電電動機MG2及び昇圧コンバータ63に電気的に接続されている。従って、第2発電電動機MG2が発電しているとき、第2発電電動機MG2が発生した電力は、第2インバータ62及び昇圧コンバータ63を介してバッテリ64に供給される。逆に、第2発電電動機MG2は昇圧コンバータ63及び第2インバータ62を介してバッテリ64から供給される電力によって回転駆動させられる。
なお、第1発電電動機MG1の発生する電力は第2発電電動機MG2に直接供給可能であり、且つ、第2発電電動機MG2の発生する電力は第1発電電動機MG1に直接供給可能である。
バッテリ64は、本例においてリチウムイオン電池である。但し、バッテリ64は放電及び充電が可能な蓄電装置であればよく、ニッケル水素電池及び他の二次電池であってもよい。
パワーマネジメントECU70(以下、「PMECU70」と表記する。)は、バッテリECU71、モータECU72及びエンジンECU73と通信により情報交換可能に接続されている。
PMECU70は、パワースイッチ81、シフトポジションセンサ82、アクセル操作量センサ83、ブレーキスイッチ84及び車速センサ85等と接続され、これらのセンサ類が発生する出力信号を入力するようになっている。
パワースイッチ81はハイブリッド車両10のシステム起動用スイッチである。PMECU70は、何れも図示しない車両キーがキースロットに挿入され且つブレーキペダルが踏み込まれているときにパワースイッチ81が操作されると、システムを起動する(Ready−On状態となる)ように構成されている。システム起動状態において、ハイブリッド車両10は走行することができる。
シフトポジションセンサ82は、ハイブリッド車両10の運転席近傍に運転者により操作可能に設けられた図示しないシフトレバーによって選択されているシフトポジションを表す信号を発生するようになっている。シフトポジションは、P(パーキングポジション)、R(後進ポジション)、N(ニュートラルポジション)及びD(走行ポジション)を含む。
アクセル操作量センサ83は、運転者により操作可能に設けられた図示しないアクセルペダルの操作量(アクセル操作量AP)を表す出力信号を発生するようになっている。アクセル操作量APは加速操作量と表現することもできる。
ブレーキスイッチ84は、運転者により操作可能に設けられた図示しないブレーキペダルが操作されたときに、ブレーキペダルが操作された状態にあることを示す出力信号を発生するようになっている。
車速センサ85は、ハイブリッド車両10の車速SPDを表す出力信号を発生するようになっている。
PMECU70は、バッテリECU71により推定・算出される「バッテリ64の残容量SOC(State Of Charge)」を入力するようになっている。この残容量SOCは、バッテリ64に流出入する電流の積算値及びバッテリ64の電圧等に基づいて周知の手法に従って算出される。残容量SOCは、バッテリ64が新品であって且つ満充電の場合の放電可能電力を100%と定義し、バッテリ64が完全に放電した場合の放電可能電力を0%と定義した場合において、バッテリ64が新品且つ満充電の場合の放電可能電力に対する現時点のバッテリ64の放電可能電力の比を「百分率(%)」にて表した量である。なお、残容量SOCは残容量の絶対値(単位は「Wh(ワット時)」)により表されてもよい。
PMECU70は、モータECU72を介して、第1発電電動機MG1の回転速度(以下、「MG1回転速度Nm1」と称呼する。)を表す信号及び第2発電電動機MG2の回転速度(以下、「MG2回転速度Nm2」と称呼する。)を表す信号を入力するようになっている。
なお、MG1回転速度Nm1は、モータECU72によって「第1発電電動機MG1に設けられ且つ第1発電電動機MG1のロータの回転角度に対応する出力値を出力するレゾルバ97の出力値」に基づいて算出されている。同様に、MG2回転速度Nm2は、モータECU72によって「第2発電電動機MG2に設けられ且つ第2発電電動機MG2のロータの回転角度に対応する出力値を出力するレゾルバ98の出力値」に基づいて算出されている。
PMECU70は、エンジンECU73を介して、エンジン状態を表す種々の出力信号を入力するようになっている。このエンジン状態を表す出力信号には、機関回転速度Ne、スロットル弁開度TA及び機関の冷却水温THW等が含まれている。
PMECU70は、AC/DCコンバータを含む充電器102とも接続され、充電器102に指示信号を送出するようになっている。充電器102はインレット101と電力線を介して接続されている。更に、充電器102の出力電力線は、昇圧コンバータ63とバッテリ64との間に接続されている。インレット101は、車体の側面に露呈可能となっていて、図示しない「外部電源に接続された電力ケーブル」のコネクタが接続されるようになっている。インレット101に電力ケーブルのコネクタが接続された状態において、PMECU70が充電器102を制御することにより、バッテリ64は外部電源から電力ケーブルを通して供給される電力により充電(外部充電)されるようになっている。即ち、充電器102は、インレット101に供給される外部電源からの交流電力を所定の電圧の直流電圧へと変換してバッテリ64へ供給するようになっている。
バッテリECU71は、バッテリ64の状態を監視し、前述したように残容量SOCを算出するようになっている。更に、バッテリECU71は、周知の手法に従って、バッテリ64の瞬時出力可能電力Woutを推定(算出)するようになっている。瞬時出力可能電力Woutは残容量SOCが大きくなるほど大きくなる値である。
モータECU72は、第1インバータ61,第2インバータ62及び昇圧コンバータ63に接続されていて、これらに指示信号を送出するようになっている。モータECU72は、第1インバータ61及び昇圧コンバータ63を用いて第1発電電動機MG1を制御し、且つ、第2インバータ62及び昇圧コンバータ63を用いて第2発電電動機MG2を制御するようになっている。
エンジンECU73は、エンジンアクチュエータである「スロットル弁アクチュエータ22a、燃料噴射弁23、点火装置24及びEGR弁29a等」と接続されていて、これらに指示信号を送出するようになっている。更に、エンジンECU73は、エアフローメータ91、スロットル弁開度センサ92、吸気圧力センサ93、冷却水温センサ94、機関回転速度センサ95及び空燃比センサ96等と接続されていて、これらの発生する出力信号を取得するようになっている。
エアフローメータ91は、機関20に吸入される単位時間あたりの空気量を計測し、その空気量(吸入空気流量)Gaを表す信号を出力するようになっている。
スロットル弁開度センサ92は、スロットル弁22の開度(スロットル弁開度)を検出し、その検出したスロットル弁開度TAを表す信号を出力するようになっている。
吸気圧力センサ93は、スロットル弁22の下流位置における吸気通路部内の圧力を検出し、その検出した吸気管圧力Pmを表す信号を出力するようになっている。
冷却水温センサ94は、機関20の冷却水の温度を検出し、その検出した冷却水温THWを表す信号を出力するようになっている。冷却水温THWは、機関20の暖機状態を表すパラメータであり、且つ、触媒28の温度を表すパラメータでもある。
機関回転速度センサ95は、機関20のクランクシャフト25が所定角度だけ回転する毎にパルス信号を発生するようになっている。エンジンECU73は、このパルス信号に基づいて機関回転速度Neを取得するようになっている。
空燃比センサ96は、エキゾーストマニホールド26の排気集合部であって、上流側の三元触媒28よりも上流位置に配設されている。空燃比センサ96は、所謂「限界電流式広域空燃比センサ」である。空燃比センサ96は排ガスの空燃比を検出し、その検出した排ガスの空燃比(検出空燃比)abyfsに応じた出力値Vabyfsを出力するようになっている。エンジンECU73はこの出力値VabyfsをルックアップテーブルMapabyfs(Vabyfs)に適用することにより検出空燃比abyfsを取得するようになっている。
エンジンECU73は、これらのセンサ等から取得される信号及びPMECU70からの指令に基づいて「スロットル弁アクチュエータ22a、燃料噴射弁23、EGR弁29a及び点火装置24(更には、図示しない可変吸気弁制御装置)」に指示信号を送出することにより、機関20を制御するようになっている。なお、機関20には図示しないカムポジションセンサが設けられている。エンジンECU73は、機関回転速度センサ95及びカムポジションセンサからの信号に基いて、特定の気筒の吸気上死点を基準とした機関20のクランク角度(絶対クランク角)を取得するようになっている。
(作動:駆動力制御)
次に、ハイブリッド車両10の作動について説明する。なお、以下に述べる処理は「PMECU70のCPU及びエンジンECU73のCPU」により実行される。但し、以下においては、記載を簡素化するため、PMECU70のCPUを「PM」と表記し、且つ、エンジンECU73のCPUを「EG」と表記する。
ハイブリッド車両10は、「ユーザのアクセル操作量に応じて定まるトルクであって車両の駆動軸53に要求されるトルク(即ち、ユーザ要求トルク)」に等しいトルクを、「機関20の効率が最良となるようにしながら、機関20の出力トルクと第2発電電動機MG2の出力トルクとを制御すること」により駆動軸53に作用させる。このとき、ハイブリッド車両10は、機関20の出力が機関要求出力を満たし且つ機関20の効率が最高となる機関動作点でって、「機関発生トルクTeと機関回転速度Neとにより決まる最適機関動作点」にて機関20を運転する。
ハイブリッド車両10は、実際には機関20、第1発電電動機MG1及び第2発電電動機MG2を関連させながら制御する。更に、前述したように、車両10は、EVモード及びHVモードの何れかのモードにて走行することができる。
EVモードは、外部充電後において残容量SOCがモード切替閾値SOCEVtoHVよりも大きい場合等において実行される。EVモードは、「機関20を運転することなく第2発電電動機MG2を駆動することにより車両10の駆動力の全部を第2発電電動機MG2から発生させる第1運転状態(即ち、電動走行)」を、「機関20を運転するとともに第2発電電動機MG2を駆動することにより車両10の駆動力を機関20及び第2発電電動機MG2の両方から発生させる第2運転状態(即ち、ハイブリッド走行)」よりも優先させて車両10を走行させるモードである。
HVモードは、EVモード走行中に残容量SOCがモード切替閾値SOCEVtoHVよりも小さくなった場合等において実行されるモードである。HVモードは、EVモードと比較して、前記第2運転状態を前記第1運転状態よりも優先させて車両10を走行させるモードである。これらのモードは周知であり、例えば、特開2011−57115号公報及び特開2011−57116号公報に記載されている。これらは、参照することにより本願明細書に組み込まれる。
また、HVモードにおける制御の基本的内容は、例えば、特開2009−126450号公報(米国公開特許番号 US2010/0241297)、及び、特開平9−308012号公報(米国出願日1997年3月10日の米国特許第6,131,680号)等に詳細に記載されている。これらは、参照することにより本願明細書に組み込まれる。
以下、ハイブリッド車両10がEVモードにて運転している場合の制御内容について詳細に説明する。
<EVモード許可フラグの設定>
PMは、所定時間が経過する毎に図2にフローチャートにより示した「EVモード許可フラグ設定ルーチン」を実行するようになっている。従って、PMは適当なタイミングにて図2のステップ200から処理を開始し、ステップ210に進んで「現時点が外部充電が終了した直後であるか否か」を判定する。
現時点が外部充電が終了した直後であると、PMはステップ210にて「Yes」と判定してステップ220に進み、EVモード許可フラグXEVの値を「1」に設定する。次いで、PMはステップ230に進む。これに対し、現時点が外部充電が終了した直後でなければ、PMはステップ210にて「No」と判定し、ステップ230に直接進む。
PMはステップ230にてEVモード許可フラグXEVの値が「1」であるか否かを判定する。EVモード許可フラグXEVの値が「1」でなければ、PMはステップ230にて「No」と判定してステップ295に直接進み、本ルーチンを一旦終了する。
これに対し、EVモード許可フラグXEVの値が「1」であると、PMはステップ230にて「Yes」と判定してステップ240に進み、残容量SOCがモード切替閾値SOCEVtoHV以下であるか否かを判定する。残容量SOCがモード切替閾値SOCEVtoHV以下でなければ、PMはステップ240にて「No」と判定してステップ295に直接進み、本ルーチンを一旦終了する。
これに対し、残容量SOCがモード切替閾値SOCEVtoHV以下であると、PMはステップ240にて「Yes」と判定してステップ250に進み、EVモード許可フラグXEVの値を「0」に設定する。その後、PMはステップ295に進んで本ルーチンを一旦終了する。
このように、EVモード許可フラグXEVの値は、外部充電直後に「1」に設定され、残容量SOCがモード切替閾値SOCEVtoHVにまで低下すると「0」に設定される。
<フューエルカット要求フラグの設定>
EGは、所定時間が経過する毎に図3にフローチャートにより示した「フューエルカット要求フラグ設定ルーチン」を実行するようになっている。従って、EGは適当なタイミングにて図3のステップ300から処理を開始し、ステップ310に進んで「EVモード許可フラグXEVの値が「1」である」か否かを判定する。即ち、EGは、「現時点の走行モードがEVモードである」か否かを判定する。
EVモード許可フラグXEVの値が「1」でなければ、EGはステップ310にて「No」と判定してステップ395に直接進み、本ルーチンを一旦終了する。
これに対し、EVモード許可フラグXEVの値が「1」であると、EGはステップ310にて「Yes」と判定してステップ320に進み、排気性能関与部品の自己診断(異常診断)を実行するためのフューエルカット要求があるか否かを判定する。排気性能関与部品とは、例えば、EGR弁29a及び空燃比センサ96等のように、異常状態となることによって機関20のエミッションに大きな影響を及ぼす部品のことを言う。
EGR弁29aの自己診断は、例えば、機関20がフューエルカット運転状態にある場合にEGR弁29aの状態を全閉状態から全閉状態以外の状態又はその逆へと変更し、その際の吸気管圧力Pmが変化するか否かを監視することにより実行される。この場合、吸気管圧力Pmが変化しなければ、EGはEGR弁29aに異常が発生していると判定する。
空燃比センサ96の自己診断は、例えば、機関20の運転状態がフューエルカット運転状態でない状態からフューエルカット運転状態へと変更された場合に、その運転状態変更時点から「出力値Vabyfsにより表される空燃比(検出空燃比)abyfs」が所定のリーン空燃比に到達する時点までの時間(変化時間)が所定時間よりも長いか否かを監視することにより実行される。この場合、EGは、その変化時間が所定時間よりも長いと、空燃比センサ96に異常が発生していると判定する。
EGは、フューエルカット運転状態において実行される排気性能関与部品の自己診断が今回のイグニッション・キー・スイッチのオン後(今回のハイブリッド車両の走行開始後)において完了するまで、フューエルカット要求を発生する。なお、EGは、一回の機関始動後において排気性能関与部品の自己診断が完了していなければ、フューエルカット要求を発生してもよい。
EGは、ステップ320にて、このフューエルカット要求があるか否かを判定する。フューエルカット要求があると、EGはステップ320にて「Yes」と判定してステップ330に進み、フューエルカット要求フラグXFCreqの値を「1」に設定する。フューエルカット要求フラグXFCreqの値は通信によりPMECU70に送信される。その後、EGはステップ395に進んで本ルーチンを一旦終了する。これに対し、フューエルカット要求がなければ、EGはステップ320にて「No」と判定し、ステップ395に直接進んで本ルーチンを一旦終了する。なお、フューエルカット要求フラグXFCreqの値は、ハイブリッド車両10のシステムが起動されたとき「0」に設定される。
<駆動制御>
PMは、所定時間が経過する毎に図4にフローチャートにより示した「EVモード駆動制御ルーチン」を、EVモード許可フラグXEVの値及びフューエルカット要求フラグXFCreqの値を参照しながら実行するようになっている。
PMは適当なタイミングにて図4のステップ400から処理を開始し、ステップ405に進んで「EVモード許可フラグXEVの値が「1」である」か否かを判定する。EVモード許可フラグXEVの値が「1」でなければ、PMはステップ405にて「No」と判定してステップ495に直接進み、本ルーチンを一旦終了する。
いま、EVモード許可フラグXEVの値が「1」であると仮定する。この場合、PMはステップ405にて「Yes」と判定してステップ410に進み、ユーザ要求トルクTuをアクセル操作量APと車速SPDとに基づいて決定する。より具体的に述べると、ユーザ要求トルクTuは、アクセル操作量APが大きいほど大きくなり、車速SPDが大きいほど小さくなるように決定される。
次いで、PMはステップ415に進み、ユーザ要求トルクTuと車速SPDとの積を車両要求パワーPvとして取得する。次に、PMはステップ420に進み、車両要求パワーPvが機関始動パワー閾値Pegthよりも小さいか否かを判定する。機関始動パワー閾値Pegthは、図5の太い実線によりに示したように車速SPDに応じて変化する。更に、機関始動パワー閾値Pegthは、バッテリ64の瞬時出力可能電力Woutにも応じて変化する。
即ち、図5の線TQはトルク要件閾値であり、第2発電電動機MG2が出力するトルクの上限値に対応して定められる。図5の線PWはパワー要件閾値であり、バッテリ64の瞬時出力可能電力Woutに対応して定められる。換言すると、パワー要件閾値は、バッテリ64が供給可能な電力の総てを第2発電電動機MG2に供給した場合に得られるトルクと車速との関係を表す値である。従って、パワー要件閾値は、バッテリ64が第2発電電動機MG2に供給できる瞬時電力により変動する。そして、機関始動パワー閾値Pegthは、トルク要件閾値とパワー要件閾値とのうちの小さい値により決定される。
車両要求パワーPvが機関始動パワー閾値Pegthよりも小さい場合、PMはステップ420にて「Yes」と判定してステップ425に進み、車速SPDが間欠許可車速SPDintth(機関始動車速閾値SPDuplmt)よりも低いか否かを判定する。
車速SPDが間欠許可車速SPDintthよりも低い場合、PMはステップ425にて「Yes」と判定してステップ430に進み、フューエルカット要求フラグXFCreqの値が「0」であるか否かを判定する。
このとき、フューエルカット要求フラグXFCreqの値が「0」であれば、PMはステップ430にて「Yes」と判定してステップ435に進み、そのステップ435にて機関20が運転中であるか否かを判定する。そして、機関20が運転中である場合、PMはステップ435にて「Yes」と判定してステップ440に進み、エンジンECU73に対して機関20の運転を停止する指示を送出する。その後、PMはステップ445に進む。これに対し、機関20が運転中でない場合、PMはステップ435にて「No」と判定してステップ445に直接進む。
PMは、ステップ445にて、車両要求パワーPvを満たすように第2発電電動機MG2を制御する。この結果、ハイブリッド車両10は、第2発電電動機MG2の出力のみを用いた走行(即ち、電動走行)を行う。
一方、PMがステップ430の処理を実行する時点において、フューエルカット要求フラグXFCreqの値が「1」であれば、PMはそのステップ430にて「No」と判定してステップ450に進み、車両要求パワーPvを満たすように「機関20及び第2発電電動機MG2」を制御する。即ち、ハイブリッド車両10は、機関20及び第2発電電動機MG2の両方の出力のみを用いた走行(即ち、ハイブリッド走行)を行う。但し、この場合、フューエルカット要求フラグXFCreqの値が「1」であるから、アクセル操作量APが「0」である等のフューエルカット条件が成立すれば、機関20は後述する「内燃機関制御ルーチン」によってフューエルカット運転状態にて運転される場合がある。なお、PMはステップ430にて「No」と判定した場合、後述するステップ455に進んでもよい。
また、PMが、このステップ450にフューエルカット要求フラグXFCreqの値が「1」でない場合に進んだとき、機関20は最適機関動作点にて運転され、それにより駆動軸53に作用するトルクのユーザ要求トルクTuに対する不足分が第2発電電動機MG2から発生させられる。その後、CPUはステップ495に進み、本ルーチンを一旦終了する。
更に、PMがステップ420の処理を実行する時点において、車両要求パワーPvが機関始動パワー閾値Pegth以上である場合、PMはそのステップ420にて「No」と判定してステップ455に進み、機関20の運転が停止中であるか否かを判定する。機関20の運転が停止中とは、機関回転速度NEが「0」であることを意味する。
そして、機関20の運転が停止中である場合、PMはステップ455にて「Yes」と判定してステップ460に進み、機関20を始動(機関20の運転を開始)する。その後、PMはステップ450に進む。これに対し、機関20が運転中である場合、PMはステップ455にて「No」と判定してステップ450に直接進む。この結果、ハイブリッド車両10はハイブリッド走行を行う。
加えて、PMがステップ425の処理を実行する時点において、車速SPDが間欠許可車速SPDintth以上であると、PMはそのステップ425にて「No」と判定してステップ455以降に進む。従って、この場合にも、ハイブリッド車両10はハイブリッド走行を行う。
このように、ハイブリッド車両10は、車両要求パワーPvが機関始動パワー閾値Pegthよりも小さく、車速SPDが間欠許可車速SPDintthよりも小さく、且つ、フューエルカット要求フラグXFCreqの値が「0」である場合、電動走行を行う。これに対し、車両要求パワーPvが機関始動パワー閾値Pegthよりも小さく且つ車速SPDが間欠許可車速SPDintthよりも小さい場合であっても、フューエルカット要求フラグXFCreqの値が「1」である場合、ハイブリッド車両10は機関20をフューエルカット運転しながらハイブリッド走行を行う。
<内燃機関制御>
EGは、所定時間が経過する毎に図6にフローチャートにより示した「内燃機関制御ルーチン」を実行するようになっている。従って、EGは適当なタイミングにて図6のステップ600から処理を開始し、ステップ610に進んでフューエルカット要求フラグXFCreqの値が「1」であるか否かを判定する。
フューエルカット要求フラグXFCreqの値が「1」である場合、EGはステップ610にて「Yes」と判定してステップ620に進み、車速SPDが学習許可車速SPDISCgokよりも高いか否かを判定する。なお、学習許可車速SPDISCgokは間欠許可車速SPDintthよりも低く、車速SPDが学習許可車速SPDISCgokよりも低い状態にて機関20がアイドル運転される場合、そのアイドル運転は安定しており、よって、アイドル運転制御学習値を学習することができる車速に選択されている。
車速SPDが学習許可車速SPDISCgokよりも高い場合、EGはステップ620にて「Yes」と判定してステップ630に進み、機関20をフューエルカット状態にて運転する。即ち、燃料噴射量Fiを「0」に設定する。その後、EGはステップ695に進み、本ルーチンを一旦終了する。なお、EGは、フューエルカット要求フラグXFCreqの値が「1」であり、且つ、車速SPDが学習許可車速SPDISCgokよりも高く、且つ、アクセル操作量APが「0」であるとのフューエルカット条件が成立した場合に限り機関20をフューエルカット状態にて運転してもよい。
これに対し、フューエルカット要求フラグXFCreqの値が「0」である場合、EGはステップ610にて「No」と判定してステップ640に進み、PMECU70からの要求に応じたトルクを出力するように機関20を運転する。更に、車速SPDが学習許可車速SPDISCgok以下である場合、EGはステップ620にて「No」と判定してステップ640に進み、PMECU70からの要求に応じたトルクを出力するように機関20を運転する。従って、機関20の運転中、例えば、アクセル操作量APが0であり、よって、車両要求パワーPvが小さいとき、機関20はアイドル運転させられる。
<フューエルカット要求フラグの解除>
EGは、所定時間が経過する毎に図7にフローチャートにより示した「フューエルカット要求フラグ解除ルーチン」を実行するようになっている。従って、EGは適当なタイミングにて図7のステップ700から処理を開始し、ステップ710に進んで「今回のシステム起動後において、フューエルカット運転中に行われる排気性能関与部品の自己診断(異常診断)が完了したか否か」を判定する。このとき、排気性能関与部品の自己診断が完了していなければ、EGはステップ710にて「No」と判定し、ステップ795に直接進んで本ルーチンを一旦終了する。
これに対し、排気性能関与部品の自己診断が完了していると、EGはステップ710にて「Yes」と判定してステップ720に進み、車速SPDが学習許可車速SPDISCgokよりも低いか否かを判定する。このとき、車速SPDが学習許可車速SPDISCgokよりも低いと、EGはステップ720にて「Yes」と判定してステップ730に進み、ISC学習制御実行許可フラグXISCgokの値を「1」に設定する。
ところで、EGは図示しないルーチンにより、機関20がアイドル運転状態にある場合(目標機関回転速度Ne*がアイドル回転速度である場合)、機関回転速度Neが目標機関回転速度Ne*(即ち、目標アイドル回転速度)に一致するようにスロットル弁開度TAをフィードバック制御する。更に、そのルーチンにおいて、EGはISC学習制御実行許可フラグXISCgokの値を監視しており、ISC学習制御実行許可フラグXISCgokの値が「1」であって機関20がアイドル運転状態にある場合、スロットル弁開度TAに応じた値(スロットル弁開度TAそのもの、又は、スロットル弁開度TAの一次遅れ値等)をアイドル運転制御学習値として学習する(バックアップRAMに格納する)。このアイドル運転制御学習値は、機関20の運転状態がアイドル運転以外の状態からアイドル運転状態となったときのスロットル弁TAの初期値等として用いられる。
次に、EGはステップ740に進み、アイドル運転制御学習値の学習が完了したか否かを判定する。例えば、EGは、所定時間以上に渡ってアイドル運転制御学習値が学習されたとき、アイドル運転制御学習値の学習が完了したと判定する。アイドル運転制御学習値の学習が完了していない場合、EGはステップ740にて「No」と判定し、ステップ795に直接進んで本ルーチンを一旦終了する。
これに対し、アイドル運転制御学習値の学習が完了している場合、EGはステップ740にて「Yes」と判定してステップ750に進み、フューエルカット要求フラグXFCreqの値を「0」に設定する。次いで、EGはステップ760に進み、ISC学習レートフラグXISCdmの値を「1」に設定する。その後、EGはステップ795に進み、本ルーチンを一旦終了する。
なお、EGがステップ720の処理を実行する時点において、車速SPDが学習許可車速SPDISCgok以上である場合、EGはそのステップ720にて「No」と判定してステップ770に進み、ISC学習制御実行許可フラグXISCgokの値を「0」に設定し、ステップ795に直接進んで本ルーチンを一旦終了する。従って、この場合、機関20がアイドル運転されていたとしてもアイドル運転制御学習値の学習は実行されない。
<ISCレート算出>
EGは、所定時間が経過する毎に図8にフローチャートにより示した「ISCレート算出ルーチン」を実行するようになっている。ISCレートは、機関始動回数に対するアイドル運転制御学習値の学習完了回数(以下、「ISC学習回数積算値」と称呼する。)の比である。
EGは適当なタイミングにて図8のステップ800から処理を開始し、ステップ810に進んで「現時点が機関20の始動直後であるか否か」を判定する。現時点が機関20の始動直後であると、EGはステップ810にて「Yes」と判定してステップ820に進み、機関始動フラグXEGstの値を「1」に設定する。その後、EGはステップ895に進み、本ルーチンを一旦終了する。
これに対し、EGがステップ810の処理を実行する時点が機関20の始動直後でなければ、EGはステップ810にて「No」と判定してステップ830に進み、現時点が機関20の運転停止直後であるか否かを判定する。現時点が機関20の運転停止直後でなければ、EGはステップ830にて「No」と判定し、ステップ895に直接進んで本ルーチンを一旦終了する。
これに対し、EGがステップ830の処理を実行する時点が機関20の停止直後であると、EGはステップ830にて「Yes」と判定し、以下に述べるステップ840乃至ステップ880の処理を順に行い、ステップ895に進んで本ルーチンを一旦終了する。
ステップ840:EGは、その時点の始動回数積算値SEGに機関始動フラグXEGstの値(即ち、「1」)を加えることにより、新たな始動回数積算値SEGを算出する。
ステップ850:EGは、その時点のISC学習回数積算値SISCdmにISC学習レートフラグXISCdmの値(「0」又は「1」)を加えることにより、新たなISC学習回数積算値SISCdmを算出する。
ステップ860:EGは、ISC学習回数積算値SISCdmを始動回数積算値SEGにより除することによって、ISG学習レートISCgrateを算出する。
ステップ870:EGは、機関始動フラグXEGstの値を「0」に設定する。
ステップ880:EGは、ISC学習レートフラグXISCdmの値を「0」に設定する。
以上、説明したように、本発明の実施形態に係るハイブリッド車両10は、
内燃機関20と電動機(第2発電電動機MG2)とを駆動源として搭載したハイブリッド車両10であって、
前記ハイブリッド車両の車速SPDが所定の間欠許可車速SPDintth以下である場合、所定の機関運転停止条件(車両要求パワーPvが機関始動パワー閾値Pegthよりも小さいとの条件)が成立すると前記機関20の運転を停止し(図4のステップ420、ステップ435及びステップ440)、且つ、所定の機関始動条件(車両要求パワーPvが機関始動パワー閾値Pegth以上であるとの条件)が成立すると前記機関20の運転を開始する(図4のステップ420、ステップ455及びステップ460)(即ち、間欠運転を行う)とともに、前記機関20の発生するトルクと前記第2発電電動機MG2の発生するトルクとを制御することにより前記ハイブリッド車両を走行させる駆動制御部と(図2のステップ445及びステップ450)、
前記機関20の排気性能に関与する部品の自己診断を前記機関のフューエルカット運転中に実行する自己診断部(図7のステップ710を参照。)と、
前記自己診断を実行するために前記機関をフューエルカット運転させるフューエルカット要求を前記駆動制御部に対して発生するフューエルカット要求部(図3のステップ320及びステップ330)と、
前記機関20が前記駆動制御部によってアイドル運転されている場合に前記機関の回転速度Neが目標アイドル回転速度に維持されるように前記機関の回転速度を調整する制御パラメータをフィードバック制御するとともに、前記車速が前記間欠許可車速よりも低い所定の学習許可車速以下であり且つ前記機関20がアイドル運転されている状態において前記制御パラメータに応じた値をアイドル運転制御学習値として学習するアイドル運転制御部(図7のステップ720乃至ステップ740を参照。)と、
を備えたハイブリッド車両である。
更に、
前記フューエルカット要求部は、
前記自己診断が終了した後であっても前記アイドル運転制御学習値の学習が完了するまで前記フューエルカット要求を発生し続けるように構成され(図3、及び、図7のステップ710、ステップ740及びステップ750を参照。)、
前記駆動制御部は、
前記フューエルカット要求が発生している場合には前記機関運転停止条件が成立したときであっても前記機関の運転を停止することなく(アクセル操作量APが「0」であるとのフューエルカット条件が成立すれば)前記機関をフューエルカット運転をさせながら前記機関の運転を継続するように構成されている(図4のステップ430及びステップ450を参照。)。
従って、排気性能に関与する部品の自己診断を行うために発生されるフューエルカット要求がアイドル運転制御学習値の学習が完了するまで消滅させられないので、機関の運転が継続する。よって、車速SPDが学習許可車速以下となった時点において機関がアイドル運転される機会が高まるので、アイドル運転制御学習値の学習を行う機会を増大することができる。
なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、ハイブリッド車両10は、HVモードで運転している場合にも上記実施形態と同様に排気性能に関与する部品の自己診断を行うためのフューエルカット要求を、アイドル運転制御学習値の学習が完了するまで継続してもよい。
10…ハイブリッド車両、20…内燃機関、21…吸気通路部、22…スロットル弁、22a…スロットル弁アクチュエータ、23…燃料噴射弁、25…クランクシャフト、26…エキゾーストマニホールド、29a…EGR弁、30…動力分配機構、31…遊星歯車装置、50…駆動力伝達機構、53…駆動軸、64…バッテリ、70…パワーマネジメントECU、73…エンジンECU、83…アクセル操作量センサ、85…車速センサ、92…スロットル弁開度センサ、93…吸気圧力センサ、96…空燃比センサ。

Claims (1)

  1. 内燃機関と電動機とを駆動源として搭載したハイブリッド車両であって、
    前記ハイブリッド車両の車速が所定の間欠運転許可車速以下である場合、所定の機関運転停止条件が成立すると前記機関の運転を停止し且つ所定の機関始動条件が成立すると前記機関の運転を開始する間欠運転を行うとともに、前記機関の発生するトルクと前記電動機の発生するトルクとを制御することにより前記ハイブリッド車両を走行させる駆動制御部と、
    前記機関の排気性能に関与する部品の自己診断を前記機関のフューエルカット運転中に実行する自己診断部と、
    前記自己診断を実行するために前記機関をフューエルカット運転させるフューエルカット要求を前記駆動制御部に対して発生するフューエルカット要求部と、
    前記機関が前記駆動制御部によって燃料噴射を伴うアイドル運転がなされる場合に前記機関の回転速度が目標アイドル回転速度に維持されるように前記機関のスロットル弁開度をフィードバック制御するとともに、前記車速が前記間欠許可車速よりも低い所定の学習許可車速以下であり且つ前記機関がアイドル運転されている状態において前記スロットル弁開度に応じた値をアイドル運転制御学習値として学習するアイドル運転制御部と、
    を備えたハイブリッド車両であって、
    前記フューエルカット要求部は、
    前記自己診断が終了した後であっても前記アイドル運転制御学習値の学習が完了するまで前記フューエルカット要求を発生し続けるように構成され、
    前記駆動制御部は、
    前記フューエルカット要求が発生している場合には前記機関運転停止条件が成立したときであっても前記機関の運転を停止することなく継続し、更に、フューエルカット条件が成立しているとき前記機関をフューエルカット運転させるように構成されたハイブリッド車両。
JP2012072988A 2012-03-28 2012-03-28 ハイブリッド車両 Active JP5807600B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012072988A JP5807600B2 (ja) 2012-03-28 2012-03-28 ハイブリッド車両
US13/827,933 US9145135B2 (en) 2012-03-28 2013-03-14 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072988A JP5807600B2 (ja) 2012-03-28 2012-03-28 ハイブリッド車両

Publications (2)

Publication Number Publication Date
JP2013203178A JP2013203178A (ja) 2013-10-07
JP5807600B2 true JP5807600B2 (ja) 2015-11-10

Family

ID=49236084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072988A Active JP5807600B2 (ja) 2012-03-28 2012-03-28 ハイブリッド車両

Country Status (2)

Country Link
US (1) US9145135B2 (ja)
JP (1) JP5807600B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617691B2 (ja) * 2011-02-25 2014-11-05 トヨタ自動車株式会社 車両および車両用制御方法
US9272706B2 (en) * 2013-04-17 2016-03-01 Ford Global Technologies, Llc Laser ignition system based diagnostics
JP6020418B2 (ja) * 2013-11-08 2016-11-02 トヨタ自動車株式会社 ハイブリッド車両
JP6337799B2 (ja) * 2015-02-19 2018-06-06 トヨタ自動車株式会社 ハイブリッド自動車
JP6277975B2 (ja) * 2015-02-26 2018-02-14 トヨタ自動車株式会社 アイドリングストップ制御装置
FR3064235B1 (fr) 2017-03-24 2019-03-22 Continental Automotive France Procede de detection d'irregularites de combustion d'une unite de type moteur a combustion interne couplee a une unite de propulsion electrique, d'un vehicule automobile hybride
US10914251B2 (en) * 2017-12-22 2021-02-09 Ford Global Technologies, Llc Systems and methods for EGR valve diagnostics
JP7035607B2 (ja) * 2018-02-22 2022-03-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置
EP3765342A4 (en) 2018-03-14 2021-12-01 Cummins, Inc. SYSTEMS AND PROCEDURES FOR OPTIMIZING ENGINE OPERATIONS IN GENSETS
JP2019183653A (ja) * 2018-04-02 2019-10-24 トヨタ自動車株式会社 内燃機関の制御装置
KR20210146658A (ko) * 2020-05-27 2021-12-06 현대자동차주식회사 하이브리드 차량의 엔진 아이들 제어 장치
CN113864073B (zh) * 2021-09-28 2023-05-23 重庆长安新能源汽车科技有限公司 增程式混合动力汽车的氧传感器诊断的控制方法及系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022164A (en) * 1976-01-28 1977-05-10 General Motors Corporation Electric idle for internal combustion engine
JP2601000B2 (ja) * 1990-08-31 1997-04-16 日産自動車株式会社 エンジンと自動変速機の総合制御装置
US5309887A (en) * 1992-08-07 1994-05-10 Mitsubishi Denki Kabushiki Kaisha Method of detecting abnormality in exhaust gas recirculation control system of internal combustion engine and apparatus for carrying out the same
JP3564863B2 (ja) * 1996-02-16 2004-09-15 日産自動車株式会社 車両の駆動力制御装置
JP3760545B2 (ja) * 1996-03-29 2006-03-29 マツダ株式会社 自動変速機の制御装置
JP3141823B2 (ja) * 1997-10-08 2001-03-07 トヨタ自動車株式会社 車載内燃機関の制御装置
JP2001020788A (ja) * 1999-07-08 2001-01-23 Denso Corp 内燃機関の減速制御装置
JP3759567B2 (ja) * 1999-10-14 2006-03-29 株式会社デンソー 触媒劣化状態検出装置
JP4032639B2 (ja) * 2000-11-30 2008-01-16 トヨタ自動車株式会社 車両の回生制御装置
JP2004332660A (ja) * 2003-05-09 2004-11-25 Honda Motor Co Ltd 可変気筒式内燃機関の制御装置
JP3818278B2 (ja) 2003-07-22 2006-09-06 トヨタ自動車株式会社 ハイブリッド車およびその制御方法
JP2005207376A (ja) 2004-01-26 2005-08-04 Toyota Motor Corp 車両の制御装置
US7277781B2 (en) * 2004-05-14 2007-10-02 General Motors Corporation Method of undervoltage protection during engine cranking
US20100145562A1 (en) * 2004-12-01 2010-06-10 Ise Corporation Method of Controlling Engine Stop-Start Operation for Heavy-Duty Hybrid-Electric Vehicles
JP4067001B2 (ja) * 2005-01-17 2008-03-26 トヨタ自動車株式会社 動力出力装置およびその制御方法並びに自動車
JP2007192114A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp 車両及びその制御方法
JP2007283899A (ja) 2006-04-17 2007-11-01 Toyota Motor Corp 内燃機関装置およびその制御方法並びに車両
JP4274266B2 (ja) * 2007-05-08 2009-06-03 トヨタ自動車株式会社 車両およびその制御方法
JP2010084750A (ja) * 2008-09-04 2010-04-15 Denso Corp 排気浄化用触媒の劣化診断装置
CN102197208B (zh) * 2008-12-08 2013-12-25 丰田自动车株式会社 内燃机的控制装置

Also Published As

Publication number Publication date
JP2013203178A (ja) 2013-10-07
US20130261859A1 (en) 2013-10-03
US9145135B2 (en) 2015-09-29

Similar Documents

Publication Publication Date Title
JP5807600B2 (ja) ハイブリッド車両
JP5862296B2 (ja) ハイブリッド車両
JP4197038B2 (ja) ハイブリッド自動車およびその制御方法
JP5862311B2 (ja) ハイブリッド車両
JP2013177026A (ja) ハイブリッド車両
JP2007176421A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP5794315B2 (ja) ハイブリッド車両
JP5704109B2 (ja) ハイブリッド車両
JP2010179780A (ja) ハイブリッド車およびその制御方法
JP2009286282A (ja) ハイブリッド自動車およびその制御方法
WO2013080376A1 (ja) ハイブリッド車両
JP2015140150A (ja) ハイブリッド車両
JP5459144B2 (ja) ハイブリッド車
JP2009274671A (ja) ハイブリッド自動車およびその制御方法
KR20160067745A (ko) 자동차
JP5867219B2 (ja) ハイブリッド車両
JP2008247128A (ja) 動力出力装置およびその制御方法並びに車両
JP2011057073A (ja) 動力出力装置およびハイブリッド車並びに下限蓄電割合更新方法
JP2008189267A (ja) ハイブリッド自動車およびその制御方法
JP2009279965A (ja) ハイブリッド車およびその制御方法
JP2020132109A (ja) ハイブリッド車両
JP2011084202A (ja) 動力出力装置、それを備えたハイブリッド車両および動力出力装置の制御方法
JP2009174501A (ja) 内燃機関装置およびその制御方法並びに動力出力装置
JP4311414B2 (ja) 車両およびその制御方法
JP4306685B2 (ja) 内燃機関装置,動力出力装置,内燃機関の運転停止方法および内燃機関装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150824

R151 Written notification of patent or utility model registration

Ref document number: 5807600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151